

UNIVERSITE PARIS-SACLAY

Étude structurale de matériaux sous forme de couches minces par diffraction des rayons X en incidence rasante

G. Baldinozzi, D. Simeone SPMS, LRC Carmen, CNRS-CEA-CentraleSupélec **J-F Bérar**

Néel, Grenoble

Collaborations et examples d'applications:

S. Bouffard (Cimap, Caen), P. Lecoeur (IEF, Orsay) C. Laberty-Robert, C. Sanchez (LCMC, Jussieu)

ANR-06-BLAN-0292, C'nano IDF Solnac 2009, Triangle de la Physique Instrumat 2011-074T, ANR-10-LABX-0039

AFC 2016 Congrès de l'Association Française de Cristallograph Marseille, France, 4-7 juillet 2016

Outline

UNIVERSITE

- **Diffraction basics Glancing angle (incidence) XRD**
- **Rietveld method and GA-XRD**
- **Structures & microstructures**
- **Examples**
- **Conclusion**

Diffracting crystallites

- + Reliable information on
 - the preferred orientation of crystallites
 - the crystallite size and lattice strain (in one direction)
- No information on the residual stress (constant direction of the diffraction vector)
- Low scattering from the layer (large penetration depth)

AFC 2016 s de l'Association Française de Cristalle Marseille, France, 4-7 juillet 2016

Penetration depth of X-rays

CentraleSupélec

22

L.G. Parratt, Surface Studies of Solids by Total Reflection of X-rays, Physical Review 95 (1954) 359-369.

Glancing angle X-ray diffraction GAXRD

CentraleSupélec

GAXRD Basics

- Parallel, monochromatic X-ray beam impinges on a sample surface at a fixed angle of incidence (α_I) and diffraction profile is recorded by detector-only scan.
- When the angle of incidence (α_I) of X-ray beam decreases, since the refractive index in the sample is less than unity, total external reflection of X-rays occurs below the critical angle of incidence α_C. The diffracted and scattered signals at the angle 2θ arise mainly from a limited depth below the surface of the specimen.

AFC 2016 Congrès de l'Association Française de Cristallogra Marseille, France, 4-7 juillet 2016

Reflections shape and breadth ...

Instrumental broadening

universite

Specimen-related broadening

- Crystallite finite size
- > Microstrain
 - ✓ Non-uniform Lattice Distortions
 - ✓ Faults
 - ✓ Dislocations
 - ✓ Antiphase domain boundaries
 - ✓ Surface Relaxation
 - ✓ ...

The peak profile is a convolution of the effects from all of these contributions

AFC 2016 Congrès de l'Association Française de Cristallogr Marseille, France, 4-7 juillet 2016

Typical sources of instrumental broadening

X-ray Source Profile

- \succ Natural emission linewidths of $K\alpha_1$ and $K\alpha_2$ lines
- Size of the X-ray source
- **Goniometer Optics**
 - Divergence and Receiving Slit widths
 - Imperfect focusing
 - > Beam size
 - Penetration into the sample
 - ≻ ...

Specimen broadening

cea

UNIVERSITE PARIS-SACLAY

CentraleSupélec

Crystallite size

- Fourier transformation of finite objects (with limited size)
- Constant line broadening (with increasing diffraction vector)

Lattice strain

- Local changes in the d-spacing
- Line broadening increases with increasing *q* (a result of the Bragg equation in the differential form)

Rietveld and GAXRD: XND software

universite PARIS-SACLAY

Empirical profile matching is sometimes difficult:

- overlapping peaks
- ➤ a mixture of nanocrystalline phases
- ➤ a mixture of nanocrystalline and microcrystalline phases
- **Rietveld profile analysis** (more information about the sample)
 - ➢ how much of each phase is present in a mixture
 - > lattice parameter refinement
 - nanophase materials often have different lattice parameters from their bulk counterparts
 - atomic structure, site occupancy, thermal displacement parameters, ...
 - better compensation of profile-related errors

AFC 2016 Congrès de l'Association Française de Cristallogra Marseille, France, 4 – 7 juillet 2016

Measuring structure and strain in a thin layer: thin films & the problem of ion irradiation

The GAXRD setup

- Accurate retrieval of "domain" size and microstrain once instrumental broadening is corrected for
- > Increased sensitivity to layers immediately below the surface
- In-situ measurements (irradiation and/or annealing phases)

Typical GAXRD pattern obtained on a fluorite phase

Structural evolution of spinels under irradiation

Behavior of spinel under irradiation: Modification of Diffraction patterns

	MgAl ₂ O ₄	MgCr ₂ O ₄	ZnAl ₂ O ₄
High E. ions @RT	Vanishing of odd Bragg reflexions D. Simeone, J. Nucl. Mat. 2002	Vanishing of odd Bragg reflexions G. Baldinozzi, Nucl. Inst Meth B. 2007	Non vanishing of odd Bragg reflexions D. Simeone, J. Nucl. Mat. 2002
	K Yasuda, MINB 2006, JNM 2007		
Low E. ions	Vanishing of odd Bragg reflexions		
@ 140 K	L.M. Wang, MRS 1995, R. Devanathan, Phil Mag Let 1995		
Low E. ions @ RT	Non vanishing of odd Bragg reflexions D. Gosset, J. Eur. Ceram. 2005	Vanishing of odd Bragg reflexions D. Gosset, J. Eur Ceram Soc, 2005	Non vanishing of odd Bragg reflexions G. Baldinozzi, Nucl. Inst Meth B. 2005

Spinel irradiation at room temperature

CentraleSupélec

Simulation of neutron irradiation by low energy ions (cascades) and of fission products by swift heavy ions

GAX-Ray diffraction: Asymmetric reflection setup (fixed, grazing impinging beam)

17

ociation Française de Cri rseille, France, 4 – 7 juillet 2016

MgCr₂O₄: thermal annealing after irradiation

- **Temperature restores the** normal structure.
- The annealing of the extended defects increases the size of the coherent diffracting domains.

22

Electron density from X-ray diffraction

1.0 _

Fourier syntheses derived from the observed diffracted intensities indexed in the Fd3m space group

cea

AFC 2016

How to reconcile LRO & SRO?

Ion irradiation produces changes in the structures of spinels:

> At the atomic scale:

- \checkmark Cations are interchanged as in the thermal picture
- \checkmark The local structure consists of octahedra and tetrahedra
- $\checkmark~$ The "true" space group is unchanged

> The existence of extended defects produces

- ✓ A broadening of (000) peaks
- ✓ An apparent symmetry change to the Fm3m (a' =a/2)

Antiphase domain boundaries?

- Formed during the ordering of a material that goes through an order-disorder transformation
- > The fundamental peaks are not affected
- > The superstructure peaks are broadened
 - \checkmark the broadening of superstructure peaks varies with *hkl*

Monitoring the particle contacts in mesoporous ceria as a function of the annealing T

20

40

60

80

2θ

100

120

unfortunately probes a volume that changes as a function of ψ , averaging out the strain in the film, and preventing a mapping of the local strain

Measuring the local strain in glancing geometry

$$\psi = \alpha - \theta(hkl)$$

 $\boldsymbol{\psi}$ angle should be re-encoded in glancing geometry

$$\tau = \frac{\sin \alpha \sin \left(2\theta - \alpha\right)}{\mu \left[\sin \alpha + \sin \left(2\theta - \alpha\right)\right]}$$

The depth τ probed by X-rays is a now a function of the impinging angle

$$\langle \epsilon_{\varphi\psi} \rangle = \frac{\int_0^t \epsilon_{\varphi\psi}(z) \exp\left(-\frac{z}{\tau}\right) dz}{\int_0^t \exp\left(-\frac{z}{\tau}\right) dz}$$

The average strain in a film of thickness t is still averaged by the way we measure (Fredholm's integral)

$$\langle \epsilon_{\varphi\psi} \rangle = \frac{1}{\tau} \int_0^\infty \epsilon_{\varphi\psi}(z) \exp\left(-\frac{z}{\tau}\right) dz = \frac{1}{\tau} \mathcal{L}\left(\epsilon_{\varphi\psi}(z), \frac{1}{\tau}\right)$$

$$\epsilon_{\varphi\psi}(z) = \mathcal{L}^{-1}\left(\tau \langle \epsilon_{\varphi\psi} \rangle, z\right)$$

AFC 2016 Association Francaise de Criste If t is larger than the probed depth τ the Fredholm's integral becomes a Laplace transform that can be inverted, thus providing the value of the local strain at each value z in the film

Glancing geometry: asymmetric impinging beam on a W film

Conclusion

universite PARIS-SACLAY GAXRD & materials modelling - global approach to understand complex systems :

- > Elementary mechanisms
- > Chemistry, crystal structure
- > (Meso) Microstructures
- Understand the property changes
- Point out the key issues to design new/better materials for advanced technologies

