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Abstract—Qualitative information flow aims at detecting in-
formation leaks, whereas the emerging quantitative techniques
target the estimation of information leaks. Quantifying infor-
mation flow in the presence of low inputs is challenging, since
the traditional techniques of approximating and counting the
reachable states of a program no longer suffice.

This paper proposes an automated quantitative information
flow analysis for imperative deterministic programs with low
inputs. The approach relies on a novel abstract domain, the
cardinal abstraction, in order to compute a precise upper-bound
over the maximum leakage of batch-job programs. We prove
the soundness of the cardinal abstract domain by relying on the
framework of abstract interpretation. We also prove its precision
with respect to a flow-sensitive type system for the two-point
security lattice.

I. INTRODUCTION

Secure information flow is a challenging problem in program
analysis. Earlier techniques focus on enforcing qualitative
security properties such as non-interference properties [1],
[2]. Such qualitative techniques aim at detecting and avoiding
information leaks by relying, for instance, on type systems [3],
[4], [5], program logic [6], [7], [8] or monitoring [9], [10].

Motivated by the observation that many programs cannot
comply with strict security policies preventing information
leaks, recent works propose to address the secure information
flow challenges by relying on Quantitative Information Flow
(QIF). These quantitative techniques propose to measure the
amount of leaked information in order to decide whether it is
tolerable.

Traditionally, the QIF literature defines the leakage of
a program as the difference between an initial uncertainty
about the secret prior to any program run, and the remaining
uncertainty after attackers observe the outputs of a program:

leakage = initial uncertainty− remaining uncertainty.

Denning [11, Chapter 5] proposes the first quantitative measure
of a program’s leakage in terms of Shannon entropy [12].
Clark et al. [13] builds on Denning’s work to characterize
both the initial uncertainty and the remaining one in terms
of Shannon entropy and conditional entropy, then defines the
information leakage as the reduction of uncertainty about the
secret. Clarkson et al. [14], [15] propose to define the leakage
as a change in accuracy, rather than uncertainty, by defining
an initial and remaining accuracy in terms of information
belief [16]. In a different approach, Smith [17], [18] proposes
to quantify information leaks wrt. min-entropy [19], that is the

probability of attackers guessing the secret in one try. Smith
then defines both the initial uncertainty and the remaining
uncertainty in terms of the probability of attackers guessing
the secret.

Since both the initial uncertainty and the remaining un-
certainty depend on the initial probability distribution of the
secret, Denning relies on capacity – the maximum leakage
measured through Shannon entropy over all distributions of
the secret –, to abstract away from the assumed distribution
of the secret. Similarly, Smith also relies on min-capacity,
that is the maximum leakage measured through min-entropy
over all distributions of the secret. Additionally, Smith [17],
[18] proves that for deterministic programs, capacity and min-
capacity coincide, and they are given by the logarithm of the
cardinal number of outputs a program may produce:

ML = log2 |outputs|.

Smith’s framework considers a program as a channel that
accepts only high inputs. Therefore, a program c that accepts
low inputs can be seen as inducing a family of channels
accepting only high inputs, and the maximum leakage of c can
be defined as the maximum leakage over all induced channels.
Therefore, by assuming the input memories are partitioned
into low input memories %L0 ∈ ΣL0 and high input memories
%H0

∈ ΣH0
, the maximum leakage for programs accepting

both low and high inputs is given by:

ML = max
%L0
∈ΣL0

log2

∣∣outputs%L0

∣∣. (1)

Let us consider a command c that outputs no intermediate
steps of computation. Let us also assume a set of variables
v1,v2,...vf attackers can observe at the end of command
c’s execution. Thus, the outputs attackers may observe are
solely determined by the final environments % resulting from
the execution of command c:

outputs%L0
= {(%(v1), %(v2) . . . , %(vf )) |

∃%H0
∈ ΣH0

, %0 , (%L0
, %H0

) and JcK%0 = %}.
(2)

Therefore, computing the maximum leakage for deterministic
batch-job programs requires maximizing the cardinality of the
set introduced in Equation (2), over all low input memories
%L0

.
Most existing QIF analyses tackle this problem by reducing

it to a reachability problem on a self-composed program [7],
[6], [8], [20]. Indeed, recent techniques [21], [22], [23] rely
on software model checkers [24], [25], [26] in order to



find symbolic witnesses of an information leak, namely two
low equivalent memories that deliver different observable
outputs. Since for deterministic programs, each observable
output induces an equivalence class over low equivalent input
memories that are indistinguishable for that output, these
approaches compute the maximum leakage by synthesising
and enumerating the number of all such symbolic witnesses.
Köpf and Rybalchenko [27] note that such an approach is pro-
hibitively hard, and propose approximation-based approaches
for QIF. These approaches include relying on a generic abstract
interpretation [28] analysis in order to upper-bound the leakage
of a program by approximating the reachable states of a
program. However, observe from Equation (2) that in the
presence of low inputs, one needs to approximate a set of
sets of reachable states – one set of reachable states for each
possible low inputs –, in order to precisely upper-bound the
maximum leakage ML. This latter remark means that while
we can rely on traditional abstract domains to approximate the
set of final reachable states irrespective of the low inputs, such
an approach would deliver an imprecise over-approximation
of the leakage.

The contributions of this paper include a novel non-relational
abstract domain, the cardinal abstraction, for automated QIF.
This abstract domain computes directly variety – the cardinal
number of values variables may take – in order to upper-bound
the maximum leakage of programs accepting both low and
high inputs, instead of relying on an underlying reachability
analysis. Section II introduces the intuition behind the cardinal
abstract domain.

Section III defines the cardinal abstract domain and intro-
duces its abstract semantics, all the while providing intuitive
arguments for its soundness. We also characterize in Theorem 1
an upper-bound over the maximum leakage, by relying on the
result of the cardinal abstract domain.

The cardinal abstract domain is sound. Section IV sketches
this soundness proof, and defines the collecting semantics over
a set of sets of reachable states, that is over an abstraction
of the more general hyperproperties [29], [30]. While such
a collecting semantics may be termed as “non-standard” in
abstract interpretation, it appears explicitly in [31, Section 11],
and implicitly in [32, Section 3]. We summarize how to build a
Galois connection relating our concrete domain to the abstract
one. We also gloss over the functional lifting of this abstraction
in order to systematically derive the abstract semantics of the
cardinal abstraction.

The cardinal abstract domain is also precise. Indeed, while
quantitative security properties emerge as an alternative to
qualitative properties, it is unclear how existing approximation-
based QIF analyses fare wrt. the more robust qualitative
analyses. To the best of our knowledge, the cardinal abstraction
is the first approximation-based static analysis that provably
computes a leakage of zero bits for programs that are “well-
typed” by the traditional Hunt and Sands’ [4], [5] flow-sensitive
type system. Section V proves that the results of the cardinal
abstract domain can be abstracted furthermore to yield a
security labelling of variables that is at least as precise as
the labelling obtained by Hunt and Sands’ flow-sensitive type
system for the two-point lattice. Thus, the cardinal abstraction

provides an alternative to the above-mentioned flow-sensitive
type system for proving non-interference, while providing
additional quantitative information to guide declassification
when needed.

Section VI introduces related work and Section VII con-
cludes.

An appendix, providing detailed proofs for all results, can
be found at the end of this technical report.

II. OVERVIEW

The cardinal abstraction over-approximates variety directly,
that is the cardinal number of values variables may take, in
order to upper-bound the maximum leakage.

a) Towards the cardinal abstraction: Consider for in-
stance the program in Listing 1, where variable s is a high
input, whereas variables input and x are low inputs. We
assume these variables are integers of finite size κ, covering
the range [−2κ−1, 2κ−1 − 1]. Let us assume that only variable
x is a low output observable by attackers. Thus, the maximum
leakage for this program is given by ML = log2(2) = 1 bit,
which accounts for the intuition that only the parity bit of the
secret leaks to attackers.

0 // {s 7→ 2κ, input 7→ 1, x 7→ 1}
1 x := s mod 2; // {s 7→ 2κ, input 7→ 1, x 7→ 2}
2 x := x + input; // {s 7→ 2κ, input 7→ 1, x 7→ 2}

Listing 1. A program accepting both low and high inputs

In order to analyse the program in Listing 1, let us focus
only on computing variety. Such an abstraction enables the
computation of an over-approximation of the maximum leakage
directly.

We annotate Listing 1 with the results of an analysis
computing only variety. Equation (2) requires us to compute
the variety for a fixed arbitrary low input, while the secret
ranges throughout all possible values in [−2κ−1, 2κ−1 − 1].
Therefore, our analysis initially maps variable s to a cardinal
number of 2κ values, whereas it maps both variables s and
x to a cardinal number of 1 value. Assuming attackers only
observe variable x, we can deduce that they make at most 2
different observations for each low input, at the end of the
program. Thus, we can also deduce that the maximum leakage
of the program in Listing 1 is at most 1 bit. In this example, the
analysis in Listing 1 is precise: it computes a tight upper-bound
over the maximum leakage. Yet, abstract interpretation [28]
in general may incur a loss of precision, depending on the
underlying approximate representations.

In fact, an analysis that only keeps track of variety will
lose precision whenever it encounters a conditional instruction.
Consider for instance the program in Listing 2 that is annotated
with an analysis that only tracks variety. Let us assume that
variable secret is a high input, whereas variable input is
a low input. At both Lines 2 and 5, the analysis determines
that variable x has only one possible value since it is assigned
a constant. However, how many values can variable x have at
the merge point of the conditional at Line 6?

Unlike abstract domains aiming at approximating trace
properties, the cardinal abstraction cannot simply compute



the union of both abstract states at the merge point of the
conditional, since this would be unsound: with max as a union
operator over the lattice ([0, 2κ],≤, 0, 2κ,max,min) of natural
numbers, the analysis would find that variable x has at most
1 value, which is obviously not sound. Instead, the cardinal
abstraction must add both abstract values for variable x, in
order to soundly deduce that variable x has at most 2 different
values at the merge point of the conditional at Line 6. Note
also that providing the set [0, 2κ] with the addition operator as
a join operator cannot define a proper lattice structure, since
addition is not idempotent. Similarly, variable input also has
1 possible value in each branch of the conditional. Therefore,
without any additional information, the analysis must treat
variable input the same way it treats variable x, and must
deduce that variable input has at most 2 different values
at the merge point of the conditional at Line 6. In order to
retain precision for variable input, the analysis must know
that variable input is not modified inside the conditional
branches – otherwise, the abstract value of variable input
will increase whenever the analysis encounters a branching
instruction. We achieve this by letting the cardinal abstraction
track both the cardinal number of values variables may take,
and the program points where variables may have been last
assigned.

0 // {secret 7→ 2κ, input 7→ 1, x 7→ 1}
1 if (secret > input){
2 x := 0; // {secret 7→ 2κ, input 7→ 1, x 7→ 1}
3 }
4 else {
5 x := 1; // {secret 7→ 2κ, input 7→ 1, x 7→ 1}
6 } // {secret 7→ 2κ, input 7→ 2, x 7→ 2}

Listing 2. An analysis keeping track of only the cardinal number of values

b) The cardinal abstraction: Listing 3 annotates the
program in Listing 2 with the results of the cardinal abstraction.
We denote by ppk the program point of the command at
Line k. Unlike the previous analysis in Listing 2, the cardinal
abstraction retains some precision for variables that are not
modified inside conditional branches. As a result, the cardinal
abstraction is able to determine that, at Line 6, variable input
does indeed have only 1 possible value, whereas variable x
has 2 possible values.

0 // {secret 7→ ({pp0}, 2κ), input 7→ ({pp0}, 1),
x 7→ ({pp0}, 1)}

1 if (secret > input){
2 x := 0;// {secret 7→ ({pp0}, 2κ),

input 7→ ({pp0}, 1), x 7→ ({pp2}, 1)}
3 }
4 else {
5 x := 1;// {secret 7→ ({pp0}, 2κ),

input 7→ ({pp0}, 1), x 7→ ({pp5}, 1)}
6 } // {secret 7→ ({pp0}, 2κ), input 7→ ({pp0}, 1),

x 7→ ({pp2, pp5}, 2)}

Listing 3. The results of the cardinal abstraction on the program in Listing 2

III. ABSTRACT SEMANTICS

This section formalizes the cardinal abstraction. We consider
a deterministic While language [33] introduced in Figure 1.
Expressions include integers n of finite size κ, variables id,
binary arithmetic operations (bop) as well as comparison
operations (cmp). Commands are instructions identified by
a unique program point pp ∈ P.

Exp: a ::= n (constants)
| id (variables)
| a1 bop a2 (binary operators)
| a1 cmp a2 (comparison operators)

Com: c ::= ppskip (empty instruction)
| ppid := a (assignment)
| c1; c2 (sequence)
| ppif (a) c1 else c2 (conditional)
| ppwhile (a) c (loop)

Fig. 1. Abstract syntax of While

A. Abstract Domain

The cardinal abstract domain computes an over-
approximation of variety, namely the cardinal number
of values variables may take when attackers provide an
arbitrary low input memory.

We assume that the set of variables of analysed programs are
partitioned into low and high inputs. All variables may cover
the range [−2κ−1, 2κ−1 − 1] of integers. Therefore, initially at
program point pp0, low input variables have only 1 possible
value, whereas high input variables have 2κ possible values as
illustrated by Listing 3 for the program point pp0.

Definition 1 introduces the cardinal abstract domain. Abstract
values are pairs of a set spp ⊆ P of program points and a
cardinal number n ∈ [0, 2κ]. The resulting lattice is actually
the cartesian product of 2 lattices:

1) the set P (P) of all subsets of P, ordered via set inclusion
⊆, with set union ∪ as a join operator and set intersection
∩ as a meet operator, as well as

2) the set of natural numbers [0, 2κ], ordered via the natural
order ≤ over integers, with max as a join operator and
min as a meet operator.

Definition 1 (Cardinal abstract domain).
The cardinal abstract domain is defined as the lattice

(D]
C ,⊆⊗, (∅, 0), (P, 2κ),∪⊗,∩⊗

)
where:

D]
C , P (P)× [0, 2κ] ⊆⊗ , ⊆ × ≤
∪⊗ , ∪ ×max ∩⊗ , ∩ ×min

Our analysis maps each variable id to a pair of a set spp of
program points and a cardinal number n. The set spp represents



the program points where variable id may have been last
assigned, whereas n represents the cardinal number of values
variable id may take.

B. Abstract Semantics of Expressions

We denote by %] ∈ V ar ⇀ D]
C an abstract environment that

maps each variable id to an abstract value (spp, n) ∈ D]
C . We

also denote by proji() the projection onto the ith component
of a pair (i = 1, 2). Figure 2 introduces the abstract semantics
of expressions A] ∈ Exp→ (V ar ⇀ D]

C)→ [0, 2κ].

A]JnK%] = 1 A]JidK%] = proj2(%](id))

A]Ja1 bop a2K%] = min
(
A]Ja1K%] × A]Ja2K%], 2κ

)
A]Ja1 mod nK%] = min

(
A]Ja1K%], n

)
A]Ja1 cmp a2K%] = min

(
A]Ja1K%] × A]Ja2K%], 2

)
Fig. 2. Abstract semantics of expressions

The abstract semantics of expressions A] evaluates an
expression a in an abstract environment %], in order to yield a
cardinal n ∈ [0, 2κ] representing the cardinal number of values
expression a may evaluate to. Constant expressions always
evaluate to a single value. Binary arithmetic operations a1 bop
a2 yield at most the product of the cardinal of a1 and the
cardinal of a2, or 2κ when this product overflows. Comparison
operations a1 cmp a2 evaluate to at most 2 different values
(true or false), and only 1 when both a1 and a2 evaluate to
only one possible value.

In the case where the second argument of the modulo binary
operator is a literal, the cardinal abstraction tries to be more
precise. Indeed, the modulo operation a1 mod n produces at
most n different values or A]Ja1K%] different values when a1
may take less than n values.

One advantage of formalizing our analysis as an abstract in-
terpretation approach is the possibility of refining the precision
of our analysis by relying on extent abstract domains [34], [35],
[36], [37], [38], [39]. For instance, if a numerical abstraction
determines that an expression a2 has a maximum value of
10 for instance, then the cardinal abstraction can soundly
conclude that expression a1 mod a2 may evaluate to at
most 10 different values or A]Ja1K%] different values when
a1 may take less than 10 values. The process of combining
different abstract domains in order to refine the precision of an
abstraction is called a reduced product [40]. In general, relying
on reduced products using traditional abstract domains can
refine most of the cardinal abstract domain definitions.

C. Abstract Semantics of Commands

Figure 3 introduces the forward abstract semantics of
commands. This abstract semantics JcK] ∈ (V ar ⇀ D]

C) →
(V ar ⇀ D]

C) evaluates a command c in an abstract environ-
ment %], then yields a new abstract environment.

Commands ppskip do not modify input abstract envi-
ronments. Assignments ppid := a map the abstract value

({pp},A]JaK%]) to variable id since id can take as many
values as expression a, and is assigned at program point
pp. A sequence of commands c1; c2 composes the abstract
semantics of the second command c2 with the abstract
semantics of the first one c1.

Recall that the cardinal abstract domain computes the
cardinal number of values variables may take, when attackers
provide an arbitrary low input memory. Recall also that we
assume a partition of the set of variables into low and high
input variables, so that all variables are initialized at the initial
program point pp0. Therefore, initially at the entry program
point pp0, low input variables have only 1 possible value.
On the opposite, high input variables range over the interval
[−2κ−1, 2κ−1 − 1] of integers. Therefore, high input variables
have 2κ possible values at the entry program point pp0.

When the cardinal abstraction determines that a variable id
has at most 1 possible value, it also implicitly determines that
variable id may only depend on low input variables. Indeed, if
variable id depended on high input memories, then there would
exist two low equivalent input memories that yield two different
values for variable id. Therefore, the cardinal abstraction
would determine that variable id has a cardinal number of
values greater or equal to 2, since it over-approximates the
cardinal number of values variables may take, for a fixed
arbitrary low input. This remark will shortly prove useful when
defining the abstract semantics of conditionals.

a) Conditional instructions: The abstract semantics of
conditional commands considers two different cases depending
on the abstract value of the conditional guard.

First, if the conditional guard has only one possible value,
then it may only depend on low inputs. Hence, the concrete eval-
uation of the conditional always executes the same conditional
branch for each fixed low input. Therefore, the join operator
∪⊗ lifted over environments soundly over-approximates the
semantics of conditionals, by computing the set union over
the set of program points where each variable may be last
assigned, as well as the maximum cardinal over both branches
for each variable. Indeed, if a variable id can take at most
n1 values (resp. n2 values) in the ’then’ branch (resp. the
’else’ branch), and assuming low inputs are fixed, the cardinal
abstract domain soundly concludes that variable id can take
at most max(n1, n2) values after the conditional.

Second, if the conditional guard has more than one value,
then it may depend on high inputs. Hence, the concrete
evaluation of the conditional may execute both conditional
branches for each fixed low input. Assuming that variable id
can have at most n1 values (resp. n2 values) in the ’then’
branch (resp. the ’else’ branch), the cardinal abstract domain
may soundly conclude that variable id can take at most n1+n2

values after the conditional, or 2k values if the latter sum
overflows. However, the abstract semantics uses the operator
∪add(c1,c2) to retain precision for the variables V that are
assigned neither in c1 nor in c2, by computing the join ∪⊗ over
their abstract values. Therefore, for variables V , the cardinal
abstract domain simply computes the set union over sets of
program points, where these variables may be last assigned,
and the maximum over both their cardinals.

In order to determine which variables may be modified



JppskipK]%] , %] Jppid := aK]%] , %][id 7→ ({pp},A]JaK%])] Jc1; c2K]%] , Jc2K](Jc1K]%])

Jppif (a) c1 else c2K]%] ,
let n = A]JaK%] in
let %]1 = Jc1K]%] in
let %]2 = Jc2K]%] in

λid.

{
%]1(id) ∪⊗ %]2(id) if n = 1

%]1(id) ∪add(c1,c2) %
]
2(id) otherwise

Jppwhile (a) cK]%] ,
let F ] , λ%].%]0 ∪̇⊗

(
Jppif (a) c else ppskipK]%]

)
in

lfp⊆̇⊗ F ]

(spp, n) ∪add(c1,c2) (s′pp, n
′) ,

{
(spp, n) ∪⊗ (s′pp, n

′) if PP (c1; c2) ∩ (spp ∪ s′pp) = ∅(
spp ∪ s′pp,min(n+ n′, 2κ)

)
otherwise

PP (ppskip) , {pp} PP (ppid := a) , {pp} PP (c1; c2) , PP (c1) ∪ PP (c2)

PP (ppwhile (a) c) , {pp} ∪ PP (c) PP (ppif (a) c1 else c2) , {pp} ∪ PP (c1) ∪ PP (c2)

Fig. 3. Abstract semantics of commands

within an instruction c, the cardinal abstract domain relies on
the set of program points where variables may be last assigned
as well as the operator PP (c), that we define as the set of
program points appearing in command c. Hence, instruction c
does not modify variable id if PP (c) ∩ spp = ∅, supposing
spp over-approximates the set of program points where id may
be last assigned. Note that this condition is only a sufficient
one since spp is an over-approximation of the set of program
points where variable id may be last assigned.

In general, abstract domains retain precision in conditional
branches by relying on the conditional guard to reduce the
abstract environments entering both the ’then’ branch and
the ’else’ branch. For instance, let us assume that an interval
analysis determines that variable x ranges over the interval
[0, 9], whereas variable y ranges over the interval [2, 5]. Then,
in the case of a conditional guard (x == y) testing the equality
of variables x and y, the interval analysis can soundly reduce
both abstract values mapped to x and y in the ’then’ branch
to the intersection [2, 5] of both intervals. For simplicity of
presentation, the cardinal abstract semantics of conditionals
presented in Figure 3 does not attempt to leverage on such
reductions. We leave this improvement as future work.

b) Loop instructions: Let us denote by ⊆̇⊗ (resp. by ∪̇⊗)
the pointwise lifting of the partial order relation ⊆⊗ (resp. of
the join operator ∪⊗) over environments:

Partial order: %]1 ⊆̇⊗ %
]
2 ⇐⇒ ∀id, %]1(id) ⊆⊗ %]2(id)

Join operator: %]1 ∪̇⊗ %
]
2 = λid.%]1(id) ∪⊗ %]2(id).

The abstract semantics of loops requires computing an
abstract environment %] that is a loop invariant ⊆̇⊗-greater
than the initial abstract environment %]0. This loop invariant %]

satisfies the following fixpoint equation:

%] = %]0 ∪̇⊗
(
Jppif (a) c else ppskipK]%]

)
.

Therefore, we can define the abstract semantics of loops as the
least fixpoint of F ], where F ] is defined by:

F ] , λ%].%]0 ∪̇⊗
(
Jppif (a) c else ppskipK]%]

)
.

The least fixpoint of F ] exists, since F ] is monotonic and
the lattice of abstract environments is complete. Additionally,
this least fixpoint can be computed iteratively [41], [42] by
defining a sequence (xn)n≥0 as follows:

x0 = %]0

xn+1 = %]0 ∪̇⊗
(
Jppif (a) c else ppskipK]xn

)
.

The least fixpoint of F ] is therefore equal to the limit x∞ of
the sequence (xn)n≥0.

D. Over-approximating the Maximum Leakage

The cardinal abstract domain computes an over-
approximation of the number of values variables may
take, when attackers provide a low input memory. Hence, we
can upper-bound the cardinal number of outputs attackers
may observe when providing an arbitrary low input memory,
in order to obtain an over-approximation of the maximum
leakage.

Equation (2) characterizes the observations attackers make
for batch-job programs c after providing a low input memory
as follows :

outputs%L0
= {(%(v1), %(v2) . . . , %(vf )) |

∃%H0
∈ ΣH0

, %0 , (%L0
, %H0

) and JcK%0 = %}.
(2)

Recall that we denote by v1,v2,...vf the variables that
attackers may observe at the end of the program’s execution.
Notice also that the partition of variables into low and high
outputs may be completely different from the partition of
variables into low and high inputs.



Let us denote by R the set of sets of final reachable states
for each fixed low input memory, for a batch-job program c:

R ,
{
{% | ∃%H0

∈ ΣH0
, %0 , (%L0

, %H0
) and

JcK%0 = %} | %L0
∈ ΣL0

}
.

Then, we can prove that the maximum cardinal number of
outputs attackers may observe, when providing a low input
memory, can be over-approximated by relying on the cardinal
abstraction. Indeed, assuming that %]⇓ is the final abstract
environment computed for the program c, the cardinal number
of outputs attackers may observe is given by the product of
cardinals computed by %]⇓, over all low observable variables
v1,v2,...vf:

2ML = max
r∈R
|{(%(v1), %(v2) . . . , %(vf )) | % ∈ r}|

≤ (by loosing relations in each set r)

max
r∈R

∏
1≤i≤f

|{%(vi) | % ∈ r}|

≤ (by loosing relations in R)∏
1≤i≤f

max
r∈R
|{%(vi) | % ∈ r}|

≤ (by soundness of the cardinal abstraction)∏
1≤i≤f

proj2(%]⇓(vi))

The latter proof yields Theorem 1 which provides an over-
approximation of the maximum leakage for batch-job programs
by relying on the cardinal abstract domain.

Theorem 1 (Over-approximation of ML for batch-job pro-
grams).
For deterministic batch-job programs, the maximum leakage
ML is upper-bounded by:

ML ≤ log2

 ∏
1≤i≤f

proj2(%]⇓(vi))


where %]⇓ denotes the abstract environment computed at the
end of the program, and v1,v2,...vf denote the low output
variables attackers are allowed to observe.

Note that the proof of Theorem 1 relies on the assumption
that the cardinal abstract domain is sound. This same proof sets
the stage for the proof of soundness of the cardinal abstraction:

1) define a semantics over a set R of sets of reachable states
for each fixed low input memory, then

2) define an abstraction that ignores relations between
variables in each set r ∈ R

3) define an abstraction computing the cardinal number of
values.

Therefore, the next section will sketch a soundness proof of
the cardinal abstract domain.

IV. SOUNDNESS

Abstract interpretation generally requires defining a standard
semantics for the considered language, describing the result

of executing a command over a concrete environment. Then,
abstract interpretation focuses on defining a collecting seman-
tics [28] describing the details that are relevant to the properties
of interest. These properties are in general not computable.
Therefore, abstract interpretation frameworks introduce abstract
representations aimed at approximating them. Finally, by
linking the properties of interest to the abstract representations
through a Galois connection, a sound abstract semantics can
be systematically [43] derived in order to tractably compute
approximations of the properties of interest.

The denotational semantics of the While language of
Figure 1 is fairly standard. Thus, we omit it for concision. We
make explicit only the denotational semantics of assignments.
Indeed, since the cardinal abstract domain tracks the set of
program points where variables may have been last assigned,
we instrument the denotational semantics for assignments in
order to track these program points as well:

Jppid := aK% = %[id 7→ (pp,AJaK%)]

Therefore, concrete environments % ∈ V ar ⇀ P × V map
a variable id to a pair of a program point pp ∈ P and an
integer value v ∈ V of size κ. The denotation JcK% yields an
environment %′. Additionally, we also denote by AJaK% the
evaluation of an expression a in an environment %, that yields
a value v ∈ V. Notice that the instrumentation of assignments
to track the program points where variables are last assigned
does not modify the semantics over values. An erasure of the
program points yields the standard denotational semantics of a
While language [33].

A. Collecting Semantics

The choice of a collecting semantics depends on the problem
of interest. Indeed, a collecting semantics must at least describe
program behaviours that are relevant. Ideally, the collecting
semantics should also abstract away from the details that are
not relevant to the studied problem. Therefore, how should we
define the collecting semantics to prove the soundness of the
cardinal abstraction?

To answer this question intuitively, let us assume the simpler
case of an abstract memory m] , {x 7→ 2} determining that
a variable x may take at most 2 different values. What would
be the concrete memories m ∈ V ar ⇀ V that are represented
by m]? Since variable x may take at most 2 different values,
the possible values x may take are given by a set of sets of
values v ∈ V:

{V ∈ P (V) : |V | ≤ 2} ∈ P (P (V)) .

Therefore, the concrete memories represented by m] are also
given by a set R ∈ P (P (V ar ⇀ V)) of sets of memories
m ∈ V ar ⇀ V:

R =
{
r ∈ P (V ar ⇀ V) : |{m(x) : m ∈ r}| ≤ 2

}
.

Intuitively, in each set r of memories, the memories m ∈ r
map a variable x to at most 2 different values. Thus, we are
going to define the collecting semantics over a set of sets of
environments. Interestingly, if we consider a program c that
accepts both low and high inputs, such a collecting semantics



also enables us to describe the set of sets of final reachable
states, one set of final reachable states for each low input
memory, in accordance with Equations (1) and (2).

Such structures implying an additional level of sets over
environments naturally arise when dealing with security policies
such as information flow policies. Indeed, Clarkson and
Schneider [29], [30] note that important classes of security
policies are best described by hyperproperties which they define
as sets of legal sets of traces – legal wrt. a security policy –,
in contrast to properties that are defined as sets of legal traces.

a) Forward collecting semantics of commands: Equa-
tion (3) defines the forward collecting semantics for commands.
This collecting semantics computes the set R′ of sets of final
reachable environments when a command c is executed over
a set R of sets of initial environments.

JcKc ∈ P (P (V ar ⇀ P× V))→ P (P (V ar ⇀ P× V))

JcKcR , {{JcK% | % ∈ r} | r ∈ R}. (3)

Notice that our collecting semantics JcKc is defined over an
abstraction of hyperproperties. Indeed, Clarkson and Schnei-
der [29], [30] define a hyperproperty as a set of sets of traces,
where each trace is a sequence of states. They also define a
relational hyperproperty as a set of sets of relational traces,
where each relational trace is a pair of an initial state and a final
state. Relational hyperproperties are an abstraction of the more
general hyperproperties, since they forget about the intermediate
states and keep only the initial and final states. Similarly, our set
of sets of reachable states abstracts relational hyperproperties,
by forgetting about the initial states and keeping only the final
states. One can also compose an element-wise abstraction [44]
with the reachability abstraction [45] in order to directly abstract
a hyperproperty into a set of sets of reachable states.

Cousot and Cousot [31, Section 11] stress down that the
notion of a collecting semantics “is relative to a set of questions.
It defines exactly which questions can be answered about
programs”. They also define a collecting semantics over a set
of sets of states, similar to the one we define in Equation (3),
while observing that this collecting semantics is more general
than the basic collecting semantics defined over a set of states.
Such a collecting semantics with an additional level of sets also
implicitly appears in Amtoft and Banerjee’s [32, Section 3]
work, since the Galois connection they introduce relates a set
of sets of relational traces to their abstract domain computing
independences between variables.

b) Forward collecting semantics of expressions: Similarly
to Equation (3), Equation (4) defines the forward collecting
semantics for expressions over a set of sets of environments.
This semantics then yields a set of sets of values v ∈ V.

AcJaK ∈ P (P (V ar ⇀ P× V))→ P (P (V))

AcJaKR , {{AJaK% | % ∈ r} | r ∈ R} . (4)

B. Sketch of the Soundness Proof

Once we define a collecting semantics for commands, we
need to construct a Galois connection that relates the lattice of
concrete objects R ∈ P (P (V ar 7→ P× V)) to the lattice
of abstract ones %] ∈ V ar 7→ D]

C . With such a Galois

connection, we can derive [43] a sound abstract semantics
JcK] for commands as well as a sound abstract semantics for
expressions A]JaK. For the sake of pedagogical presentation, let
us for now postulate the existence of such a Galois connection
(α̇, γ̇):

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−−→←−−−
α̇

γ̇
(5)

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗, λx.(∅, 0), λx.(P, 2κ), ∪̇⊗, ∩̇⊗〉

Then, in order to derive a sound abstract semantics for
commands, we can consider the functional abstraction αB

com

defined in Equation (6), in order to transpose functions JcKc
of the concrete collecting semantics to functions JcK] of the
abstract semantics. Note that Equation (6) denotes by Env the
set V ar ⇀ P×V of concrete environments, and by Env] the
set V ar ⇀ D]

C of abstract environments.

αB
com ∈ (P (P (Env))→ P (P (Env)))→

(
Env] → Env]

)
αB
com(JcKc) , α̇ ◦ JcKc ◦ γ̇ (6)

Finally, note that αB
com(JcKc) provides the best abstraction

of the collecting semantics of commands. However, this
abstraction might not be computable in general. Therefore,
soundness only requires that the abstract semantics JcK]
of commands over-approximates the functional abstraction
αB
com(JcKc) of the collecting semantics:

αB
com(JcKc)%] ⊆̇⊗ JcK]%].

Similarly, we also construct a functional abstraction αB
exp

in order to derive a sound abstract semantics for expressions.
The functional abstraction αB

exp transposes functions AcJaK of
the concrete collecting semantics of expressions to functions
A]JaK of the abstract semantics of expressions:

αB
exp ∈

(
P (P (Env))→ P (P (V))

)
→
(
Env] → [0, 2κ]

)
.

Additionally, the abstract semantics of expressions A]JaK is
sound if it verifies the following condition:

αB
exp(AcJaK)%] ≤ A]JaK%].

Figure 4 summarizes the steps towards building the Galois
connection (α̇, γ̇) assumed in Equation (5). We mainly rely on
the fact that composing Galois connections yields a new Galois
connection. Thus, composing a non-relational abstraction
(αr, γr) with the pointwise abstraction (αc, γc) of values yields
the desired Galois connection (α̇, γ̇). The complete details can
be found in the appendix.

Theorems 2 and 3 state the soundness of the cardinal abstract
domain.

Theorem 2 (Soundness of the abstract semantics A]JaK).
The abstract semantics of expressions in Figure 2 is sound:

αB
exp(AcJaK)%] ≤ A]JaK%].

Theorem 3 (Soundness of the abstract semantics JcK]).
The abstract semantics of commands in Figure 3 is sound:

αB
com(JcKc)%] ⊆̇⊗ JcK]%].

Both proofs can be found in the appendix.



P (P (V ar ⇀ P× V))

P (V ar ⇀ P (P× V))

V ar ⇀ P (P (P× V))

α@ γ@

α$ γ$

Non-relational element-wise
abstraction [44]

Non-relational abstraction
[31]

〈P (P (V ar ⇀ P× V)) ;⊆〉

−−−−−−−−−→←−−−−−−−−−
αr,α

$◦α@

γr,γ@◦γ
$

〈V ar ⇀ P (P (P× V)) ; ⊆̇〉

Non-relational abstraction of
a set of sets of environments

P (P (P× V))

P (P (P))× P (P (V))

P (P)× [0, 2κ]

α× ◦ α@× γ@× ◦ γ×

α⊗ γ⊗

Attribute independent
abstraction [43]

Component-wise abstraction
[44]

〈P (P (P× V)) ;⊆〉

−−−−−−−−−−−−→←−−−−−−−−−−−−
α,α⊗◦α×◦α@×

γ,γ@×◦γ×◦γ⊗

〈P (P)× [0, 2κ] ;⊆⊗〉

Abstraction of values

V ar ⇀ P (P (P× V))

V ar ⇀ P (P)× [0, 2κ]

αc , λf.λx.α(f(x)) γc , λf ].λx.γ(f ](x))
Pointwise abstraction
[31]

〈P (P (V ar ⇀ P× V)) ;⊆〉 −−−−−−−−→←−−−−−−−−
α̇,αc◦αr

γ̇,γr◦γc 〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗〉

Fig. 4. Building the Galois connection (α̇, γ̇)

V. PRECISION

Throughout our developments of the cardinal abstraction, we
consider some optimizations in order to enhance the precision
of our analysis, while we leave out some others for future
work. For instance, the cardinal abstract domain tracks the
program points where variables may have been last assigned,
in order to improve its precision in the case of branching
instructions. However, we leave off optimizations such as
reducing abstract environments by relying on conditional
guards, or combining the cardinal abstraction with numerical
abstract domains [46], [28]. These choices are motivated by
making the precision of the cardinal abstraction reach a first
checkpoint; indeed, the cardinal abstraction is at least as precise
as a flow-sensitive type system [4], [5] for the two point lattice
〈{L,H};v, L,H,t,u〉.

Intuitively, abstracting further the results of cardinal abstract
domain, by mapping variables having a cardinal number of at
most 1 to a low security level L and mapping variables having
a cardinal number strictly greater than 1 to a high security
level H , yields an analysis that is at least as precise as Hunt
and Sands’ type system.

Let us first introduce an abstraction operator @LH mapping
a cardinal number n to a security label L or H:

@LH ∈ [0, 2κ] 7→ {L,H}

@LH(n) ,

{
L if n ≤ 1

H otherwise

This abstraction can be lifted to abstract environments
through a pointwise abstraction [31] as well as a projection

that forgets about the program points:

α@LH
∈ (V ar ⇀ D]

C) 7→ (V ar ⇀ {L,H})
α@LH

(%]) , λx.@LH

(
proj2(%](x))

)
Lemma 1 proves that the abstract semantics of expressions

is as precise as the type labelling of expressions. A proof of
Lemma 1, by structural induction on expressions, is presented
in the appendix.

Lemma 1 (The abstract semantics of expressions is at least
as precise as the type labelling of expressions).
For all expressions a, for all abstract environments %] ∈
V ar ⇀ D]

C , for all type environments Γ ∈ V ar ⇀ {L,H},
such that: A]JaK%] = n and Γ ` a : t.

It holds that:

α@LH
(%]) v Γ =⇒ @LH(n) v t

Theorem 4 proves that the abstract semantics of commands
is at least as precise as the type labelling of commands. We let
the partial order v̇ denote the pointwise lifting of the partial
order over security labels to type environments. A proof of
Theorem 4 is presented in the appendix. This proof is by
structural induction on commands and relies on Lemma 1.

Theorem 4 (The abstract semantics of commands is at least
as precise as the type labelling of commands).
For all commands c, for all abstract environments %]0, %

], and
type environments Γ0,Γ such that: JcK]%]0 = %] and L `
Γ0{c}Γ.

It holds that:

α@LH
(%]0) v Γ0 =⇒ α@LH

(%]) v̇ Γ



The cardinal abstraction is almost exactly as precise as
Hunt and Sands flow-sensitive type system. The only case that
stands out is the following expression secret mod 1 that
we uncovered while trying to prove that the cardinal abstraction
is exactly as precise as Hunt and Sands’ flow-sensitive type
system. Indeed, assuming that variable secret may take more
than 2 values, the cardinal abstraction still determines that this
expression has at most 1 possible value, whereas the typing
judgement for expressions reasons on the free variables of
that expression, and labels the expression secret mod 1
as high H . Another corner case is the expression secret
mod 0 where the cardinal abstraction determines as having 0
value, which is still sound considering that this expression is
undefined. This also warrants one of our design decisions to
formalize our analysis as an abstract domain, since we can rely
on reduced products [40] to not only enhance the precision of
the cardinal abstract domain, but also to prove the absence of
runtime errors in analysed programs.

As a direct result of Theorem 4, Corollary 1 states that
the cardinal abstraction computes a leakage of zero bits for
programs that are “well-typed” by Hunt and Sands’ flow-
sensitive type system. By “well-typed”, we mean that the
final typing environment computed by the flow-sensitive type
system labels as low all output variables v1,v2,...vf that
attackers may observe.

Corollary 1 (Zero leakage for well-typed programs).
For all commands c, for all abstract environments %]0, %

], and
type environments Γ0,Γ such that: JcK]%]0 = %], and L `
Γ0{c}Γ, and for all i ∈ [1, f ], proj2(%](vi)) 6= 0.

It holds that:

α@LH
(%]0) v Γ0 and (∀i ∈ [1, f ],Γ(vi) = L)

=⇒ log2

 ∏
1≤i≤f

proj2(%](vi))

 = 0.

Since the cardinal abstraction is at least as precise as a flow-
sensitive type system for the two point lattice, it is appealing
to rely on this abstract domain even when interested in proving
that a program complies with a qualitative security policy
such as termination-insensitive non-interference [2]. Indeed,
in addition to labelling variables as low or high, the cardinal
abstraction also provides quantitative information that may
assist in making better informed decisions when declassification
is necessary.

Unlike Hunt and Sands’ [4], [5] type system, the cardinal
abstraction quantifies information flow only for the two-point
lattice. Future work includes a generalization of the cardinal
abstract domain to handle the case of arbitrary multilevel
security lattices.

VI. RELATED WORK

Clark, Hunt and Malacaria [47] build on Denning’s [11]
work in order to propose a measure of information leakage,
based on Shannon entropy [12] and mutual information. In
particular, they prove in the deterministic setting that the
leakage of a program can be measured by the conditional

Shannon entropy of the observable outputs, knowing the public
inputs. They also prove that this latter quantity equals zero in
the case of a deterministic program iff. the program is non-
interferent. Clark et al. [48] also propose a type system to
quantify information flow for deterministic batch-job programs
with low inputs. They also prove that if attackers can observe
non-termination, their analysis under-estimates the leakage by
at most one bit. The same argument can be used to prove
that the cardinal abstraction also under-estimates the leakage
by at most one bit if attackers can observe non-termination.
Indeed, the observation of non-termination by attackers can be
modelled as an additional observable output ⊥, which means
that the upper-bound computed by the cardinal abstraction is
under-estimated by at most 1 bit.

Clarkson et al. [14], [15] propose a quantitative measure,
based on information belief [16]. This measure reasons on
attackers’ belief, namely the probability distribution of the
confidential input that attackers may assume. Clarkson et al.
model how attackers revise their belief after observing outputs
of a program. The revised attackers’ belief as well as the
initial belief provide a way to measure the improvement
in the accuracy of attackers’ belief. Clarkson et al. also
propose to measure this improvement in accuracy by relying on
relative entropy [49], a pseudo-metric defined over probability
distributions.

Smith [17] notes that Shannon entropy and mutual infor-
mation are unsuitable metrics for estimating information flow
leakage in particular scenarios. Indeed, Shannon entropy of a
random variable can be arbitrarily high despite being highly
vulnerable to being guessed in one try [50]. Smith then proposes
the use of min-entropy as a measure for quantifying information
flow. This measure estimates the probability that attackers guess
the confidential inputs in one try, after observing a program run.
Additionally, Smith proves that the maximum leakage over all a
priori distributions measured either with min-entropy (namely,
min-capacity) or Shannon entropy (namely, capacity) coincide
for deterministic programs, and conjecture that min-capacity
upper-bounds capacity for probabilistic programs [18].

Braun, Chatzikokolakis and Palamidessi [51] propose an
additive notion of information leakage based on the probability
that attackers guess the wrong confidential inputs. They also
investigate how to compute supremums for their additive notion
as well as for min-entropy [17]. Particularly, they prove that
the supremum for min-entropy is reached when the confidential
inputs are uniformly distributed [51], [18].

Alvim et al. [52] propose a generalization of min-entropy
using gain functions. Gain functions model a variety of
scenarios for attackers, such as the advantage attackers gain
from guessing part of the secret or making a set of guesses.
They also prove in the probabilistic setting that min-capacity
is an upper bound on both Shannon capacity and capacity
defined using gain functions. Hence, min-capacity offers a
way to abstract from a priori distributions of the confidential
inputs and to bound various entropy-based information flow
metrics. Note however that different quantitative information
flow metrics are appropriate for modelling different attacks
scenarios [17].

Backes, Köpf and Rybalchenko [21] propose to synthesize



the equivalence classes induced by outputs over low equivalent
memories by relying on software model checkers. Their
approach characterizes the maximum leakageML by counting
the number of such equivalence classes. Additionally, they
also estimate the size of such equivalence classes in order
to compute other quantitative information flow metrics such
as Shannon entropy [12] and the Guessing entropy [53].
Heusser and Malacaria [22] also rely on a similar technique
to quantify information flow for database queries. Köpf
and Rybalchenko [54] note that the exact computation of
information-theoretic characteristics is prohibitively hard, and
propose instead to rely on approximation-based analyses.

In particular, Köpf and Rybalchenko [54] rely on both
abstract interpretation and model checking to compute over-
approximations and under-approximations of the equivalence
classes over the low equivalent memories. Therefore, they can
compute an upper-bound and a lower-bound over the maximum
leakage ML. Additionally, they propose a randomization
technique based on sampling in order to bound Shannon
entropy [12]. Their abstract interpretation approach relies
on over-approximating the set of reachable states, which
delivers an imprecise upper-bound of the leakage for programs
accepting both low and high inputs. Köpf and Rybalchenko
also propose to rely on self-composition [6], [7], [8], [20] to
model a scenario where attackers may refine their knowledge
by influencing the low inputs. Klebanov [23] relies on a similar
technique to handle programs with low inputs, and uses two
different approaches to quantify information leaks. The first
approach computes a functional specification of programs using
user-supplied invariants, and the second one relies on self-
composition to automatically compute the equivalence classes
over low input memories. Klebanov also proposes the use
of polyhedra to synthesize linear constraints over variables.
He then relies on symbolic procedures to compute both the
number and size of the equivalent classes over low input
memories. However, this approach does not support programs
with arbitrary expressions.

VII. CONCLUSION

This paper proposes a novel analysis, the cardinal abstraction,
for QIF in batch-job programs. Following the abstract inter-
pretation framework [28], we formalize the cardinal abstract
domain and prove its soundness.

Unlike previous approaches aimed at QIF, our approach does
not rely on an underlying reachability analysis. Instead, the
cardinal abstraction approximates variety directly to precisely
upper-bound the maximum leakage. We also prove the precision
of our analysis by proving that the cardinal abstraction
computes a maximum leakage of zero for programs that are
“well-typed” wrt. a traditional flow-sensitive type system [4],
[5].

We also propose an implementation of the cardinal abstrac-
tion 1 by modifying an existing prototype abstract interpreter2

for an imperative While language. This implementation
enhances the precision of the cardinal abstraction by relying

1https://github.com/moun/Fhamator
2http://www.irisa.fr/celtique/teaching/PAS/while analyser.tgz

on a reduced product [40] of both the cardinal abstract domain
and an interval abstract domain [34]. Indeed, one advantage of
formalizing our analysis as an abstract interpretation approach
is the possibility of improving its precision by combining it
with existing domains [39], [35], [36], [37], [38]. In particular,
we plan on building on the cardinal abstraction and Miné’s [38]
previous work in order to enhance the cardinal abstraction with
relational constraints, while still supporting arbitrary non-linear
expressions.

Future work also includes generalizing the cardinal ab-
straction for QIF in the case of a multilevel security lattice.
By doing so, we also hope to gain more insights towards
understanding abstract interpretation-based verification methods
for hyperproperties. The cardinal abstraction is but a first step
towards that goal. Indeed, we are aware that the bounding
problem in QIF the cardinal abstraction targets is not a k-
safety property, but a hypersafety [29], [30], [55], [56], [57]
one.

Additionally, we would also like to extend our approach
to deal with real-world programs. In ongoing work, we are
extending the restricted batch-job computation model to a more
general one [58], and will move from there to target richer
programming languages.
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[27] B. Köpf and A. Rybalchenko, “Automation of Quantitative Information-
Flow Analysis.” SFM, vol. 7938, no. Chapter 1, pp. 1–28, 2013.

[28] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. New York, New
York, USA: ACM Request Permissions, Jan. 1977, pp. 238–252.

[29] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Computer
Security Foundations Symposium, 2008. CSF ’08. IEEE 21st, pp. 51–65,
2008.

[30] ——, “Hyperproperties.” Journal of Computer Security, vol. 18, no. 6,
pp. 1157–1210, 2010.

[31] P. Cousot and R. Cousot, “Higher-order abstract interpretation (and
application to comportment analysis generalizing strictness, termination,
projection and PER analysis of functional languages),” in Computer
Languages, 1994., Proceedings of the 1994 International Conference on.
IEEE Comput. Soc. Press, 1994, pp. 95–112.

[32] T. Amtoft and A. Banerjee, “Information Flow Analysis in Logical Form,”
in Programming Languages and Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 100–115.

[33] G. Winskel, The formal semantics of programming languages: an
introduction, Feb. 1993.

[34] P. Cousot and R. Cousot, “Static determination of dynamic properties of
programs,” in Proceedings of the second International Symposium on
Programming. Paris, 1976, pp. 106–130.

[35] P. Cousot and N. Halbwachs, “Automatic Discovery of Linear Restraints
Among Variables of a Program.” POPL, pp. 84–96, 1978.

[36] L. Mauborgne and X. Rival, “Trace partitioning in abstract interpretation
based static analyzers,” in ESOP’05: Proceedings of the 14th European
conference on Programming Languages and Systems. Berlin, Heidelberg:
Springer-Verlag, Apr. 2005, pp. 5–20.
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APPENDIX



This section builds the Galois connection assumed in Equation (5):

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−−→←−−−
α̇

γ̇

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗, λx.(∅, 0), λx.(P, 2κ), ∪̇⊗, ∩̇⊗〉

The steps towards building such a Galois connection are summarized in Figure 4.

A Non-relational Abstraction of Environments

The cardinal abstraction is a non-relational abstraction. Thus, we start by defining a first Galois connection that ignores the
relationships among variables.

In the case of environment properties, the following abstraction function [43] ignores relations between variables:

@ ∈ P (V ar ⇀ P× V)→ (V ar ⇀ P (P× V))

@(r) , λx.{%(x) | % ∈ r}

Since our collecting semantics is defined over hyperproperties – sets of environment properties –, we lift the previous abstraction
@ over sets of properties through an element-wise abstraction [44] denoted by α@:

α@(R) , {@(r) | r ∈ R}
= {λx.{%(x) | % ∈ r} | r ∈ R}

γ@(Q) , {r | @(r) ∈ Q}

Therefore, we obtain a Galois connection:

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−−−→←−−−−
α@

γ@

〈P (V ar ⇀ P (P× V)) ;⊆,∅, V ar ⇀ P (P× V) ,∪,∩〉

The abstraction α@ only forgets relationships among variable in each set r ∈ R of environments. For instance, let us assume
a set R0 of sets of environments defined as:

R0 ,
{

{[x 7→ (pp0, 0); y 7→ (pp0, 2)], [x 7→ (pp0, 0); y 7→ (pp0, 3)]}, (7)

{[x 7→ (pp0, 1); y 7→ (pp0, 4)], [x 7→ (pp0, 1); y 7→ (pp0, 5)]}
}

Then, the abstraction α@(R0) yields:

α@(R0) =
{

[x 7→ {(pp0, 0)}; y 7→ {(pp0, 2), (pp0, 3)}],
[x 7→ {(pp0, 1)}; y 7→ {(pp0, 4), (pp0, 5)}]

}
In this latter set, we can further ignore relationships among variables through an additional non-relational abstraction:

α$(P ) , λx.{p(x) | p ∈ P}
γ$(Q) , {p | α$(p) ∈ Q}

Therefore, (α$, γ$) yields a Galois connection [31]:

〈P (V ar ⇀ P (P× V)) ;⊆,∅, V ar ⇀ P (P× V) ,∪,∩〉

−−−−→←−−−−
α$

γ$

〈V ar ⇀ P (P (P× V)) ; ⊆̇, λx.∅, λx.P (P× V) , ∪̇, ∩̇〉

Since composing Galois connections yields a Galois connection, we define (αr, γr) , (α$ ◦ α@, γ
$ ◦ γ@) to obtain a

non-relational abstraction over hyperproperties:

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−−−−−−−−→←−−−−−−−−−
αr,α

$◦α@

γr,γ@◦γ
$

〈V ar ⇀ P (P (P× V)) ; ⊆̇, λx.∅, λx.P (P× V) , ∪̇, ∩̇〉 (8)



If we recall the example set R0 of sets of environments defined in Equation (7), then αr(R0) ignores all relationships among
variables:

αr(R0) =
[
x 7→

{
{(pp0, 0)}, {(pp0, 1)}

}
;

y 7→
{
{(pp0, 2), (pp0, 3)}, {(pp0, 4), (pp0, 5)}

}]
As we have defined a non-relational abstraction (αr, γr) over hyperproperties, we can now focus on defining an abstraction

over sets of sets of values as shown in Section IV-B. This latter abstraction can then be lifted over environments as illustrated
by Section IV-B.

B Abstraction of Values

Similarly to the previous section, where we lift a non-relational abstraction to a set of sets of environments, we can also lift
an attribute independent abstraction [43], that forgets about relationships between components of pairs, to a set of sets of pairs
through an element-wise abstraction.

B0a Attribute independent abstraction: The attribute independent abstraction function @× is given by:

@× ∈ P (P× V)→ P (P)× P (V)

@×(p) , (Π1(p),Π2(p))

Πi(p) , {proji(x) | x ∈ p}

Therefore, we define an element-wise abstraction α@× over a set of sets of pairs as follows:

α@×(P ) , {@×(p) | p ∈ P}
= {(Π1(p),Π2(p)) | p ∈ P}

γ@×(Q) , {p | @×(p) ∈ Q}

Therefore, (α@× , γ@×) defines a Galois connection:

〈P (P (P× V)) ;⊆,∅,P (P× V) ,∪,∩〉

−−−−−→←−−−−−
α@×

γ@×

〈P (P (P)× P (V)) ;⊆,∅,P (P)× P (V) ,∪,∩〉 (9)

Let us assume that P0 is a set of sets of pairs defined as follows:

P0 ,
{
{(pp0, 2), (pp0, 3)}, {(pp0, 4), (pp0, 5)}

}
(10)

Then α@×(P0) is given by:

α@×(P0) =
{

({pp0}, {2, 3}), ({pp0}, {4, 5})
}

In this latter set, we can further ignore relationships among values through an additional attribute independent abstraction:

α×(Q) , (Π1(Q),Π2(Q))

γ×((X,Y )) , X × Y

Therefore, we obtain a Galois connection [43]:

〈P (P (P)× P (V)) ;⊆,∅,P (P)× P (V) ,∪,∩〉

−−−−→←−−−−
α×

γ×

〈P (P (P))× P (P (V)) ;⊆×, (∅,∅),P (P)× P (V) ,∪×,∩×〉 (11)

with the component-wise ordering, join and meet:

⊆× , ⊆ × ⊆
∪× , ∪ × ∪
∩× , ∩ × ∩

For instance, if we recall the example set P0 defined in Equation (10), then α× ◦ α@×(P0) is given by:

α× ◦ α@×(P0) = α×
({

({pp0}, {2, 3}), ({pp0}, {4, 5})
})

=
({
{pp0}

}
,
{
{2, 3}, {4, 5}

})



B0b Component-wise abstraction: Finally, let us assume two Galois connections (αv, γv) and (αpp, γpp) such that:

〈P (P (V)) ;⊆,∅,P (V) ,∪,∩〉 −−−→←−−−
αv

γv 〈[0, 2κ];≤, 0, 2κ,max,min〉

〈P (P (P)) ;⊆,∅,P (P) ,∪,∩〉 −−−−→←−−−−
αpp

γpp
〈P (P) ;⊆,∅,P,∪,∩〉

Then, a component-wise abstraction [44] (α⊗, γ⊗) defined as follows:

α⊗
(
(Spp, Sv)

)
,
(
αpp(Spp), αv(Sv)

)
γ⊗
(
(spp, n)

)
,
(
γpp(spp), γv(n)

)
yields a Galois connection:

〈P (P (P))× P (P (V)) ;⊆×, (∅,∅),P (P)× P (V) ,∪×,∩×〉

−−−−→←−−−−
α⊗

γ⊗

〈P (P)× [0, 2κ] ;⊆⊗, (∅× 0), (P× 2κ),∪⊗,∩⊗〉 (12)

Consequently, the abstraction of values (α, γ) can be defined as the composition of the 3 Galois connections defined previously
in Equations (9), (11) and (12):

〈P (P (P× V)) ;⊆,∅,P (P× V) ,∪,∩〉

−−−−−−−−−−−−→←−−−−−−−−−−−−
α,α⊗◦α×◦α@×

γ,γ@×◦γ×◦γ⊗

〈P (P)× [0, 2κ] ;⊆⊗, (∅, 0), (P, 2κ),∪⊗,∩⊗〉 (13)

Let us focus now on defining both Galois connections (αv, γv) and (αpp, γpp).
B0c Abstraction of program points: The abstraction αpp merges all the sets of program points:

αpp(Spp) ,
⋃

s∈Spp

s

γpp(spp) , P (spp)

Therefore, we obtain a Galois connection:

(P (P (P)) ;⊆,∅,P (P) ,∪,∩) −−−−→←−−−−
αpp

γpp
(P (P) ;⊆,∅,P,∪,∩)

Indeed, let us prove that (αpp, γpp) is a Galois connection:

αpp(S) ⊆ spp ⇐⇒
⋃
s∈S

s ⊆ spp

⇐⇒ ∀s ∈ S, s ∈ P (spp)

⇐⇒ S ⊆ P (spp)

⇐⇒ S ⊆ γpp(spp)

B0d Abstraction of concrete values: The abstraction αv computes the maximum cardinal of values over the sets sv ∈ Sv:

αv(Sv) , max
sv∈Sv

|sv|

γv(n) = {V ∈ P (V) | |V | ≤ n}

Therefore, (αv, γv) is a Galois connection:

〈P (P (V)) ;⊆,∅,P (V) ,∪,∩〉 −−−→←−−−
αv

γv 〈[0, 2κ];≤, 0, 2κ,max,min〉

Indeed, let us prove that (αv, γv) is a Galois connection:

αv(Sv) ≤ n ⇐⇒ max
sv∈Sv

|sv| ≤ n

⇐⇒ ∀sv ∈ Sv, sv ∈ Pn(V)

⇐⇒ Sv ⊆ γv(n)



C Abstraction of Environments

As illustrated by Section IV-B, the abstraction (α, γ) of values – defined in Equation (13) – can be lifted through a pointwise
abstraction [31], in order to abstract a set valued environment % ∈ V ar ⇀ P (P (P× V)).

Indeed, let us define a pointwise abstraction (αc, γc) as follows:

αc , λf.λx.α
(
f(x)

)
γc , λf ].λx.γ

(
f ](x)

)
Then, (αc, γc) yields a Galois connection:

〈V ar ⇀ P (P (P× V)) ; ⊆̇, λx.∅, λx.P (P× V) , ∪̇, ∩̇〉

−−−→←−−−
αc

γc

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗, λx.(∅, 0), λx.(P, 2κ), ∪̇⊗, ∩̇⊗〉

Therefore, by composing both the non-relational abstraction over environments and the pointwise abstraction of values
defined in Equations (8) and (13), we can build the abstraction (α̇, γ̇):

α̇ , αc ◦ αr

γ̇ , γr ◦ γc

Thus, the pair (α̇, γ̇) yields a Galois connection:

〈P (P (V ar ⇀ P× V)) ;⊆,∅,P (V ar ⇀ P× V) ,∪,∩〉

−−−→←−−−
α̇

γ̇

〈V ar ⇀ P (P)× [0, 2κ] ; ⊆̇⊗, λx.(∅, 0), λx.(P, 2κ), ∪̇⊗, ∩̇⊗〉 (14)

As mentioned in Section IV-A, once we construct a Galois connection relating concrete objects to abstract one, we can
define functional abstractions in order to soundly approximate functions over concrete objects by functions over abstract ones.

In order to approximate the collecting semantics AcJaK of expressions, we can define the following functional abstraction [43]:

αB
exp ∈

(
P (P (Env))→ P (P (V))

)
7→
(
Env] → [0, 2κ]

)
αB
exp(φ) , αv ◦ φ ◦ γ̇

Therefore, the abstract semantics A]JaK of expressions is sound wrt. the collecting semantics AcJaK of expressions if:

αB
exp(AcJaK)%] ≤ A]JaK%] (15)

Theorem 2 (Soundness of the abstract semantics A]JaK).
The abstract semantics of expressions in Figure 2 is sound:

αB
exp(AcJaK)%] ≤ A]JaK%].

Let us derive an abstract semantics A]JaKR for expressions:
— Case a = n:

αB
exp(AcJnK)%] , αv ◦ AcJnK ◦ γ̇(%])

= αv
({
{v ∈ V | ∃% ∈ r,AJnK% = v} | r ∈ γ̇(%])

})
= αv({{n}})
= 1

, A]JnK%]



— Case a = id:

αB
exp(AcJidK)%] , αv ◦ JidK] ◦ γ̇(%])

= αv
({
{v | ∃% ∈ r,AJidK% = v} | r ∈ γ̇(%])

})
= αv

({
{proj2(%(id)) | ∃% ∈ r} | r ∈ γ̇(%])

})
= (By definition of γ̇)

αv ◦ γv(%
](id))

≤ (αv ◦ γv is reductive)

%](id)

, A]JidK%]

— Case a = a1 mod n :

αB
exp(AcJaK)%] , αv

({
{v1 mod n | ∃% ∈ r,AJa1K% = v1} |

r ∈ γ̇(%])
})

= min
(
αv
({
{v1 | ∃% ∈ r,AJa1K% = v1} |

r ∈ γ̇(%])
})
, n
)

= min(αv ◦ AcJa1K ◦ γ̇(%]), n)

≤ (By induction hypothesis)

min(A]Ja1K%], n)

, A]Ja1 mod nK%]

— Case a = a1 bop a2:

αB
exp(AcJa1 bop a2K)%] , αv ({{v1 bop v2 | ∃% ∈ r,AJa1K% = v1

∧ AJa2K% = v2} | r ∈ γ̇(%])
})

≤ (by loosing relationships among variables in r)

αv
({
{v1 bop v2 | ∃%1 ∈ r1,∃%2 ∈ r2,AJa1K%1 = v1

∧ AJa2K%2 = v2} | r1, r2 ∈ γ̇(%])
})

= (by definition of αv)

max
r1,r2∈γ̇(%])

∣∣{v1 bop v2 | ∃%1 ∈ r1,AJa1K%1 = v

∧ %2 ∈ r2,AJa2K%2 = v2

}∣∣
≤ (values v ∈ V are finite, of size 2κ)

min

(
2κ, max

r1,r2∈γ̇(%])

∣∣{v1 | ∃%1 ∈ r1,AJa1K%1 = v1

}∣∣
×
∣∣{v2 | ∃%2 ∈ r2,AJa2K%2 = v2

}∣∣)
= min

(
2κ, max

r1∈γ̇(%])

∣∣{v1 | ∃%1 ∈ r1,AJa1K%1 = v1

}∣∣
× max
r2∈γ̇(%])

∣∣{v2 | ∃%2 ∈ r2,AJa2K%2 = v2

}∣∣)
≤ (By induction hypothesis in Equation (15))

min
(
2κ,A]Ja1K%] × A]Ja2K%]

)
, A]Ja1 bop a2K%]

— Case a = a1 cmp a2: this case is similar to the previous case, apart that expression a1 cmp a2 may evaluate to only
2 different boolean values.

αB
exp(AcJaK)%] ≤̇min

(
2,A]Ja1K%] × A]Ja2K%]

)
, A]Ja1 cmp a2K



Theorem 3 (Soundness of the abstract semantics JcK]).
The abstract semantics of commands in Figure 3 is sound:

αB
com(JcKc)%] ⊆̇⊗ JcK]%].

Similarly to expressions, we define the functional abstraction αB
com in order to soundly approximate the collecting semantics

JcKc of commands.

αB
com ∈

(
P (P (Env))→ P (P (Env))

)
→
(
Env] → Env]

)
αB
com(JcKc) , α̇ ◦ JcKc ◦ γ̇

Therefore, the abstract semantics of commands JcK] is sound wrt. the collecting semantics JcKc of commands if:

αB
com(JcKc)%] ⊆̇⊗ JcK]%] (16)

Theorem 3 (Soundness of the abstract semantics JcK]).
The abstract semantics of commands in Figure 3 is sound:

αB
com(JcKc)%] ⊆̇⊗ JcK]%].

Let us derive an abstract semantics for instructions:
— Case c = ppskip:

αB
com(JppskipKc)%] = α̇ ◦ JppskipKc ◦ γ̇(%])

= α̇ ◦ γ̇(%])

⊆⊗ (α̇ ◦ γ̇ is reductive)

%]

, JppskipK]%]

— For instruction c = ppid := a:

αB
com(c)%] = α̇ ◦ Jppid := aKc ◦ γ̇(%])

= α̇
({
{%′ | ∃% ∈ r, Jid := aK% = %′} | r ∈ γ̇(%])

})
= α̇

({
{%[id 7→ (pp, v)] | ∃% ∈ r,AJaK% = v} | r ∈ γ̇(%])

})
Hence, for all x ∈ V ar such that x 6= id:

(αB
com(Jppid := aKc)%])(x)⊆⊗ %](x)

Additionnally, for x = id:

(αB
com(c)%])(id) =

( ⋃
r′∈JcKc◦γ̇(%])

Π1(@(r′)(id)), max
r′∈JcKc◦γ̇(%])

|Π2(@(r′)(id))|
)

=
(
{pp}, max

r′∈JcKc◦γ̇(%])
|Π2({%(id) : % ∈ r′})|

)
=
(
{pp, max

r∈γ̇(%])
|{AJaK% : % ∈ r}|}

)
=
(
{pp}, αv ◦ AcJaK%] ◦ γ̇(%])

)
⊆⊗

(
{pp},A]JaK%]

)
Hence,

αB
com(ppid := a)%] ⊆⊗ %][id 7→ (pp,A]JaK%])]

, Jppid := aK]%]

– For conditional instructions c = ppif (a) c1 else c0:

αB
com(JcKc)%] = α̇

({
{%′ | ∃% ∈ r, JcK% = %′} | r ∈ γ̇(%])

})
= α̇

({
{%′ : ∃% ∈ r, ∃v ∈ {0, 1},AJaK% = v

∧ JcvK% = %′} | r ∈ γ̇(%])
})



First, if A]JaK%] = 1, then expression a evaluates to at most one value in each set r ∈ γ̇(%]):

∀r ∈ γ̇(%]),∃v ∈ {0, 1},∀% ∈ r,AJaK% = v

Therefore, the sets r ∈ γ̇(%]) can be partitioned into sets r1 (resp. r0) where expression a evaluates to 1 (resp. evaluates to 0):

αB
com(JcKc)%] = α̇

({
{%′ | ∃% ∈ r1, Jc1K% = %′} | r1 ∈ γ̇(%])

}
∪
{
{%′ | ∃% ∈ r0, Jc0K% = %′} | r0 ∈ γ̇(%])

})
⊆̇⊗ (α̇ preserves joins)

α̇
({
{%′ | ∃% ∈ r1, Jc1K% = %′} | r1 ∈ γ̇(%])

})
∪̇⊗ α̇

({
{%′ | ∃% ∈ r0, Jc0K% = %′} | r0 ∈ γ̇(%])

})
=
(
α̇ ◦ Jc1Kc ◦ γ̇(%])

)
∪̇⊗
(
α̇ ◦ Jc0Kc ◦ γ̇(%])

)
⊆̇⊗ (by induction hypothesis Equation (16))

Jc1K]%] ∪̇⊗ Jc0K]%]

Second, if A]JaK%] > 1, then for variables x that are modified in neither c1 nor c0, we have:

(αB
com(JcKc)%])(x) =

(
Jc1K]%] ∪̇⊗ Jc0K]%]

)
(x)

Finally, for variables that are modified in either c1 or c0:

(αB
com(JcKc)%])(x) = α̇

({
{%′ | ∃% ∈ r, ∃v ∈ {0, 1},AJaK% = v

∧ JcvK% = %′} | r ∈ γ̇(%])
})

(x)

= α̇
({
{%′ | ∃% ∈ r,AJaK% = 1 ∧ Jc1K% = %′}
∪ {%′ | ∃% ∈ r,AJaK% = 0 ∧ Jc0K% = %′}

})
(x)

⊆⊗ α̇
({
{%′ | ∃% ∈ r2,AJaK% = 1 ∧ Jc1K% = %′}

∪ {%′ | ∃% ∈ r1,AJaK% = 0 ∧ Jc0K% = %′}
| r1, r2 ∈ γ̇(%])

})
(x)

⊆⊗ α̇
({
{%′ | %′ ∈ r′1} ∪ {%′ | %′ ∈ r′2} | r′1 ∈ Jc1Kc ◦ γ̇(%]),

r′2 ∈ Jc0Kc ◦ γ̇(%])
})

(x)

⊆⊗ (γ̇ ◦ α̇ is extensive, and α̇ is monotone)

α̇
({
{%′ | %′ ∈ r′1} ∪ {%′ | %′ ∈ r′2} |
r′1 ∈ γ̇ ◦ α̇ ◦ Jc1Kc ◦ γ̇(%]),

r′2 ∈ γ̇ ◦ α̇ ◦ Jc0Kc ◦ γ̇(%])
})

(x)

⊆⊗ (By hypothesis in Equation (16) and monotony of α̇)

α̇
({
{%′ | %′ ∈ r′1} ∪ {%′ | %′ ∈ r′2} |
r′1 ∈ γ̇(Jc1K]%]), r′2 ∈ γ̇(Jc0K]%])

})
(x)

⊆⊗ (By definition of (α̇, γ̇))(
proj1(Jc1K]%](x)) ∪ proj1(Jc0K]%](x)),

proj2(Jc1K]%](x)) + proj2(Jc0K]%](x))
)

Hence, the abstract semantics of conditionals is sound:

Jppif (a) c1 else c2K]%] , let n = A]JaK%] in

let %]1 = Jc1K]%] in

let %]2 = Jc2K]%] in

λid.

{
%]1(id) ∪⊗ %]2(id) if n = 1

%]1(id) ∪add(c1,c2) %
]
2(id) otherwise



— For sequences c1; c2:

αB
com(c1; c2)%] = α̇

(
{{%2 : ∃% ∈ r, Jc1; c2K% = %2} : r ∈ γ̇(%])}

)
= α̇

(
{{%2 : ∃%1 ∈ r1, Jc2K%1 = %2} : r1 ∈ Jc1Kcγ̇(%])}

)
⊆̇⊗α̇

(
{{%2 : ∃%1 ∈ r1, Jc2K%1 = %2} : r1 ∈ γ̇ ◦ α̇

(
Jc1Kcγ̇(%])

)
}
)

⊆̇⊗α̇
(
{{%2 : ∃%1 ∈ r1, Jc2K%1 = %2} : r1 ∈ γ̇

(
Jc1K]%]

)
}
)

⊆̇⊗Jc2K]
(
Jc1K]%]

)
— For while loops ppwhile (a) c:

αB
com(ppwhile (a) c)%] = α̇ ◦ Jppwhile (a) cKc ◦ γ̇(%])

= (By characterizing the collecting semantics for loops
as a least fixpoint
with FX0

= λX.X0 ∪ Jppif (a) c else ppskipKc )

α̇
(

lfp⊆
γ̇(%])

F
)

⊆̇⊗ (By the fixpoint transfer theorem)

lfp
⊆̇⊗
%]

Jppif (a) c else ppskipK]



We prove that the cardinal abstraction refines a flow-sensitive type system labelling variables as either low or high.
Let us first introduce an abstraction mapping a cardinal number n to a security label L or H:

@LH ∈ [0, 2κ] 7→ {L,H}

@LH(n) ,

{
L if n = 1

H otherwise

Let us consider a flow-sensitive type system such as the one presented in [5]. Such a type system considers a type environment
Γ ∈ V ar ⇀ {L,H} as well as a security label pc. Let us denote by t the join operator over security labels, and by v the
partial order over security labels.

Derivation rules for expressions have the form:

Γ ` a : t iff.
⊔

x∈fv(a)

Γ(x).

Derivation rules for instructions have the form:
pc ` Γ0{c}Γ1

where pc is a security label attached to the program counter, Γ0 is an input type environment, and Γ is an output type
environment.

D Precision of the Abstract Semantics of Expressions

Lemma 1 proves that the abstract semantics of expressions is as precise as the type labelling of expressions.

Lemma 1 (The abstract semantics of expressions is at least as precise as the type labelling of expressions).
For all expressions a, for all abstract environments %] ∈ V ar ⇀ D]

C , for all type environments Γ ∈ V ar ⇀ {L,H}, such that:
A]JaK%] = n and Γ ` a : t.

It holds that:
α@LH

(%]) v Γ =⇒ @LH(n) v t

Proof. By structural induction on expressions:
— Case a = n:
The abstract semantics of expressions evaluates constants to 1. The type labelling evaluates constants to L. Therefore:

A]JnK%] = 1,Γ ` n : L and @LH(1) v L

— Case a = id:
Assumption α@LH

(%]) = Γ implies that @LH(n) = Γ(id)

α@LH
(%]) = Γ =⇒ @LH(n) v Γ(id)

— Case a = a1 bop a2:
Let n1 = A]Ja1K%] and n2 = A]Ja2K%]. Let also t1 and t2 such that Γ ` a1 : t1, and Γ ` a2 : t2.
By induction on a1 and a1, assumption α@LH

(%]) = Γ implies that:

@LH(n1) v t1 and @LH(n2) v t2

Therefore, min(n1 × n2, 2
κ) v t1 t t2.

— Cases a = a1 cmp a2 and a = a1 mod n are both similar to case a = a1 bop a2.

E Precision of the Abstract Semantics of Instructions

Theorem 4 proves that the abstract semantics of instructions is as precise as the type labelling of commands. We let v̇
denote the pointwise lifting the partial order over security labels to type environments.

Theorem 4 (The abstract semantics of commands is at least as precise as the type labelling of commands).
For all commands c, for all abstract environments %]0, %

], and type environments Γ0,Γ such that: JcK]%]0 = %] and L ` Γ0{c}Γ.
It holds that:

α@LH
(%]0) v Γ0 =⇒ α@LH

(%]) v̇ Γ

Proof. By structural induction on instructions:
— Case c = ppskip:



%]0 = %] and Γ0 = Γ. Therefore, assumption

α@LH
(%]0) = Γ0 =⇒ α@LH

(%]) v Γ

— Case c = ppid := a:
Let n = A]JaK%]0 and t such that Γ0 ` a : t. By Lemma 1:

α@LH
(%]0) = Γ0 =⇒ @LH(n) v t

Since %] = %][id 7→ ({pp}, n)], and Γ = Γ0[id 7→ t], we have:

α@LH
(%]0) = Γ0 =⇒ α@LH

(%]) v̇ Γ

— Case c = ppif (a) c1 else c2:
Let n = A]JaK%] and t such that Γ0 ` a : t.
Let %]1 = Jc1K]%

]
0, and %]2 = Jc2K]%

]
0.

Let Γ1 and Γ2 such that L ` Γ0{c1}Γ1 and L ` Γ0{c2}Γ2.
By induction on both c1 and c2, we have:

α@LH
(%]0) = Γ0 =⇒ α@LH

(%]1) v̇ Γ1 and α@LH
(%]2) v̇ Γ2 (17)

• If n = 1 and t = L, we have %] = λid.%]1(id)∪⊗ %]2(id) and Γ = λid.Γ1(id)tΓ2(id). Therefore, since the union operator
∪⊗ computes the maximum over cardinal values, Equation (17) implies that

α@LH
(%]0) v̇ Γ0 =⇒ α@LH

(%]) v̇ Γ

• if n = 1 and t = H , we have %] = λid.%]1(id) ∪⊗ %]2(id).
Additionally, Let Γ′1 and Γ′2 such that H ` Γ0{c1}Γ′1 and H ` Γ0{c2}Γ′2.
Note that Γ = λid.Γ′1(id)tΓ′2(id) is the resulting type environments, and Γ1 v̇Γ′1 and Γ2 v̇Γ′2. Therefore, by Equation (17)
we have:

α@LH
(%]0) v̇ Γ0 =⇒ α@LH

(%]) v̇ λid.Γ1(id) t Γ2(id) =⇒ α@LH
(%]) v̇ λid.Γ′1(id) t Γ′2(id)

• If n > 1, then we have %] = λid.%]1(id) ∪add(c1,c2) %
]
2(id). Plus, assuming that α@LH

(%]0) v̇ Γ0, Lemma 1 implies that
t = H .
Let Γ′1 and Γ′2 such that H ` Γ0{c1}Γ′1 and H ` Γ0{c2}Γ′2.
Let also Γ′ such that Γ′ = λid.Γ′1(id) t Γ′2(id). Note that the only difference between Γ′1 and Γ1 (resp. Γ′2 and Γ2) is
that variables that may be modified inside instruction c1 (resp. instruction c2) are set to H . Therefore the only difference
between Γ′ and Γ is that variables that may be modified in either conditional branches are set to H .
Thus, assuming α@LH

(%]0) = Γ0, for variables id that are not modified inside the conditional branches, Equation (17)
yields:

@LH(%](id)) v Γ(id) = Γ′(id)

Moreover, for variables id that may be modified inside the conditional branches, since Γ′ maps them to H , it holds that

@LH(%](id)) v Γ′(id)

Finally, by noting that Γ = Γ′ is the resulting type environments in the case where A]JaK ≥ 1 , it holds that:

α@LH
(%]0) = Γ0 =⇒ α@LH

(%]) v̇ Γ

— Case c1; c2:
By a first induction on c1, then a second induction on c2, we obtain:

α@LH
(%]0) = Γ0 =⇒ α@LH

(%]) v̇ Γ

— Case ppwhile (a) c:
Let us assume α@LH

(%]0) = Γ0. The output abstract environment is given by:

%] = fix
(
λ%]v.%

]
0 ∪̇⊗

(
Jppif (a) c else ppskipK]%]v

))
Additionally, the output type environment is given by:

Γ = fix (λΓv.let L t Γv(a) ` Γv{c}Γ′ in Γ′ t Γ0)

Or, rewritten differently:
Γ = fix (λΓv.let L ` Γv{if (a) c else skip}Γ′ in Γ′ t Γ0)



Let the sequences (%]n) and Γn be defined as follows:

%]n+1 = %]0 ∪̇⊗
(
Jppif (a) c else ppskipK]%]n

)
Γn+1 = let L ` Γn{if (a) c else skip}Γ′ in Γ′ t Γ0

Then we prove by recurrence over n that ∀n, α@LH
(%]n) v̇ Γn:

• For the initial case n = 0, it holds by assumption that α@LH
(%]0) = Γ0.

• Let us assume α@LH
(%]n) v̇ Γn, and prove α@LH

(%]n+1) v̇ Γn+1.
By the same proof that is presented in the case of conditionals, we prove that:

α@LH

(
Jppif (a) c else ppskipK]%]n

)
v̇ Γ′

Additionally, since α@LH
(%]0) = Γ0, and the join operator ∪̇⊗ compute the maximum over cardinals, we have:

α@LH

(
%]0 ∪̇⊗ Jppif (a) c else ppskipK]%]n

)
v̇ Γ′ t Γ0

Therefore α@LH
(%]n+1) v̇ Γn+1.

This concludes our proof for the case of loops, since both sequences converge, and their limit satisfy α@LH
(%]∞) v̇ Γ∞.
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