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Abstract: We complete the computation of the Mueller-Tang jet impact factor at next-

to-leading order (NLO) initiated in [1] and presented in [2] by computing the real corrections

associated to gluons in the initial state making use of Lipatov’s effective action. NLO cor-

rections for this effective vertex are an important ingredient for a reliable description of large

rapidity gap phenomenology within the BFKL approach.
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1 Introduction

Hard exclusive diffraction processes with large momentum transfer provide an interesting

test of the properties of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) pomeron [3]. Within

the BFKL all-orders resummation of enhanced rapidity logarithms, this object appears as a

bound state of two reggeized gluons and the amplitude for pomeron exchange is factorized into

a convolution of a universal Green’s function and process-dependent impact factors [4]. The

BFKL Green’s function is known at next-to-leading logarithmic accuracy, both in the forward

[5] and non-forward [6] cases, and a number of impact factors have been also computed at

NLO, namely those for colliding partons [7–9], forward jet production [10], forward vector

meson production γ˚ Ñ V, V “ tρ0, ω, φu [11] and γ˚ Ñ γ˚ transition [12]. These results

have allowed for the implementation of next-to-leading BFKL corrections (or at least a subset

of them) in the phenomenological description of important observables for the study of QCD

in the high-energy limit, like the angular decorrelation of dijets at large rapidity separation

[13, 14] or the proton structure functions at low values of Bjorken-x [15].

Next-to-leading corrections to the BFKL Green’s function are known to be large and im-

portant, since, in particular, they determine the running and normalization scales. What is
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less expected is that NLO corrections to the impact factors would have such a sizeable effect.

However, this turns out to be indeed the case for the available computations of cross-sections

including NLO impact factors, namely that for electroproduction of two light vector mesons

[16], the cross-section and azimuthal decorrelation of Mueller-Navelet jets [13], and the total

inclusive γ˚γ˚ scattering cross-section [17].

All the previously referred works probe the BFKL Green’s function with zero momentum

transfer, t “ 0. On the other hand, BFKL dynamics at finite momentum transfer also has

a rich associated phenomenology. In particular, the restriction to the forward case captures

the pomeron intercept but misses any information about its slope. Probably the simplest

observable allowing to study the t ‰ 0 BFKL kernel is the cross-section for dijet production

with a large rapidity gap, the so-called Mueller-Tang configuration [18]. In this case, the

absence of emissions over a large region in rapidity suggests that configurations with color

singlet exchange in the t-channel, understood in terms of the non-forward BFKL Green’s

function for ∆ygap " 1, should play a major role.

(a) (b) (c)

Figure 1. Different contributions to the Mueller-Tang cross-section: a) color singlet exchange; b) Soft

emissions with pT values smaller than the gap resolution (octet exchange); c) both contributions can

be subject to soft rescattering of the proton remnants which destroy the gap, resulting in a rapidity

gap survival factor.

The original leading-log computation of Mueller and Tang is known not to be able to

reproduce the data for rapidity gaps in pp̄ collisions obtained at Fermilab/Tevatron [19].

Some improvements have been achieved by the inclusion of the rapidity gap survival factor

[20] (see Fig. 1), constrained kinematics and running coupling corrections [21, 22], and some

important NLO corrections at the level of the Green’s function [23]. Notwithstanding, one

should also expect large NLO corrections coming from the impact factors, for which only the

virtual corrections to elastic parton-parton scattering are currently available [7, 8].
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In a companion article [1], we have computed the missing real emission contribution to

the NLO impact factors for quark-initiated jets with color singlet exchange. Here we offer

the details of the calculation of the gluon-induced counterpart, thus obtaining the missing

ingredient for the full NLO Mueller-Tang impact factor, and hence opening the door to a fully

next-to-leading description of events with large rapidity gaps at high momentum transfer. In

both computations, we use Lipatov’s effective action [24], whose application has been recently

extended beyond the calculation of tree-level scattering amplitudes in quasi-multi-Regge kine-

matics by providing suitable regularization and subtraction prescriptions [25].

In Section 2 we introduce our notation, while we refer to [24, 25] for a deeper introduction

to Lipatov’s action and its application to amplitudes at loop level. Afterwards, in Section

3 we address the computation of the gluon-initiated real-emission corrections. Section 4 is

devoted to the jet definition and the NLO description of Mueller-Tang jets within collinear

factorization. We check that after introducing the jet definition and integrating over the real

particle phase space, those soft and collinear singularities not reabsorbed in the renormaliza-

tion of the coupling and of the parton distribution functions cancel among virtual and real

corrections. Finally, we present some general remarks. An Appendix deals with the explicit

results for the inclusive (perturbative) pomeron-gluon impact factor.

2 Mueller-Tang Jets at Parton Level and the High-Energy Effective Action

The process under study, for the sake of concreteness, will be dijet production in a pp collision,

pppAq ` pppBq Ñ J1ppJ,1q ` J2ppJ,2q ` gap, (2.1)

where the two jets are tagged at a large rapidity separation which includes a large region

∆ygap devoid of hadronic activity. We focus on color singlet exchange in the t-channel.

The presence of such a large rapidity separation invokes the use of high-energy factorization

for scattering amplitudes in multi-Regge kinematics, which is conveniently embodied in the

following effective action put forward by Lipatov [24]

Seff “ SQCD`Sind; Sind “

ż

d4xTrrpW´rvpxqs´A´pxqqB
2
KA`pxq` t` Ø ´us, (2.2)

where vµ “ ´iT avaµpxq is the gluon field, and A˘pxq “ ´iT aAa˘pxq is the reggeon field,

introduced as a new degree of freedom, which mediates any interaction between (clusters

of) particles highly separated in rapidity. On the other hand, local-in-rapidity interac-

tions between reggeons and gluons are mediated by the Wilson line couplings W˘rvpxqs “

´1
gB˘P exp

!

´
g
2

şx¯

´8
dz˘v˘pzq

)

. The reggeon field satisfies the kinematic constraint B˘A¯pxq
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“ 0, manifest in the momentum space Feynman rules of Fig. 2. We have introduced the Su-

dakov decomposition

k “ k`
n´

2
` k´

n`

2
` k; n˘ “ 2pA,B{

?
s, s “ 2pA ¨ pB, (2.3)

where pA,B are the momenta of the colliding hadrons. For the process (2.1), we have

pA “ p`A
n´

2
, pJ,1 “

b

k2
J,1

ˆ

eyJ,1
n´

2
` e´yJ,1

n`

2

˙

` kJ,1.

pB “ p´B
n`

2
, pJ,2 “

b

k2
J,2

ˆ

eyJ,2
n´

2
` e´yJ,2

n`

2

˙

` kJ,2. (2.4)

q, a,±

k, c, ν

“ ´iq2δacpn˘qν ,

k˘ “ 0.

+ a

− b

q “ δab i{2
q2

q, a,±

k2, c2, ν2k1, c1, ν1

“

gf c1c2a q2

k˘1
pn˘qν1pn˘qν2 , k˘1 ` k

˘
2 “ 0

q, a,±

k3, c3, ν3k1, c1, ν1

k2, c2, ν2

“ ig2q2
´

fc3c2cfc1ca

k˘3 k
˘
1

`
fc3c1cfc2ca

k˘3 k
˘
2

¯

pn˘qν1pn˘qν2pn˘qν3 ,

k˘1 ` k
˘
2 ` k

˘
3 “ 0

Figure 2. Feynman rules for the lowest-order effective vertices of the effective action [26]. Wavy lines

denote reggeized gluons and curly lines, gluons. Pole prescriptions for the light-cone denominators are

discussed in [27].

Here pkJ,i, yJ,iq, i “ 1, 2, are the transverse momenta and rapidity of the jets. At the

partonic level, we will be concerned with the process

gppaq ` gppbq Ñ gpp1q ` gpp2q, (2.5)

mediated by color-singlet in the t-channel, which requires the exchange of (at least) two

reggeons. The cross-section for (2.5), at NLO, will read

dσ̂ab “

„
ż

d2`2εl1
π1`ε

1

l21pk ´ l1q2

ż

d2`2εl2
π1`ε

1

l22pk ´ l2q2
hg,ahg,b



d2`2εk, hg “ hp0qg `hp1qg , (2.6)
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for bare reggeon exchange, while after the resummation of ∆ygap „ lnpŝ{s0q enhanced terms

to all orders in αs, we get1

dσ̂res
ab “

„
ż

d2l1
π

ż

d2l11Gpl1, l
1
1,k, ŝ{s0q

ż

d2l2
π

ż

d2l12Gpl2, l
1
2,k, ŝ{s0qhg,ahg,b



d2k, (2.8)

in terms of the non-forward BFKL Green’s function Gpl, l1, q, s{s0q, with s0 the reggeization

scale, which parametrizes the scale uncertainty associated to the resummation. We assume

that, in the asymptotic limit s Ñ 8, the Green’s function regulates the infrared divergence

associated to the transverse momentum integral, as it occurs at leading log accuracy [22].

The whole dependence of the impact factors on s0 is contained in the virtual corrections

to the process (2.5), already computed in [8], where it was checked that the s0 dependence of

the cross-section cancels when the Green’s function is truncated to NLO. Apart from these

contributions, we will need to determine the amplitude for the processes2

gppaq ` gppbq Ñ gppq ` gpp2q ` gpqq, (2.9a)

gppaq ` gppbq Ñ qppq ` gpp2q ` q̄pqq, (2.9b)

with color singlet exchange in one of the t-channels t1 “ ppa ´ p1q
2 and t2 “ ppb ´ p2q

2. This

is the goal of the next section.

“ + ;

+=

.

(a) (b)

Figure 3. a) The leading log amplitude for gluon induced jets in the high-energy approximation.

The state of two reggeized gluons in the t-channel is projected onto the color singlet; b) Leading order

diagrams which describe within the effective action the coupling of the gluon to the two reggeons.

1Notice that the Green’s function is related to the imaginary part of the amplitude rather than the amplitude

itself, which is the object needed to compute the exclusive cross-section with finite momentum transfer. At

leading order, the amplitude for singlet exchange is purely imaginary, while this is no longer true at next-to-

leading order, since one has a signature factor

Gpl, l1,k, s{s0q “

ż δ`i8

δ´i8

dω

2πi

ˆ

s

s0

˙ω`1

Gpl, l1,k, ωq Ñ

ż δ`i8

δ´i8

dω

2πi

ˆ

s

s0

˙ω`1
1´ e´iπω

sinπω
Gpl, l1,k, ωq. (2.7)

However, this effect of order Opαsq will cancel among the amplitude and its complex conjugate, and (2.8)

remains valid at NLO. Our normalization of the BFKL equation is the one by Forshaw and Ross [4].
2At the same order in perturbation theory one could have the exchange of three reggeized gluons in an overall

singlet state (odderon) interfering with pomeron exchange. However, the amplitude for pomeron exchange is

imaginary while that for odderon exchange is real, and therefore the possible interference vanishes.
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3 Real NLO Corrections to the Impact Factors

3.1 The Gluon-Initiated Mueller-Tang Cross-Section at LO

Before discussing the computation of NLO real corrections, let us review how the leading log

result is obtained from Lipatov’s action. The diagrams of interest are shown in Fig. 3. The

t-channel projector onto the color singlet is

Pab,a1b1 “ P abP a
1b1 , P ab “

δab
a

N2
c ´ 1

. (3.1)

Then, at leading order, the scattering amplitude in the high-energy limit for the process (2.5),

projected into the color singlet, reads

iMp0q
gagbÑg1g2

“
1

2 ¨ 2!

ż

dl`dl´

p2πq2

ż

d2`2εl

p2πq2`2ε
iM̃abde

g2r˚`Ñg
¨ iM̃a1b1d1e1

g2r˚´Ñg
Pde,d1e1 pi{2q2

l2pl´ kq2
, (3.2)

where the 2! denominator corrects the overcounting from exchanging the reggeons in both

the upper and lower sides of the amplitude. The Sudakov decomposition of the sub-process

gppaq ` r
˚
`pl1q ` r

˚
`pk ´ l1q Ñ gppq, with r˚ denoting the virtual reggeons, is

pa “ p`a
n´

2
p “ p`a

n´

2
` k´

n`

2
` k

l1 “ l´1
n`

2
` l1 k “ k´

n`

2
` k, (3.3)

with

iM̃abde
g2r˚`Ñg

P de “
4ig2p`aNc
a

N2
c ´ 1

δab εppaq¨ε
˚ppq

»

–

1

l´ ´ l2

p`a
` i0

`
1

pk ´ lq´ ´ pk´lq2

p`a
` i0

fi

fl . (3.4)

High-energy factorization implies that the entire dependence on the longitudinal loop mo-

menta l´ and l` is contained in the gr˚r˚ Ñ g amplitudes, even when considering higher

radiative corrections to the impact factors. This allows us to express the amplitude (3.2) in

terms of a unique transverse loop integral:

iMp0q
gagbÑg1g2

“

ż

d2`2εl

p2πq2`2ε
φgg,aφgg,b

1

l2pk ´ lq2
, (3.5)

with

iφgg,a “

ż

dl´

8π
iM̃abde

gr˚r˚ÑgP
de “

Nc
a

N2
c ´ 1

g2p`a δ
abελppaqε

˚
µppqg

λµ. (3.6)

The choice of gauge for the polarization vectors is

ελpq, n
`q ¨ q “ ελpq, n

`q ¨ n` “ 0 ùñ εµλpq, n
`q “

ελ ¨ q

q`
pn`qµ ` εµλ. (3.7)

– 6 –



To extract the leading order impact factor, we consider the general definition

dσ̂ab “
1

Φ
|Mp0q

gagbÑg1g2 |
2dΠ2; Φ

sÑ8
» 2s, (3.8)

with the differential phase space

dΠ2 “

ĳ

ddp1

p2πqd´1

ddp2

p2πqd´1
δpp2

1qδpp
2
2qp2πq

dδpdqpp1 ` p2 ´ pa ´ pbq “

ż

ddp1

p2πq2`2ε
δpp2

1q

ˆ δpppa ` pb ´ p1q
2q “

ż

ddk

p2πq2`2ε
δpppa ´ kq

2qδpppb ´ kq
2q “

1

2p`a p
´
b

ż

d2`2εk

p2πq2`2ε
,

(3.9)

where we have used that ppa ` kq
2 “ p`a k

´, ppb ´ kq
2 “ ´p´b k

`, and ddk “ 1
2dk`dk´dd´2k.

From (3.2) and (3.5), we get the squared amplitude, summed over final color and polarization

indices, and averaged over initial ones, i.e.

|Mp0q
gagbÑg1g2 |

2 “

ż

d2`2εl1
p2πq2`2ε

1

l21pk ´ l1q2

ż

d2`2εl2
p2πq2`2ε

1

l22pk ´ l2q2
|φgg,a|2|φgg,b|2;

|φgg,a|2 “
1

2pN2
c ´ 1q

ÿ

a,b

δab
N2
c

N2
c ´ 1

g4pp`a q
2

"

gλµgλ
1µ1

„

´gλλ1 `
paλpn

`qλ1 ` pn
`qλpaλ1

p`a



ˆ

„

´gµµ1 `
pµpn

`qµ1 ` pn
`qµpµ1

p`

*

“ p1` εq
N2
c

N2
c ´ 1

g4pp`a q
2.

(3.10)

This yields the expression for the cross-section

dσ̂ab “
1

p2p`a p
´
b q

2

„

p1` εqN2
c

N2
c ´ 1

g4

p8π2q1`ε

2

pp`a q
2pp´b q

2

ˆ

„
ż

d2`2εl1
π1`ε

1

l21pk ´ l1q2

 „
ż

d2`2εl2
π1`ε

1

l22pk ´ l2q2



d2`2εk,

(3.11)

and compared to (2.6), we get

hp0qg “
|φgg,a|2

2p8π2q1`εpp`a q2
“ hp0qp1` εqC2

a , hp0q “
α2
s,ε2

ε

µ4εΓ2p1´ εqpN2
c ´ 1q

, (3.12)

where we have introduced the strong coupling in MS scheme in d “ 4` 2ε dimensions:

αs,ε “
g2µ2εΓp1´ εq

p4πq1`ε
. (3.13)

3.2 The Real NLO Corrections to the Impact Factor

In Fig. 4, we have schematically shown the different NLO real corrections to the process

(2.9a); similar diagrams can be written for the quasielastic corrections (b) and (d) for the qq̄

final state (2.9b). The different contributions can be sorted out into two pieces: those with

reggeon exchange in both t-channels (Fig. 4, (a), (c), (e)), corresponding to gluon emission
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(a) (b) (c) (d) (e)

Figure 4. Real NLO corrections with gg final state.

at central rapidities, and those where the additional gluon is emitted in the fragmentation

region of one of the gluons (quasielastic contribution, Fig. 4, (b), (d)). As discussed at length

in [1], only quasielastic contributions will be relevant for the impact factor for jet production

with a rapidity gap. In any case, the central production amplitude (Fig. 5, (b)), appearing in

diagrams (c) and (e) of Fig. 4, provides a useful check of our computation, already exploited

in [1], since the limit of the quasielastic amplitude (Fig. 5 (a)),

M̂2
X “ tsgg, sqq̄u “

pzp` p1´ zqqq2

zp1´ zq
Ñ 8, (3.14)

must coincide with the central production amplitude.

(a) (b) (c)

Figure 5. Different reggeon diagrams contributing to the real corrections to the Mueller-Tang impact

factor: a) Quasielastic and b) Central production diagram; c) Diagram with a r˚ Ñ 2r˚ splitting. The

grey blob denotes Lipatov’s effective vertex. Those contributions can be seen to vanish identically after

integration over l´, if the Hermiticity of the effective action is respected by using the pole prescription

discussed in [27]. It is understood that no internal reggeon lines appear inside the blobs.

3.3 Computation of the Quasielastic Corrections

Let us consider now the processes gppaq` r
˚plq` r˚pk´ lq Ñ tgppq` gpqq; qppq` q̄pqqu3, with

the following Sudakov decomposition of external momenta

pa “ p`a
n´

2
, k “ k´

n`

2
` k, l “ l´

n`

2
` l,

3Throughout the text, the momenta of initial particles are considered incoming, while those of final particles

are outgoing.
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p “ p1´ zqp`a
n´

2
`

p2

p1´ zqp`a

n`

2
` p, q “ zp`a

n´

2
`

q2

zp`a

n`

2
` q . (3.15)

The associated Mandelstam invariants are

s “ ppa ` kq
2 “ pp` qq2 “

pq ´ zkq2

zp1´ zq
; t “ ppa ´ pq

2 “ pq ´ kq2 “ ´
pk ´ qq2

1´ z
;

u “ ppa ´ qq
2 “ pp´ kq2 “ ´

q2

z
; s` t` u “ ´k2.

(3.16)

= + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + tadpoles;

+= ; = + ; = + .

= + + +

+ + + + + ; = .

(a1) (a2) (b1) (b2)

(c1) (c2) (d1) (d2) (e1)

(e2) (f1) (f2) (g1) (g2)

(g3) (g4) (g5) (g6) (g7)

(g8) (g9) (g10)

(A) (B) (C) (D)

(E) (F) (G1) (G2) (G3)

a c

d e

pa
p

q

l k − l

+ crossing counterparts of diagrams (A)-(F);

b

Figure 6. Summary of the NLO quasielastic corrections, including gg and qq̄ final states. Tadpoles

and diagrams labelled (gi) and (Gi) are identically zero.
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The Feynman diagrams to be evaluated within the effective action formalism are shown

in Fig. 6. In analogy with Eqs. (3.2) and (3.5), we can write

iMp0q
gagbÑggg

“
1

2!

ż

ddl

p2πqd
iM̃abcde

g2r˚`Ñgg
iM̃a1b1d1e1

g2r˚´Ñg
Pde,d1e1 pi{2q2

l2pk ´ lq2

“

ż

d2`2εl

p2πq2`2ε

φggg,a φgg,b
l2pk ´ lq2

,

(3.17)

with a similar formula for the qq̄ final state. For the gg final state, we have

iφggg “

ż

dl´

8π
iMabcde

g2r˚ÑggP
de “ ig3p`a

Nc
a

N2
c ´ 1

fabc ε
λ
aε
˚µ
b ε˚νc

ÿ

i“ta,¨¨¨ ,fu

Mλµν,i. (3.18)

Here, εa ” εppaq, εb ” εppq, εc ” εpqq. The label i in the subamplitudes Mλµν,i matches the

notation used in Fig. 6. The evaluation of the integral over l´ is carried out using the residue

theorem, taking at a time those contributions related by crossing of the external reggeons so

as to ensure the vanishing of the integral over the contour at infinity. Any potentially danger-

ous numerators involving l´, that would produce a non-zero contribution at infinity, vanish

since in the numerators the momentum l appears always contracted with some polarization

vector, and in our gauge they satisfy ε ¨n` “ 0, i.e. ε ¨ l does not give rise to any factor of l´

(note that l “ l´ n
`

2 ` l).

After this integration, the non-vanishing subamplitudes are

Mλµν,paq “ ´
zp1´ zq

∆2
rpp1´ 2zqk ´ p` qqλ gµν ` pk ` p` paqν gλµ ´ pk ` pa ` qqµ gνλs ,

Mλµν,pcq “
1

2ppa ´ pq2
rppz ´ 2qk ´ pz ` 2qp` p2´ 3zqpaqν gλµ ` 4zppλ gµν ` paµ gνλqs ,

Mλµν,pfq “
1

2ppa ´ qq2

”

pp1` zqk ` p1´ 3zqpa ´ pz ´ 3qqqµ gνλ ´ 4p1´ zqppaν gλµ ` qλ gµνq
ı

,

Mλµν,pe1q “
1

2Υ2
i

“

zp1´ zqpk ´ 2li ` p´ qqλ gµν ` z tp1´ zqp´k ` pa ` qq ` 2liuµ gνλ

` p1´ zq t´zpp` paq ` pz ´ 2qk ` 2liuν gλµ
‰

,

Mλµν,pe2q “
1

2Σ2
i

“

zp1´ zqp´k ` 2li ` p´ qqλ gµν ` z tp1´ zqppa ` qq ` p1` zqk ´ 2liuµ gνλ

` p1´ zq t´zpp` paq ` zk ´ 2liuν gλµ
‰

,

(3.19)

where li pi “ 1, 2q, are the reggeon loop momenta, with i “ 1 assigned to the amplitude and

i “ 2 for the complex conjugate. We have defined

∆ “ q ´ zk, Σi “ q ´ li, Υi “ q ´ k ` li “ li ´ p, i “ 1, 2. (3.20)
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Using that, with our choice of polarization vectors,

Γabfgr˚Ñg “
pa p

p− pa

a b

f

“ 2gp`a fabf εa ¨ ε
˚
b , (3.21)

it is possible to show that

lim
sggÑ0

iφggg “ lim
zÑ0

Γabfgr˚Ñga
fc
r˚2r˚Ñgpp, q, l1q ` lim

zÑ1
Γacfgr˚Ñga

fb
r˚2r˚Ñgpq,p, l1q, (3.22)

where

afcr˚2r˚Ñgpp, q, lq “

ż

dl´

8π

p

l k − l

q

f

c

d e

iMfdec
r∗2r∗→g P de

“ ´
g2Caδ

fcp2

a

N2
c ´ 1

εpqq ¨

„

2
p

p2
´
pp´ lq

pp´ lq2
`
pq ´ lq

pq ´ lq2



,

(3.23)

is the central production vertex (see Eq. (93) from [1]). This indicates that the result (3.19)

is in agreement with rapidity factorization.

In the same way, we have for the diagrams with quark-antiquark final state

iφgqq̄ “

ż

dl´

8π
iMade

g2r˚Ñqq̄P
de “

g3ta
a

N2
c ´ 1

εaµūppq

»

–

ÿ

j“tA,¨¨¨ ,Fu

Γµj

fi

fl vpqq, (3.24)

with the non-vanishing subamplitudes (after the l´ integration) reading in this case

Γµ
pAq “

Ca zp1´ zq

∆2
rp`a γ

µ ´ kµ {n`s, Γµ
pDq “

Cf
2pp´ kq2

r{n`{paγ
µ ´ 2qµ {n`s,

Γµ
pEq “

Cf
2pq ´ kq2

r2zp`a γ
µ ´ γµ{k{n`s,

Γµ
pF1q “

2Cf ´ Ca

4Υ2
1

 

p1´ zqrγµp{k ´ {l1q{n
`
´ 2zp`a γ

µs ` z{l1γ
µ
{n`

(

,

Γµ
pF2q “

2Cf ´ Ca

4Σ2
1

 

p1´ zqrγµ{l1 {n
`
´ 2zp`a γ

µs ` zp{k ´ {l1qγ
µ
{n`

(

.

(3.25)

One can check, using e.g. spinor-helicity techniques [28], that both z Ñ 0 and z Ñ 1 limits

of the expressions appearing in (3.25) are suppressed at least as
?
z (respectively

?
1´ z), in

agreement again with high-energy factorization.

The 3-particle phase space is
ż

dΠ3 “

¡

ddp

p2πqd´1

ddq

p2πqd´1

ddp2

p2πqd´1
δpp2qδpq2qδpp2

2qp2πq
dδdppa ` pb ´ p´ q ´ p2q

“
1

p2πq5`4ε

ĳ

ddk ddq δpppa ` k ´ qq
2qδpq2qδpppb ´ kq

2q.

(3.26)

– 11 –



Putting ddk “ 1
2dk`dk´dd´2k, and using that δpppb ´ kq2q “ 1

p´b
δ

ˆ

k` ´ k2

p´b

˙

; δpq2q “

1
zp`a

δ

ˆ

q´ ´ q2

zp`a

˙

; and δpppa ` k ´ qq
2q “ 1

p1´zqp`a
δ

ˆ

k´ ´
´

k2 `
q2

z

¯

˙

, we get

ż

dΠ3 “
1

4p2πq5`4εp`a p
´
b

¡

d2`2εk d2`2εq
dz

zp1´ zq
. (3.27)

Now, the contribution to the cross-section of the quasielastic real corrections is

dσ̂
tggg,gqq̄u
ab “

1

2p`a p
´
b

|Mp0q
gagbÑtggg,gqq̄u

|2 dΠ3 “
1

2p2πq5`4εp2p`a p
´
b q

2

ˆ

¡

d2`2εk d2`2εq
dz

zp1´ zq

ĳ

d2`2εl1
p2πq2`2ε

d2`2εl2
p2πq2`2ε

|φtggg,gqq̄u,a|2 |φgg,b|2

l21pk ´ l1q2l22pk ´ l2q2

(2.6)
”

¡

d2`2εl1
π1`ε

d2`2εl2
π1`ε

1

l21pk ´ l1q2l22pk ´ l2q2
h
p1q
r,tgg,qq̄u,ah

p0q
gg,bd2`2εk,

(3.28)

from which we get, using (3.12),

h
p1q
r,tggg,qq̄g,au “

1

2εp2πq5`4ε8pp`a q2

ĳ

d2`2εq
dz

zp1´ zq
|φtggg,gqq̄u,a|2. (3.29)

Introducing a cutoff on the partonic diffractive mass (3.14),

M̂2
X “

∆2

zp1´ zq
ă M̂2

X,max “ xM2
X,max ´ p1´ xqk

2, (3.30)

which is equivalent to putting a cutoff M2
X,max on the hadronic diffractive mass M2

X “ ppA `

kq2, we get for ggg final state

hp1qr,ggg “
h
p0q
g

2!

αs,ε
2π

1

µ2εΓp1´ εq

ĳ

d2`2εq

π1`ε
dz Pggpz, εqΘ

”

M̂2
X,max ´

∆2

zp1´zq

ı

Jpq,k, l1, l2q, (3.31)

where the additional factor 1{2! is introduced to account for the indistinguishability of final

state gluons. In (3.31),

Pggpz, εq “ 2Ca
p1´ zp1´ zqq2

zp1´ zq
“ 2Ca

„

z

1´ z
`

1´ z

z
` zp1´ zq



(3.32)

is the real part of the gluon-gluon Altarelli-Parisi splitting function (in any number of dimen-

sions) and

Jpq,k, l1, l2q “

„

∆

∆2
´

q

q2
´

p

p2
´

1

2

ˆ

Σ1

Σ2
1

`
Υ1

Υ2
1

˙

¨

„

t1 Ø 2u



“ k2

ˆ

z2

∆2q2
`
p1´ zq2

∆2p2
´

1

p2q2

˙

`
1

4

"

l21

ˆ

1

p2Υ2
1

`
1

q2Σ2
1

˙

` pk ´ l1q
2

ˆ

1

p2Σ2
1

`
1

q2Υ2
1

˙

´
pl1 ´ zkq

2

∆2Σ2
1

´
pl1 ´ p1´ zqkq

2

∆2Υ2
1

´
1

2

pk ´ l1 ´ l2q
2

Σ2
1Υ

2
2

` t1 Ø 2u

*

´
1

8
pl1 ´ l2q

2

ˆ

1

Σ2
1Σ

2
2

`
1

Υ2
1Υ

2
2

˙

.

(3.33)
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One can see that the structures appearing in (3.33) parallel those obtained for the quark case

in [1]. For the qq̄g final state, we get a similar result

h
p1q
r,qq̄g “

h
p0q
g

C2
a

αs,ε
2π

ĳ

d2`2εq

π1`ε
dz

Pqgpz, εq

µ2εΓp1´ εq
Θ

„

M̂2
X,max ´

∆2

zp1´ zq



J̃pq,k, l1, l2q, (3.34)

with

Pqgpz, εq “
1

2

„

1´
2zp1´ zq

1` ε



, (3.35)

and

J̃pq,k, l1, l2q “

„

Ca
∆

∆2
´ Cf

ˆ

q

q2
`

p

p2

˙

´
2Cf ´ Ca

2

ˆ

Σ1

Σ2
1

`
Υ1

Υ2
1

˙

¨

„

t1 Ø 2u



“ k2

ˆ

CaCf

„

z2

∆2q2
`
p1´ zq2

∆2p2



´
C2
f

p2q2

˙

`
2Cf ´ Ca

4

"

Cf

„

l21

ˆ

1

p2Υ2
1

`
1

q2Σ2
1

˙

` pk ´ l1q
2

ˆ

1

p2Σ2
1

`
1

q2Υ2
1

˙

´ Ca

„

pl1 ´ zkq
2

∆2Σ2
1

`
pl1 ´ p1´ zqkq

2

∆2Υ2
1



` t1 Ø 2u

*

´
p2Cf ´ Caq

2

8

ˆ

"

pl1 ´ l2q
2

ˆ

1

Σ2
1Σ

2
2

`
1

Υ2
1Υ

2
2

˙

` pk ´ l1 ´ l2q
2

ˆ

1

Σ2
1Υ

2
2

`
1

Σ2
2Υ

2
1

˙*

.

(3.36)

Notice that for the qq̄g final state no divergence appears as z Ñ 0 or z Ñ 1, as expected,

while the situation is different in the ggg final state, due to the poles in the splitting function

(3.32).

4 The Jet Vertex for Gluon-Initiated Jets with Rapidity Gap

4.1 Virtual Corrections and Renormalization

The one-loop virtual corrections to the gr˚r˚ Ñ g amplitude have been already computed in

[8], where use is made of unitarity techniques. Here we rewrite the results, translating them

into our normalization conventions, for the sake of completeness. We have

hp1qv pk, l1, l2q “
h
p0q
g

4π

αs,εΓ
2p1` εq

p´εqΓp1` 2εq

”

hp1qv,apk, l1, l2q ` h
p1q
v,bpk, l1, l2q ` h

p1q
v,cpk, l1, l2q

ı

;

hp1qv,apk, l1, l2q “ Ca

„

ln
s0

l21

ˆ

l21
µ2

˙ε

` ln
s0

pk ´ l1q2

ˆ

pk ´ l1q
2

µ2

˙ε

`

ˆˆ

l21
µ2

˙ε

`

ˆ

pk ´ l1q
2

µ2

˙ε˙"2

ε
´

11` 9ε

2p1` 2εqp3` 2εq

`
nf
Nc

p1` εqp2` εq ´ 1

p1` εqp1` 2εqp3` 2εq
` ψp1q ` ψp1´ εq ´ 2ψp1` εq

*

` tl1 Ø l2u



;
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h
p1q
v,bpk, l1, l2q “ 2

nf
Nc

„

Cf
2p1` εq2 ` ε

p1` εqp1` 2εqp3` 2εq

"ˆ

k2

µ2

˙ε

´

ˆ

l21
µ2

˙ε

´

ˆ

pk ´ l1q
2

µ2

˙ε*

´
1

2Nc

"

2` ε

p1` εqp3` 2εq

„ˆ

l21
µ2

˙ε

`

ˆ

pk ´ l1q
2

µ2

˙ε

´K3pl1q `
2K4pl1q

1` 2ε

*

` tl1 Ø l2u



;

hp1qv,cpk, l1, l2q “ Ca

„

´ 2

"

ln
s0

l21

ˆ

l21
µ2

˙ε

` ln
s0

pk ´ l1q2

ˆ

pk ´ l1q
2

µ2

˙ε

´ ln
s0

k2

ˆ

k2

µ2

˙ε

`
3

2ε
´

11` 8ε

p1` 2εqp3` 2εq
´ ψp1` 2εq ´ ψp1` εq ` ψp1´ εq ` ψp1q

˙

ˆ

ˆˆ

l21
µ2

˙ε

`

ˆ

pk ´ l1q
2

µ2

˙ε

´

ˆ

k2

µ2

˙ε˙*

` 2εK1pl1q

´

ˆ

1

ε
` 2ψp1` 2εq ´ 2ψp1` εq ` 2ψp1´ εq ´ 2ψp1q

˙ˆ

k2

µ2

˙ε

´
11` 8ε

p1` 2εqp3` 2εq

ˆˆ

l21
µ2

˙ε

`

ˆ

pk ´ l1q
2

µ2

˙ε˙

´ 2K2pl1q ` 4K3pl1q ´
2p1` εq

1` 2ε
K4pl1q ` tl1 Ø l2u



, (4.1)

where the integrals Kipk, ljq, i “ 1, ..., 4, are given in an expansion around ε “ 0 in the

formulae (A13)-(A18) of [8]. Notice that our expressions (4.1) are considerably reduced with

respect to those appearing in [8], since we are already summing/averaging over final/initial

helicities. In particular, the appearing structures

εa ¨ tk, l´ ku εb ¨ tk, l´ ku

tk2, pl´ kq2u
9 δλa,λb ` δλa,´λb , (4.2)

vanish after taking the sum over initial and final helicities. Expanding in ε, we have

hp1qv “
h
p0q
g αs,ε
4π

"

´ 4Ca

„

1

ε2
`

1

ε
ln

k2

µ2



` β0 ` Ca

„

8

3
π2 ´ 3´ 2 ln2 k2

µ2



` 4

„

β0 `
nf
3

„

1`
1

C2
a



ln
k2

µ2

`

"

Ca

„

ln
k2

l21
ln

l21
s0
` ln

k2

pk ´ l1q2
ln
pk ´ l1q

2

s0
` ln2 l21

pk ´ l1q2



´

„

β0 `
nf
3

„

1`
1

C2
a

 „

ln
l21
µ2
` ln

pk ´ l1q
2

µ2



´

„

nf
3

„

1`
1

C2
a



`
β0
2



pl21 ´ pk ´ l1q
2q

k2
ln

l21
pk ´ l1q2

´ 2

„

nf
C2
a

` 4Ca



pl21pk ´ l1q
2q1{2

k2
φ1 sinφ1

´
4

3

„

Ca `
nf
C2
a



l21pk ´ l1q
2

pk2q2

ˆ

2´
rl21 ´ pk ´ l1q

2s

k2
ln

l21
pk ´ l1q2

˙

sin2 φ1 ´ 2Caφ
2
1

`
1

3

„

Ca `
nf
C2
a



pl21pk ´ l1q
2q1{2

pk2q2

ˆ

4k2 ´ 12pl21pk ´ l1q
2q1{2φ1 sinφ1 ´ pl

2
1 ´ pk ´ l1q

2q ln
l21

pk ´ l1q2

˙

cosφ1

`
16

3

„

Ca `
nf
C2
a



pl21pk ´ l1q
2q3{2

pk2q3
φ1 sin3 φ1 ` tl1 Ø l2, φ1 Ø φ2u

**

`Opεq.

(4.3)
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Here

φi “ arccos
k2 ´ l2i ´ pk ´ liq

2

2|li||k ´ li|
, i “ 1, 2, (4.4)

is the angle between the reggeized gluon momenta, with |φ1,2| ď π, and β0 “
11
3 Ca ´

2
3nf .

4.2 Inclusion of the Jet Function and Counterterms and the LO Jet Vertex

As it occurs in general when evaluating higher-order QCD cross sections, we have come

across different kinds of singularities, expressed in our case through poles in the dimensional

regularization parameter ε. The ultraviolet singularities present in the virtual contributions

are removed by coupling renormalization, which amounts to adding to the cross-section the

so-called UV counterterm4

h
p1q
UVct. “ hp0qg

αs,ε
2π

β0

ε
. (4.5)

Another kind of singularities come from the soft (low-momentum) and collinear (small-angle)

regions in both virtual and real corrections. In order to deal with these divergences, one must

properly define a jet observable, which is infrared safe and either collinear safe or collinear

factorizable, so that its value is independent of the number of soft and collinear particles in the

final state [29]. This is achieved by convoluting the partonic cross section with a distribution

SJ (jet function), which selects the configurations contributing to the particular choice of jet

definition:

dσ̂J
dJ1dJ2d2k

“ dσ̂ b SJ1SJ2 , (4.6)

with dJi “ d2`2εkJidyJi , i “ 1, 2, the jet phase space and k the transverse momentum

transferred in the t-channel. At leading order, k is equal to the transverse momentum of the

jet and the jet functions are trivial, identifying each of the final state particles with one of

the jets through

S
p2q
Ji
ppi, xiq “ δpyi´yJiqδ

2`2εppi´kJiq “ xiδ

ˆ

xi ´
|kJ,i|e

yJ,i
?
s

˙

δ2`2εppi´kJiq, i “ 1, 2. (4.7)

At next-to-leading order, the situation is more complex, since the two partons generating

the jet can be emitted collinearly, or one of them can be soft. In this case, considering the

parametrization (3.15), the following conditions must be imposed on the jet function in order

to get a finite jet cross section [29]

S
p3q
J pp, q, zx, xq Ñ S

p2q
J pp, xq q Ñ 0, z Ñ 0

4When looking at (4.3), no pole of the form β0{ε seems to appear. Actually, the UV counterterm (4.5)

cancels the contribution proportional to β0{ε in h
p1q
v,a (Eq. (4.1)), coming from the one-loop correction to

the gluon-gluon-reggeon vertex which, as remarked in [8], is the only ultraviolet divergence appearing in the

expansion of (4.1). However, an equal contribution with different sign, this time of infrared origin, is associated

to h
p1q
v,c in (4.1), and hence no β0{ε factor appears in (4.3).
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S
p3q
J pp, q, zx, xq Ñ S

p2q
J pk, xq

q

z
Ñ

p

1´ z

S
p3q
J pp, q, zx, xq Ñ S

p2q
J pk, p1´ zqxq q Ñ 0

S
p3q
J pp, q, zx, xq Ñ S

p2q
J pk, zxq pÑ 0, (4.8)

together with the symmetry of Sp3q under simultaneously swapping p Ø q and z Ø 1 ´ z.

Including the jet function, we can then generalize (2.6) writing the differential partonic jet

cross-section as

dσ̂J, ab
dJ1 dJ2 d2k

“
1

π2

żżżż

dl1 dl11 dl2 dl12
dV̂apl1, l2,k,pJ,1, y1, s0q

dJ1

ˆGpl1, l
1
1,k, ŝ{s0qGpl2, l

1
2,k, ŝ{s0q

dV̂bpl
1
1, l

1
2,k,pJ,2, y2, s0q

dJ2
, ŝ “ x1 x2 s.

(4.9)

Assuming that the reggeization scale s0 is defined in such a way that it does not depend on

the proton momentum fractions x1,2 of the initial partons,5 we can write

dσJ,pp
dJ1 dJ2 d2k

“

k“1,¨¨¨ ,nf
ÿ

i,j“tqk,q̄k,gu

ż 1

0
dx1

ż 1

0
dx2 f

pgapq
i{p px1, µF qf

pgapq
j{p px2, µF q

dσ̂J,ij
dJ1 dJ2 d2k

“
1

π2

żżżż

dl1 dl11 dl2 dl12
dV pl1, l2,k,pJ,1, y1, s0q

dJ1

ˆGpl1, l
1
1,k, ŝ{s0qGpl2, l

1
2,k, ŝ{s0q

dV pl11, l
1
2,k,pJ,2, y2, s0q

dJ2
.

(4.10)

The superindex pgapq over the parton distribution functions —which we will omit in the

following— indicates that, given the interactions with the proton remnants (Fig. 1, (c)),

they do not coincide with the standard parton densities. In principle they can be obtained

from the usual parton densities by incorporating phenomenological gap survival probability

factors, or can be extracted from observables insensitive to possible soft rescatterings, like

jet-gap-jet cross-sections in double-Pomeron-exchange processes [30].

For gluon-induced jets at leading order (Sec. 3.1), the jet function (4.7) is trivial and

dV̂
p0q
g

dJ
“ C2

av
p0qS

p2q
J pk, xq, with vp0q “ hp0qpε “ 0q “

α2
s

N2
c ´ 1

, αs “
g2

4π
;

dV
p0q
g

dJ
“

ż 1

0
dx fg{ppx, µ

2
F qh

p0q
g |ε“0 S

p2q
J pp, xq “ C2

a v
p0q xJ fg{ppxJ , µ

2
F q.

(4.11)

We should emphasize that it is not trivial that the process under consideration can be

described within collinear factorization. One can check, however (Sec. 4.3) that actually all

infrared singularities of the jet cross section can be absorbed in the definition of the parton

5A typical choice would be ln ŝ{s0 “ ∆η, with ∆η equal to the size of the gap ∆ygap or to the rapidity

separation of the jets ∆y.
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densities following the DGLAP equations. Written alternatively, all remaining 1
ε2

and 1
ε poles

from the real and virtual corrections cancel against the following collinear counterterms (in

MS scheme)

dV
p1q

col. ct.

dJ
“

ż 1

0
dx fg{ppx, µ

2
F q

dV̂
p1q

col. ct.

dJ
,

dV̂
p1q

col. ct.

dJ
“

dV̂
p1q

col. ct., q

dJ
`

dV̂
p1q

col. ct., g

dJ
;

dV̂
p1q

col. ct., q

dJ
“ ´p2nf q

αs,ε
2π

ˆ

1

ε
` ln

µ2
F

µ2

˙
ż 1

z0

dz S
p2q
J pk, zxqh

p0q
q P p0qqg pzq,

dV̂
p1q

col. ct., g

dJ
“ ´

αs,ε
2π

ˆ

1

ε
` ln

µ2
F

µ2

˙
ż 1

z0

dz S
p2q
J pk, zxqh

p0q
g P p0qgg pzq,

(4.12)

where6

P p0qqg pzq “
1

2

“

z2 ` p1´ zq2
‰

, P p0qgg pzq “ 2Ca

„

z

r1´ zs`
`

1´ z

z
` zp1´ zq



`
β0

2
δp1´ zq,

(4.14)

are the regularized leading order splitting functions. The lower limit of integration z0 is

determined from the implicit factor δ
`

pzxpA ` kq
2
˘

in (4.12), giving the partonic diffractive

mass at leading order after the rescaling xÑ zx. Then we have

M̂2
X “ p`a k

´ ´ k2 “
p1´ zqk2

z
ă M̂2

X,max ñ z0 “
k2

M̂2
X,max ` k2

. (4.15)

4.3 Cancellation of Soft and Collinear Divergences

In order to explicitly check the finiteness of the jet cross section after reabsorption of the sin-

gular terms in the renormalization of the coupling and the parton distribution functions, we

will need to isolate the singular regions giving rise to poles in ε in the phase space integrals

appearing in the real emission corrections, Eqs. (3.31) and (3.34). To this effect, we will

introduce a phase slicing parameter λ2 Ñ 0 [31]; the final finite result for the jet vertex dV̂ p1q

dJ

will depend on λ2 but it should be kept in mind that d
dλ

dV̂ p1q

dJ Ñ 0 for λ2 ! k2.

The NLO jet vertex will be the sum of several contributions

dV
p1q
g

dJ
“

ż 1

0
dx fg{ppx, µ

2
F q

dV̂
p1q
g

dJ
;

dV̂
p1q
g

dJ
“

dV̂
p1q
v

dJ
`

dV̂
p1q
r

dJ
`

dV̂
p1q

UV ct.

dJ
`

dV̂
p1q

col. ct.

dJ
,

(4.16)

6The plus distribution is defined by
ż 1

α

dx fpxqrgpxqs` ”

ż 1

α

dx pfpxq ´ fp1qqgpxq ´ fp1q

ż α

0

dx gpxq, (4.13)

when acting over a function gpxq which is smooth as xÑ 1. Even though 1 is one of the integration limits, it

will be understood in the following that
ş1

α
dz fpzq δp1´ zq “ fp1q, with no 1/2 factor.
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with

dV̂
p1q
v

dJ
“ hp1qv S

p2q
J pk, xq;

dV̂
p1q

UV ct.

dJ
“ h

p1q
UV ct.S

p2q
J pk, xq;

dV̂
p1q
r

dJ
“

dV̂
p1q
r, qq̄g

dJ
`

dV̂
p1q
r, ggg

dJ
,

dV̂
p1q
r,tqq̄g, gggu

dJ
“ h

p1q
r,tqq̄g, ggguS

p3q
J pp, q, zx, zq.

(4.17)

In our study of the singularities of the real contribution, the following integrals will be useful

ż

d2`2εq

π1`ε

Θpλ2 ´ q2q

q2
“

λ2ε

εΓp1` εq
; µ´2ε

ż

d2`2εq

π1`ε

k2

q2pq ´ kq2
“

„

k2

µ2

ε
Γ2pεqΓp1´ εq

Γp2εq
, (4.18)

as well as the identity

1

p1´ zq1´2ε
“

1

2ε
δp1´ zq `

1

r1´ zs`
` 2ε

„

lnp1´ zq

p1´ zq



`

`Opε2q. (4.19)

Extraction of Singularities: qq̄ Final State

The poles in ε in the expression

dV̂
p1q
r, qq̄g

dJ
“ nf

h
p0q
g

C2
a

αs,ε
2π

1

µ2εΓp1´ εq

ż 1

0
dz

ż

d2`2εq

π1`ε
Pqgpz, εq

ˆ J̃pq,k, l1, l2qΘ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pk ´ q, q, zx, xq,

(4.20)

come from the regions where the denominators in J̃pq,k, l1, l2q (Eq. (3.36)) vanish. While

J̃pq,k, l1, l2q is finite as Σ2
1,2 Ñ 0 and Υ2

1,2 Ñ 0, it develops singularities for tq2,p2,∆2u Ñ 0.

For fixed k2, the regions q2 Ñ 0 and p2 Ñ 0 cannot overlap, but we will have to take special

care of the regions where simultaneously ∆2 Ñ 0 and q2 Ñ 0 or p2 Ñ 0.

We note that (4.20) is symmetric under the simultaneous replacement q Ø p, z Ø 1´ z

(remember that ∆2 “ pq ´ zkq2 “ pp ´ p1 ´ zqkq2). Using this symmetry, we can rewrite

(3.36) in the following way

J̃pq,k, l1, l2q “
C2
a

2

„

z2k2

∆2q2
`
p1´ zq2k2

∆2p2
´

k2

p2q2



` C2
f

k2

p2q2

´
1

2

„

J1pq,k, l1, zq ` J1pq,k, l2, zq ` J1pp,k, l1, 1´ zq ` J1pp,k, l2, 1´ zq



`
1

2C2
a

„

J2pq,k, l1, l2q ` J2pp,k, l1, l2q ´
k2

p2q2



, (4.21)

where we have introduced a notation paralleling that of [1]:

J0pq,k, zq “
z2k2

∆2q2
,
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J1pq,k, li, zq “
1

4

„

2
k2

p2

ˆ

p1´ zq2

∆2
´

1

q2

˙

´
1

Σ2
i

ˆ

pli ´ zkq
2

∆2
´

l2i
q2

˙

´
1

Υ2
i

ˆ

pli ´ p1´ zqkq
2

∆2
´
pli ´ kq2

q2

˙

, i “ 1, 2;

(4.22)

J2pq,k, l1, l2q “
1

4

„

l21
p2Υ2

1

`
pk ´ l1q

2

p2Σ2
1

`
l22

p2Υ2
2

`
pk ´ l2q

2

p2Σ2
2

´
1

2

ˆ

pl1 ´ l2q
2

Σ2
1Σ

2
2

`
pk ´ l1 ´ l2q

2

Υ2
1Σ

2
2

`
pk ´ l1 ´ l2q

2

Σ2
1Υ

2
2

`
pl1 ´ l2q

2

Υ2
1Υ

2
2

˙

.

The function J1pq,k, li, zq, i “ 1, 2 has the property that it is finite for q collinear to k (pÑ

0), zk (∆ Ñ 0), li (Σi Ñ 0), and k´ li (Υi Ñ 0q. In addition, J1pq,k, li, z “ 0q “ 0, i “ 1, 2.

The function J2pq,k, l1, l2q is also finite for all possible collinear poles, apart from the limit

p2 Ñ 0 where one finds J2pq,k, l1, l2q Ñ 1{p2. Note that with this property, the last line of

Eq. (4.21) is also finite for all possible collinear poles. The only possible source for collinear

poles is therefore due to the first line of Eq. (4.21). Making use of the symmetry of the jet

vertex under tq, zu Ø tp, 1´ zu we find

dV̂
p1q
r, qq̄g

dJ
“ hp0q

αs,ε
2π

nf p1` εq

µ2εΓp1´ εq

ż 1

0
dz

ż

d2`2εq

π1`ε
Pqgpz, εq

"

Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

ˆ S
p3q
J pk ´ q, q, zx, xq

„

C2
a

ˆ

z2k2

∆2q2
´

k2

pp2 ` q2qq2

˙

` 2C2
f

k2

pp2 ` q2qq2

´

„

J1pq,k, l1, zq ` J1pq,k, l2, zq



`
1

C2
a

„

J2pq,k, l1, l2q ´
k2

p2pp2 ` q2q



.

The last two lines are already finite and require no further treatment. For the term in

the second line, proportional to C2
a we note that the only singularity is due to the pole in

1{∆2. Special care is however needed in the limit z Ñ 0 where the 1{q2 pole appears to

remain uncancelled. Similarly, for the term proportional to C2
f we only have a 1{q2 collinear

singularity. We therefore find

dV̂
p1q
r, qq̄g

dJ
“

dV̂
p1q,a
r, qq̄g

dJ
`

dV̂
p1q,d
r, qq̄g

dJ
, (4.23)

with

dV̂
p1q,a
r, qq̄g

dJ
“ hp0q

αs,ε
2π

nf p1` εq

µ2εΓp1´ εq

ż 1

0
dz

ż

d2`2εq

π1`ε
Pqgpz, εq

"

Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

ˆ S
p3q
J pk ´ q, q, zx, xq

„

´ J1pq,k, l1, zq ´ J1pq,k, l2, zq

`
1

C2
a

ˆ

J2pq,k, l1, l2q ´
k2

p2pp2 ` q2q

˙*

, (4.24)
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and the divergent terms,

dV̂
p1q,d
r, qq̄g

dJ
“ hp0q

αs,ε
2π

nf p1` εq

µ2εΓp1´ εq

ż 1

0
dz

ż

d2`2εq

π1`ε
Pqgpz, εq

ˆ

"

C2
a

ˆ

Θ

ˆ

M̂2
X,max ´

zp2

p1´ zq

˙

S
p3q
J pk ´ zq, zq, zx, xq

z2εk2

p2q2

´Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pk ´ q, q, zx, xq

k2

pp2 ` q2qq2

˙

`Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pk ´ q, q, zx, xq2C2

f

k2

pp2 ` q2qq2

*

,

(4.25)

where we rescaled q Ñ zq when necessary. We find

dV̂
p1q,d
r, qq̄g

dJ
“

dV̂
p1q,b
r, qq̄g

dJ
`

dV̂
p1q,c
r, qq̄g

dJ

dV̂
p1q,c
r, qq̄g

dJ
“ hp0q

αs,ε
2π

nf p1` εq

µ2εΓp1´ εq

ż 1

0
dz

ż

d2`2εq

π1`ε
Pqgpz, εqz

2ε

"

C2
a

Θpλ2 ´ p2qk2

pp2 ` q2qp2
Θ

ˆ

M̂2
X,max ´

zp2

p1´ zq

˙

S
p3q
J pk ´ zq, zq, zx, xq

` 2C2
fΘ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pk ´ q, q, zx, xq

k2Θpλ2 ´ q2q

pp2 ` q2qq2

*

“ hp0qg
αs,ε
2π

nf
Γp1´ εqΓp1` εqε

ż 1

0
dzPqgpz, εqz

2εC2
a

ˆ

λ2

µ2

˙ε

S
p2q
J pk, xq

` hp0qq
αs,ε
2π

2nf p1` εq

Γp1´ εqΓp1` εqε

ż 1

z0

dzPqgpz, εq

ˆ

λ2

µ2

˙ε

S
p2q
J pk, zxq

“ hp0qg
αs,ε
2π

ˆ

nf
3ε
`

1

3
ln
λ2

µ2
´

5nf
9

˙

S
p2q
J pk, xq

` hp0qq
αs,ε
2π

ż 1

z0

dz

„

2nfP
p0q
qg pzq

ˆ

1

ε
` ln

λ2

µ2

˙

` nf



S
p2q
J pk, zxq `Opεq, (4.26)

and

dV̂
p1q,b
r, qq̄g

dJ
“ hp0q

αs,ε
2π

nf p1` εq

µ2εΓp1´ εq

ż 1

0
dz

ż

d2`2εq

π1`ε
Pqgpz, εq

ˆ

#

C2
a

"

Θpp2 ´ λ2qk2

pp2 ` q2qp2
Θ

ˆ

M̂2
X,max ´

zp2

p1´ zq

˙

S
p3q
J pk ´ zq, zq, zx, xq

`

„

k2

pp2 ` q2qq2
Θ

ˆ

M̂2
X,max ´

zp2

p1´ zq

˙

S
p3q
J pk ´ zq, zq, zx, xq

´Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pp, q, zx, xq

k2

pp2 ` q2qq2

*

(4.27)

` 2C2
fΘ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pp, q, zx, xq

k2Θpq2 ´ λ2q

pp2 ` q2qq2

+
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` hp0qg
αs,ε
2π

nf
µ2εΓp1´ εqΓp1` εq

ż 1

z0

dzP p0qqg pzq2 lnp1´ zqS
p2q
J pk, zxq `Opεq.

Note that the squared bracket in Eq. (4.27) is finite for q2 Ñ 0.

Extraction of Singularities: gg Final State

Now we can repeat exactly the same process for the gg final state. We perform the splitting

Pggpz, εq “ P p1qgg pz, εq ` P
p2q
gg pz, εq,

P p1qgg pz, εq “ Ca

„

2p1´ zq

z
` zp1´ zq



, P p2qgg pz, εq “ Ca

„

2z

1´ z
` zp1´ zq



. (4.28)

We obtain

dV̂
p1q
r, ggg

dJ
“
h
p0q
g

2!

αs,ε
2π

ż 1

0
dz

ż

d2`2εq

π1`ε
Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pp, q, zx, xq

ˆ

"

P
p1q
gg pz, εq

µ2εΓp1´ εq

„

J0pq,k, zq `
ÿ

i“1,2

J1pq,k, li, zq ` J2pq,k, l1, l2q



`
P
p2q
gg pz, εq

µ2εΓp1´ εq

„

J0pp,k, 1´ zq `
ÿ

i“1,2

J1pp,k, li, 1´ zq ` J2pp,k, l1, l2q

*

. (4.29)

Using transformations z Ñ 1 ´ z, q Ñ p1 ´ zqq, and p Ñ p1 ´ zqp, we find for the terms

proportional to the function J0

dV̂
p1q, r0s
r, ggg

dJ
“

αs,εCah
p0q
g

µ2εΓp1´ εq2π

ż 1

0
dz

ż

d2`2εq

π1`ε

ˆ

2z

p1´ zq1´2ε
` zp1´ zq1`2ε

˙

k2

q2pq ´ kq2

ˆΘ

˜

M̂2
X,max

1´ z
´
pq ´ kq2

z

¸

S
p3q
J pk ´ p1´ zqq, p1´ zqq, p1´ zqx, xq. (4.30)

With (4.19) we have

2z

p1´ zq1´2ε
` zp1´ zq1`2ε “

1

ε
δp1´ zq `

"

2z

rp1´ zqs`
` zp1´ zq

*

` 2εz

"

p1´ zq lnp1´ zq ` 2

„

lnp1´ zq

1´ z



`

*

`Opε2q. (4.31)

For the first term we find

dV̂
p1q,r0as
r, ggg

dJ
“ hp0qg

αs,εCa
2π

S
p2q
J pk, xq

„

2

ε2
`

2

ε
ln

k2

µ2
` ln2 k2

µ2
´
π2

3



`Opεq. (4.32)

For the second term of (4.30) we use a phase space slicing parameter to isolate the singular

contributions. Separating singularities in q2 and p2 by making use of the identity

k2

q2p2
“

k2

q2pq2 ` p2q
`

k2

p2pp2 ` q2q
, (4.33)
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we find

dV̂
p1q, r0bs
r, ggg

dJ
“

αs,εCah
p0q
g

Γp1´ εq2π

"

pλ2{µ2qε

εΓp1` εq

„
ż 1

z0

dz S
p2q
J pk, zxq

ˆ

2z

p1´ zq`
` zp1´ zq

˙

´
11

6
S
p2q
J pk, xq



`

ż 1

0
dz

ż

d2q

π
Θ

ˆ

M̂2
X,max ´

pp´ zkq2

zp1´ zq

˙

ˆ

ˆ

2z

p1´ zq`
` zp1´ zq

˙

S
p3q
J pp, q, p1´ zqx, xqΘ

ˆ

|q|

1´ z
´ λ

˙

ˆ
p1´ zq2k2

q2pq2 ` p1´ zq2pp´ zkq2q
`Θ

ˆ

|p´ zk|

1´ z
´ λ

˙

ˆ
p1´ zq2k2

pp´ zkq2pp1´ zq2pp´ zkq2 ` q2q
`Opεq

*

.

(4.34)

Finally, the third term is finite and reads

dV̂
p1q, r0cs
r, ggg

dJ
“
αs
2π
C2
av
p0q

"

2Ca

ż 1

z0

dz S
p2q
J pk, zxqz

„

p1´ zq lnp1´ zq ` 2
”

lnp1´zq
1´z

ı

`



`
67

18
Ca S

p2q
J pk, xq

*

.

(4.35)

The terms proportional to J1 are immediately finite and require no further treatment. The

term with J2pq,k, l1, l2q (J2pp,k, l1, l2q) is only singular as p2 Ñ 0 (q2 Ñ 0). For both

scenarios the singularity at z Ñ 0 (in P
p1q
gg pz, εq) and z Ñ 1 (in P

p2q
gg pz, εq) is regulated

through the constraint on the diffractive mass. We therefore find

dV̂
p1q, r2s
r, ggg

dJ
“ hp0qg

αs,ε
2π

ż 1

0
dz

ż

d2`2εq

π1`ε
Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pp, q, zx, xq

ˆ
P
p1q
gg pz, εq

µ2εΓp1´ εq
J2pq,k, l1, l2q

“ hp0qg
αs,ε
2π

„
ż 1

z0

dz
pλ2{µ2qε

εΓp1` εq

P
p1q
gg pz, εq

Γp1´ εq
S
p2q
J pk, zxq `

ż 1

0
dz

ż

d2`2εp

π1`ε
Θpp2 ´ λ2q

ˆΘ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pp, q, zx, xq

P
p1q
gg pz, εq

µ2εΓp1´ εq
J2pq,k, l1, l2q



. (4.36)

It is easy to see now that all poles in ε vanish in the final result for
dV̂

p1q
g

dJ . The poles from

the virtual terms (4.3) are cancelled by those in Eq. (4.32). Using that
ş1
0 dz Pqgpzq “

1
3 , and

the fact that P
p1q
gg pz, εq ` Ca

´

2z
r1´zs`

` zp1´ zq
¯

“ P
p0q
gg pzq ´

β0
2 δp1 ´ zq, one can then check

that the 1
ε terms proportional to S

p2q
J pk, xq in expressions (4.26), (4.34) and (4.36) cancel the

singularity in the UV counterterm (4.5). Similarly, the pole terms involving S
p2q
J pk, zxq in

Eqs. (4.26), (4.27), (4.34) and (4.36) cancel against those of the collinear counterterm (4.12).
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4.4 NLO Jet Impact Factor: Final Result

Having checked explicitly the cancellation of singularities, we can expand and add up the
former expressions to obtain the final result for the gluon-initiated jet vertex:

dV̂ p1qpx,k, l1, l2;xJ ,kJ ;MX,max, s0q

dJ
“ vp0q

αs
2π

`

G1 `G2 `G3

¯

;

G1 “ C2
a S

p2q
J pk, xq

«

Ca

ˆ

π2 ´
5

6

˙

´ β0

ˆ

ln
λ2

µ2
´

4

3

˙

`

ˆ

β0
4
`

11Ca
12

`
nf

6C2
a

˙ˆ

ln
k4

l21pk ´ l21q
` ln

k4

l22pk ´ l2q2

˙

`
1

2

"

Ca

ˆ

ln2 l21
pk ´ l1q2

` ln
k2

l21
ln

l21
s0
` ln

k2

pk ´ l1q2
ln
pk ´ l1q

2

s0

˙

´

ˆ

nf
3C2

a

`
11Ca

6

˙

l21 ´ pk ´ l1q
2

k2
ln

l21
pk ´ l1q2

´ 2

ˆ

nf
C2
a

` 4Ca

˙

ˆ
pl21pk ´ l1q

2q
1
2

k2
φ1 sinφ1 `

1

3

ˆ

Ca `
nf
C2
a

˙„

16
pl21pk ´ l1q

2q
3
2

pk2q3
φ1 sin3 φ1

´ 4
l21pk ´ l1q

2

pk2q2

ˆ

2´
l21 ´ pk ´ l1q

2

k2
ln

l21
pk ´ l1q2

˙

sin2 φ1 `
pl21pk ´ l1q

2q
1
2

pk2q2

ˆ cosφ1

ˆ

4k2 ´ 12pl21pk ´ l1q
2q

1
2φ1 sinφ1 ´ pl

2
1 ´ pk ´ l1q

2q ln
l21

pk ´ l1q2

˙

´ 2Caφ
2
1 ` tl1 Ø l2, φ1 Ø φ2u

*

ff

;

G2 “

ż 1

z0

dz S
p2q
J pk, zxq

"

2nfP
p0q
qg pzq

ˆ

C2
f ln

λ2

µ2
F

` C2
a lnp1´ zq

˙

;

` C2
aP

p0q
gg pzq ln

λ2

µ2
F

` C2
fnf ` 2C3

az

ˆ

p1´ zq lnp1´ zq ` 2

„

lnp1´ zq

1´ z



`

˙

G3 “

ż 1

0

dz

ż

d2q

π

"

nfP
p0q
qg pzq

„

C2
aΘ

ˆ

M̂2
X,max ´

zp2

p1´ zq

˙

ˆ S
p3q
J pk ´ zq, zq, zx, xq

„

Θpp2 ´ λ2qk2

pp2 ` q2qp2
`

k2

pp2 ` q2qq2



´Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pp, q, zx, xq

ˆ

C2
a

k2

pp2 ` q2qq2

´ 2C2
f

k2Θpq2 ´ λ2q

pp2 ` q2qq2

˙

` P1pzqΘ

ˆ

M̂2
X,max ´

pp´ zkq2

zp1´ zq

˙

ˆ S
p3q
J pp, q, p1´ zqx, xq

p1´ zq2k2

p1´ zq2pp´ zkq2 ` q2

„

Θ

ˆ

|q|

1´ z
´ λ

˙

1

q2

`Θ

ˆ

|p´ zk|

1´ z
´ λ

˙

1

pp´ zkq2
`Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

S
p3q
J pp, q, zx, xq

ˆ

„

nf
C2
a

P p0qqg

ˆ

J2pq,k, l1, l2q ´
k2

p2pq2 ` p2q

˙

´ nfP
p0q
qg

ˆ

J1pq,k, l1, zq

` J1pq,k, l2, zq

˙

` P0pzq

ˆ

J1pq,k, l1q ` J1pq,k, l2q ` J2pq,k, l1, l2qΘpp
2 ´ λ2q

˙*

. (4.37)
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Here, P0pzq “ Ca
“2p1´zq

z `zp1´zq
‰

, and P1pzq “ Ca
“

2z
r1´zs`

`zp1´zq
‰

. The rest of necessary

definitions appearing in (4.37) are scattered throughout the text.

5 Conclusions and Outlook

In this paper we have completed the analytical calculation started in [1] of the next-to-leading

order corrections to the effective vertex for jet production in association to a rapidity gap, by

computing the real quasielastic corrections to gluon-initiated jets. The main result is sum-

marized in Eq. (4.37), where the jet vertex appears as a function of a phase slicing parameter

λ2, used in the extraction of singularities, and a generic jet definition. It is interesting and

nontrivial that, for the kinematics of this process that lies in the interface of collinear and

BFKL-like kt factorization, it is possible to absorb all soft and collinear singularities in the

DGLAP renormalization of parton densities.

The result (4.37) is well suited for numerical implementation using a particular jet defi-

nition. A convenient choice may be to use a cone with small radius (in the pseudorapidity-

azimuthal angle plane) approximation [32], which in the Mueller-Navelet case [33] provided

a simple analytic result for the jet vertices projected onto the BFKL eigenfunction ((ν, n)

representation). In addition to the jet algorithm, experimental cuts matching the future

measurements at LHC [34], and a model of the energy dependence of the rapidity gap sur-

vival probability, must be included.
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A The Inclusive Pomeron-Gluon Impact Factor

In this appendix, we compute the inclusive Mueller-Tang gluon-initiated jet impact factor,

in the limit where the cutoff in the diffractive mass M̂2
X,max Ñ 8. That is, we take the jet

function to be unity, and we will omit the cutoff except for those cases where the z-integration
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is not already regulated by the computation of the momentum integral in dimensional reg-

ularization. In such cases, the cutoff will be needed: keeping the cutoff finite amounts to

subtracting the central production contribution. In this way we have a simple analytic check

of the cancellation of singularities for the exclusive case in Sec. 4.

The collinear counterterm reads in this case

lim
M̂2
X,maxÑ8

„

´
αs,ε
2π

ˆ

1

ε
` ln

µ2
F

µ2

˙

hp0q
ż 1

x0

dx fgpx, µ
2
F q

ˆ

"

C2
f

2nf
3
´ C2

ap1` εq

„

Ca

ˆ

11

3
´ 2 ln

x

x0

˙

´
β0

2

*

,
x

x0
“
M̂2
X,max

k2
.

(A.1)

We start evaluating the inclusive impact factor for qq̄ final state. Symmetry allows us to

substitute J̃pq,k, l1, l2q by 2rJ̃0pq,k, l1, l2, zq ` J̃1pq,k, l1, l2qs in (3.34), and then use (4.18)

to get
ż

d2`2εq

π1`ε
J̃pq,k, l1, l2q “ 2

Γ2pεqΓp1´ εq

Γp2εq

ˆ

«

Ca

„

Cf pz
2k2qε ´

2Cf ´ Ca
4

trpl1 ´ zkq
2sε ` rpl2 ´ zkq

2sεu



´
C2
f

2
pk2qε

`
p2Cf ´ CaqCf

4

“

pl21q
ε ` pl22q

ε ` ppk ´ l1q
2qε ` ppk ´ l2q

2qε
‰

´
p2Cf ´ Caq

2

8

“

rpl1 ´ l2q
2sε ` rpk ´ l1 ´ l2q

2sε
‰

ff

.

(A.2)

Now, we can evaluate the integral over z in (3.34) using the results7

ż 1

0
dz Pqgpz, εq “

1

3
`
ε

6
`Opε2q;

ż 1

0
dz Pqgpz, εqpz

2qε “
1

3
´

5

9
ε`Opε2q;

ż 1

0
dz Pqgpz, εqrpa´ zbq

2sε “
1

2
K3pa, bq ´

1

1` ε
K4pa, bq;

µ´2εK3pa, bq “ 1` ε

„

1

2

ˆ

ln
a2

µ2
` ln

pa´ bq2

µ2

˙

´ 2

`
1

b2

„

ppa´ bq2 ´ a2q ln
pa´ bq2

a2
` 2pa2pa´ bq2q1{2ϑ sinϑ

 

`Opε2q;

µ´2εK4pa, bq “
1

6
` ε

„

1

12

ˆ

ln
a2

µ2
` ln

pa´ bq2

µ2

˙

´
5

18

´
2pa2pa´ bq2q1{2

3pb2q2
r2pa2pa´ bq2q1{2 sin2 ϑ´ b2 cosϑs

`
pa´bq2´a2

12pb2q3
ln pa´bq2

a2 r8a2pa´ bq2 sin2 ϑ´ 2pa2pa´ bq2q1{2b2 cosϑ` pb2q2s

`
2a2pa´bq2

3pb2q3
r4pa2pa´ bq2q1{2 sin2 ϑ´ 3b2 cosϑsϑ sinϑ`Opε2q.

(A.3)

7 The integrals Kipa, bq, i “ 1, ¨ ¨ ¨ , 4, appearing in this appendix have been evaluated in [8].
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Here ϑ is the angle between a and pa´ bq, with |ϑ| ď π. In terms of them, we have

h
p1q
r,qq̄g “

αs,ε
2π

hp0q
p2nf qp1` εqΓ

2pεq

Γp2εqµ2ε

„

Ca

„

Cf pk
2qε

ˆ

1

3
´

5ε

9

˙

´
2Cf ´ Ca

4

"

1

2
rK3pl1,kq `K3pl2,kqs ´

1

1` ε
rK4pl1,kq `K4pl2,kqs

*

`

ˆ

1

3
`
ε

6

˙"

p2Cf ´ CaqCf
4

“

pl21q
ε ` pl22q

ε ` ppk ´ l1q
2qε ` ppk ´ l2q

2qε
‰

´
C2
f

2
pk2qε ´

p2Cf ´ Caq
2

8

“

rpl1 ´ l2q
2sε ` rpk ´ l1 ´ l2q

2sε
‰

*

`Opεq.

(A.4)

Now we address the gg final state (Eq. (3.31)). Using the decomposition (4.22), we will only

have to take into account the diffractive mass cutoff for the term proportional to J2pq,k, l1, l2q,

where the z Ñ 0 divergence is not already regulated by the momentum integral. The symme-

try of h
p1q
r, ggg under the simultaneous replacement tq Ø p, z Ø 1´ zu, allows us to substitute

Pggpz, εq by 2P
p1q
gg pz, εq. This substitution can be undone for the terms involving J0pq,k, zq

and J1pq,k, li, zq, i “ 1, 2, since for these terms the cutoff is not needed and then they enjoy

symmetry under the replacement z Ø 1´ z alone. Therefore we can write, for M2
X,max Ñ8

hp1qr, ggg “
h
p0q
g

2!
αs,ε
2π

1
µ2εΓp1´εq

ĳ

d2`2εq

π1`ε
dz

"

Pggpz, εq

„

J0pq,k, zq `
ÿ

i“1,2

J1pq,k, li, zq



` 2P p1qgg pz, εqΘ

„

M̂2
X max ´

∆2

zp1´zq



J2pq,k, l1, l2q

*

.

(A.5)

Using again (4.18), we have

Ŋ1 ”

ż

d2`2εq
π1`ε

„

J0pq,k, zq `
ÿ

i“1,2

J1pq,k, li, zq



“
Γ2pεqΓp1´εq

Γp2εq

„

pk2qεrz2ε ` p1´ zq2ε ´ 1s

`
1

4

 

pl21q
ε ´ rpl1 ´ zkq

2sε ` rpl1 ´ kq2sε ´ rpl1 ´ p1´ zqkq
2sε ` tl1 Ø l2u

(



.

(A.6)

With the help of the following integrals

ż 1

0
dz
pz2ε ` p1´ zq2ε ´ 1q

zp1´ zq
“ ´2pγE ` ψp2εqq “

1

ε
´

2π2

3
ε`Opε2q;

ż 1

0
dzpz2ε ` p1´ zq2ε ´ 1q “ ´1`

2

1` 2ε
“ 1´ 4ε`Opε2q;

ż 1

0
dz zp1´ zqrz2ε ` p1´ zq2ε ´ 1s “ ´

1

6
`

1

1` ε
´

2

3` 2ε
“

1

6
´

5

9
ε`Opε2q;

µ´2εK2pa, bq “

ż 1

0

dz

zp1´ zq

””

pp1´zqpa´bq`zaq2

µ2

ıε
´ p1´ zq2ε

”

pa´bq2

µ2

ıε
´ z2ε

”

a2

µ2

ıı

“ ´
1

ε
´

1

2

„

ln
a2

µ2
` ln

pa´ bq2

µ2



` ε

„

4ψ1p1q ´
1

2
ln

a2

µ2
ln
pa´ bq2

µ2
´ ϑ2



`Opε2q,

(A.7)
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we can write

K1 ”

ż 1

0
dzPggpz, εqŊ1 “ 2Ca

”

Γ2pεqΓp1´εq
Γp2εq

ı

«

pk2qε
”

1
ε ´

11
6 `

”

67
9 ´

2π2

3

ı

ε
ı

(A.8)

`
1

4

"

rpl21q
ε ` rpl1 ´ kq2sεs

”

´1
ε ´

11
6 `

2π2

3 ε
ı

´ 2K2pl1,kq ` 4K3pl1,kq ´ 2K4pl1,kq ` tl1 Ø l2u

*

ff

.

The terms proportional to J2pq,k, l1, l2q do not involve any z dependence. Since P
p1q
gg pz, εq is

finite as z Ñ 1, enforcing the diffractive mass cutoff results in

lim
M̂2
X,maxÑ8

ż 1

0
dz 2P p1qgg pz, εqΘ

„

M̂2
X,max ´

∆2

zp1´ zq



“ lim
M̂2
X,maxÑ8

ż 1

q2

M̂2
X,max

dz 2P p1qgg pz, εq

“ 2Ca

«

2 ln
M̂2
X,max

q2
´

11

6

ff

, (A.9)

where we have discarded power terms in the cutoff. As a second step, we will need the

following results to evaluate the momentum integration

Ipa, b,M2q “

ż

d2`2εq

π1`ε

pa´ bq2

pq ´ aq2pq ´ bq2
ln
M2

q2

“
Γ2pεqΓp1´ εq

Γp2εq

"

εK1pa, bq ` ln
M2

pa´ bq2
rpa´ bq2sε

*

;

µ´2εK1pa, bq “
1

2

„

pa´ bq2

µ2

ε "
1

ε2

„

2´

„

a2

pa´ bq2

ε

´

„

b2

pa´ bq2

ε

` ln

„

a2

pa´ bq2



ln

„

b2

pa´ bq2



` 4εψ2p1q `Opε2q
*

.

(A.10)

Defining

J pa, bq “ 2Ca
Γ2pεqΓp1´ εq

Γp2εq

#«

´
11

6
` 2 ln

M̂2
X,max

pa´ bq2

ff

rpa´ bq2sε ` 2εK1pa, bq

+

, (A.11)

we obtain

K2 ”

ż 1

0
dz

ż

d2`2εq

π1`ε
Θ

ˆ

M̂2
X,max ´

∆2

zp1´ zq

˙

r2P p1qgg pz, εqsJ2pq,k, l1, l2q

“
1

4
tJ pk, l1q ` J pk,k ´ l1q ` tl1 Ø l2uu

´
1

8
tJ pl1, l2q ` J pk ´ l1q ` J pl1,k ´ l2q ` J pk ´ l1,k ´ l2qu,

(A.12)

and finally

hp1qr, ggg “
h
p0q
g

2

αs,ε
2π

1

µ2εΓp1´ εq
pK1 ` K2q. (A.13)
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Expanding around ε “ 0 we find

h
p1q
r, qq̄g “ vp0q

αs
2π
p2nf q

1

6ε
rC2

a ` 2C2
f s `Opε0q;

hp1qr, ggg “ hp0qg
αs,ε
2π

2Ca
ε

«

1

ε
` ln

k2

µ2
´

11

3
¨

3

4
` ln

M̂2
X,max

k2

ff

`Opε0q.
(A.14)

It is now easy to see that the pole terms (A.14) cancel against those of the collinear coun-

terterm (A.1), the UV counterterm (4.5) and the virtual corrections (4.3).
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Double-Pomeron-Exchange Processes at the LHC, Phys. Rev. D87 (2013) 3, 034010

[arXiv:1212.2059].

[31] K. Fabricius, I. Schmitt, G. Kramer and G. Schierholz, Higher Order Perturbative QCD

– 30 –

http://arxiv.org/abs/hep-ex/9809016
http://arxiv.org/abs/hep-ph/9908464
http://arxiv.org/abs/hep-ph/0111090
http://arxiv.org/abs/hep-ph/0110273
http://arxiv.org/abs/arXiv:0903.4598
http://arxiv.org/abs/arXiv:1012.3849
http://arxiv.org/abs/hep-ph/9502308
http://arxiv.org/abs/hep-ph/9610276
http://arxiv.org/abs/arXiv:1110.6741
http://arxiv.org/abs/arXiv:1212.4992
http://arxiv.org/abs/arXiv:1211.2050
http://arxiv.org/abs/arXiv:1202.0649
http://arxiv.org/abs/arXiv:1307.2591
http://arxiv.org/abs/hep-ph/0411185
http://arxiv.org/abs/arXiv:0908.2576
http://arxiv.org/abs/arXiv:1112.4509
http://arxiv.org/abs/arXiv:1308.1697
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/arXiv:1212.2059


Calculation of Jet Cross-Sections in e`e´ Annihilation, Z. Phys. C11 (1981) 315 ˛ G. Kramer

and B. Lampe, Jet Cross-Sections in e`e´ Annihilation, Fortsch. Phys. 37 (1989) 161.

[32] M. Furman, Study of a Nonleading QCD Correction to Hadron Calorimeter Reactions,

Nucl. Phys. B197, 413 (1982).

[33] D.Yu. Ivanov and A. Papa, The Next-to-Leading Order Forward Jet Vertex in the Small-Cone

Approximation, JHEP 1205, 086 (2012) [arXiv:1202.1082] ˛ F. Caporale, D.Yu. Ivanov,

B. Murdaca and A. Papa, Mueller-Navelet Small-Cone Jets at LHC in Next-to-Leading BFKL,

Nucl. Phys. B877, 73 (2013) [arXiv:1211.7225].

[34] O. Kepka et al., ATL-COM-PHYS-2012-775.

– 31 –

http://arxiv.org/abs/arXiv:1202.1082
http://arxiv.org/abs/arXiv:1211.7225

	1 Introduction
	2 Mueller-Tang Jets at Parton Level and the High-Energy Effective Action
	3 Real NLO Corrections to the Impact Factors
	3.1 The Gluon-Initiated Mueller-Tang Cross-Section at LO
	3.2 The Real NLO Corrections to the Impact Factor
	3.3 Computation of the Quasielastic Corrections

	4 The Jet Vertex for Gluon-Initiated Jets with Rapidity Gap
	4.1 Virtual Corrections and Renormalization
	4.2 Inclusion of the Jet Function and Counterterms and the LO Jet Vertex
	4.3 Cancellation of Soft and Collinear Divergences
	4.4 NLO Jet Impact Factor: Final Result

	5 Conclusions and Outlook
	A The Inclusive Pomeron-Gluon Impact Factor

