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91401 Orsay, cedex FRANCE

Email: rahim.mehdi@gmail.com

Philippe Ciuciu, Salma Bougacha
CEA/NeuroSpin & INRIA/CEA Parietal

CEA Saclay - Bât 145
91191 Gif-sur-Yvette, cedex FRANCE

Emails: philippe.ciuciu@cea.fr, salmabougacha@hotmail.com

Abstract—Perceptual learning sculpts ongoing brain activ-
ity [1]. This finding has been observed by statistically comparing
the functional connectivity (FC) patterns computed from resting-
state functional MRI (rs-fMRI) data recorded before and after
intensive training to a visual attention task. Hence, functional
connectivity serves a dynamic role in brain function, supporting
the consolidation of previous experience. Following this line of
research, we trained three groups of individuals to a visual
discrimination task during a magneto-encephalography (MEG)
experiment [2]. The same individuals were then scanned in
rs-fMRI. Here, in a supervised classification framework, we
demonstrate that FC metrics computed on rs-fMRI data are
able to predict the type of training the participants received. On
top of that, we show that the prediction accuracies based on
tangent embedding FC measure outperform those based on our
recently developed multivariate wavelet-based Hurst exponent
estimator [3], which captures low frequency fluctuations in
ongoing brain activity too.

I. INTRODUCTION

Multisensory interactions are ubiquitous in cortex and sen-
sory cortices may be supramodal ie, capable of functional
selectivity irrespective of the sensory modality of inputs [4],
[5]. In [2], we asked whether learning to discriminate visual
coherence could benefit from supramodal processing. To this
end, three groups of twelve participants were briefly trained
to discriminate which of a red or green intermixed population
of random-dot-kinematograms (RDKs) was most coherent in
a visual display while being recorded with MEG (see Fig. 1).
During training, participants heard no sound (V), congruent
acoustic textures (AV) or auditory noise (AVn); importantly,
congruent acoustic textures shared the temporal statistics –
i.e. coherence – of visual RDKs. After training, the AV group
significantly outperformed participants trained in V and AVn
although they were not aware of their progress. In pre- and
post-training blocks, all participants were tested without sound
and with the same set of RDKs.

After the MEG experiment, the same individuals underwent
a rs-fMRI scanning session of about 9 min to determine
whether multi-perceptual learning impacted intrinsic brain
activity and functional networks. These data allow us to
investigate functional connectivity (FC) analysis. In contrast
to [1], we could not contrast FC metrics before and after
learning since no fMRI data were collected before. Instead, in
this paper we focus on discriminating the three groups relying

solely on FC metrics extracted after the learning process. Such
a discrimination proves that multi-perceptual learning shapes
ongoing brain activity in a different manner than purely visual
one and hence confirms to some extent previous findings [1].

The paper is organized as follows. In Sec. II, we describe
our learning MEG experiment [2]. In Sec. III, the proposed
FC analysis pipeline is presented. Group-level results are
reported in Sec. IV together with the prediction accuracies
of supervised classifiers that perform binary classification (eg,
AV-V) from FC measures as input features. Also, our results
are compared in terms of classification performance with those
recently derived on the same dataset from wavelet-based Hurst
exponent estimates [3]. Conclusions are drawn in Section V.

II. BRAIN NETWORKS DEFINITION FROM MEG DATA

Fig. 2(top) provides an illustration of regions of inter-
est (ROIs) in the sensor and source space showing significant
post-training changes in neural responses after training in the
V, AV and AVn groups. Significant changes in hMT+, V4,
ITC and vlPFC were common to all groups whereas pSTS,
mSTS, and AC were specific to the multisensory AV and AVn
groups. As shown in Fig. 2(bottom), the network observed in
post-multisensory training was more extensive than in purely
visual training. Strikingly, the pattern of activation in both
AVn and AV was notably reversed in several regions including
pSTS, AC, mSTS and V4: this suggests selective modulations
of these cortical regions based on the stimuli presented during
training but also direct functional connectivity between these
regions. No significant changes of activity were observed in
these regions for the V group.

Common to all groups, hMT+ (supramodal coherence selec-
tivity) and vlPFC (selective attention) showed discriminative
cortical responses as a function of the learned coherence levels.
Additionally, all groups showed an increased activity in ITC
only for the easy coherence levels suggesting an improvement
in color-motion binding. In hMT+, the increase spread of
neural response was shared by V and AVn, whereas selective
activity was seen for AV solely.

Furthermore, solely for AV, activity in multisensory cor-
tices (mSTS, pSTS) correlated with post-training perfor-
mances (see [2] for details); additionally, the latencies of these
effects suggested feedback from vlPFC to hMT+ possibly



Fig. 1. Multi-perceptual learning experiment undertaken during MEG acquisition (90 min). Left: Pre- and post-training task blocks consisting
of visual stimuli depicted on top-right. Three different groups of individuals performed either visual ( V), congruent auditory and visual (AV)
or incongruent auditory and visual (AVn) training. Top right: Two random dot kinematograms (green and red) were presented to the
individual. First, they moved incoherently during a period ranging from 0.3 s to 0.6 s. Then, one population of dots starts moving coherently
for 1 s. Next, the participant must press a button to decide whether the coherent dots population is red or green. The task difficulty was
varied by changing the proportion of dots moving in the same direction (easy level: 95 %, very difficult level: 15 %). Bottom right: Acoustic
stimuli delivered to individuals in the AV and AVn groups. In AV, an acoustic texture was designed to map the direction of coherent dots
point-by-point. In AVn, only white noise was mapped point-wise to dots.

mediated by temporal cortices in AV and AVn. Altogether, we
interpret our results in the context of the Reverse Hierarchy
Theory (RHT) of learning [6] in which supramodal process-
ing optimizes visual perceptual learning by capitalizing on
sensory-invariant representations, here, global coherence levels
across sensory modalities.

Fig. 2. Top-left: Topography of ERF obtained in response to the presentation
of incoherent visual RDKs is provided for the norm of gradiometers averaged
over 100 to 300 ms post-incoherence onset (n = 36 subjects). Top-right:
The corresponding current source estimates (MNE, dSPM) are provided. The
extent of a given label or ROI in source space was defined by thresholding the
dSPM estimates at the 90th percentile of all dSPM values. FEF: Frontal Eye
Field. IPS: Inferior Parietal Sulcus. pSTS: posterior Superior Temporal Sulcus.
AC: Auditory Cortex. mSTS: middle Superior Temporal Sulcus. ITC: Inferior
Temporal Cortex. Bottom: ROIs where activity is specifically increased (red)
or decreased (blue) in each group. Common changes are depicted in gray.

III. FUNCTIONAL CONNECTIVITY ANALYSIS

Whole brain fMRI BOLD data were collected on 36 individ-
uals on a 3.0 Tesla Siemens Tim Trio scanner using a gradient-
echo EPI sequence. Scans were acquired at every TR = 1.05 s
using the following parameters (TE = 30 ms, matrix size:
64×64, FOV=192×192 mm2, slice-thickness=6 mm). A single
run of N = 514 scans of rs-fMRI was collected in each
individual. The general pipeline we implemented for FC

analysis of rs-fMRI data is depicted in Fig. 3. Hereafter, we
summarize the most important aspects of each step.

A. Definition of Regions of interest

Regarding the ROI definition, we investigated two different
strategies. The first set of ROIs was informed by MEG data
and consisted of extracting 22 regions (11 in each hemisphere,
see Fig. 2 for the 20 ROIs on top of which we added the
vlPFC bilaterally) involved during perceptual learning in each
individual. Once identified in each individual, we extracted
the coordinates of these regions in the MNI space owing to
spatial normalization of anatomical MRI (aMRI) data and co-
registration of MEG data with the individual’s aMRI. Next,
spheres of 6-mm radius were defined around the centres given
by the above-mentioned coordinates to extract fMRI signals.

The second strategy relied on more brain regions
using the multi-subject dictionary learning (MSDL) at-
las. It has been designed over the last years in our
group [7]. It has 39 ROIs grouped in several resting-
state networks that cover the whole brain. It is available
in https://team.inria.fr/parietal/research.

B. Preprocessing steps

As detailed in Fig. 3, fMRI time series were spatially pre-
processed using a standard procedure: given the short TR
value, slice timing correction was not applied. Instead, the
scans were realigned for motion correction. Coregistration
with anatomy was performed to ensure good match between
anatomical and functional data. Spatial normalization was
performed using the DARTEL toolbox. Last, spatial smoothing
was applied to each volume using an isotropic Gaussian kernel
with FWHM = 6 mm.

The presence of noise in fMRI signals and the absence of
any experimental paradigm in resting-state recordings calls for
an accurate control of putative bias which results in misleading
connectivity between unrelated regions. To face this concern
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Fig. 3. Proposed pipeline for analyzing rs-fMRI data from pre-processings (temporal and spatial including normalization using DARTEL in
SPM12) to supervised classification (binary group comparisons like AV-V). The outcome of supervised classification allows us to unravel
the discriminant functional interactions between groups. This pipeline was implemented in Python language using the nipype interface
and the nilearn software (http://nilearn.github.io/).

and improve results consistency, one needs to appropriately
characterize and remove noise effects. Here, we defined a
general linear model to regress out confounds accounting
for head motion (3 translation and 3 rotation parameters per
frame) and their derivatives as well as a linear detrending
regressor to remove the global drift due to physiological and
thermal noises. Finally, the time series within each ROI was
band-pass filtered between 0.01 Hz and 0.1 Hz to reduce the
effect of the low frequency drift and the high frequency noise.

C. Functional connectivity metrics

We investigated the use of four different connectivity met-
rics to probe functional interactions between ROIs from rs-
fMRI data: Pearson correlation, sparse graph lasso, sparse
group-covariance matrix and tangent embedding. Hereafter, we
summarize these four estimators. We report the results we got
using tangent embedding since this technique was the most
accurate in terms of classification performance.

Consider regions i and j and denote by ρ the Pearson
correlation coefficient, then ρ =

Ci,j√
Ci,i

√
Cj,j

where covari-

ance matrix C is known to be well approximated with the
classical maximum likelihood estimator (MLE or “empirical
covariance” ie 1

NXTX if XN×p denotes the timeseries across
p ROIs), provided the number of observations (here N , the
number of scans) is large enough as compared to the number
of features (here p, the number of voxels or ROIs). In this study
when focusing on 22 ROIs only (p� N ), the MLE can be a
good estimator of the eigenvalues of the covariance matrix, and
the precision matrix obtained from its inversion (K = C−1)
may be accurate enough. However, when considering the
MSDL atlas p and N are of the same order of magnitude,
hence N < p(p+1)/2 and the performance of the covariance
MLE degrades. To avoid such inversion problem, one usually
resorts to the regularization of the precision matrix. The latter
is proportional to the partial correlation matrix which gives
partial independence relationship. Hence, if two features are
independent conditionally on the others, the corresponding
coefficient in the precision matrix will be zero. This is why it

makes sense to estimate a sparse precision matrix: by learning
independence relations from the data, the estimation of the
covariance matrix is better conditioned. As a consequence,
we tested the Graph-lasso estimator that uses an `1 penalty
to enforce sparsity on the precision matrix: the higher its α
parameter, the sparser the precision matrix K is:

K̂ = argminK
(
trCK − log detK + α‖K‖1

)
(1)

where ‖K‖1 is the sum of the absolute values of off-diagonal
coefficients of K. The algorithm employed to solve this
problem is the Graph-lasso algorithm proposed in [8].

We also tested the group-sparse covariance estimator which
consists of imposing the same structure of conditional inde-
pendence across subjects ie, the zeros in the different precision
matrices should be at the same positions. This was proposed
in [9] as a group-level extension of Graph-Lasso (1) by
penalizing precision matrices using a mixed norm.

Another possible construction of group covariance matrix
relies on the principle of maximum entropy, assuming that the
individual covariance matrices (Cs)

n
s=1 derive from a gen-

eralized matrix-valued Gaussian distribution [10] with mean
covariance matrix C∗. The discrepancy of each Cs from C∗

is measured by embedding the tangent space to the set of non-
singular covariances into symmetric matrices [11]:

∀s = 1, · · ·n : Log(C∗−
1
2CsC

∗− 1
2 ) (2)

where Log denotes the matrix logarithm. Upper triangular co-
efficients of this discrepancy matrix are connectivity features.

D. Scale-free brain dynamics as alternative descriptors

In a previous work [3], we measured Hurst exponents on the
same rs-fMRI dataset to assess the modulation of scale-free
(1/f power spectrum) brain dynamics induced by perceptual
learning. To this end, we used a univariate wavelet-based
estimator to fit the linear slope on the wavelet-based power
spectrum within the (0.01− 0.1) Hz range [12]. Technically,
we used Daubechies wavelets with 2 vanishing moments.
We already demonstrated that these exponents are relevant



features for classifying the type of training underwent by the
participants.

E. Connectivity-based classification

We used the logistic regression classifier to predict binary
outcomes and to compare each group pair such as (AV-
V). Input features are functional connectivity matrices (lower
triangular part of covariance matrix: p(p − 1)/2 components
per participant), yielding a feature matrix F = (fT1 , ..., f

T
n )T of

dimension (n, p(p−1)/2). Logistic regression is a linear model
where the weight vector w is estimated to fit the features F
to the participants group y = (y1, ..., yn)

T ∈ {0, 1}n as:

ŵ = argmin
w∈Rp(p−1)/2, c∈R

λ

2
‖w‖22 +

n∑
s=1

log(e−ys(fsw+c) + 1),

where λ controls the regularization, c is the intercept, and
ŵ are the estimated connectivity model coefficients to define
the specific group of a given participant s. High values in ŵ
can be interpreted as discriminative connectivity components
between groups.

In our experiments, functional connectivity metrics were
computed on the whole dataset. Then, each group pair of 24
individuals (taken out of 36) was split in training and test
sets. The training set was composed of subjects randomly
chosen in both groups with the same occurrence proportions.
The classifier was assessed by a cross-validation scheme: A
stratified-shuffle split loop with 100 iterations and a test fold
size of 25% of the whole dataset. Our implementation was
based on the scikit-learn package.

IV. RESULTS

We applied the different sparse inverse covariance esti-
mators to the 3 different groups of rs-fMRI data. In what
follows, we report the best results we obtained with respect
to our classification target, namely those derived from tangent
embedding FC metrics (2) and the set of MEG-informed ROIs.

A. Within-group FC patterns

Statistical significant FC patterns are depicted in Fig. 4
for each group. Globally, one can notice that only positive
interactions are retrieved in V whereas the converse finding is
observed in AVn. A combination of positive and negative inter-
actions is retrieved in AV. Importantly, left vlPFC is positively
connected to V4 and hMT+ in V and AV, respectively. This
confirms the particular role played by hMT+ in AV training.
We did not report such involvement in other groups. Surpris-
ingly, we observed significant negative interactions between
AC and V1/V2 in AV in the left hemisphere whereas positive
interaction is significantly recovered in V. This result may
seem inconsistent with our previous observation in MEG (see
Fig. 2) even though we have not performed FC analysis from
MEG data so far. As first outlined in MEG, here from rs-fMRI
data we also consistently observed the specific involvement of
pSTS, mSTS and ITC through negative interactions with other
regions in AV and AVn.

TABLE I
MEANS AND STANDARD DEVIATIONS OF PREDICTION ACCURACY (IN %)

OF AV-V CLASSIFICATION ON TEST SETS ACROSS FOLDS.

Tangent embed. Correlation Group sparse cov.

MSDL 82.0 ± 15.9 63.0 ± 17.1 61.7 ± 19.8
ROIs 86.0 ± 12.6 60.0 ± 18.3 72.3 ± 15.1
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Fig. 5. Classification performances on functional connectivity mea-
sures (based on tangent space estimator) and wavelet-based Hurst
exponents as input features to discriminate pairwise groups (AV-V,
AV-AVn and V-AVn). Median is depicted in dashed line, quartiles in
dotted lines.

B. Between-group comparisons

Instead of reporting two-sample t-test for group comparison,
we performed supervised classification to predict the type
of training the individuals received from their FC features.
In addition to the prediction accuracy, the logistic regression
model permits to highlight between-group functional connec-
tivity differences that are statistically significant.

Table I summarizes the results we got for AV-V comparison
using different connectivity metrics and atlases (see Fig. 3). It
illustrates that the optimal combination is achieved by using
the selected ROIs as atlas and the tangent embedding as a
connectivity metric. Fig. 5 shows the prediction accuracies1

for the 3 pairwise group comparisons, either by tangent
embedding metric and wavelet-based Hurst exponent estimates
computed over the same frequency range (0.01-0.1 Hz), see [3]
for details. We observed similar trends: the AV training type
is easier to discriminate from others. Interestingly, prediction
accuracies based on FC features are improved by more than
15 % for every group comparison as compared to those relying
on Hurst exponent estimates.

Beyond such improvements in terms of classification per-
formance, statistically discriminative weights between V and
AV in the logistic regression model are shown in Fig. 6. For
ease of visualization, we provide both matrix and connectome
views, the latter being a thresholded version of the former.
When focusing on the connectome view, we observed that
positive interactions are inter-hemispheric whereas negative
ones are stick to the left hemisphere. Strikingly, the bilateral
FEFs seem to bring the most salient FC differences between V
and AV. Indeed, stronger interaction (in red) between hMT+
and FEF in AV might corroborate the selective increase of

1Box plots show the median and quartiles over 100 stratifications.



Fig. 4. Statistical significant functional interactions (positive and negative values are color coded in red and blue, respectively) within each
group of individuals (V, AV and AVn from top to bottom), Bonferroni-corrected for multiple comparisons at α = 0.05.

Fig. 6. Significant connectivity-based discriminative weights for the AV-V
classification task. Positive/negative (red/blue) connections quantify between-
group differences. Respectively, higher/lower connectivity in AV than V. Top:
Matrix view with positive/negative weights. Bottom: Connectome view where
only the most salient pairwise interactions are displayed. We observe that
hMT+ is coded as MT. lh/rh stand for left and right hemispheres.

activity in hMT+ we observed on MEG data for this group.
Also, larger covariation (in red) between FEF and AC in AV
might reflect some binding mechanism between visual and
auditory modalities that was trained in AV and not in V.
The lower covariation (in blue) we found between V4 (color-
form selectivity) and vlPFC (selective attention) in AV is
compatible with the RHT since the individuals who performed
purely visual training strengthened their connections between
visual sensory inputs and decision-making areas. On the other
hand, in the matrix view one can check that individuals in
AV strengthened their connectivity betwen hMT+ (supramodal
coherence selectivity) and vlPFC, which is a specificity of
supramodal learning.

V. CONCLUSION

In this paper, we developed a functional connectivity anal-
ysis pipeline for rs-fMRI data that embeds different spa-
tial/temporal preprocessings, different ROI definitions, com-
plementary metrics for measuring interactions between regions
and finally supervised classifiers. We assessed this pipeline
on a MEG/fMRI dataset composed of 36 individuals who

learned a visual discrimination task using either uni- or
multi-perceptual training. We demonstrated that the prediction
accuracy of auditory-visual training was reached with a rate
of about 83 % as compared to purely visual training. This
clearly outperforms our recent study [3] using Hurst exponents
as input features to the classifier. Our results were achieved by
optimally combining some specific pre-processings (DARTEL
normalization, ...), the definition of MEG-informed ROIs and
use of tangent-embedding FC metrics and logistic regression.
They suggest the investigation of optimal combination of
scale-free brain dynamics with pairwise interactions as pro-
posed in the fractal connectivity model [13].
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