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Abstract 

 
Compression of monodisperse powder samples in quasistatic 
conditions is addressed in a pressure range such that particles 
fragmentation occurs while the solid remains incompressible (typical 
pressure range of 1-300 MPa for glass powders). For a granular bed 
made of particles of given size, the existence of three stages is 
observed during compression and crush up. First, classical 
compression occurs and the pressure of the granular bed increases 
along a characteristic curve as the volume decreases. Then, a critical 
pressure is reached for which fragmentation begins. During the 
fragmentation process, the granular pressure stays constant in a given 
volume range. At the end of this second stage, 20% to 50% of initial 
grains are reduced to finer particles, depending on the initial size. 
Then compression undergoes the third stage and the pressure increases 
along another characteristic curve, in the absence of extra 
fragmentation.  
The present paper analyses the analogies between phase transition in 
liquid-vapour systems and powder compression with crush-up. 
Fragmentation diagram of soda lime glass granular beds is determined 
by experimental means. The analogues of the saturation pressure and 
latent heat of phase change are determined. 
Two thermodynamic models are then examined to represent the crush-
up diagram. The first one uses piecewise functions while the second 
one is of van der Waals type. Both equations of state relate granular 
pressure, solid volume fraction and initial particle diameter. The 
piecewise functions approach provides reasonable representations of 
the phase diagram while the van der Waals one fails. 
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I. Introduction 
Compression of powders has been widely studied in the kilobar range (Kuo et al., 1980, Elban 
and Chiarito, 1986) and at higher pressures in the megabar range (Marsch et al., 1980, Fortov 
et al., 2013) with dynamic shock loading. Dynamic rupture and fragmentation of granular 
materials has been an intense research area since the pioneer work of Griffith (1921), Mott 
(1948), Einav (2007a-b), Mott (2006), Davison et al. (2012) and many other researchers. 
In this paper, we address quasi-static compression of initially monodisperse spherical soda-
lime glass particles. The (quasi) monodisperse character of the initial bed enables studying the 
effects of initial particle size. 
Compression of such granular beds exhibits three successive stages. During the first one, the 
behaviour that is observed corresponds to conventional loading curves reported for example 
in Kuo et al. (1980), Elban and Chiarito (1986) and summarized by a "configuration pressure" 
equation of state (EOS) (Passman et al., 1984). In this regime, grains deform in elastic-plastic 
regime and fragmentation is rare. During this stage, the “granular pressure” (denoted β) 
increases when the solid volume fraction increases too. This granular pressure represents 
collective intergranular contact resistance effects to compression. Details are given in Bdzil et 
al. (1999) where this pressure is linked to a surface energy and in Saurel et al. (2010) where a 
convenient and accurate EOS formulation is given. 
When compression continues, some critical granular pressure level is reached and the second 
stage begins. Fragmentation occurs and produces characteristic noise in the experiments. The 
fragmentation process is continuous with volume decrease and occurs at nearly constant 
granular pressure, as will be discussed.  This particular feature appears to be of prime interest 
for the study of granular bed fragmentation. Then, at a given compression level, 
fragmentation halts and the third compression stage begins. The powder is now polydisperse, 
consisting of particles having initial size as well as smaller grains. Its compression curve 
follows another characteristic curve, quite similar to the one of the first stage. Particle 
fragmentation is quite rare during this third compression stage. 
These three stages are illustrated in Figure 1 and in the author’s knowledge were not reported 
before. As shown later, compaction of several powder samples made of the same material but 
with different initial particle sizes enable to build a fragmentation diagram, schematized in 
Figure 2. It has similarities with isothermal compression of liquid-vapour systems as, for 
instance, a fragmentation dome (analogue of the saturation dome) and a critical point. When 
the initial particles diameter is greater than the critical one, fragmentation is possible and the 
compaction processes follow the three stages described previously. Otherwise no 
fragmentation takes place and compaction follows the initial characteristic curve (the one of 
the first stage). 

 
Figure 1: Typical granular pressure evolution as a function of the volume fraction of solid during a compression 
test. A: Initial granular bed configuration, B: Elastic-plastic deformation and reorganisation processes, C: First 
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grain fracture, D: Fragmentation at constant granular pressure, E: Last grain fracture, F: Elastic-plastic 
deformation and reorganisation of fragmented powder. 

 

 
Figure 2: Schematic representation of the fragmentation diagram. The fragmentation dome is represented by a 
dark grey area. Three typical compaction paths are shown with dashed grey lines for different initial diameter 

such that d1>d2=dcrit>d3.  dcrit is the critical initial diameter under which no fragmentation happens during 
granular bed compression. 

 
The determination of the fragmentation diagram may be useful for various applications, such 
as for example the building of protection materials against mechanical aggressions or the 
behaviour of materials during projectile’s impact. 
 
II. Experiments and results 
A conventional laboratory press (CBR T0105.1) is used to compress powder samples of a few 
grams. A steel piston is moved at a velocity of 1.27 mm/min to achieve compression. The 
compression cell is a steel tube with 24.9 mm inner diameter. The maximal force reached by 
the press is about 100 kN. Figure 3 illustrates the experimental setup. For each compression 
test, the height of the sample was measured with a displacement gauge. The applied force (Fa) 
and the transmitted force (tF ) were recorded at the upper and lower surfaces of the 

compression chamber, respectively. We found nearly equal forces, meaning quasi-uniform 
pressure in the granular sample. 

Following Kuo et al. (1980), the granular pressure β  is computed as a tF F

2 S
β

α
+= , with S  the 

upper and lower surface area of the sample. The solid volume fraction is computed as 

s sα=m / (ρV )

 
 with sm  the mass of powder in the sample, sρ  the density of the particle 

(2500 kg/m3 for soda lime glass) and V the volume of the sample. Seven granular samples of 
soda-lime glass have been considered. Their characteristics are summarised in Table 1. The 
experimental compaction curves are presented in Figure 4a in the (β-α)-plane. Note that the 
form of the curves is the same in the (β-ρ)-plane as ≅sαρ ρ , the gas density being negligible 

compared to the solid one. Figure 4b shows the liquid-vapour phase change of CO2 in the (P-
ρ)-plane to illustrate the analogy. Obviously many other liquid-vapour substance could be 
considered to illustrate the analogy (H2O, N2..). Thermodynamics data of CO2 have been 
collected from the NIST online library (http://webbook.nist.gov/chemistry/). 
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Table 1 : Characteristics of each powder sample (soda lime) 

Test 1 2 3 4 5 6 7 

Grain size (µm) 2000-3000 1600-2000 850-1000 500-600 355-425 212-250 27-32 

Initial mass (g) 8.36 8.36 5.06 5.02 5.02 5.06 5.02 

Initial volume (cm3) 5.82 5.74 3.38 3.29 3.22 3.26 3.38 

Approximate number 
of grains in the 

compression cell 
410 1 103 4900 23 000 65 000 310 000 1.4× 108 

 
 

 
Figure 3: Representation of the experimental facility: a) laboratory press, b) experimental setup. 

 

 
Figure 4: a) Phase diagram of pressed granular beds made of glass particles. β represents the granular pressure 

and α the volume fraction. Lines represent compression curves for given initial particle diameter.  b) Liquid-gas 
phase diagram of CO2. 

 
Table 1 provides grains size range for each test.  Unfortunately for obvious technical reasons 
it has not been possible to deal with monodisperse granular beds. But each class of particle 
size is distinct enough of the others to have the various distinct compression curves shown in 
Figure 4a. We believe that particle samples made of single spherical particles would show 
clearer slope change when fragmentation halts, as it is for liquid-vapour systems, where the 
isotherms in the liquid show abrupt changes with the saturation line. 
In the present experiments and analysis it is assumed that the granular bed contains enough 
particles in all directions to be considered as a continuum. For Test 1, considering particles of 
average size 2.5 mm, 10 particles are present along the cell diameter and 6 layers of particles 
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are present in the vertical direction. This cell appeared of sufficient size regarding 
repeatability and coherence of the results of Figure 4a. For other tests, particles being smaller, 
the assumption of continuum media is supported. 
 
III. Analysis of the experiments 
In this section, the experimental data are analysed and the extent of the analogy between 
fragmentation and liquid-vapour phase change is discussed. First, we focus on the differences 
between the two phenomena. For liquid-vapour systems the phase change is reversible and 
occurs at constant pressure. Powder fragmentation is obviously irreversible. Another 
noticeable difference is that, for liquid-vapour systems, outside the saturation dome phases are 
either pure liquid or pure gas. For powders, total fragmentation is never observed and part of 
the initial particles remains intact. 

For each powder sample, after crush-up, remaining granular bed consisted in three main 
classes of particles: intact grains, coarse grains of smaller size (a half to a tenth of the initial 
grain diameter) and fine dusts. These three classes of particle size have been roughly 
separated and corresponding mass fractions reported in Figure 5. An example of the three 
classes of particles collected after a compression test is shown in Figure 6. From Figure 5 it 
appears that the mass fraction of fragments (dust + coarse) is about 20% for powder samples 
made of  250 µm initial diameter particles and tends to 70% for big particles (3 mm). A 
schematic picture of observed sample cross-section after final fragmentation is presented in 
graph E of Figure 7. It seemed that fragmented particles are trapped in initial intergranular 
voids, rendering stress isotropic around particles and preventing further fragmentation.  

Knowing the initial and final configuration of the granular bed (graphs A and E of Figure 7, 
respectively), the fragmentation process at grain scale is assumed to follow the steps shown in 
Figure 7: A) the initial granular bed is compacted and grains are reorganised, B) grains are 
deformed in elastic-plastic regime, C) fragmentation appears and the bed becomes  
polydisperse , D) all initial voids are filled with particle fragments and the stress field around 
particles becomes isotropic, preventing further fragmentation, E) grains are reorganized and 
deform again in elastic-plastic regime. 
The amount of fragmented particles as a function of the initial diameter can be qualitatively 
understood by considering the initial intergranular voids. In the case of big particles, the 
fragmented particles are polydisperse, as large particles break into medium ones that possibly 
break again and fill intergranular voids. Beds made of smaller particles show narrower 
polydispersity.  
As a result, voids are less effectively filled with particles of small initial size than for larger 
ones, as already mentioned by Desmond and Weeks (2014). Thus, for beds made of small 
initial particles, less fragmented mass is needed to fill voids and render the stress field 
isotopic. In the limit, small enough particles do not crush at all. This is possibly due to the 
increase of some kind of ‘surface pressure’ by analogy to capillary fluids that increase stiffly 
when the diameter goes to zero. It then becomes possible to deform elastically and even 
compress the solid without breaking particles.  
The comparison of the graphs of Figure 4, showing the fragmentation diagram of powders on 
one hand and the liquid-vapour diagram of CO2 on the other hand, indicates that the inverse of 
the initial particle diameter plays similar role as temperature. The temperature is however a 
thermodynamic variable while the initial diameter is not, making differences in the definition 
of the latent heat of phase change and fragmentation energy. 
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Figure 5: Mass fractions of the various grain sizes after compression (end of Stage 2). 

 
 

 
 

Figure 6: Photograph of the three main classes of particles collected after compression Test 1, corresponding to 
particles of 2000-3000 microns initial size. After approximate separation each class is weighted and associated 

proportion is reported in Figure 5. 

 

 

Figure 7: Schematic representation of the fragmentation process. A: Initial granular bed configuration, B: 
Elastic-plastic deformation and reorganisation processes, C: First grain fracture, D: Fragmentation at constant 

pressure, E: Last grain fracture.  

As the main differences between liquid-vapour and fragmentation diagrams have been 
discussed, we now study the similarities. Comparing again the graphs of Figure 4, obvious 
analogies exist between the fragmentation diagram in the (β-α)-plane (or in the (β-ρ)-plane) 
and the liquid-vapour diagram in the (p-ρ)-plane. Among these common features, existence of 
crush granular pressure appears, as well as fragmentation dome and critical point (analogues 
of the saturation pressure, saturation dome and critical point). In vapour-liquid systems the 
most important relations are the saturated pressure (Psat), the saturated densities (or specific 
volumes) and the latent heat of vaporisation as functions of temperature. Figure 8 represents 
the saturated pressure as a function of temperature and the crush granular pressure as a 

‘dust’ 

‘coarse’ 

‘intact’ 
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function of the initial diameter. In the latter, the abscissa scale is reversed as the initial 
diameter plays the inverse role of temperature. These curves have similar behaviour and both 
have a higher physical limit which is the critical point. Indeed, the analogues of vapour, liquid 

and supercritical fluid present at the critical point are respectively initial particles, fragmented 

mixture and small initial particles that never fragment. The main difference is that the curve 
Psat(T) has a physical lower limit which is the triple point. For granular materials no triple 
point exists and the crush granular pressure tends to zero when the initial diameter grows. A 
common form of the saturation pressure is the Antoine (1888) equation: 

10 sat 1
Blog (P )= A -

T+C  

For CO2, A=9.87, B=957.37 and C=14.32 for Psat expressed in Pa and T in K (NIST online 
library). This equation is a local approximation of a more complex formula linking saturation 
pressure and temperature. It results of the combination of liquid and gas equations of state 
under the constraints of mixture energy and specific volume conservation, equal pressures, 
equal temperatures and equal Gibbs free energies. 

Similar relation for the crush granular pressure as a function of initial particles diameter is 
considered: 

1
10 crush 1 6

1

Blog (β )= A -
d.10 +C

, with 







1

1

1

A =6.94
B =-1966
C =1348

, crushβ in Pa and d in meters. 

Figure 8 shows the agreement between the Antoine-type relation and experimental data. 
However, that equation tends to a non-zero constant when the initial diameter increases. In the 
present context of granular materials, the Antoine relation seems consequently inappropriate. 
This is not surprising as its origins mentioned above, in particular temperature equilibrium, 
cannot be transposed to granular materials.  

To capture the asymptotic behaviour when the diameter tends to infinity, the following 
expression is used:  

1c
crush 0β (d )=c d  with





1-c
0

1

c =569891Pam
c =-0.67385        (1) 
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Figure 8: a) Saturation pressure of CO2 as a function of temperature. Antoine equation corresponds to the grey 
dashed line. b) Crush granular pressure as a function of the initial diameter. Experimental data are shown with 

black points while Antoine-type relation is in grey dashed line and the present fit, with Relation (1), corresponds 
to the black line. Critical and triple points (when existing) are represented by hollow circles in both a) and b). 

 
Figure 9 shows fragmentation and saturation domes in the (T-ρ)-plane and (d-α)-plane, 
respectively. The dewpoint line and its analogue, the first fragmentation line, have similar 
behaviours. The bubble point line and the last fragmentation line behave differently near the 
critical point. In particular no plateau is observed near this point for powders. As said earlier, 
another difference is the presence of the triple point for liquid-gas systems. Correlations for 
the saturation pressure as a function of the temperature exist in the literature (e.g. Span and 
Wagner, 1996). However, they require many parameters (eight to ten in that reference) to be 
accurate, in particular near the critical point. In the present work the aim is to evaluate the 
similarities between the two systems on the basis of simple relations. As a result, a simpler 
correlation with three parameters only is used to link the crush volume fraction where 
fragmentation starts as a function of initial particles diameter:  

( ) 54
c-c d

crush,0 3α (d )=c 1-e  with 







3
-1

4

5

c =0.6105
c =833.31m
c =-0.06137

      (2) 

Analogue of this relation for CO2 regarding the saturation density of vapour also gives 
satisfying results, except near the critical point (see Figure 9): 

( ) 2c
sat,0 2 2ρ = A 1-exp (-B T ) , with 







11 3
2

-4 -1
2

2

A =1.23x10 kg/m
B =7.77x10 K
c =12.67

. 

The correlation used to fit the fragmentation curve end crush,1α  is:  

crush,1 6 7α (d )=c +c d  with 




6
-1

7

c =0.674
c =30.014 m

      (3)
 

The bubble point line of Figure 9a shows the non-linear evolution of liquid phase saturation 
density as a function of the temperature while the “last fragmentation line” of Figure 9b, is 
quite linear versus volume fraction, pointing another difference between liquid-vapour 
systems and powders. 
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Figure 9: a) Saturation dome of CO2 as a function of density. The bubble point line is shown with black lines and 

the dewpoint line with grey lines. b) Fragmentation dome as a function of the solid volume fraction. The first 
fragmentation line is shown with black points and the last fragmentation line is shown with grey points. For both 

a) and b) critical and triple points (when existing) are represented by hollow circles. 
 
The critical point is now estimated as the intersection of the first and last fragmentation lines. 
For soda lime particles the fragmentation critical point corresponds to: 

-6
criticald =223×10 m , αcritical =0.681 and  βcritical =164MPa. 

Determination of the specific fragmentation energy as a function of the initial diameter is now 
addressed. It corresponds to the latent heat of vaporisation analogue. As heat transfer is 
neglected during fragmentation, the fragmentation energy is determined as, 

∫
crush,1 (d )

crush,0 (d )

v

crush
v

E (d )= -βdV , 

with Ecrush expressed in J/kg, β in Pa and specific volumes vcrush,0 and vcrush,1 in m3/kg.  
The specific volumes vcrush,0 and vcrush,1 represent, for a given particle diameter, the specific 
volumes where fragmentation begins and ends (analogues of vapour and liquid saturation 
volumes). To calculate the fragmentation energy, the crush granular pressure is used. For a 
given initial diameter this pressure is constant during fragmentation and the related 
fragmentation energy reads,  

crush crush crush,0 crush,1E (d )=β (d ) (v (d )-v (d ) ). 
Experimental data for crush crush,0 crush,1Δv (d )=v (d )-v (d ) are shown in Figure 10. 

 

 
Figure 10: Specific volume variations (Δvcrush(d)) of soda lime granular bed during fragmentation as a function of 

initial diameter. 
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It remains to compute the specific fragmentation energy and two specific definitions may be 
considered in this aim. In the first definition the total mass of powder is considered, yielding 
Ecrush representing the specific energy, per unit mass of initial powder. 

It can be divided by the mass fraction of fragmented powder 
frag

frag
tot

m

m
=Y  as only part of the 

powder sample is fragmented. Both definitions are considered in the graph b) of Figure 11 
where these energies are shown as functions of particle diameter. 
 

 
Figure 11: a) Specific latent heat of vaporisation of CO2 as a function of temperature. b) Specific crush energy 

as a function of particles initial diameter. 
 
Both definitions are useful. The first one, defined on the basis of unit mass of initial powder, 
is needed for global computations, at the scale of granular beds. The second one provides 
information for fragmented particles and is more suitable for local computations, as done for 
example in Antonyuk et al. (2006), Moreno-Atanasio and Ghadiri (2006). 
Figure 11-b provides extra information. It is often considered that fragmentation energy is 
directly linked to the specific surface of the grains. Such dependence doesn’t appear in this 
figure as the fragmentation energy is nearly constant when the particle diameter varies of a 

factor 3, the specific interfacial area varying from 21m /kg for the largest particles of Table 

1 (2500 µm initial diameter) to 3 2m /kg for those of 1 mm initial diameter. This remark 
supports the observations of McSaveney and Davies (2009). 
It is also interesting to compare specific energies reported in Figure 11b to literature data. 
Bergstrom et al. (1961) reports specific crush energy of  about 2 kJ/kg for soda lime particles 
significantly bigger than those considered in the present study. Jandacka et al. (2009) 
considers powders of mineral almandine and reports specific crush energies of about 3 kJ/kg. 
Lade et al. (1996) reports lower energy (about 0.6 kJ/kg) but considers softer materials (soil). 
Energy levels of Figure 11b seem consequently in good agreement with these data, in 
particular with those of Bergstrom et al. (1961).  
 
Practical use of the graphs 
As an engineering example of present collected data let us consider a bumper aimed to stop a 
car of 1000 kg at velocity 198 km/h (u=55 m/s). The corresponding kinetic energy is 1513 kJ.  
The initial powder grain size must be chosen in accordance to the impact pressure Pimpact. 

Assuming sound speed c  in the glass powder of the order of 300 m/s (computed with 
Relation (5) avec checked against Rogue et al. (1998) data)  impact pressure is approximately 
given by, 

 5P αρ) × × × ≈impact atm=P + ( cu=10 +0.6 2500 300 55 25MPa 

where 3αρ) = ×( 0.6 2500=1500kg/m denotes the density of the granular bed . 
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For such pressure level Figure 8b indicates that particles must have a diameter greater than 3 
mm. For these particles, the crush energy is about ≅crushE 3kJ /kg . Thus 504 kg of glass 

powder with 3 mm initial diameter will be appropriate to dissipate the kinetic energy of the 
1000 kg car impacting at 198 km/h. 
 
IV. Fragmentation diagram modelling 
In this section modelling of the fragmentation diagram is addressed. The aim is to reproduce 
the experimental diagram in the (β,α)-plane (Figure 4a) with the help of an EOS expressing 
the crush granular pressure β as a function of volume fraction and initial particle diameter. 
Two EOS are considered. The first one assembles piecewise functions while the second one 
mimics the van der Waals formulation.  

 
1) Granular equation of state 
In this section, we address modelling of compaction curves with piecewise functions. In this 
frame the granular pressure β is given by: 







0 crush,0

crush crush,0 crush,1

1

β (α )ifα<α (d )

β (α,d )= β (d )ifα (d )<α<α (d )
β (α,d )otherwise   

αcrush,0 and αcrush,1 are the solid volume fractions crush bounds representing respectively the 
beginning and end of the fragmentation process. For a given powder these bounds depend 
only of the particles initial diameter. β0 is the compaction curve before fragmentation and 
depends only of the volume fraction. βcrush corresponds to the crush granular pressure 
occurring during fragmentation. It also depends only on the initial diameter. Last, β1 is the 
compaction curve after fragmentation and depends on volume fraction and initial diameter. 
Figure 12 illustrates the preceding definitions, these functions being determined from 
experimental data. 

 
Figure 12: Schematic representation of the ‘fragmentation diagram’. 

 
The analytical expressions of βcrush(d), αcrush,0(d) and αcrush,1(d) were determined previously 
and correspond to Equations (1), (2) and (3).  
The compaction curve before fragmentation must be now considered. Experimental 
observations indicate that this curve is independent of the initial particles diameter.  
When dealing with solid-gas mixtures compression, only the solid phase is subjected to 



-12- 
 

intergranular efforts and contains consequently configurational energy, representing the 
energy stored at particles contacts. The granular EOS is determined by quasi-static 
compression of powders. The system volume is measured, and the granular bed solid volume 
fraction is deduced, as a function of the applied constraint. This type of experiment is 
described for example in Kuo et al. (1980), Elban and Chiarito (1986), Bdzil et al. (1999) and 
in the present work. Such measurements consequently summarize all three dimensional 
contacts and efforts and record their collective effects. 

It is possible to fit corresponding curves (granular pressure – solid volume fraction α ) by the 
following function (Saurel et al., 2010), representing the configuration energy (the granular 
pressure will be determined subsequently):  

( )n

0 0 0 0 0(1 )ln(1 ) (1 ln(1 ))( ) (1 )ln(1 ) , if ,
B( )

0, otherwise;

τ α α α α α α α α αα
 − − + + − − − − − <= 
  (4) 

where 0α corresponds to the solid volume fraction when the granular constraint is zero (

0 0.6α =  in the present work). This volume fraction depends on the powder material, on its 

morphology etc. It is clear in (4) that 0B( ) 0α =  (that ensures continuity of B with respect to 

α  at 0α α= ). Parameters τ and n are also characteristics of a given powder and more 

precisely of its response during quasi-static loading.  

For the present application, it is necessary to express first and second derivatives of (4). The 
first derivative provides the granular pressure, 

( )
0  

      =    



n-1
n

0
0

1-α B (α )dB - αρ τn ln   if α>αβ (α )=αρ  1-α τdα
0                                                otherwise

,  

where ρ represents density of the material (2500 kg/m3 for soda lime glass).  
The second derivative of (4) is provides the square “granular sound speed” (Kapila et al., 
2001),  

2
2 2
gran 2

d B
c

d
α

α
=

,           (5) 
with, 

( )
n 1 n 2

n n

0

1 B( ) B( )
n ( n 1) ln(1 ) 1 ²  ,      ifd²B

1
d ²

0, otherwise.

α αα α α
α

α

− −  
      + − − + <      = −    
 



τ
τ τ

  
For soda lime, parameters associated to these functions are: 




3τ=415 10 J /kg
n=1.001  

Compaction curves after fragmentation are now addressed. These curves depend on volume 
fraction and initial particles diameter. As this part is also a compaction process, we use the 
same mathematical form as β0 with an additional function F(d): 
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n (d )-1
n (d )

0
1 0

1-α B (α )-αρτ (d )n (d )ln +F (d )  if α>α (d )β (α,d )=   1-α (d ) τ (d )

0                                                otherwise
 (6) 

Now coefficients α0, τ and n are all functions of the initial diameter. After the fragmentation 
process, the new compaction curve starts from the end crush volume fraction αcrush,1(d). Thus 
α0(d) becomes α0(d)=αcrush,1(d). In order to enforce continuity of the compaction curve during 
and after fragmentation, function F must be equal to the crush pressure F(d)= βcrush(d) given 
by Relation (1).  
The various loading curves are then used to determine functions τ(d) and n(d) yielding the 
following fittings, 

8 9(d) c c dτ = +  with 




3
8

7
9

c =114×10 J /kg
c =-2.857×10 J / (kg.m )      

(7) 

2 3
10 11 12 13n (d )=c +c d+c d +c d  with 









10
-1

11
-2

12
7 -3

13

c =1.0146
c =394.77 m
c =-214203 m
c =2.5623 10 m

   (8) 

These relations are compared to experimental data in the Figure 13, showing good agreement. 

 
Figure 13: Equation of state of crushed powder: a) Function τ as a function of the initial diameter. b) Function n 

as a function of the initial diameter. Experimental data are shown with square symbols. 
 
Figure 14 shows the overall comparison between the experiments and the present EOS, based 
on Relations (1-8). 
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Figure 14: (β,α)-crush diagram of soda lime glass powder. Experiments are shown in black lines and 
computations in dash grey lines. The computed fragmentation dome is represented by the continuous grey line. 

 
With the present formulation the phase diagram is described by a set of equations (1-8).  We 
now address the same goal with a unique formulation. 
 
2) van der Waals - type EOS 
We now address modelling of the fragmentation diagram with an EOS quite similar to the 
Van der Waals EOS. For reminder, the Van der Waals EOS reads, 

2ρrTP= -aρ
1-bρ

, 

where P, ρ and T represent respectively the pressure (Pa), density (kg/m3) and temperature ( 
K). r=R /W  with R the gas constant (J/mol/K) and W its molar weight (kg/mol). a and b 
are constant parameters characteristic of a given fluid expressed from critical pressure and 

temperature 
c

c

P

Tr
a

64

27 22

=  and 
c

c

P

rT
b

8
= . For CO2, KTc 18.304=  and 5

cP 73.80 10 Pa= ×

(Suehiro et al., 1996). As a result, a=188.8 Pa.m6/kg2 and b=9.735 x 10-4 m3/kg. Tabulated 
data from NIST and van der Waals EOS for CO2 are reported in Figure 15, showing 
qualitative agreement. Van der Waals formulation predicts metastable states, not reported in 
tabulated data but present in reality. It also appears that the phase transition density range 
differs noticeably. Many authors have proposed enhanced version of Van der Waals equations 
by modifying either the attractive and repulsive terms (Redlich and Kwong, 1949, Peng and 
Robison, 1976, Patel and Teja, 1982, Reiss et al., 1959). In the present work, the aim is to 
reduce the fragmentation phase diagram with as simple an EOS as possible. 
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Figure 15: Comparison between the tabulated pressure (grey lines) for CO2 and computed pressure using Van 

der Waals EOS (dashed grey lines) as a function of density for 250, 300 and 350 K. 
In this direction some differences between liquid-vapour phase change and fragmentation 
process must be pointed out. For a gas, following an isotherm, the pressure increases slowly 
as a function of density while the pressure of the liquid increases stiffly. For the fragmentation 
process, opposite behaviour is observed regarding granular pressure as a function of the 
volume fraction. Furthermore, the density starts to zero for fluids while the solid initial 
volume fraction is never zero when granular pressure appears. In order to have similar 
qualitative behaviour between the fragmentation curves and the liquid-vapour phase change 
curves, a new scaling is considered given the following constraints: 

- [ ] [ ]*
max0

* ,01,: ααα ֏ , with *
maxα a constant to define. 

- Decrease the granular pressure slope for small α
*. 

- Increase the granular pressure slope for large  α
*. 

With these constraints, the following scaling is adopted: 

( )15 0-c (α-α )*
14α =c 1-e          (9) 

In order to qualitatively match fragmentation curves and CO2 isotherms, the following 
additional constraints are considered: 

- 1000*
max ≈α (maximum rescaled volume fraction), 

- 500* ≈critα  (rescaled volume fraction of critical point). 

From these constraints, constants 14c and 15c are deduced: 100014 =c  and 1015 =c . 

Typical pressure compression record is shown in Figure 16 as a function of α and α *. 

 
Figure 16: Granular pressure for a granular bed of soda lime with particles of 0.5-0.6 mm diameter as a function 

of a)  volume fraction α and b) rescaled one  α*. 
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The granular van der Waals EOS in consideration now reads, 
*

*2
*

c (d )αβ (α,d )= -aα
1-bα

         (10) 

where c(d) is the analogue of rT and is therefore function of the initial particles diameter. 
Fig 15b curve fitting was addressed with parameters c=2.1 105 Pa, b=7.9 10-4 and a=6 10-2 
Pa, but it appeared impossible to capture both plateau and post fragmentation compaction 
curve, as shown in Figure 17. 
To correct this weakness, the quadratic term of the van der Waals EOS is changed to a cubic 
one and an exponent is added to the short distances repulsive term: 

*
*3

* 0.41
c (d )αβ= -aα

(1-bα )

         (11) 

Doing so, attractive effects are increased while short distance repulsive ones are decreased. 
There is no particular physical relevance in these changes, just an attempt to improve curve 
fitting of Figure 16b. With these modifications improved agreement is found with the 
following parameters a=0.45Pa, -3b=1.00×10  and 5c=2.12×10 Pa  as shown in 
Fig. 17.  

 
Figure 17: Granular pressure as a function of α

*: Comparison of the various theoretical formulations for a 
granular bed with given initial particle size. Experimental data are shown in black lines, van der Waals 

approximation (10) is shown with grey dashed lines and formulation (11) is shown with grey lines, showing 
improvements. 

 
The agreement being better with Formulation (11) we now address determination of c as a 
function of initial particle size d. Parameters a and b are kept constant and c(d) is determined 
for each curve using to a least square method. Figure 18 represents the evolution of function c 
versus initial diameter. 

 

 
Figure 18: Function c(d):  Experiments are shown with dot symbols and curve fit with lines. 
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For initial diameter smaller than the critical one ( critd<d ), function c(d) is constant as no 

fragmentation appears and all compression curves are superimposed, independently of the 
particle size. In order to fit previous dataset, for critd<d , several functions have been tested 

and the following formulation, with three parameters only, was retained: 

( )[ ]
( )[ ]





−−

>−−
=

otherwisedcc

ddifdcc
dc

c
crit

crit
c

18

18

1716

1716

exp1

exp1
)(

  
with   







16
-1

17

18

c =136918 Pa
c =910.8 m
c =-0.499

    (12) 

It enables capturing both the stiff slope of c(d) when +→ critdd  and the decreasing slope of 

c(d) when md 003.0→ .  
Figure 19 compares experimental data and computations with function c(d) given by (12).  

 
Figure 19: Experimental data (black lines) and EOS (11) (dashed grey lines). a) Plot in the (β,α)-plane. b) Plot in 

the (β,α*)-plane 
 
The modified Van der Waals EOS (11) is qualitatively in good agreement with the 
experiments. However, as for the original van der Waals formulation, negative pressures 
appear in Figure 19. Negative pressures (tensions) may occur in pure liquids, under specific 
conditions (Brin, 1956). In dry granular media, this is clearly impossible. The van der Waals 
type formulation can thus be understood as an approximation of the pre and post 
fragmentation states, not the ‘phase-transition’ zone. It thus appears that the various van der 
Waals type formulations examined in the present study are inappropriate to model the phase 
diagram of crushed powders. This is related to non-convexity of van der Waals type EOS 
(Saurel et al., 2008) in the crush zone. The physics of granular material in breakage conditions 
differs of liquid-vapour phase change, as already mentioned with respect to Antoine relation. 
Variants of the van der Waals EOS (Redlich and Kwong, 1949, Peng and Robison, 1976, 
Patel and Teja, 1982, Reiss et al., 1959) consequently seem inappropriate as well.   
 
V. Conclusions 
The analogue of liquid-vapor phase diagram has been determined for granular beds made of 
quasi-monodisperse spherical particles. Under compression effects, particles fragment and 
form a mixture in the general sense, made of initial particles and fragments. This “phase 
transition” process occurs at a precise pressure for a given particle size. The energy needed to 
fragment the bed varies as a function of particle size. The corresponding crush diagram 
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contains relevant information such as for example the analogue of the latent heat of 
vaporisation and is determined on the basis of simple experiments. 
Model equations of state have been examined to reproduce the crush diagram. Accurate 
representation has been obtained with assembled piecewise functions while van der Waals 
type formulations seemed inappropriate. 
Many perspectives can be considered to continue these investigations with: 

- a study of time dependence and relaxation time to equilibrium, 
- the influence of initial temperature on crush-up, 
- the building of a flow model containing such phase transition process. 
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