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MATERIAL AND METHODS 

All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard 

Schlenk technique. Commercially available reagents and solvents were used without further purification 

other than those detailed below. THF was distilled from sodium/benzophenone prior to use. Light 

petroleum refers to the fraction with bp 40‐60°C. 2.5M solutions of n-BuLi in hexanes or THF were 

purchased from Sigma Aldrich. 2,2’-dibromobiphenyl was purchased from Fluorochem. Reactions were 

stirred magnetically, unless otherwise indicated. Analytical thin layer chromatography was carried out using 

aluminum backed plates coated with Merck Kieselgel 60 GF254 and visualized under UV light (at 254 and 

360 nm). Chromatography was carried out using Teledyne Isco CombiFlash® Rf 400 (UV detection 200‐

360nm), over standard silica cartridges (Redisep® Isco, GraceResolv™ Grace or Puriflash® columns 

Interchim). 1H and 13C NMR spectra were recorded using Bruker 300 MHz instruments (1H frequency, 

corresponding 13C frequency: 75 MHz); chemical shifts were recorded in ppm and J values in Hz. In the 
13C NMR spectra, signals corresponding to C, CH, CH2 or Me groups, assigned from DEPT, are noted. 

The residual signals for the NMR solvents are: CDCl3; 7.26 ppm for the proton and 77.00 ppm for the 

carbon, CD2Cl2; 5.32 ppm for the proton and 53.80 ppm for the carbon. The following abbreviations 

have been used for the NMR assignment: s for singlet, d for doublet, t for triplet and m for multiplet. 

High resolution mass spectra were recorded at the Centre Régional de Mesures Physiques de l'Ouest 

(Rennes) on (i) Bruker MicrO‐Tof‐Q II (Source: Atmospheric Pressure Chemical Ionization (APCI ‐ 

direct introduction) (ASAP–Atmospheric Solids Analysis Probe) at a temperature of 30°C ‐ positive 

mode) or on (ii) Waters Q‐Tof II.  

 

X-Ray : 
Crystal was picked up with a cryoloop and then frozen at 150 K under a stream of dry N2 on a 

APEX II Brucker AXS diffractometer for X‐ray data collection (Mo Kα radiation, λ = 0.71073 Å).  

The structures were solved by direct methods using the SIR97 program,1 and then refined with full-matrix 
least-square methods based on F2 (SHELXL-97) with the aid of the WINGX2 program. All non-
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hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally 
included in their calculated positions. Crystallographic data have been deposited with the Cambridge 
Crystallographic Data Centre as supplementary publication no. CCDC 1436575 (SIA-F) and 1436574 
(SIA-TXO2). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, 
Cambridge CB2 1EZ, UK [fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk]. 

 

SIA-F :  

(C31 H19 N); M = 405.47. APEXII, Bruker-AXS diffractometer, Mo-Kα radiation (λ = 0.71073 
Å), T = 150(2) K; triclinic P 1 (I.T.#1), a = 11.4724(8), b = 13.8188(11), c = 14.0714(11) Å, α = 91.414(4), 
β = 113.598(3), γ = 93.956(4) °, V = 2036.0(3) Å3.Z = 4, d = 1.323 g.cm-3, μ = 0.076 mm-1. The structure 
was solved by direct methods using the SIR97 program [1], and then refined with full-matrix least-square 
methods based on F2 (SHELXL-97) [2] with the aid of the WINGX [3] program. All non-hydrogen 
atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in 
their calculated positions. A final refinement on F2 with 14089 unique intensities and 1153 parameters 
converged at ωR(F2) = 0.2114 (R(F) = 0.0806) for 10563 observed reflections with I > 2σ(I). 

SIATXO2 :  

(C31 H19 N O2 S); M = 469.53. APEXII, Bruker-AXS diffractometer, Mo-Kα radiation (λ = 
0.71073 Å), T = 150(2) K; triclinic P -1 (I.T.#2), a = 8.8559(10), b = 9.8766(11), c = 13.1084(15) Å, α = 
77.196(4), β = 86.183(4), γ = 78.300(4) °, V = 1094.5(2) Å3.Z = 2, d = 1.425 g.cm-3, μ = 0.18 mm-1. The 
structure was solved by direct methods using the SIR97 program [1], and then refined with full-matrix 
least-square methods based on F2 (SHELXL-97) [2] with the aid of the WINGX [3] program. All non-
hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally 
included in their calculated positions. A final refinement on F2 with 4985 unique intensities and 316 
parameters converged at ωR(F2) = 0.1063 (R(F) = 0.0399) for 4384 observed reflections with I > 2σ(I). 

Figures were drawn using Mercury 3.3 (Build RC5). 

Spectroscopic studies: 

Cyclohexane (AnalaR NORMAPUR, VWR), Toluene (Spectrometric grade 99,7%, Alfa Aesar), 
Chloroform (AnalaR, NORMAPUR, VWR), Ethyl Acetate (for analysis, Carlo Erba) and Acetonitrile 
(Anhydrous for analysis, Carlo Erba).  Standard 1N solution of sulfuric acid was purchased from Alfa 

Aesar. UV‐visible spectra were recorded using an UV‐Visible spectrophotometer SHIMADZU UV‐1605. 

The energy gap was calculated from the absorption edge of the UV‐vis absorption spectra in solution in 
cyclohexane, using the formula ΔEopt (eV) = hc/λ, λ being the ab¬sorption edge (in meter). With h = 

6.6x10-34 J.s (1eV = 1.6x10-19 J) and c = 3.0x108 m.s‐1, this equation may be simplified as: ΔEopt (eV) = 
1237.5/λ (in nm). Triplet energy level ET was calculated from the maximum of the first phosphorescence 
emission peak, and conversion in electron volt was obtained with the previous formula. Emission spectra 

were recorded with a PTI spectrofluorimeter (PTI‐814 PDS, MD 5020, LPS 220B) using a xenon lamp. 
Quantum yields in solution (øsol) were calculated relative to quinine sulfate (øsol = 0.546 in H2SO4 1N). 
øsol was determined according to the following equation, 

 

(r  As)

 

(1) 

 nr 

ns 

 2 

sol=ref 100 
 (s  Ar) 

 
where, subscripts s and r refer respectively to the sample and reference. The integrated area of the emis-

sion peak in arbitrary units is given as T, n is the refracting index of the solvent (ns = 1.426 for 

cyclohexane) and A is the absorbance. Three solutions of different concentration of the substrate (A<0.1) 

and 3 solutions of the reference (quinine sulfate) were prepared. The quinine sulfate concentration was 

chosen so as the absorption of the reference and the substrate were the same at the excitation wavelength. 
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3 quantum yields were then calculated at this wavelength and the average value is reported. IR spectra 

were recorded on a Bruker Vertex 70 using a diamond crystal MIRacle ATR (Pike).  

Lipper-Mataga-Ooshika formalism was used to estimate the excited state dipole moment.3-5 

 + C   with    
 

With "Δν" (cm-1) being the Stokes shift,1 "Δμ" (D) the dipole moment difference between S0 and 
S1 states, "r" (cm) the radius of the solvatation sphere calculated from Xray structure, "h" Planck constant 
(6,626.10-27erg.s-1), "c" celerity (2,998.1010ems.s-1) "Δf" the orientation polarisability of the solvent 
calculated from its dielectric constant "ε" and its refractive index "n", and a constant C. 

Experimentally, several points Δν/Δf were measured from absorption and emission spectra in 
several solvents (Cyclohexane, Toluene, Chloroform, Ethyl Acetate, and Acetonitrile). A slope is then 
calculated by a linear regression on these five points and the dipole moment difference (Δµ) is calculated 
with this equation: 

  

Excited state dipole moment µ* is then calculated from the ground state dipole moment μ 
estimated by DFT calculations. 

 
 

Electrochemical studies 

Electrochemical experiments were performed under argon atmosphere using a Pt disk electrode (diameter 

1 mm), the counter electrode was a vitreous carbon rod and the reference electrode was a silver wire in a 

0.1M AgNO3 solution in CH3CN. Ferrocene was added to the electrolyte solution at the end of a series of 

experiments. The ferrocene/ferrocenium (Fc/Fc+) couple served as internal standard. The three 

electrodes cell was connected to a PAR Model 273 potentiostat/galvanostat (PAR, EG&G, USA) 

monitored with the ECHEM Software. Activated Al2O3 was added in the electrolytic solution to remove 

excess moisture. For a further comparison of the electrochemical and optical properties, all potentials are 

referred to the SCE electrode that was calibrated at –0.405 V vs. Fc/Fc+ system. Following the work of 

Jenekhe, 6  we estimated the electron affinity (EA) or lowest unoccupied molecular orbital (LUMO) and 

the ionisation potential (IP) or highest occupied molecular orbital (HOMO) from the redox data. The 

LUMO level was calculated from: LUMO (eV)= -[Eonset
red (vs SCE) +4.4] and the HOMO level from: 

HOMO (eV) = -[Eonset
ox (vs SCE) + 4.4], based on an SCE energy level of 4.4 eV relative to the vacuum. 

The electrochemical gap was calculated from: ΔEel =|HOMO-LUMO| (in eV). 

 

Theoretical modeling 

Full geometry optimization with Density functional theory (DFT)7, 8 and Time-Dependent Density 

Functional Theory (TD-DFT) calculations were performed with the hybrid Becke-3 parameter exchange9-

11 functional and the Lee-Yang-Parr non-local correlation functional12 (B3LYP) implemented in the 

Gaussian 09 (Revision B.01) program13 using the 6-311G+(d,p) basis set and the default convergence 

criterion implemented in the program. The figures were generated with GaussView 5.0. The triplet state 

energy level (S0 to T1 energy transition ET) of the different molecules was calculated from the difference 

between the total energy of the molecule in their respective optimized singlet and triplet states. 

Calculations were carried out under GENCI (project c2015085032). 

                                                
1 it should be mentioned that the Stokes shift has been evaluated using the band at the lowest energy, 

which is not the HOMO/LUMO transition (not experimentally observed) 
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Thermal analysis 

Thermal Gravimetric Analysis (TGA) was carried out by using TA SDT Q600 instrument, at the Ecole 

Nationale Superieure de Chimie de Rennes or at the "Institut des Sciences Analytiques" (UMR CNRS 

5280) of Villeurbanne. TGA curves were measured at 10°C/min from 0 to 600°C under nitrogen atmos-

phere. Differential scanning calorimetry (DSC) was carried out by using NETZSCH DSC 200 F3 ins-

trument equipped with an intracooler. DSC traces were measured at 10°C/min. 2 heating/cooling cycles 

were successively carried out and the glass transition was determined from the 2nd heating cycle. The 

temperature of the transition were measured at the maxima of each transition peak. 

 

Device fabrication and characterization 

The structure of the device is the following: ITO/CuPc (10 nm)/NPB (40 nm)/TCTA (10 nm)/ 
Hosts:dopant (100 nm)/TPBi or TmPyPB (40 nm)/LiF (1.2 nm)/Al (100 nm). Devices have been 
fabricated onto patterned ITO coated glass substrates from XinYan Tech (thickness: 100 nm and sheet 
resistance: less of 20 W/m). At the exception of the host materials that are synthesized by us, all other 
materials were commercially available and used without purifications. The organic materials are deposited 
onto the ITO anode by sublimation under high vacuum (< 10-6 Torr) at a rate of 0.2 – 0.3 nm/s. The 
entire device is fabricated in the same run without breaking the vacuum. In this study, the thicknesses of 
the different organic layers were kept constant for all the devices. The active area of the devices defined by 

the overlap of the ITO anode and the metallic cathode was 0.3 cm². The current‐voltage‐luminance (I‐V‐
L) characteristics of the devices were measured with a regulated power supply (Laboratory Power Supply 

EA‐PS 3032‐10B) combined with a multimeter and a 1 cm2 area silicon calibrated photodiode 
(Hamamatsu). The spectral emission was recorded with a SpectraScan PR650 spectrophotometer. All the 
measurements were performed at room temperature and at ambient atmosphere with no further 
encapsulation of devices. 

SYNTHESIS 

 
9-(2-bromophenyl)-9H-carbazole (1) 

Carbazole (5.007 g, 29.945 mmol), 1,2-dibromobenzene (12.500 g, 52.988 mmol, 1.77 eq), potassium 

phosphate tribasic (31.514 g, 0.148 mmol, 4.94 eq), copper (I) oxide ( 0.869 g, 6.073 mmol, 0.20 eq) and 

DMEDA ( 1.097 g, 12.445 mmol, 0.42 eq) were dissolved in xylenes  (50 mL) under argon. The mixture 

was heated at 130°C for two days. Then, the mixture was allowed to cool down to room temperature, and 

water (100 mL) was poured in. The crude was extracted three times with dichloromethane (3X50 mL). 

The combined organic extracts were dried over magnesium sulfate, filtered, and concentrated under 

reduced pressure. The residue was purified by flash chromatography on silica gel (light 

petroleum/dichloromethane) (9 / 1), and after recrystallized from ethanol to give colorless needles (5.596 

g, 17.368 mmol). Yield: 58%. mp: 77 °C. 1H NMR (300 MHz, CD2Cl2): δ 8.16 (ddd, J = 7.7, 1.2, 0.7 Hz, 

2H, ArH), 7.92 – 7.86 (m, 1H, ArH), 7.62 – 7.37 (m, 5H, ArH), 7.30 (ddd, J = 7.7, 7.2, 1.1 Hz, 2H, ArH), 

7.10 – 7.04 (m, 2H, ArH). 13C NMR (75 MHz, CD2Cl2): δ 141.4 (C), 137.0 (C), 134.7 (CH), 131.7 (CH), 

130.9 (CH), 129.5 (CH), 126.5 (CH), 124.2 (C), 123.6 (C), 120.8 (CH), 120.5 (CH), 110.5 (CH). HRMS 

calculated for C18H13NBr 322.0231 [M+H]+, found: 322.0227. 
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General procedure for lithiated reaction 
9-(2-bromophenyl)-9H-carbazole (1) (1 eq) was dissolved in dry THF under argon atmosphere, cooled at -

78 °C and stirred during 10 minutes at this temperature. A 2.5M n-BuLi solution (1.1 eq) in THF was then 

slowly injected via a syringe, at -78 °C. The resulting mixture was stirred at the same temperature for 30 

min. The corresponding ketone (1.15 eq) dissolved in dry THF was then added dropwise, the mixture was 

stirred for another 30 minutes at -78°C, and allowed warming up to room temperature gradually 

overnight. Absolute ethanol (10 mL) was added and the mixture was concentrated under reduced 

pressure.  

Without other purification, the crude was dissolved in methanesulfonic acid and heated up. Then, the 

mixture was poured onto water/ice (200 mL) and the solution was extracted three times with 

dichloromethane. The combined organic extracts were dried over magnesium sulfate, filtered, and 

concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel. 

 
Spiro[fluorene-9,8'-indolo[3,2,1-de]acridine] (SIA-F) 

Spiro[fluorene-9,8'-indolo[3,2,1-de]acridine] was synthesized following the general procedure 

using 9-(2-bromophenyl)-9H-carbazole (1) (0.86 g, 2.67 mmol), 9-fluorenone (0.55 g, 3.05 mmol, 1.14 eq) 

and 2.5M n-BuLi solution (1.16 mL, 2.9 mmol, 1.09 eq). Recrystallized from a mixture of dichlorometha-

ne/methanol (1:1) giving a colorless powder (0.56 g, 1.39 mmol). Yield: 52 % m.p: 233 °C. 1H NMR (300 

MHz, CD2Cl2): δ 8.31 (d, J = 8.5 Hz, 1H, ArH), 8.26 (dd, J = 8.3, 1.1 Hz, 1H, ArH), 8.21 (ddd, J = 7.8, 

1.3, 0.7 Hz, 1H, ArH), 7.93 – 7.85 (m, 3H, ArH), 7.66 (ddd, J = 8.5, 7.3, 1.4 Hz, 1H, ArH), 7.47 – 7.33 (m, 

4H, ArH), 7.19 (td, J = 7.4, 1.1 Hz, 2H, ArH), 7.12 (ddd, J = 7.6, 1.3, 0.7 Hz, 2H, ArH), 7.08 (t, J = 7.6 

Hz, 1H, ArH), 6.86 (ddd, J = 7.9, 7.3, 1.2 Hz, 1H, ArH), 6.59 (dd, J = 7.9, 1.5 Hz, 1H, ArH), 6.49 (dd, J = 

7.5, 1.0 Hz, 1H, ArH). 13C NMR (75 MHz, CD2Cl2): δ 155.9 (C), 140.1 (C), 139.1 (C), 137.6 (C), 137.3 (C), 

129.9 (C), 129.6 (CH), 128.9 (CH), 128.5 (CH), 128.4 (CH), 127.3 (CH), 126.8 (C), 125.9 (CH), 125.1, 

123.8 (CH), 123.5 (CH), 123.2 (C), 123.1 (CH), 121.7 (CH), 121.6 (CH), 120.7 (CH), 118.6 (CH), 115.1 

(CH), 114.3 (CH), 57.4 (C spiro). HRMS calculated for C31H20N 406.1595 [M+H]+, found: 406.1594. IR 

(ATR, cm-1): ν = 553, 619, 644, 654, 675, 721, 742, 798, 904, 933, 970, 1005, 1026, 1062, 1120, 1159, 1190, 

1238, 1257, 1271, 1319, 1340, 1402, 1432, 1446, 1456, 1477, 1495, 1599, 3012, 3045.  

 
Spiro[cyclopenta[1,2-b:5,4-b']dipyridine-5,8'-indolo[3,2,1-de]acridine] (SIA-DAF) 

Spiro[cyclopenta[1,2-b:5,4-b']dipyridine-5,8'-indolo[3,2,1-de]acridine] was synthesized following 

the general procedure using 9-(2-bromophenyl)-9H-carbazole (1) (1.00 g, 3.10 mmol), 5H-cyclopenta[1,2-
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b:5,4-b']dipyridin-5-one (0.65 g, 3.57 mmol, 1.15 eq), and 2.5M n-BuLi solution (1.37 mL, 3.43 mmol, 1.11 

eq). Recrystallized from a mixture of dichloromethane/methanol (1:1) giving a beige powder (0.52 g, 0.13 

mmol). Yield: 41 %. m.p: 298 °C 1H NMR (300 MHz, CD2Cl2): δ 8.65 (dd, J = 4.8, 1.5 Hz, 2H, ArH), 8.26 

– 8.16 (m, 2H, ArH), 8.13 (ddd, J = 7.8, 1.3, 0.6 Hz, 1H, ArH), 7.85 (dd, J = 7.7, 0.9 Hz, 1H, ArH), 7.58 

(ddd, J = 8.5, 7.3, 1.3 Hz, 1H, ArH), 7.43 (dd, J = 7.8, 1.5 Hz, 2H, ArH), 7.38 – 7.28 (m, 2H, ArH), 7.11 

(dd, J = 7.8, 4.8 Hz, 2H, ArH), 7.01 (t, J = 7.6 Hz, 1H, ArH), 6.79 (ddd, J = 7.9, 7.3, 1.1 Hz, 1H, ArH), 

6.51 (dd, J = 7.9, 1.5 Hz, 1H, ArH), 6.42 (dd, J = 7.6, 0.9 Hz, 1H, ArH); 13C NMR (75 MHz, CD2Cl2): δ 

157.8 (C), 151.0 (CH), 150.1 (C), 139.1 (C), 137.9 (C), 137.5 (C), 133.6 (CH), 129.3 (CH), 129.2 (CH), 

127.5 (CH), 127.3 (C), 126.7 (C), 124.6 (CH), 124.0 (CH), 123.5 (C), 123.3 (CH), 123.2 (CH), 122.6 (C), 

121.9 (CH), 121.8 (CH), 119.3 (CH), 115.3 (CH), 114.4 (CH), 53.4 (C spiro). HRMS calculated for 

C29H18N3 408.1500 [M+H]+, found: 408.1500. IR (ATR, cm-1): ν = 577, 623, 631, 650, 673, 681, 737, 744, 

754, 768, 787, 816, 908, 1024, 1059, 1076, 1092, 1110, 1132, 1161, 1188, 1230, 1257, 1336, 1402, 1433, 

1454, 1475, 1495, 1562, 1585, 1595, 1907, 1927, 3055, 3120.  

 
Spiro[indolo[3,2,1-de]acridine-8,9'-thioxanthene] 10',10'-dioxide (SIA-TXO2) 

Spiro[indolo[3,2,1-de]acridine-8,9'-thioxanthene] 10',10'-dioxide was synthesized according to the 

general procedure using 9-(2-bromophenyl)-9H-carbazole (1.002 g, 3.110 mmol, 1 eq), 9H-thioxanthen-9-

one 10,10-dioxide (1.664 g, 6.812 mmol, 2.19 eq) and 2.5M solution of n-BuLi (1.37 mL, 3.425 mmol, 1.10 

eq). Recrystallized from a mixture of dichloromethane/methanol (1:1) giving a colorless powder. Yield: 44 

%. m.p: over 320 °C. 1H NMR (300 MHz, CDCl3) δ 8.29 (t, J = 8.0 Hz, 2H, ArH), 8.20 (dd, J = 8.0, 1.1 

Hz, 3H, ArH), 7.89 (dd, J = 7.6, 0.9 Hz, 1H, ArH), 7.66 (ddd, J = 8.5, 7.3, 1.3 Hz, 1H, ArH), 7.48 – 7.35 

(m, 4H, ArH), 7.31 (ddd, J = 8.6, 7.3, 1.4 Hz, 2H, ArH), 7.16 (t, J = 7.7 Hz, 1H, ArH), 7.06 (dd, J = 8.2, 

0.9 Hz, 2H, ArH), 7.04 – 6.91 (m, 3H, ArH). 13C NMR (75 MHz, CDCl3) δ 145.0 (C), 138.4 (C), 135.7 (C), 

134.2 (C), 133.9 (C), 133.7 (CH), 133.2 (CH), 133.1 (CH), 132.6 (C), 128.6 (CH), 128.1 (CH), 127.3 (CH), 

126.9 (C), 126.6 (CH), 126.2 (C), 124.1 (CH), 123.5 (CH), 122.9 (C), 122.5 (CH), 121.5 (CH), 121.4 (CH), 

118.6 (CH), 114.6 (CH), 113.5 (CH), 48.8 (C Spiro). HRMS calculated for C31H19NO2NaS 492.1034 

[M+Na]+, found 492.1032. Elemental analysis calculated for C31H19NO2S: C, 79.29 %; H, 4.08 %; N, 2.98 

%. Found: C 78.90 %; H 3.89 %; N, 2.70%. IR (ATR, cm-1): ν = 536, 550, 567, 580, 604, 648, 719, 750, 

795, 933, 966, 1026, 1059, 1115, 1140, 115, 1230, 1257, 1294, 1338, 1435, 1456, 1479, 1497, 1591, 3010, 

3024, 3055. 
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STRUCTURAL PROPERTIES 

Table 1 Crystal data and structure refinement for SIA-F 

Empirical formula C31H19N 

Formula weight 405.47 

Temperature 150(2) K 

Wavelength 0.71073 Å 

Crystal system, space group triclinic, P 1 

Unit cell dimensions 

a = 11.4724(8) Å, α = 91.414(4) ° 

b = 13.8188(11) Å, β = 113.598(3) ° 

c = 14.0714(11) Å, γ = 93.956(4) ° 

Volume 2036.0(3) Å3 

Z, Calculated density 4, 1.323 (g.cm-3) 

Absorption coefficient 0.076 mm-1 

F(000) 848 

Crystal size 0.32 x 0.25 x 0.02 mm 

Crystal color colorless 

Theta range for data collection 1.48 to 27.42 ° 

h_min, h_max -14, 14 

k_min, k_max -17, 16 

l_min, l_max -17, 18 

Reflections collected / unique 18516 / 14089 [R(int) = 0.032] 

Reflections [I>2σ] 10563 

Completeness to theta_max 0.974 

Absorption correction type multi-scan 

Max. and min. transmission 0.998 , 0.977 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 14089 / 3 / 1153 

bGoodness-of-fit 1.067 

Final R indices [I>2σ] R1 = 0.0806, wR2 = 0.2114 

R indices (all data) R1 = 0.1098, wR2 = 0.2348 

Largest diff. peak and hole 0.496 and -0.464 e-.Å-3 
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SIA-F X-Ray structure: Molecule 1 

 

S 1 Fluorene deformation: angle between the mean planes of the two phenyl units (6 and 8) of the fluorenyl fragment 
in SIA-F molecule 1: 3.04 ° 

 

S 2 Indoloacridine deformation: angle between mean planes of rings 1 and 5 in SIA-F molecule 1: 

15.46 ° 

 

S 3 Acridine deformation: angle between the two phenyl units (3 and 5) of the acridine fragment in 

SIA-F molecule 1: 14.73 ° 
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S 4 Carbazole deformation: angle between the two phenyl units (1 and 3) of the carbazole fragment in SIA-F 
molecule 1: 1.40 ° 

 
S 5  Spiro angle: angle between the mean plane of cyclohexadiene in fluorene fragment and the mean plane of 

cyclohexadiene in acridine fragment in SIA-F molecule 1: 88.69 ° 
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SIA-F X-Ray structure: Molecule 2 

 
S 6  Fluorene deformation: angle between the two phenyl units (6 and 8) of the fluorenyl fragment in SIA-F 

molecule 2: 3.28 ° 

 

S 7  Indoloacridine deformation: angle between mean planes of rings 1 and 5 in SIA-F molecule 2: 4.22 °

 

S 8  Acridine deformation: angle between the two phenyl units (1 and 5) of the acridine fragment in SIA-F molecule 

2: 3.20 ° 
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S 9 Carbazole deformation: angle between the two phenyl units (1 and 3) of the carbazole fragment in SIA-F 
molecule 2: 1.15 ° 

 

S 10 Spiro angle: angle between the mean plane of cyclohexadiene in fluorene fragment and the mean plane of 
cyclohexadiene in acridine fragment in SIA-F molecule 2: 87.98 ° 
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SIA-F X-Ray structure: Molecule 3 

 

S 11 Fluorene deformation: angle between the two phenyl units (6 and 8) of the fluorene fragment in SIA-F 
molecule 3: 1.13 ° 

 

S 12  Indoloacridine deformation: angle between mean planes of rings (1 and 5) in SIA-F molecule 3: 4.22 ° 
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S 13 Acridine deformation: angle between the two phenyl units (3 and 5) of the acridine fragment in SIA-F 

molecule 3: 15.91 ° 

 

S 14 Carbazole deformation: angle between the two phenyl units (1 and 3) of the carbazole fragment in SIA-F 
molecule 3: 3.73 ° 

 

S 15 Spiro angle: angle between the mean plane of cyclohexadiene in fluorene fragment and the mean plane of 
cyclohexadiene in acridine fragment in SIA-F molecule 3: 89.77 ° 
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SIA-F X-Ray structure: Molecule 4 

 

S 16 Fluorene deformation: angle between the two phenyl units (6 and 8) of the fluorene fragment in SIA-F 
molecule 4: 4.65 ° 

 

S 17  Indoloacridine deformation: angle between mean planes of rings 1 and 5 in SIA-F molecule 4: 8.26 ° 

 

S 18 Acridine deformation: angle between the two phenyl units (3 and 5) of the acridine fragment in SIA-F 
molecule 4: 7.27 ° 
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S 19 Carbazole deformation: angle between the two phenyl units (1 and 3) of the carbazole fragment in SIA-F 
molecule 4: 3.26 ° 

 

S 20 Spiro angle: angle between the mean plane of cyclohexadiene in fluorene fragment and the mean plane of 
cyclohexadiene in acridine fragment in SIA-F molecule 4: 89.03 ° 
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Table 2 Crystal data and structure refinement for SIA-TXO2 

Empirical formula C31H19NO2S 

Formula weight 469.53 

Temperature 150(2) K 

Wavelength 0.71073 Å 

Crystal system, space group triclinic, P -1 

Unit cell dimensions a = 8.8559(10) Å, α = 77.196(4) ° 

 b = 9.8766(11) Å, β = 86.183(4) ° 

 c = 13.1084(15) Å, γ = 78.300(4) ° 

Volume 1094.5(2) Å3 

Z, Calculated density 2, 1.425 (g.cm-3) 

Absorption coefficient 0.18 mm-1 

F(000) 488 

Crystal size 0.26 x 0.25 x 0.11 mm 

Crystal color colorless 

Theta range for data collection 1.59 to 27.49 ° 

h_min, h_max -11, 11 

k_min, k_max -9, 12 

l_min, l_max -16, 17 

Reflections collected / unique 17980 / 4985 [R(int) = 0.0258] 

Reflections [I>2σ] 4384 

Completeness to theta_max 0.992 

Absorption correction type multi-scan 

Max. and min. transmission 0.98 , 0.954 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4985 / 0 / 316 

Goodness-of-fit 1.112 

Final R indices [I>2σ] R1 = 0.0399, wR2 = 0.1063 

R indices (all data) R1 = 0.0473, wR2 = 0.1203 

Largest diff. peak and hole 0.412 and -0.396 e-.Å-3 
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SIA-TXO2 X-Ray structure 

 

S 21 TXO2 deformation: angle between the two phenyl units (8 and 6) of the dioxothioxanthene fragment in: 13.00 ° 

 

S 22  Indoloacridine deformation: angle between mean planes of rings 1 and 5 in SIA-TXO2: 5.37 ° 

 

 

S 23 Acridine deformation: angle between the two phenyl units (3 and 5) of the acridine fragment in SIA-TXO2: 
2.90 ° 
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S 24 Carbazole deformation: angle between the two phenyl units (1 and 3) of the carbazole fragment in SIA-TXO2: 
2.84 ° 

 

S 25 Spiro angle: angle between the mean plane of cyclohexadiene in dioxothioxanthene fragment and the mean 
plane of cyclohexadiene in acridine fragment in SIA-TXO2: 87.12 ° 

 



19 

 

THERMAL PROPERTIES 
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S 26 TGA curve of SIA-F 
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S 27 DSC curves of SIA-F 
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S 28 TGA curve of SIA-DAF 
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S 29 DSC curve of SIA-DAF 
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S 30 TGA curve of SIA-TXO2 
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S 31 DSC curve of SIA-TXO2
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PHOTOPHYSICAL PROPERTIES 
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S 32 Quantum yield measurements: Absorption of solutions of SIA-F in cyclohexane and quinine sulfate (QS) in 
H2SO4 1N 
 
Table 3 Quantum yield calculation of SIA-F 

Solution  λ (nm) A TS TQS nD
25 (cyclohexane) nD

25 (H2SO4 1N) φ (%) 

1 310 0.1565 24084.7 45750.8 1.42662 1.3325 33 

2 310 0.1133 19309.1 35802.2 1.42662 1.3325 34 

3 310 0.0763 13992 26308.4 1.42662 1.3325 33 
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S 33 Quantum yield measurements: Absorption of solutions of SIA-DAF in cyclohexane and quinine sulfate (QS) 
in H2SO4 1N 
 

Table 4 Quantum yield calculation of SIA-DAF 

 

 

 

  

Solution  λ (nm) A TS TQS nD
25 (cyclohexane) nD

25 (H2SO4 1N) φ (%) 

1 320 0.087 20848.5 37518.5 1.42662 1.3325 35 

2 321 0.0541 15451.1 25325.6 1.42662 1.3325 38 

3 320 0.0352 11779.3 17566.7 1.42662 1.3325 42 



27 

 

 

 

 

 

 

 

 

 

 

 

S 34 Quantum yield measurements: Absorption of solutions of SIA-TXO2 in cyclohexane and quinine sulfate 

(QS) in H2SO4 1N 

 
Table 5 Quantum yield calculation of SIA-TXO2 

Solution  λ (nm) A TS TQS nD
25 (cyclohexane) nD

25 (H2SO4 1N) φ (%) 

1 306 0.1187 97797 155771 1.42662 1.3325 39 

2 303.5 0.0841 79751.6 132411 1.42662 1.3325 38 

3 305.5 0.0585 67062.7 100789 1.42662 1.3325 42 

 

 

Table 6 Quantum yields measured in various solvents of SIA-F, SIA-DAF and SIA-TXO2 

 Quantum Yield 

 Cyclohexane Toluene THF EtOAc MeCN 

SIA-F 33.3% 31.1% 32.5% 28.8% 31.8% 

SIA-DAF 38.3% 4.9% 0.9% 1.5% 0.8% 

SIA-TXO2 39.5% 27.5% 27.2% 19.6% 19.9% 
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S 35 UV-Vis absorption of SIA-F in various solvents 
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S 36 UV-Vis absorption of SIA-DAF in various solvents 
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S 37 UV-Vis absorption of SIA-TXO2 in various solvents 
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S 38 Fluorescence spectrum of SIA-F in cyclohexane solution (λexc = 295 nm) and in thin film (λexc = 300 nm) 
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S 39 Fluorescence spectra of SIA-F in various solvents (λex Cyclohexane: 295 nm, Toluene: 305.5 nm, THF: 305 nm, EtOAc: 
300 nm, MeCN: 308.5 nm) 
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S 40 Fluorescence spectrum of SIA-DAF in cyclohexane solution (λexc = 294 nm) and in thin film (λexc = 280 nm) 
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S 41 Fluorescence spectrum of SIA-DAF in various solvents (λex Cyclohexane: 303 nm, Toluene: 305 nm, THF: 320 nm, 
EtOAc: 319 nm, MeCN: 323.5 nm) 
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S 42 Fluorescence spectrum of SIA-TXO2 in cyclohexane solution (λexc = 306 nm) and in thin film (λexc = 280 nm) 
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S 43 Fluorescence spectrum of SIA-TXO2 in various solvents (λex Cyclohexane: 306 nm, Toluene: 297.5 nm, THF: 298 nm, 
EtOAc: 299.5 nm, MeCN: 296.5 nm) 
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S 44 Emission spectrum of SIA-F, fluorescence and phosphorescence contributions recorded in a frozen matrix 
of 2-methyltetrahydrofuran at 77 K, λexc = 310 nm 
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S 45 Emission spectrum of SIA-DAF, fluorescence and phosphorescence contributions recorded in a frozen 
matrix of 2-methyltetrahydrofuran at 77 K, λexc = 315 nm 
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S 46 Emission spectrum of SIA-TXO2, fluorescence and phosphorescence contributions recorded in a frozen 
matrix of 2-methyltetrahydrofuran at 77 K, λexc = 285 nm 
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ELECTROCHEMICAL PROPERTIES 
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S 47 Cyclic voltammetry at 100 mV s-1 in CH2Cl2/[NBu4] [PF6] 0.2 M in presence of SIA-F (5 10-3 M).  
Left three recurrent sweeps on the first oxidation wave showing the irreversibility of the redox process. 
Right ten recurrent sweeps including the first and second oxidation waves showing a polymerization process. 
Platinum disk working electrode (diameter 1 mm). 
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S 48 Cyclic voltammetry at 100 mV s-1 in CH2Cl2/[NBu4] [PF6] 0.2 M in presence of SIA-DAF (5 10-3 M).  
Left one sweep on the two first irreversible oxidation waves. 
Right Differential Pulse Voltammetry on the two first oxidation waves 
Platinum disk working electrode (diameter 1 mm). 
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S 49 Cyclic voltammetry at 100 mV s-1 in CH2Cl2/[NBu4] [PF6] 0.2 M in presence of SIA-TXO2 (5 10-3 M). Left 
three recurrent sweeps on the first oxidation wave showing the irreversibility of the redox process. 
Right ten recurrent sweeps including the first and second oxidation waves showing a very weak polymerization 
process.  
Platinum disk working electrode (diameter 1 mm). 
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THEORETICAL MODELING 

 

S 50 Calculated frontier molecular orbitals by DFT of N-Phenylcarbazole and Indolo[3,2,1-jk]carbazole after 
geometry optimization with DFT B3LYP/6-311G+(d,p), show with an isovalue of 0.04 
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S 51 Calculated frontier molecular orbitals by DFT of N-phenylacridine and 8H-indolo[3,2,1-de]acridine after 
geometry optimization with DFT B3LYP/6-311G+(d,p), show with an isovalue of 0.04 
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S 52 Calculated frontier molecular orbitals by DFT and the 10th first calculated electronic transitions by TD-DFT 
of SIA-F, after geometry optimization with DFT B3LYP/6-311G+(d,p), show with an isovalue of 0.04 
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S 53 Calculated frontier molecular orbitals by DFT and the 10th first calculated electronic transitions by TD-DFT 
of SIA-DAF, after geometry optimization with DFT B3LYP/6-311G+(d,p), show with an isovalue of 0.04 
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S 54 Calculated frontier molecular orbitals by DFT and the 12th first calculated electronic transitions by TD-DFT 
of SIA-TXO2, after geometry optimization with DFT B3LYP/6-311G+(d,p), show with an isovalue of 0.04 
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S 55 Spin density of the cation radical of SIA-F (SIA-F.+) shown with the fluorene in plane (left) and with the 
indoloacridine in plane (right) with an isovalue of 0.01 [e bohr-3]1/2 
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S 56 Predicted UV-vis spectra from TD-DFT energy calculations of SIA-F, SIA-DAF and SIA-TXO2, after 
geometry optimization with DFT B3LYP/6-311G+(d,p). Inset a zoom between 320 and 385 nm. 
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GREEN DEVICES PERFORMANCES 
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S 57 Current (empty symbol) and power efficiencies (filled symbol) versus current density of the green devices 
using SIA-DAF doped with Ir(ppy)3 10 % or SIA-TXO2 doped with Ir(ppy)3 10 or 20 % in mass as emitting layer 
(left). Corresponding EL spectra recorded at 10 mA/cm2 (right). 
 

BLUE DEVICES PERFORMANCES 
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S 58 Non-normalized EL spectra of SIA-DAF + 10% FIrpic recorded at different current densities: 30 mA/cm2 
(black line), 60 mA/cm2  (blue line) and 90 mA/cm2 (red line).  
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COPIES OF NMR SPECTRA 
1H-(1)-CD2Cl2 
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13C-(1)-CD2Cl2 
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DEPT-(1)-CD2Cl2 
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1H-(2)-CD2Cl2 
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13C-(2)-CD2Cl2 
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DEPT-(2)-CD2Cl2 
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1H-(3)-CD2Cl2 
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13C-(3)-CD2Cl2 
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DEPT-(3)-CD2Cl2 
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1H-(SIA-F)-CD2Cl2 
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13C-(SIA-F)-CD2Cl2 
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DEPT-(SIA-F)-CD2Cl2 
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1H-(SIA-DAF)-CD2Cl2 

 



56 
 

 

13C-(SIA-DAF)-CD2Cl2 
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DEPT-(SIA-DAF)-CD2Cl2 
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1H-( SIA-TXO2)-CDCl3- 
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13C-( SIA-TXO2)-CDCl3 
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DEPT-( SIA-TXO2)-CDCl3 
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2D NMR STUDIES 

COSY-(SIA-F)-CD2Cl2 
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HSQC-(SIA-F)-CD2Cl2 
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HMBC-(SIA-F)-CD2Cl2 
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COSY-(SIA-DAF)-CD2Cl2 
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HSQC-(SIA-DAF)-CD2Cl2 
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HMBC-(SIA-DAF)-CD2Cl2 
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COSY-( SIA-TXO2)-CDCl3 
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HSQC-( SIA-TXO2)-CDCl3 
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HMBC-( SIA-TXO2)-CDCl3 
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