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Abstract.

The effect of sawteeth on impurity dynamics is studied with the XTOR-2F code.

Non-linear full 3D MHD simulations including appropriate fluid equations for heavy

impurities show that the presence of regular sawtooth crashes affects the impurity

behaviour. A spatial non-uniformity of 5% in post-crash impurity density profiles

persists due to 2D structures of impurity density which appear during sawtooth crashes.

They are shown to be mainly driven by the E×B velocity, and are responsible for the

sudden impurity transport in the core plasmas.

1. Introduction

Understanding the dynamics of heavy impurities in fusion plasmas is an important issue

since it has been decided to equip Iter with a tungsten divertor. Tungsten has the great

advantage of high heat flux handling capability, low erosion and low tritium retention

[1]. However, metallic impurities in the core not only dilute the plasma, but may also

lead to a radiative collapse due to excessive cooling, even when they are present in

small concentration [2],[3]. Preventing excessive impurity influxes by means of auxiliary

heating is an active subject of research [4],[5],[6],[7].

In the core region of present tokamaks, heavy impurities are highly collisional due to

their high charge number. Also, neoclassical transport is enhanced for heavy impurities

due to the poloidal asymmetry of the impurity density caused by the centrifugal force

[8],[9],[10]. Indeed, the effects due to rotation are stronger for heavy impurities. For

heavy impurities, the Mach number Mz can be of order unity (Mz ∼ 1) even if Mi � 1

for the main ion species. As a consequence, neoclassical transport has to be considered

along with turbulent transport for heavy impurities. For high collision frequencies, the

relevant framework is the Pfirsch-Schlüter regime. However, the main ion species, with

a single charge for deuterium and tritium, remains in the low collisional banana or

plateau regime in the core region. In this case, neoclassical theory predicts that the
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ion temperature gradient drives an outward impurity flux, and is thus responsible for a

favourable thermal screening effect [11],[12]. Recent experiments and simulations with

transport codes are consistent with this picture [13],[14]. In addition, strong toroidal

rotation is shown to affect the impurity transport properties. Indeed, the impurity

diffusivity is enhanced with toroidal plasma rotation [15]. Also, the thermal screening

effect is weakened due to the effect of rotation, and can even change its sign so that the

temperature gradient contribution drives an unfavourable influx of impurity [16],[17].

For this study, the toroidal rotation is considered to be small so that this unfavourable

effect due to the centrifugal force is neglected.

In addition, magneto-hydrodynamic (MHD) instabilities such as tearing modes and

sawtooth oscillations add complexity to the impurity behaviour in core plasmas. Indeed,

it is observed that the presence of tearing modes locally increases the impurity diffusivity

in the islands and enhances accumulation [18]. Also, discrepancies are found between the

measured impurity behaviour in presence of the internal kink mode and the neoclassical

and turbulent predictions [19]. It is well known that sawtooth crashes drive an efficient

core radial transport of impurities [20],[21]. If the pre-crash impurity profile is peaked,

the profile is flattened after a sawtooth crash in a region which is approximatively

encompassed by the q = 1 surface. On the contrary, for a hollow impurity density profile,

the impurities penetrate inside the q = 1 surface. This behaviour is consistent with the

Kadomtsev reconnection model [23],[24] for different pre-crash impurity profiles [25]. In

addition, the presence of 2D structures of impurity density during sawtooth crashes has

been evidenced in the XTOR-2F simulations [26].

This paper illustrates and analyses heavy impurity transport during sawtooth

oscillations with the non-linear full 3D MHD XTOR-2F code [27]. The XTOR-2F code

is now generalized by the inclusion of an impurity continuity equation and a parallel

impurity momentum equation. Both are coupled self-consistently with the two-fluid set

of equations describing the bulk plasma, which is an important improvement compared

to the work in Ref.[26]. In Section 2, it is shown that the Pfirsch-Schlüter flux is

recovered when using the appropriate fluid equations for impurity. A brief description

of the non-linear MHD model in the XTOR-2F code and numerical settings used for the

present work is presented in Section 3. The outputs of the XTOR-2F code are illustrated

and analysed in Section 4. First, it is shown that the expected neoclassical impurity

fluxes are reproduced with the implemented fluid equations for impurity. Second, the

presence of sawteeth is found to modify deeply the impurity dynamics compared to

the predictions from neoclassical theory. Section 5 is dedicated to a discussion on

the dynamics of the 2D impurity density structures during sawtooth crashes, before

concluding in Section 6.
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2. Fluid model for highly collisional impurities

2.1. Orderings

A species is in a highly collisional regime when the collisionality ν̄ ≡ ν/ωt � 1,

where ν and ωt are the characteristic collision and transit frequencies respectively. The

distribution function in the velocity space is then relaxed to a Maxwellian function due

to the collisions. Thus, the fluid description is legitimate in a collisional regime. MHD

equations are derived from the kinetic equation by supposing a large perpendicular

electric field, i.e. |VE|/VT ∼ 1, where VE = E × B/B2 is the E × B velocity and VT
is the thermal velocity. Here, E and B represent respectively the electric and magnetic

fields and B = |B|. In the framework of the neoclassical theory, rapid fluid motions

are neglected by using the drift ordering where |VE|/VT ∼ ρ∗. Here, the parameter

ρ∗ ≡ ρL/L� 1, where ρL is the Larmor radius and L a macroscopic scale length.

The beginning points are the continuity and momentum equations for the species

a in the Pfirsch-Schlüter regime

∂tNa + ∇. (NaVa) = 0 (1)

Nama (∂tVa + (Va.∇)Va) = −∇Pa +Naea (E + Va ×B) + Ra (2)

Here, ea, Na, ma and Pa are respectively the charge, density, mass and pressure of the

species a. The pressure anisotropy is neglected since high collisionality is considered for

this study [28]. The velocity of the species a is a sum of the E × B, diamagnetic and

parallel velocities

Va = VE + V∗a + V‖,aB/B (3)

where V∗a = B ×∇Pa/(NaeaB
2). In this paper, the index ‖ represents a projection

along the unit vector B/B.

In the force balance equation, the effect of collisions between the species a and

other species b lies in the friction force Ra =
∑
b
Rab. The friction force between two

species Rab is a sum of drag and thermal forces. A drag force is induced by a difference

of velocities between the two species. A thermal force appears due to the velocity

dependence of collision frequencies and is proportional to the parallel heat fluxes. From

the action-reaction principle, Rab = −Rba. As neoclassical fluxes are associated with

parallel friction, the parallel components of the friction force are to be expressed in

terms of different gradient lengths in the incompressible fluid limit.

In the drift ordering where flow variations are slow, the force balance equation (2)

reads

Naea (E + Va ×B) = ∇Pa −Ra (4)

Through this study, the inertia term (Va.∇)Va is supposed to be small compared

to other terms in the expression (4). In other words, the toroidal plasma rotation is

considered to be weak enough so that the centrifugal force can be neglected.
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Tokamak plasmas are usually magnetized with a field such that the gyrofrequency

is large compared to the collision frequency. This is described by the small parameter

δ ≡ ν/ωc � 1, where ωc is the cyclotron frequency. Each field is then separated into

a mean field represented by a flux surface averaged quantity and small perturbations

which correspond to poloidal asymmetries. For example, the density N in the toroidal

coordinate system (ψ, θ, ϕ) is written as N(ψ, θ) = N0(ψ) + N1(ψ, θ) + O(δ2) with

|N1(ψ, θ)| /N0(ψ) ∼ O(δ)� 1.

It should be noted that neoclassical theory is derived assuming that the plasma is

in a quiescent state, i.e. in a configuration of nested magnetic flux surfaces for long time

scales. These assumptions are likely not fulfilled during a sawtooth crash. However,

this is not a strong limitation since particle and heat fluxes are mainly tied to fast

reconnection processes during the crash.

2.2. Radial particle flux driven by parallel forces

In the toroidal coordinate system (ψ, θ, ϕ), the magnetic field B is written in the form

B = I(ψ)∇ϕ+ ∇ϕ×∇ψ (5)

where the toroidal component I represents also the poloidal current flux function. With

the expression (5) of the magnetic field, the projection of the equation (4) along the

toroidal direction R2∇ϕ, where R is the major radius, reads [29]

NaeaVa.∇ψ = −R2Ra.∇ϕ (6)

Here, the quantities are supposed to be axisymmetric : ∂ϕPa = 0 and ∂ϕφ = 0 with φ

the electric potential. Also, the ion and impurity Ware fluxes are negligible compared

to neoclassical fluxes (for more detail, see p.1155 of Ref.[11]) so that the contribution of

the induction field to Eϕ can be ignored. Thus, Eϕ ' 0 under these conditions.

Neoclassical transport is associated with poloidal asymmetries along nested

magnetic flux surfaces. The neoclassical impurity particle flux across the flux surfaces

is then Γψa = 〈Γa.∇ψ〉, where

〈G〉 ≡
∫ Gdθ

B.∇θ

/∫ dθ

B.∇θ
(7)

corresponds to flux surface average of the quantityG. By writing Ra = R‖,aB/B+R⊥,a,

Γψa = −I(ψ)

ea

〈
1

B
R‖,a

〉
(8)

The perpendicular friction force R⊥,a is responsible for the classical transport. It is

neglected since the classical flux is small compared to the neoclassical flux at large

aspect ratio [29]. The parallel friction force R‖,a is to be written as function of gradient

lengths to derive the expression of the neoclassical radial flux.

For this study, the plasma is supposed to contain a single type of impurity ion, and

the impurity is considered as a trace (αz ≡ Nze
2
z/(Nie

2
i ) � 1). For heavy impurities
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(mz/mi � 1), the friction force Rz 'Rzi and its projection along the parallel direction

is then written in the form [12],[30],[31]

R‖,zi = −mzNzνzi(V‖,z − V‖,i)−
2

5
C0mzNzνzi

Q‖,i
Pi

(9)

Here, Q‖,i is the parallel heat flux of main ion species and νzi the collision frequency

between impurity and main ion species. A general expression of the collision frequency

between two species a and b is

νab =
4
√

2π

3

Nb

ma

(
1

ma

+
1

mb

)
e2ae

2
bΛ

(4πε0)2
1

(V 2
T,a + V 2

T,b)
3/2

(10)

where Λ is the Coulomb logarithm.

Ref.[31] adopted Braginskii’s procedure for electron-ion collision [30] to derive the

impurity flux in the Pfirsch-Schlüter regime. This computation considers both the

impurity and the main ion species in the Pfirsch-Schlüter regime. In this case, the

favourable thermal screening effect predicted by the neoclassical theory is not retrieved.

Hence, the coefficient C0 is an adjustable parameter, which is chosen in order to obtain

the appropriate screening factor for the impurity Pfirsch-Schlüter flux with bulk ions in

the low collisional regime. In general, C0 depends on the impurity strength parameter

αz, and is thus a radial function which is deduced from kinetic computations accounting

for collisions. Since this study deals with trace impurities only (αz � 1), C0 can be

chosen as a constant.

2.3. Derivation of impurity radial flux

It is shown in the expression (8) that the perpendicular Pfirsch-Schlüter flux is associated

with the parallel friction force. Hence, parallel velocities and heat fluxes have to be

derived in order to deduceR‖,zi according to the expression (9). For this, the assumption

on fluid incompressibility is crucial. The perpendicular particle and heat flows are then

balanced by parallel flows to conserve particles and heat.

At the lowest order in δ and using the expressions (3) and (5), the impurity flux of

species a reads

Γa = Ka(ψ, θ)B−
Pa,0
ea

AP ∗
a ,ψR

2∇ϕ (11)

where

AP ∗
a ,ψ ≡ ∂ψ lnPa,0 +

ea
Ta,0

∂ψφ0 (12)

and Ka is a priori a function of ψ and θ. In the neoclassical time scale, the continuity

equation

∂tNa + ∇.Γa = 0 (13)

yields the fluid incompressibility equation ∇.Γa = 0 for each species a. In this

constraint, Ka needs to be a radial function. As a consequence, the parallel velocity of

the species a is written as

V‖,a =
Ka(ψ)B

Na,0

− Ta,0
ea

I(ψ)

B
AP ∗

a ,ψ (14)
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Unlike for the particle flux Γa, the assumption ∇.Qa = 0 for each species a, is not

general. Indeed, the energy equation for the species a is written in the form

∂t(NaSa) + ∇.(NaSaVa) = −2

3

∇.Qa

Ta
+
∑
b

Hab (15)

where Sa ≡ ln (PaN
−γ
a ) is the entropy, and Hab is the energy exchange with another

species b. Hence, even if the convective term is negligible, only the total heat flux is

divergence free (i.e. ∇.∑
a

Qa = 0). Nevertheless, ∇.Qa = 0 for each species a, if the

energy exchanges due to collisions with other species
∑
b
Hab are negligible. This is the

case for species with large mass disparity, as the collision operator is proportional to the

mass ratio. In the case of plasmas with heavy impurities, main ions and electrons, this

assumption is valid.

The heat flux at the lowest order in δ reads

Qa = La(ψ)B− 5

2

Pa,0
ea

∂ψTa,0R
2∇ϕ (16)

where La is constant along magnetic flux surfaces because of the incompressible heat

flux constraint ∇.Qa = 0. Therefore, the parallel heat flux has the following form

Q‖,a = La(ψ)B − 5

2

Pa,0
ea

I(ψ)

B
∂ψTa,0 (17)

With the expressions (14) and (17), the parallel friction force R‖,zi manifests as a

function of different radial derivatives. The force balance equation (4) projected along

the parallel direction of the impurity z gives

Nzez∇‖φ = ∇‖Pz −R‖,zi (18)

Averaging Eq.(18) over flux surfaces, with Nz ' Nz,0(ψ), gives the constraint〈
BR‖,zi

〉
= 0 (19)

by definition of flux-surface average operator in Eq.(7). From the expressions (9), (14)

and (17), the perpendicular impurity particle flux then reads

Γψz = −mzNz,0T0νzi
I(ψ)2

e2z

[〈
1

B2

〉
− 1

〈B2〉

]
(
∂ψ lnPz,0 −

ez
ei
∂ψ lnPi,0 + C0

ez
ei
∂ψ lnTi,0

)
(20)

by considering the isothermal assumption Tz ' Ti = T .

For a geometry of circular concentric magnetic surfaces, it is known [28] that

I(ψ)2
[〈

1

B2

〉
− 1

〈B2〉

]
' 2r2 (21)

in the limit of small inverse aspect ratio ε ≡ r/R0 � 1, where r and R0 are respectively

the minor and major radii of a flux surface. Also, ∂rψ = B0r/q in this approximation,

with q the safety factor. For heavy impurities, ez/ei � 1 and the radial flux reads

〈Γz.∇r〉 =
〈

q

B0r
Γψz

〉
= −DPS

z Nz,0

{
∂r lnNz,0 −

ez
ei
∂r lnNi,0 + (C0 − 1)

ez
ei
∂r lnTi,0

}
(22)
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with the Pfirsch-Schlüter diffusion coefficient DPS
z = 2ρ2zq

2νzi and the impurity Larmor

radius ρz =
√
mzTz,0/(ezB0).

Depending on the value of the coefficient C0 in the expression (22), the temperature

gradient will reduce or enhance the impurity influx. For trace impurities (i.e. αz � 1),

computations from the neoclassical theory show that C0 ' 1 when the impurity and

the main ion species are both in the Pfirsch-Schlüter regime [31]. In that case, the

temperature gradient has no effect on the impurity radial flux. However, for the most

common case of heavy impurities in the Pfirsch-Schlüter regime and the main ion species

in the banana-plateau regime, the coefficient C0 is predicted to be C0 = 3/2 in Ref.[11].

The ion temperature gradient then drives a favourable thermal screening effect. For

this study, C0 = 3/2 is set in the expression (9) of the collisional force to reproduce the

appropriate neoclassical prediction.

The derivation of the Pfirsch-Schlüter fluxes in this section is done under the

assumption of small poloidal asymmetries compared to surface averaged quantities. It

is shown in Appendix A that the relative level of poloidal asymmetry of the impurity

density Nz,1/Nz,0 is proportional to the parameter δ � 1. However, the assumption

of small poloidal asymmetries is far from being satisfied. Indeed, Nz,1/Nz,0 is also

proportional to the square of the safety factor q2, the impurity charge and the ion

density and temperature gradient lengths. Therefore, the assumption becomes easily

invalid in the edge region, where the safety factor values can go up to q ' 5 and the

ion density and temperature gradients are steep. In the core region, q ' 1 and the

ion density and temperature gradient lengths are usually large. Hence, the validity

condition is fulfilled in the framework of this study.

3. Numerical methods

3.1. Non-linear MHD model in the XTOR-2F code

The XTOR-2F code [27] is a non-linear and two-fluid full 3D MHD code. The following

set of fluid equations is solved with a Newton-Krylov method using a fully implicit

scheme :

∂tN + ∇. (NV) +

(
∇× B

B2

)
.
∇Pi
ei

= ∇. (D⊥∇N) + SN (23)

Nmi (∂tV + (V.∇) V + (V∗i .∇) V⊥) = J×B−∇P + µi∇2 (V + V∗i ) (24)

∂tP + V.∇P + γP∇.V +
γ

ei

(
∇× B

B2

)
.(T∇Pi + Pi∇Ti + Pe∇Te) (25)

= (γ − 1)
[
∇.

(
Nχ‖∇‖Tb

)
+ ∇. (Nχ⊥∇⊥T )

]
+ SH (26)

∂tB = ∇× (V ×B) + ∇×
(
∇‖Pe
Nei

b

)
−∇× (ηJ) (27)

Here, the indices i and e designate the ion and electron populations, V ≡ VE + V‖,i
is the plasma fluid velocity, P = Pe + Pi is the total pressure, SN and SH are the
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particle and heat sources, γ is the heat capacity ratio, D⊥ is the perpendicular particle

diffusion coefficient, χ‖ and χ⊥ are the parallel and perpendicular heat diffusivities, η

is the plasma resistivity and µi is the plasma viscosity. Also, N = Ne = Ni due to the

quasi-neutrality constraint in the trace impurity limit. The total temperature is defined

as T = P/N . The resistivity η varies in time with the plasma temperature, following

the Spitzer’s resistivity model η ∝ T−3/2.

In addition, fluid equations for impurity are implemented in the XTOR-2F code

and coupled with other MHD equations

∂tNz + ∇. (NzVz) = ∇. (D⊥,z∇Nz −Vp,zNz) + Sz (28)

Nzmz

(
∂tV‖,z + (Vz.∇)V‖,z

)
= −∇‖Pz −NzezE‖ −R‖,zi (29)

where Vz is the impurity fluid velocity as defined in (3), D⊥,z and Vp,z are the

perpendicular impurity diffusion coefficient and radial pinch velocity, Sz is the impurity

density source, and R‖,zi is the parallel friction force represented in (9).

The XTOR-2F code uses a finite difference method in the radial direction, and

a pseudo-spectral method in the poloidal and toroidal directions. Time-steps are

automatically adjusted for an optimum number of iterations for the Newton-Krylov

method. The plasma dynamics such as sawtooth crashes, which occur during a very

short time scale compared to the confinement time, can then be studied with an

appropriate time resolution [32],[26]. The radial resolution is chosen such that the

current sheet at the reconnection layer is accurately computed. The mesh used in the

simulations is (Mr,Mθ,Mφ) = (255, 32, 12), where Mr, Mθ, Mφ are respectively the

number of grid points in r, θ, φ directions. A total of 4 toroidal modes (n = 0, ..., 3)

and n+ 8 poloidal modes (m = 0, ..., n+ 7) for each toroidal mode, are evolved in the

simulations. A discussion on the mode resolution used in the XTOR-2F simulations to

describe sawtooth cycles can be found in Refs.[27],[33],[34].

3.2. Plasma parameter settings and initial conditions

The plasma parameters used in the simulations are rescaled to avoid excessive simulation

times. Especially, the Lundquist number in tokamaks of the order S ∼ 108 − 109 gives

large resistive times, which is numerically demanding. Hence, the Lundquist number

is reduced to S = 107 for the present XTOR-2F sawtooth simulations. Other plasma

parameters are rescaled so as to preserve the ratios between different characteristic time

scales with respect to experimental values. The diamagnetic parameter is then set to

d̄i = 0.1, which is about two or three times larger than the experimental values. Also,

the normalized perpendicular heat diffusivity is set to χ̄⊥ = 3 × 10−6. The products

Sd̄i and Sχ̄⊥ are then about a third of those expected from the experiments. As far

as the viscosity is concerned, measurements of this quantity in experiments are not

available. In this paper, the normalized plasma viscosity is set to µ̄ = 5× 10−6, so that

the magnetic Prandtl number is Prm = Sµ̄ = 50.
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Figure 1. The initial density (dashed line) and temperature (solid line) profiles used

in the simulations presented in this paper.

Note that the physical times and the physical lengths are normalized respectively to

the Alfvén time τA and the minor radius a. The parameter τ ≡ Pi/Pe becomes τ = Ti/Te
under the quasi-neutrality constraint Ne = Ni. This parameter thus accounts for the

difference between the electron and ion temperatures. In the following simulations,

electron and ion temperatures are equal, i.e. τ = 1. The initial density and temperature

profiles used for the present study are shown in Fig.1. For the following simulations, a

flat initial impurity density profile is set. The main ion density is normalized to the on-

axis density value N0 = 3×1019m−3. The temperature is normalized to a2B2
0/(R

2
0N0µ0)

where the values of the on-axis magnetic field B0 and the major radius R0 are taken

at geometric axis. The normalized impurity density is N̄z = 1 with N̄z ≡ Nz/Nz,0 and

Nz,0 = 10−5N0.

Figure 2. The initial diffusion profile set to represent the turbulent transport (dashed

line), and the initial Pfirsch-Schlüter diffusion profile (solid line) computed intrinsically

from the impurity fluid equations.
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In the present XTOR-2F model, the transport coefficients D⊥,z and Vp,z on the

right hand side of the impurity density equation (28) include the contributions of

turbulent, classical and neoclassical transport. However, calculations of Section 2 show

that a Pfirsch-Schlüter impurity flux is driven by poloidal asymmetries. Thus, it is

important to notice that the Pfirsch-Schlüter particle flow is intrinsically present in the

∇.Γz = ∇. (NzVz) term of the Eq.(28). Hence, the coefficients D⊥,z and Vp,z do not

contain the Pfirsch-Schlüter coefficients. In Fig.2, the red dashed line represents the

diffusion coefficient D⊥,z on the right hand side of Eq.(28) which is set to reproduce

the experimental radial shape. Indeed, this diffusion coefficient profile is based on

fluctuation measurements which show that turbulence intensity is small inside the q = 1

surface [35],[36]. The blue solid line in Fig.2 corresponds to the Pfirsch-Schlüter diffusion

coefficient computed from the poloidal asymmetries as shown in Section 2. It can

be noticed that the proportionality to q2 of the diffusion coefficient in the Pfirsch-

Schlüter regime is recovered in the limit of ε = r/R0 � 1 as shown by Eq.(22). The

collision frequency νzi is chosen such that the Pfirsch-Schlüter and ‘turbulent’ diffusion

coefficients are of the same order of magnitude in the core region. The neoclassical

impurity pinch velocity in the Pfirsch-Schlüter regime, depending on the main ion

density and temperature gradient lengths, is taken into account by the model. However,

the ‘turbulent’ pinch velocity Vp,z on the right hand side of Eq.(28) is set to zero in this

study. In the simulations, fully-stripped carbon (C6+) is chosen as the impurity species.

4. Simulation results

4.1. Validation of the implemented model

It was shown in Section 2 that the Pfirsch-Schlüter impurity flux is related to the

collisional force Rzi between the main ion species and the impurity. Moreover, the

expression of the impurity radial flux in Eq.(22) shows that the drag force and the

thermal force give respectively the appropriate contributions of the main ion density

gradient and the temperature gradient. In a first step, simulations without the internal

kink mode are performed in order to verify whether the implemented model reproduces

the radial impurity flux, as expected.

To illustrate this point, cases with and without thermal force are simulated by

setting appropriate values of the coefficient C0 in the expressions (9) and (22). With the

density and temperature profiles presented in Fig.1, an influx of impurity is obtained

by considering only the drag force (C0 = 0). For the case with thermal force, the

coefficient C0 is set to C0 = 3/2, so that an outward flux of impurity appears due to the

temperature screening effect, as predicted in Ref.[11]. In Fig.3, the time evolution of the

flux surface average of the impurity density profile is presented for the two cases. These

figures show that the impurity radial fluxes behave in accordance with the analytical

calculations.
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(a) (b)

Figure 3. Evolution of the impurity profiles for the cases (a) without thermal force

(C0 = 0), and (b) with an appropriate coefficient for the thermal force (C0 = 3/2)

as predicted by the neoclassical theory. The temperature screening effect appears in

presence of the thermal force.

4.2. Effects of sawtooth oscillations on impurity behaviour

When the rescaled plasma parameters described in Section 3.2 are used, sustained

sawtooth cycles are obtained with the XTOR-2F code (Fig.4). These simulations

are used to assess the impurity behaviour in sawtoothing plasmas. The neoclassical

time scales are very large compared to the duration of sawtooth crashes. Hence, the

temperature screening effect, resulting from the collisions between the main ion species

and the impurity, affects the impurity dynamics only during the sawtooth ramp phase.

Figure 4. Evolution of the pressure at different radii. The time points which

correspond to the surfaces averaged impurity profiles in Fig.5 are marked by the vertical

lines. These time points are chosen during the quiescent phase where the plasma has

reached a quasi-stationary equilibrium.
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Figure 5. Evolution of the surface averaged impurity density throughout the sawtooth

cycles. The profiles correspond to the times marked by the vertical lines in Fig.4.

The evolution of the surface averaged impurity profiles throughout the sawtooth

cycles is presented in Fig.5. The impurity profiles are those between the post-cursor and

precursor oscillations of a sawtooth cycle. It is noticed again that when the temperature

screening effect is taken into account, an impurity outflow is driven throughout the

sawtooth cycles. However, a clear difference on the impurity behaviour is seen between

the simulations with and without sawteeth (Fig.6). The surface averaged impurity

profiles after t ' 3.2× 105τA show that the impurity outflux is smaller in the presence

of sawteeth. Indeed, the central impurity density has decreased by about 2% for the

case with sawteeth, which is less than a third of what is obtained for the case without

sawteeth.

Figure 6. Comparison of the surface averaged impurity density profiles between the

cases with (solid line) and without (dashed line) sawteeth after t ' 3.2×105τA from the

initial profile (+). The presence of sawtooth cycles decreased the quantity of impurity

expelled from the core region.
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(a) (b)

Figure 7. Impurity profiles after sawtooth crash for (a) lowly-contrasted and (b)

highly-contrasted pre-crash profiles (+). Post-crash impurity profiles computed by

the XTOR-2F code (dashed lines) and with Kadomtsev reconnection model (solid

lines) are shown. The inversion radius rinv and the mixing radius rmix are marked by

vertical lines. For a pre-crash profile with more contrasted hollowness, the penetration

of impurity is clearly visible and is in accordance with the Kadomtsev reconnection

model.

The weakened temperature screening effect is partly related to time averaged

temperature profile which is less peaked than the initial temperature profile. This

is due to a periodic flattening of the temperature profile at sawtooth crashes [22].

Hence, the overall radial pinch velocity of the impurity is less important than the case

without sawteeth, where the temperature profile remains unchanged. Also, the particle

redistribution during the sawtooth crash tends to weaken the impurity outflow. Indeed,

sawtooth crashes drive an efficient radial transport of impurities. In particular, the

Kadomtsev reconnection model [23],[24] predicts an influx of impurity during sawtooth

crashes for a hollow pre-crash impurity profile [25], regardless its contrast (Fig.7).

However, in the XTOR-2F simulations, a density perturbation of about 5% is found in

the impurity profiles after a sawtooth crash (blue dashed lines). Impurity penetration is

not visible as predicted by the Kadomtsev reconnection model, if the pre-crash impurity

density profile is less contrasted than the fluctuation (Fig.7a). On the contrary, the

impurity profile after a sawtooth crash obtained by the XTOR-2F code is consistent with

the prediction for a well-contrasted pre-crash profile (Fig.7b). The radial redistribution

of particles due to sawtooth crashes is sufficient to weaken the outward impurity flux

compared to the case without sawteeth, although the impurity profiles in the present

study are almost flat.

5. Discussion

In this paragraph, the mechanisms that underlie the impurity transport during a crash

are investigated in more details. For this purpose, different time points during a
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sawtooth crash are selected and marked by vertical lines in Fig.8a. The corresponding

magnetic configurations are displayed as Poincaré plots in Figs.8b-f. In Fig.9, the

impurity density that corresponds to the time points marked in Fig.8a are shown in

color background. As the electron mass is very small compared to the ion mass, electron

heat conduction is expected to be faster than the ion convection. Thus, the temperature

contours are often considered as a representation of magnetic surfaces. Unlike for the

(a) (b)

(c) (d)

(e) (f)

Figure 8. (a) Time evolution of pressure at different radii during sawtooth crash and

(b)-(f) Poincaré plots corresponding to the time points marked by vertical lines. The

q = 1 surface is represented by dashed lines.
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(a)

(b) (c)

(d) (e)

Figure 9. Impurity density structures during the sawtooth crash in the background

and the electric potential φ in contour lines. Each figure corresponds to Poincaré plots

of Fig.8.

ion species, the convection perpendicular to magnetic surfaces also has to be considered.

The contour lines which represent the reconstructed stream function associated with the

E × B velocity are also shown in Fig.9. This is an indication of the parallel flux role,

which tends to align the impurity density structures with the magnetic topology. It can

also be seen that the orientation of these structures is reminiscent of the E×B velocity

field.
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(a) (b)

(c) (d)

Figure 10. The radial and poloidal components (a)Γψz,δB , (b)Γψz,E , (c)Γθz,δB (d)Γθz,E
of the parallel impurity flux Γz,δB = NzVz,‖B/B and the impurity flux driven by the

E ×B velocity Γz,E = NzVE , corresponding to t = 120453τA are represented in the

poloidal plane at ϕ = 0. The dashed lines represent the q = 1 surface.

It can be noticed that the impurity density structures bear similarities with the

magnetic configuration with a slight poloidal shift. At the same time, these structures

are driven by the E×B flow. For example, in Fig.9b, the impurity density bump and hole

located respectively at θ ' π/2 and θ ' π, are more or less similar to magnetic surfaces

in the island (Fig.8c). These same structures are then rotated along the reconstructed

streamlines (Figs.9b,c).

In order to deduce the quantitative correlations of the impurity density structures

with magnetic flutter and E × B convection, it is necessary to compare the two

components of the impurity flux. From the expression (3) of the velocity, the impurity

fluxes due to field line bending and E×B drift respectively reads

Γz,δB = NzVz,‖B/B (30)

and

Γz,E = NzVE (31)
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(a) (b)

Figure 11. The profiles at (θ, ϕ) = (3π/4, 0) of the (a) radial and (b) poloidal

components of the impurity flux along the magnetic field line Γz,δB (solid lines) and

the flux driven by E×B velocity Γz,E (dashed lines). The q = 1 radius is marked by

vertical lines.

The impurity flux driven by the diamagnetic velocity is neglected since Z � 1 for heavy

impurities. In Fig.10, the radial and poloidal components
(
Γψz,δB,Γ

θ
z,δB

)
and

(
Γψz,E,Γ

θ
z,E

)
in the poloidal section at ϕ = 0, are represented, by defining

Γxz,y ≡ Γz,y.∇x (32)

These fluxes are calculated at time t = 1.2 × 105τA (Fig.10), when the magnetic

reconnection process during sawtooth crash has almost ended. At this time, the expelled

hot core is located outside the q = 1 surface, and the cooler island occupies a large part

of the core region (Fig.8e). Also, complex impurity density structures are seen inside

the q = 1 surface (Fig.9d). It appears that Γψz,E � Γψz,δB and Γθz,E � Γθz,δB in most of

the core region, i.e. the E×B flux overcomes the magnetic flutter flux in all directions.

However, in some specific locations, e.g. π/2 < θ < π and outside the inversion radii,

Γψz,E ' Γψz,δB and Γθz,E ' Γθz,δB (Figs.10,11). Hence, the impurity structures during the

sawtooth crash are driven by the two fluxes, but the E×B velocity plays a prominent

role in most locations during sawtooth crashes.

In Ref.[37], soft X-ray (SXR) and temperature measurements are analysed in detail

during a sawtooth crash. The presence of the background metal impurities allows

the impurity behaviour to be deduced from SXR emission. It is shown that a SXR

emission peak is expelled out of the q = 1 surface during a sawtooth crash, along with

the hot core. However, SXR and temperature contours become uncorrelated after the

sawtooth crash. Particles escape from the reconnection layer during the sawtooth crash

and are transported with their respective thermal velocity. Therefore, the impurity

transport time scale is large compared to the electron one which can be associated

with the modifications of the magnetic configuration. The impurity behaviour during a

sawtooth crash obtained by the XTOR-2F code is consistent with this picture. Indeed,

the impurity density structures are not representative of magnetic flux surfaces, and
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they are spread along streamlines associated with the E×B velocity.

As a consequence, the impurity density bump and hole result from the time lag

between impurity and electron transport.

6. Conclusion

Fluid equations for impurities in the Pfirsch-Schlüter regime have been implemented in

the XTOR-2F code in order to investigate the combined effect of neoclassical transport

and sawtooth crashes. An analytical calculation shows that the neoclassical impurity

flux in the Pfirsch-Schlüter regime is recovered by adjusting the friction between the

impurity and the main ion species.

It has been numerically verified that the impurity radial fluxes obtained with this

model are consistent with neoclassical predictions. Simulations show that the presence

of sawtooth crashes changes the impurity thermal screening. Indeed, the time averaged

outward impurity flux is weakened in presence of sawteeth. This is mainly due to a

sudden influx of impurity during the sawtooth crash for hollow pre-crash profiles. Also,

periodic flattening of the core temperature profile weakens the thermal screening effect

during the recovery phase. Impurity density perturbation in the percent range persist

after each sawtooth crash. This makes it difficult to assess the agreement with the

predictions of the Kadomtsev model for weakly hollow impurity profiles. Nevertheless,

the long time scale behaviour is definitely consistent with a weakening of the thermal

screening effect.

The impurities penetrate inside the q = 1 surface through impurity density bump

and hole which appear during sawtooth crashes. These structures are shown to be

mainly driven by the E×B velocity in the core region. Impurities are clustered in the

form of structures as they are redistributed from the reconnection layer with a thermal

velocity which is smaller than the electron thermal velocity.
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Appendix A. Poloidal asymmetry of impurity density

With the expressions (9), (14), (17) and the constraint (19), the parallel friction force

reads, in the small inverse aspect ratio limit ε = r/R0 � 1,

R‖,zi = mzNz,0νzi
T0
ez

(
∂ψ lnPz,0 −

ez
ei
∂ψ lnPi,0 + C0

ez
ei
∂ψ lnTi,0

)
2r cos θ (A.1)
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by writing B = B0/(1 + ε cos θ) and I = B0R0. In this limit, the parallel gradient is

written as ∇‖ = 1/(qR0)∂θ.

If the poloidal asymmetry of impurity density is only considered, the parallel

projection of the force balance equation (18) reads

1

qR0

∂θNz

Nz,0

= − 2q

R0

νzi
ωc,z

[
R0

LNz

+
ez
ei

R0

LNi

− (C0 − 1)
ez
ei

R0

LTi

]
cos θ (A.2)

with ωc,z ≡ ezB0/mz is the cyclotron frequency of the impurity and LY ≡ |∂r lnY |−1 is

the gradient length of the quantity Y .

The integration of the expression (A.2) along θ for heavy impurities (ez/ei � 1)

gives

Nz,1

Nz,0

= −2q2
ez
ei

νzi
ωc,z

[
R0

LNi

− (C0 − 1)
R0

LTi

]
sin θ (A.3)

Hence, the ordering used to derive the Pfirsch-Schlüter fluxes in Section 2 can be written

as

2q2
ez
ei

νzi
ωc,z

∣∣∣∣∣ R0

LNi

− (C0 − 1)
R0

LTi

∣∣∣∣∣� 1 (A.4)

It should be noted that despite the small parameter δz = νzi/ωc,z � 1, steep gradients

of the ion density and temperature profiles can be sufficient to break the assumption on

small poloidal asymmetry due to the high charge numbers of heavy impurities.
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