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Abstract

A group of animals is a typical active matter system, whose behaviour can be understood from the
perspective of statistical physics.

Here we studied the behaviour of zebrafish experimentally. We developed a novel algorithm
to extract fish locations from 2D images. By incorporating images captured from synchronised
cameras, we calculated the 3D locations of individual fish in a group. The data-processing pipeline
developed in this work allows the trajectories of the fish being recovered from the coordinates. We
then analysed the collective behaviour of the zebrafish by different correlation functions. We find
the macroscopic states of the fish can switch between ordered and disordered. The changing states
of the fish is dominated by a dynamical length scale as well as a structural length scale. More
specifically, the polarisation of fifty zebrafish correlate robustly with a dimensionless number, the
ratio between the persistence length and the nearest neighbour distance of individual fish.

To understand the observed zebrafish behaviour, we proposed different models to fit the density
distribution of the fish as well as the dynamics of the fish. For the spatial distribution of the fish,
our model highlights the fish-environment interaction, that dominates the behaviour of small groups
(N < 5), and the fish-fish interaction, that dominates the behaviour of large groups (N = 50). For
the dynamics of the fish, our model revealed the importance of the orientational inertia for the fish
individuals, and the alignment interaction between the fish.

Finally, we applied the established methods to biology, and studied the behavioural feature of the
col11a2 mutant zebrafish, whose genetic modification is related to human diseases. The col11a2
mutant zebrafish individuals exhibited slower re-orientation, corresponding to a higher activity.
Consequently, a group of col11a2 mutant zebrafish exhibited more ordered behaviour, compared to
the wildtype zebrafish. The linkage between the individual behaviour and the collective behaviour
of the col11a2 mutant zebrafish can be explained by our proposed active matter model.
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Chapter 1

Introduction

This thesis will discuss the collective behaviour of zebrafish. And we will
start the thesis by describing the individual terms of our topic.

1.1 Collective Behaviour
When objects were densely-packed together, interesting phenomena appear.
And we could call these phenomena as the collective behaviour of these
things. The collective behaviour is interesting because “more is different”
[5]. In other words, the behaviour of a large group can not be predicted,
even if we know precisely the fundamental laws for the individuals.

An example to illustrate the complexity of collective behaviour, is a col-
lection of randomly packed balls. When we randomly pack a lot of plastic
balls together, they packed together like those in Fig. 1.1. These plas-
tic balls, often modelled as hard spheres, have a simple property that two
spheres can not be too close so that they overlap. Surprisingly, the accurate
prediction of the density (expressed for example as the volume fraction) of
the randomly packed hard spheres is still unachieved1 1 The latest progress about this

problem was made by Zaccone [6].
But the proposed solution received
many criticisms [7–9].

[6, 10]. In addition,
the well packed hard spheres form a collection of clusters with different ge-
ometrical features. In Fig. 1.1 two different clusters were highlighted. The
prediction of the geometrical features is still a challenging problem [11, 12].

The collective behaviour of objects with varying lenght-scales were stud-
ied, from atoms, to colloids, animals, as well as human beings [13–17]. The
interesting feature of their collective behaviour is the transformation from
one phase to another under different conditions [18]. For instance, the
water could change between the fluid phase and crystal phase under dif-
ferent temperatures. These behaviours are often noted as phase behaviour,
and summarised by phase diagrams. The phase diagrams of systems in
equilibrium have been systematically studied. However, the equivalent in
non-equilibrium systems were less studied, and they will be introduced in
chapter 2.

Figure 1.1: A photo of ran-
domly packed plastic balls.
The photo was taken by the
author.

1.2 Zebrafish
Zebrafish (Danio rerio) is a small fish living mainly in India and Bangladesh,
as well as in areas of Pakistan, Nepal, and Myanmar [19]. These fish are
social animals that form small groups in the size of tens in still water [20]. In
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rivers with faster flow, the group size could be thousands [21]. The photo of
a typical adult zebrafish is shown in Fig. 1.2, with the characteristic stripes
of this species. Placing a group of these fish together, they will interact
with each other, and often form a coherent group. These behaviours are
what we will be studying through out this thesis.

~ 30 mm

Figure 1.2: The photo of an
adult zebrafish. The photo
was taken by the author.

Zebrafish receive attention from the scientific community, because they
present a good animal model for different human diseases. Being a verte-
brate, the genome of zebrafish is similar to that of human beings [22]. In
addition, the embryo of zebrafish, as well as the zebrafish larva are trans-
parent [23], making microscopic observation of cellular behaviour very easy.
With the help of zebrafish, we could study common diseases such as the
osteoarthritis [2, 24], autism [25], and cancer [3]. The appeal of zebrafish as
an animal model makes them being widely used in different institutions[26].
Practically, the zebrafish in the laboratory were kept in a standard con-
dition for many generations [27]. These fish are less likely to suffer from
common diseases and parasites, comparing with wild captivated fish [26].
These fish are good for behavioural experiment as their living condition are
controlled, which makes repeating experiments easy. In this thesis, all the
zebrafish were bred at the fish facility of the University of Bristol.

There are multiple reasons to study the collective behaviour of the ze-
brafish. The first reason is technical. The fish naturally swim in the river,
where they can change their depth every now and then. Observing the fish
swimming in a three dimensional (3D) space requires advanced tracking sys-
tem. The design and construction of such 3D underwater tracking system
is a technical challenge. And it is meaningful to solve this challenge. In ad-
dition, understanding the behaviour of zebrafish could help us differentiate
the states of the fish. And we will have predictive power about the fish be-
haviour, if we could construct a phase diagram of the fish. Finally, we may
study the behavioural difference of the mutant zebrafish, to understand the
consequences of genetic modifications.

1.3 Thesis Structure

In the next chapter the ideas of active matter and the collective behaviour
of animals will be discussed. We will draw the similarity between a group
of animal and a group of synthetic particles under constant energy input.
Typically, we will stress the complex patterns formed by the animals. The
statistical analysis of these patterns will be discussed, as well as some math-
ematical models that explained the behaviour.

The following two chapters, chapter 3 and 4, will address the techni-
cal challenges for the construction of a 3D fish tracking system. Firstly,
the method to record the 2D movements of the zebrafish will be discussed
in chapter 3. The important element in chapter 3 is the image processing
methods, which enables us to extract features from the images. The density
distribution of the fish in a quasi-2D environment will also be discussed in
chapter 3. Then we will move to chapter 4, which discussed the construc-
tion of a 3D tracking system. This chapter will mainly feature different
algorithms to calculate the 3D locations of the fish, following the ideas of
multiple view geometry. The experimental results of 3D tracking will also
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be discussed in chapter 4.
The tracking system will first produce the coordinates of the fish, which

provides the information about the structure of the fish group. To study
the dynamics of the fish, the coordinates needs to be linked into trajectories.
The linking method will be introduced in chapter 5. From the trajectories,
we can study the structure and the dynamics of the fish with analytical
methods developed in the active-matter community. The analysis includes
the calculation of different quantities that capture the essence of the fish be-
haviour, as well as the calculation of the correlations of different quantities.
These analytical methods will be introduced, and applied to the experimen-
tal data. As a result, an important behavioural feature of the fish will be
revealed in the end of chapter 5.

To further understand the fish behaviour, typically the analytical results,
we will try to construct models that reproduced the behaviour. We will
model the fish as identical agents following certain rules. We will make the
model behave like the real fish, by adjusting the model parameters to match
the analytical results. The fitted model will then serve as explanations for
the observed results. Specifically, we will try to understand the density
distribution of the fish, as well as the dynamics of the fish with different
models.

Afterwards, we will move to a more biological topic and discuss the
behaviour of zebrafish after genetic modification. In chapter 7, the collective
behaviour of the mutant fish will be reported and compared against the
normal, wildtype zebrafish. The mutant fish have a longer orientational
relaxation time compared with the wildtype fish. The change in the single-
fish property will affect the collective behaviour of the fish, making a group
of mutant fish exhibiting more ordered movement, which can be explained
by an active matter model from chapter 6.

Finally, we close the thesis with a conclusion that summarised all experi-
mental observations, analytical results, as well as the models, and discussed
possible future tasks to further improve our understand of the zebrafish
behaviour.
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Chapter 2

The Collective Behaviour of
Animals as Active Matter

We declare that the splendour
of the world has been enriched
by a new beauty: the beauty
of speed.

F. T. Marinetti
Manifesto of Futurism

2.1 Active Matter
This chapter would discuss the collective behaviour of active matter, fo-
cusing on the behaviour of animals. The term active matter refers to a
class of non-equilibrium systems, whose constituting individuals constantly
consume energy to generate systematic motion [28]. These individuals are
called active particles, and they often propel themselves along the direction
of their orientations [29].

2.1.1 What is the activity?Lik
ely

Rar
e

Figure 2.1: The trajectory of
a single active particle, which
breaks the time-reversal sym-
metry. The arrow in the cir-
cle represents the orientation
of the particle, the direction
of the self-propelling force.

Active particles are different from their passive counterpart in equilibrium
systems, because of their “activity”. The activity could be defined, roughly
as the ratio between the deterministic, self-propelling movement, and the
stochastic movement from thermal fluctuation. The self-propelling move-
ment breaks the time-reversal symmetry (TRS), making the movement of
active particles special [30]. One example of how one active particle breaks
the TRS is shown in Fig. 2.1. The self-propelling particle, represented by
the circles in Fig. 2.1 would have an orientation vector, illustrated by the
arrow Fig. 2.1. This orientational vector is an internal degree of freedom of
the particle, like a spin carried by the particle. The particles would gener-
ate motion in the direction of their orientation vector, being self-propelling.
An active particle is more likely to form a trajectory, where the particle
is always moving along its orientation, rather than moving against its ori-
entation. For instance, the orange line in Fig. 2.1 is more likely to be the
trajectory of an active particle that is moving upwards, because the orien-
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Pe=0 Pe=10 Pe=20

η=1.0 η=0.4 η=0.2

Figure 2.2: Trajectories of Ac-
tive Particles. Top: the trajectories
of active Brownian particles (ABP)
with different Péclet numbers (Pe).
Bottom: the trajectories of Vicsek
agents with different noise (η) val-
ues. Each subplot presents the sim-
ulated trajectories of 10 particles.

tations of the particle are pointing at similar directions. It is very unlikely
to observe a particle to form such trajectory by traveling from upper right
to lower left, if the particle is active2 2 It is still possible for the rare

situation to happen, but the mo-
tion had to be driven by random-
ness. For instance, an active col-
loids might move against its pro-
pelling force, because of the random
kicks from solvent molecules.

. In the absence of activity, where the
particle is in equilibrium, the two different options in Fig. 2.1 would have
the same probability.

The Péclet number (Pe) is often used to quantify the activity of the
particles [31]. It is defined as the ratio between the driven, deterministic
motion, and the random, diffusive motion. It is easy to grasp the effect of
activity visually, by inspecting the movement of particles with different Pe
values. The trajectories of these particles were plotted in Fig. 2.2. When
Pe = 0, the particles perform Brownian motion [32], and they explore a
smaller area in the space, having very zigzag and twisted trajectories. As
the value of Pe increased, the trajectories appear more straight, and the
particles explore more spaces.

An alternative way to keep track of the activity, is to specify the ran-
domness directly. For instance, we could rotate the moving direction of
the active particles randomly, to interrupt their otherwise ballistic self-
propelling movement. A system with large noise value therefore would have
a low Pe number, hence low activity. The effect of the noise is shown in
Fig. 2.2. When η = 1, the rotation is totally random, corresponding to the
situation when Pe = 0. By reducing the noise, the particles explore more
spaces, being more active.3 3 It is important to emphasise that

the noise term η is exclusively used
for the Vicsek model, without being
referred to as the activity.2.1.2 What does active matter do?

The reason we focus on the two aspects of the activity, is related to the
two famous models for the active matter. One of the model is the active
Brownian particles (ABP), where the active particles interact with each
other via a short-ranged repulsive interaction. The activity of the active
Brownian particles is often represented by the Péclet number [29, 33, 34].
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Figure 2.3: Two types of com-
mon phase diagrams of active mat-
ter. (a) The phase diagram of
active matter systems where the
short-range repulsive interaction is
dominating. These systems ex-
hibit liquid-gas separation at high
level of activity. (b) The phase
diagram of active matter systems
where the velocity-alignment inter-
action is dominating. These sys-
tems exhibit a flocking transition at
high activity levels and large den-

sity values.
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Another widely used model for active matter is the Vicsek model, where
the active particles align their orientations with nearby neighbours. The
activity of particles in the Vicsek model is often controlled by the noise
term η [35–37].

These two models revealed two important phase44 We committed to follow Toner
et al., calling the non-equilibrium
steady state with an underlying
symmetry a “phase”. In the ac-
tive matter community, this usage
of the term “phase” is widely ac-
cepted.

behaviours of active
matter, which are summarised in Fig. 2.3. It is important to stress that the
two phase diagrams are sketched in a qualitative way, and some details are
ignored. Nevertheless, the phase diagrams are consistent with simulations
results, for both 2D and 3D systems [34, 35, 39–41].

For the active matter system whose interaction is dominated by short-
range repulsion, its behaviour can be summarised in Fig. 2.3 (a). While the
activity is low, the system forms a fluid with a uniform density distribu-
tion, like the behaviour of hard disks (in 2D) [39, 42, 43] or hard spheres
(in 3D) [12, 34, 39]. With high activity values, the active particles be-
gin to phase separate into high density “liquid” and low density “gas”, a
phenomena known as the mobility induced phase separation (MIPS) [34,
44–46]. MIPS is reminiscent of the liquid-gas coexistence in equilibrium
systems with attractive interactions [47–49]. This similarity is indeed sur-
prising: the activity seems to cause an effective attraction between particles
[34]. The apparent attractive interaction could be explained by a feedback
loop, where the active particles slows down when they accumulate, and the
slowing down also induces accumulation of more particles [45].

On the other hand, for active particles that align their orientation with
nearby neighbours, instead of repel each other, their phase behaviour could
be summarised in Fig. 2.3 (b). In the low activity and low density region,
the particles perform disordered movements like the ideal gas. However,
with increasing activity and density, the system would undergo an order-
disorder transition55 The transition is also called

the flocking transition in some lit-
eratures [50, 51]. The phenom-
ena where particles perform ordered
movement is sometimes called flock-
ing [52, 53].

, where all the particles would share the same moving
direction, with slight perturbations from the rotational noise [35, 40]. The
ordered phase in Fig. 2.3 (b) could further be divided into two distinct kinds.
When the activity is moderate, the active particles “travel in bands” [54],
featuring dense stripes separated by dilute regions, as shown in Fig. 2.3
(▷). With high activity, the particles do not travel in bands, but rather
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form a coherent cluster, shown in Fig. 2.3 (⋄). The banding phase is an
important structural feature of active matter with alignment interactions,
which is observed in colloidal experiments [33, 55, 56].

There are more types of interactions beyond repulsion and alignment.
Active matter with more complex interactions exhibits rich behaviours. For
instance, the incorporation of pairwise alignment, short-ranged repulsion,
and long-ranged attraction leads to a complex phase behaviour including
the fluid, the moving crystal, as well as the polar bands [33]. The combina-
tion of short-ranged repulsion, and dipole-dipole interaction coupled with
an alternating current electric field leads to the formation of labyrinth-like
patterns [57]. In addition, the vision-based acceleration could lead to the
formation of a cohesive cluster [58], as a new mechanism beyond of pairwise
attraction and MIPS.

It is important to point out that there are topics of active matter that are
not covered in this section. For instance, we did not discuss the apolar active
matter with nematic alignment interaction [41, 59, 60]. In addition, the
effect of activity on the crystallisation [43, 61, 62] and glass transition [63,
64] is not discussed. We also downplayed the importance of dimensionality,
which changed the phase diagram of significantly [62, 65].

Finally, we want to specify the meaning following terms, because they
were originally developed in equilibrium statistical mechanics. And applying
these terms for active matter could cause confusion.

Phase
The non-equilibrium steady state with an underlying symmetry,
for systems in the thermodynamic limit where the number of
particles →∞.

Microscopic State
Here we refer to the locations, velocities, and orientations of all
the active particles.

Macroscopic State
Here we refer to a few global variables, like the density and
activity, for an active matter system.

Collective
We use the term to specify the property exhibited by a group of
animals, in contrast to the property exhibited by individuals.

Collective Behaviour
The macroscopic states exhibited by an active matter system.

Collective Motion
The microscopic states of an active matter system.6 6 For a group of fish, we can directly

observe their collective motion, and
study their collective behaviour by
further analysis.

It is notable that the meaning of these terms is different in different fields.
But they will be consistent in this thesis.
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2.1.3 Animals as Active Matter

A group of animals is a typical active matter system, as each individual
spends their energy to perform movement [28]. Consequentially, the two
typical phase behaviour of active matter, presented in Fig. 2.3, has been
observed in animal groups. For instance, the MIPS-like behaviour, where
a dilute region and a dense region coexist, was observed in a group of bee-
tles [66]. In addition, European Starlings exhibit ordered movement [67],
while the midges exhibits the disordered movement [68]. From a group of
zebrafish, we also observed the order-disorder transition [1], which will be
discussed in chapter 5.

There is an implicit paradigm to study the active matter system in the
scientific community [69], which includes three steps. Firstly we observe the
behaviour of real animals and calculate their behavioural features. Then
we simplify the animals with a mathematical model that captured all the
essential features [70]. Finally we study the model either numerically or
analytically, to have a comprehensive understanding. An example of this
approach, was recently demonstrated by Bull and Prakash with a trilogy7

7 The authors explained their work
in a serious of helpful tweets [72].
A tweet is a text snippet people
posted on a website named “Twit-
ter”.

on the movement of cilia [71, 73, 74]. It is important to stress that the
research on active matter does not always follow the order of “observation,
model, and theory”, even though we will review the literature in such order.

2.2 The Observation of Animal Behaviour
Observing the collective motion of animals is a visually pleasing task, since
a group of animals could from striking patterns in nature [75]. It is expected
that animals could do more interesting things, compared with the behaviour
of simple active matter systems introduced in section 2.1.2. This is because
the interaction between the animal individuals is based on vision [76], sound
[77], and smell [78]. All of these biological sensors makes the interaction
of animals being more complex than a combination of repulsion and the
velocity alignment.

2.2.1 Complex Patterns Seen in Nature

Even the visual footages of the animal behaviour, like the photos and the
videos, are useful information. For instance, the early active matter models
were aiming at simulating the movement of animals with visual similarity,
rather than quantitative agreement [35, 79, 80]. Two typical complex pat-
terns commonly seen in the nature were presented in Fig. 2.4. The first kind
is flocking birds, which from a coherent cluster with a smooth but irregular
shape (Fig. 2.4, left subfigure). Another kind of pattern were formed by
a school of fish, where the fish rotates around a common axis collectively
(Fig. 2.4, right subfigure), exhibiting a “milling” behaviour.

2.2.2 Observing the Collective Motion in 2D

To understand the animal behaviour in more detail, it is important to go
beyond the visual inspection, and perform quantitative measurement. One
popular option to study animal behaviour is to analyse videos, recorded
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Figure 2.4: Photos of complex
patterns formed by animals. Both
photos were distributed under the
Creative Commons Licence. Left:
the murmuration of flocking Eu-
ropean starlings. Each dark dot
represents a bird. The photo was
taken by Walter Baxter in Eye-
mouth, Scotland. Right: a school
of prey fish forming a circle, as a
defensive move against two nearby
butterfly fish. The photo was taken
by an Internet user named “life-

fish”, a semi-pro photographer.

with conventional cameras, which capture the movement of animals in 2D.
Both the flocking behaviour and the milling behaviour, shown in Fig. 2.4,
were observed from these 2D videos. For examples, there are analyses on
the behaviour of locusts [81, 82], fish [15, 83–85], penguins [86, 87], and
many other animal species [88–91].

As a well developed experimental technique, the 2D tracking of animals
is an easy task. There are multiple free and user-friendly softwares avail-
able online, enabling researchers to carry out 2D tracking tasks [92–95].
The performances of various tracking softwares were quantified in a recent
comprehensive review [96]. In addition to cameras, there are alternative
technologies for the study of animal behaviour. For instance, Makris et al.
used a waveguide remote-sensing technology to record the density distri-
bution of fish shoals at the scale of kilometers [97, 98]. The GPS is also
another option to tag individual animals, and obtain trajectories [99].

2.2.3 Observing the Collective Motion in 3D

The idea of tracking the movement of animals in 3D, with the help of cam-
eras, was proposed early in the 1960s [100, 101]. The fundamental princi-
ples to carry 3D tracking were covered by the multiple view geometry in the
computer vision community [102]. Very briefly, the picture in one 2D image
offered two constraints on the 3D coordinates of an object. Therefore, 3D
coordinates can be determined with images from two or more cameras [103].
Figure 2.5 sketched an example for this idea.

Figure 2.5: Schematic illus-
tration for locating a zebrafish
in 3D with two cameras.

Even though the idea is simple, setting up a 3D tracking experiment and
obtaining long trajectories of multiple animals are still challenging [104].
Multiple new algorithms have been proposed to tackle the various issues
during the tracking process. These issues includes the calibration of camera
during field study [103, 105], the visual occlusions where two animals overlap
in the image [106], the ambiguity for the stereo matching of trajectories in
multiple views [107], and the recovery of identity information given the
coordinates in different time points [108, 109].

Despite the technical challenges, the 3D tracking of birds [103, 110–112],
insects [113–117], as well as fish [1, 118, 119] were reported. For the birds,
the order “flocking” phenomena were observed in [67, 105, 110, 120]. For
the midges and the fish, the observed movements were disordered [1, 68,
116].
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There are still two major technical challenges for the 3D animal tracking
problem. Firstly, it is very hard to track a large flock of birds for a long time,
because the flock would move outside the view of the cameras quickly. This
is the reason some of the large scale statistical analysis are only performed
on midges [121], rather than the birds88 I was told that the lack of long

trajectory is the reason why the
author of [121] chose midges over
birds.

. There is a recent breakthrough to
track birds for a long period of time, by moving the cameras in a synchro-
nised fashion [122], but no experimental results were reported from the new
system so far. Another challenge is the 3D tracking of a large school of fish
in the sea, which requires underwater equipments. In fact, there is still no
quantitative field observation for the a large amount of fish in the milling
phase, like those in Fig. 2.4. Recently, the underwater 3D tracking methods
were being developed [123, 124], but only for fish groups with small sizes
(N < 10).

2.3 The Analysis of the Collective Motion
Analysing the animal movement involves two major steps. Firstly, we need
to identify the different kinds of behavioural patterns of the animals, and
assign the patterns to different phases. For patterns in a particular phase,
we can study its feature with different correlation functions.

2.3.1 Identifying Behavioural Patterns with Order Param-
eters

This classification of different phases is important, because different phases
have different properties. We can use an order parameter, which indicates
the breaking of one kind of symmetry [18], to identify different phases. For
instance, we could define the vector sum of the orientation of each individual
as a order parameter (P) [35]:

P =
1

N

N∑
i

oi (2.1)

where oi is the orientation of the ith individual in a group with N mem-
bers. We use symbol Φ to represent the norm of the vector P. For a very
large group, the value of Φ would approach zero if the orientations of the
individuals were completely de-correlated. On the other hand, the value of
Φ would tend to unity if all the individuals have the same orientation. In
the latter case, the rotational symmetry is broken because the group has
one single moving direction, where the vector P is pointing at. The order-
disorder transition in Fig. 2.3 (b) is characterised by a discontinuous change
of Φ. For a flock of birds moving towards the same direction, the value of
Φ ∼ 1 [111]. For a swarm of randomly moving midges, the value of Φ ∼ 0
[68].

Φ

Figure 2.6: The schooling,
milling, and swarming phases
described by two order param-
eters. The parameter Φ in-
dicates the degree of synchro-
nised movement, while the pa-
rameter M indicates the exis-
tence of collective rotation.

The milling behaviour of the fish, shown in Fig. 2.4, needs a different
order parameter that focuses on the angular momentum of each fish. This
order parameter is written as,

M =
1

N

∑
i

(
oi ×

ri − c
|ri − c|

)
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where ri represent the location of the ith individual, and c represents the
location of the group centre. Again, we use the symbol M to represent the
norm of M. For a group of fish that are rotating around a common axis,
the value of M would be close to one [80, 125]. For the system that does
not perform the collective rotation, the value of M would approach zero.

With the two order parameters, the behavioural pattern of the fish, as
well as other species, could be categorised into the swarming, the milling,
and the schooling phases, as shown in Fig. 2.6. The existence of these phases
were observed in the a group of golden shiners (Notemigonus crysoleucas)
[126]. Operationally, establishing the order parameters helps the identifica-
tion of the phase that the experimental data (or simulation results) belongs
to, without visual inspection.

Inside each phase, we could study its feature by examining the correla-
tions in the time and in the space [127]. The spatial correlations gives us
information about the structure of the animal group, while the temporal
correlations reveals the dynamics of the system.

2.3.2 Probing the Structure: the Radial Distribution Func-
tion

The radial distribution function (RDF)9 9 The radial distribution function
is also named g(r), which is read
as the “g of r”. We use the term
RDF and g(r) interchangeably in
this thesis.

can be used to reveal the structure
of the animal group. An example of the RDF, also known as the g(r), is
shown in Fig. 2.7 (d). This RDF probes the structural features of a system
shown in Fig. 2.7(a). The value of g(r) at very short range is zero, which
represents the short ranged repulsion. The location of the peak of the g(r)
is a proxy to the nearest neighbour distance, while the height of the peak
indicate the cohesiveness of the group [128]. The slow decay in Fig. 2.7
shows the presence of large clusters in Fig. 2.7(a). The size of these large
clusters can be captured by the r value when g(r) decays to zero. This
distance value is called correlation length of the density ξρ.

Notably, the RDF is an important tool for the study of the fluid in
equilibrium, because it determines the thermodynamic behaviour of the
system [128, 129]. For instance, the internal energy, the pressure, and the
compressibility can be calculated from g(r). However, this validity does not
hold for animal groups due to their non-equilibrium nature10 10 Recent study suggested that the

g(r) can be used to calculate the
compressibility for active Brownian
particles [130].

. Nevertheless,
the RDF is still a very useful tool to characterise the structure of animal
groups, which had been applied to study the fruit flies [90], birds [131], the
fish [132], and the penguins [87].

Finally it should be mentioned that the g(r) is a two point correlation
function, which is not aware of the possible many-body correlations. It was
recently revealed by Kürsten et al. that higher order correlations are impor-
tant for the alignment dominating system [133], typically the ordered phase
in Fig. 2.3 (b). The measurements of higher order correlation functions is
rare in the study of animal behaviours, but the tools are available in the
studies of liquid [134–136]. Biologically, the existence of high order struc-
ture would be expected. For instance, the formation of the typical V-shape
pattern [137] for a flock of geese could not emerge as a result of simple
pairwise interaction.
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Figure 2.7: Examples of common
correlation functions and the struc-
ture/dynamics that they probe. (a)
The coordinates of 256 particles
with short-ranged repulsion and
alignment interaction. (b) The ori-
entation of the particles in (a) rep-
resented as arrows located at their
corresponding coordinates. (c) A
time series signal of quantity A.
(d) The radial distribution function
(g(r)) calculated from the model
that generated (a) and (b). (e)
The connected correlation function
of the orientations of particles cal-
culated from the model that gen-
erated (a) and (b). (f) The auto-
correlation function of the signal

shown in (c).

Implicit Assumption of the Pairwise Distance r

Using the scalar variable r in a correlation function, we implicitly
assumed two conditions. Firstly, the interaction of two particles only
depends on their relative distance. In other words, the interaction
should be spherically symmetrical. In addition, we assume the sys-
tem is isotropic with translational symmetry. Therefore, shifting two
particles together would not affect their interaction. Without these
assumptions, the correlation should be changed from g(r) or C(r) to
g(r1, r2) or C(r1, r2).

2.3.3 Probing the Dynamics: the Correlation function of
Orientation

For a group of animals, as well as other active matter systems, their dy-
namical features are important. To characterise the dynamics, we can cal-
culate the correlation of the orientations (o) of each animal at different
distances (r). An example of such a correlation function, Co(r), is shown in
Fig. 2.7 (e), which characterised the local alignment of particles in Fig. 2.7
(b). These particles are shown to align with nearby neighbours, exhibiting
a positive value in the correlation value at short distances. The correla-
tion function reaches 0 at a distance ≈ 5σ, corresponding to the correlation
length of orientation (ξo = 5σ). If we compare the correlation functions from
both Fig. 2.7 (d) and (e), it is obvious that the two correlation lengths, ξρ
and ξo, are similar. This means the large clusters in Fig. 2.7 (a) and (b)
move together, thanks to the local alignment of particles which leads to
effective attraction.

Orientational correlation functions are widely applied in the study of an-
imal behaviour, particularly for systems where alignment is the dominating
interaction. For instance, the orientational correlation functions of midges
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[68, 138], fish [1], and birds [67] have been reported, presenting short or long
ranged orientational correlations.

This function is important also because its integral,
∫
Co(r)dr, is re-

lated to the susceptibility (χ) of the animal orientation under an external
perturbation, under two assumptions. Firstly, the alignment interaction
should dominate the animal behaviour, so that the energy11 11 The “energy” in Eq. 2.2 (E :

RN×d → R) is effectively a func-
tion that maps the d dimensional
orientations of N individuals to a
probability weight. It is more likely
to observe an animal group with a
lower energy value.
Notice the similarity of Eq. 2.2 to
the energy function (the Hamilto-
nian) to those in magnetic systems,
for instance the Ising model and the
spin glass [139, 140].

of the system
E follows,

E = −
∑
i,j

Jij(oi · oj)− h
∑
i

oi (2.2)

where oi is the orientation of the ith member in the group, Jij is a cou-
pling constant for a pair of member i and member j, and h represents the
effect of an external field affecting the individuals’ orientations. With the
energy term, it is further assumed that the system is in equilibrium, where
the entropy is maximised [141], so that the probability of the system in a
microscopic state with energy E is,

P (E) =
exp(−βE)∫
exp(−βE)

,

where the integral in the denominator yields the partition function of the
system. These two assumptions ignored many biological details of the ani-
mals, but were confirmed to fit the experimental data [141].

Acknowledging the two discussed assumptions, the relationship between
Co(r) and χ = ⟨∂Φ/∂h⟩ can be derived with the linear response theory12

12 The susceptibility can also be
obtained from the fluctuations of
the polarisation order parameter
(|P|). Practically, estimating the
susceptibility with

∫
Co(r)dr is bet-

ter for experimental data, because
this route suffers less from mea-
surement error and finite trajectory
length [115].

[68, 140]. The susceptibility is biologically important, because it could be
related to the ability of each individuals to change their moving direction,
under the influence of a predator (which generates the field h in Eq. 2.2).
And it is been utilised in the study of midges by different research groups
[68, 142].

2.3.4 Probing the Dynamics: the Auto-Correlation Function
Another way to probe the dynamics of the system is to calculate the auto-
correlation13 13 The prefix “auto” comes from

Greek word autos, which means
“self” [143].

function (ACF). We use the notation CA(t) for the ACF for
quantity A, whose value typically fluctuates at different time points, like
the signal in Fig. 2.7 (c). The corresponding CA(t) is shown in Fig. 2.7 (f),
which decays from one to zero. The value of CA(t) indicates the average
similarity of the signal to itself after some lag time t. The auto-correlation
function in Fig. 2.7 (f) indicates that the system forgets its microscopic
state, characterised by A, after 50 δt (the time unit). This timescale is
called the relaxation time, noted by τA. Knowing the values of relaxation
time for different features let us grasp the dynamics of the system, typically
for the identification of fast process and slow process. For instance, the
orientational relaxation time of the fruit flies [90] and fish [144–146] were
estimated from the ACFs.

Beyond the determination of relaxation time, the ACF is important
because its integral relates to the transport coefficient, a relation known as
the Green-Kubo formula [69, 147]. For instance, the integral of the ACF
of the velocity (v),

∫
Cv(t)dt yields the diffusion coefficient. However, this

relation requires the collective motion of the animals, treated as a stochastic
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Figure 2.8: Examples of special
correlation functions to characterise
animals. (a) The illustration of
a topological interaction, where a
highlighted focal bird interact with
7 nearby neighbours, regardless of
the distances. This topological in-
teraction is supported by correla-
tion function Cγ(n). (b) The sketch
of a leading bird and a following
bird. The following bird will align
with the leader, after a short lag
time. The leadership is supported
by correlation function Cij(t). (c)
The anisotropy correlation func-
tion Cγ(n) of the European star-
lings. The data was obtained from
[120]. (d) The orientational cross-
correlation function Cij(t) between
a pigeon and its group members.
The data was obtained from [110].

(a) (b)

(c) (d)
Future

Future

Leader

Follower

process, to be second-order stationary, where the ACF does not change with
time. In chapter 5, we will see that this assumption is not true for the fish,
as the Co(t) of 50 zebrafish changes with time.

2.3.5 Novel Correlation Functions for Animals

It is possible to craft novel correlation functions, like the g(r), to study the
structural features of animal groups. For example, Ballerini et al. studied
the distribution anisotropy of the neighbours of each bird in a group of
European starlings [120]. This anisotropy factor, noted as γ in [120], could
be used to construct a correlation function Cγ(n), with different neighbours
rank (n) values1414 For a bird, its nearest neigh-

bour has the rank 1, the next near-
est neighbour has the rank 2.
The value of γ for the nth nearest
neighbour is calculated for the en-
tire animal group, in order to quan-
tify the fact, that the neighbours
are less likely to be distributed in
the moving direction of the group.
Specifically, γ(n) = w(n) · P. The
vector w(n) ∈ Rm×3 is the eigen-
vector of the matrix M(n) = u(n)⊤ ·
u(n), and w(n) corresponds to the
smallest eigenvalue. The vector
u(n) ∈ Rm×3 stores all the unit vec-
tors pointing from all m birds in the
group, to their nth closest neigh-
bours. The vector P ∈ R3 is the po-
larisation order parameter defined
in eq. 2.1.

, shown in Fig. 2.8(a). This function Cγ(n) presents the
decay of γ with increasing n values, and leads to a remarkable conclusion:
a bird in a flocking group interacts with 7 neighbours on average [120, 148],
regardless of its distances to these neighbours. This behavioural feature is
called a topological interaction, as opposed to a metric interaction based on
physical distances. This special correlation function was also used by Ling
et al. to study the changing behavioural rules of jackdaw flocks [149].

The correlation function Cij(t) is another tool to study animals, pro-
posed by Bumann and Krause [150] in 1990s, and revisited by Nagy et al.
in 2010 [110]. It is essentially the orientational cross-correlation between
two individuals (labelled as i and j) in time. Such function revealed the
leader-follower relationship among the individuals in the group. An exam-
ple is plotted in Fig. 2.8 (b), where a following bird would try to align its
orientation to a leader. Because of the behavioural inertia of the birds, there
will be a slight lag time, for the follower to adjust its orientation. In other
words, the follower will try to align with the leader “now”, but the align-
ment is not instantaneous, and it could only happen in the “future”. This
lag time could be captured by the orientational cross-correlation function

Cij(t) = ⟨oi(τ) · oj(τ + t)⟩, (2.3)
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where the angular brackets ⟨. . . ⟩ represents a time average. Examples
of such cross-correlation functions, calculated from pigeons, are shown in
Fig. 2.8 (d). For a leading bird, the cross-correlation with its follower would
lead to a peak at t > 0, because the follower’s alignment would happen in
the future. This leader-follower relationship of pigeons was also observed
by Chen et al. [151]. And this correlation function as used by Yomosa et al.
for the study of gulls [152].

Finally, we want to mention a recent method to quantify the hidden or-
der [153], and its correlation length [154]. This method used the compression
algorithm in computer science to quantify the entropy, as the information
with high entropy could not be compressed effectively [155]. This method
was demonstrated to be useful for the study of both kind of active matter
systems in Fig. 2.3 [50, 153].

2.4 Understanding the Animal Behaviour
The order parameters, and the correlations calculated from a group of an-
imal can be used to construct mathematical models. These models can be
studied numerically or analytically, to make predictive conclusions about
the animal behaviour.

2.4.1 Microscopic Approach: Agent Based Models
The most famous model in the active matter community is arguably the
Vicsek model proposed by Vicsek et al. in 1995. The model assumed the
individual animal in a group align with nearby neighbours. This alignment
process is interrupted by the orientational noise (η in Fig. 2.2). The phase
diagram in Fig. 2.3 (b) depicted the behaviour of the Vicsek model. The
movement of active particles in the ordered phase is visually similar to the
collective motion of birds shown in Fig. 2.4 [156].

The Vicsek model is a very simple model, which often lack essential
elements to reproduce the behaviour of animals accurately. For instance,
the lack of inertia in the Vicsek model makes it incapable of describing the
collective turning behaviour of European Starlings [111]. To explain the
experimental results, an inertial spin model [111, 157] was proposed. In
addition, the topological interaction rule [120], shown in Fig. 2.8 (a), could
also be added into the Vicsek model, which supressed the travelling bands15 15 The existence of the bands for

the topological Vicsek model is still
under scrutiny. Early results, both
simulations and theories, suggested
the absence of the band [53, 158,
159]. But recent simulations and
theories suggested the existence of
the band [160, 161].

.
The milling behaviour of the fish [126], shown in Fig. 2.4 was also mod-

elled by Couzin et al. in early 2000s, known as the Couzin model. This
proposed model includes a short ranged repulsion, with an alignment inter-
action in intermediate range, as well as a long-ranged attraction [80]. All
the phases introduced in Fig. 2.6, the schooling, milling, and the swarming,
can be reproduced in the Couzin model [126]. The same phases could also
be reproduced in a model with topological interaction rules [125, 162], as
well as a model with only local attraction interactions [163].

2.4.2 Hydrodynamic Approach: Continuum Models
One further step to understand the animal behaviour is to convert the
microscopic description of the individuals, into large scale, hydrodynamic
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models1616 Also known as the continuum
models.

. By doing so, we ignored the details of the particles, and treat the
system as flowing liquid. This approach is demonstrated by Toner and Tu,
who derived qualitative predictions for the large scale behaviour of active
particles, from hydrodynamic equations. Typically, these hydrodynamic
equations describe the evolution of density field and the polarisation field
(P in Eq. 2.1), in the form of coupled partial differential equations [52,
164, 165]. The hydrodynamic description of active matter are expected to
recreate the result of the microscopic model at a large-scale [166]. The in-
troduction of various continuum models is beyond the scope of this thesis,
but we want to discuss some predictive conclusions from theoretical analysis
of these models.

The major conclusion from Toner and Tu in their early analysis is that
the ordered phase discovered by Vicsek et al., shown in Fig. 2.3 (b), exists in
2D. This confirmation is important because the ordered phase could not be
proved by numerical simulation in the computer1717 The numerical simulation could

generate misleading results, mainly
due to the finite system size. For in-
stance, a discontinuous phase tran-
sition in the thermodynamic limit
(N → ∞) might appear continuous
in a small system (N ∼ 104) [35,
167, 168].

. In addition, the analysis
carried out by Mermin and Wagner [169] explicitly ruled out the possibility
for the long ranged order in 2D in equilibrium [18, 170]. In other words,
the activity of particles in the Vicsek model is surprisingly crucial for the
flocking phenomena.

Beyond the existence of the ordered phase in the 2D Vicsek model
(Fig. 2.3), the analysis of the continuum models also yields other useful
results such as the scaling of velocity correlation function and the discon-
tinuous nature of the order-disorder transition [40, 160]. However, as Ouel-
lette commented recently, it is challenging to link the continuum models to
animal groups, especially to compare the theoretical prediction with exper-
imental results, due to the lack of large scale experimental results [171].

2.4.3 Thermodynamic Approach: Equation of State

It is also possible to take a thermodynamic approach to study the animal
behaviour. Thermodynamics is capable of describing the behaviour of equi-
librium systems, whose underlying microscopic dynamics are unknown [171].
For instance, the laws of thermodynamics were established and applied, long
before the discovery of atoms and before the development of statistical me-
chanics [18, 171]. To do something conceptually similar, we will need to
define some state variables, which are conceptually similar to the pressure
(P ), volume (V ), temperature (T ), entropy (S), chemical potential (µ) and
particle number (N), to summarise the behaviour of animals. If the ani-
mals were behaving in an equilibrated way, these state variables would be
constrained, yielding an equation of state, that would be useful to develop
predictive theories.

For instance, the virial equation1818 Notice the law for the ideal gas
is PV = NkBT .

of an equilibrium system is

PV = NkBT + ⟨W⟩ (2.4)

where kB is the Boltzmann constant, ⟨. . . ⟩ denotes the time average, and
W is the internal pressure caused by the interaction of particles [69, 172].
Similar relation is observed in [173] for a group of midges, which can be used
to calculate the pressure P exerted on the animals by the external field. In
addition, a small perturbation filed acted on the equilibrium system will
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cause a linear response. This linear relationship is observed experimen-
tally in [174]. Further more, Sinhuber and Ouellette were able to observe
a constant chemical potential difference between dilute clusters and dense
clusters in a swarm of midges, suggesting the existence of phase equilib-
rium19 19 It is important to point

out that the chemical potential
in [175] took a special definition
from [176], which depends on the
pressure. Again, the pressure in
[175] took another special defini-
tion, with underlying assumption
that the midges were active parti-
cles without interaction, and were
bounded together by an harmonic
potential. Even though the defini-
tion of state variables are not very
rigorous, their results are still sur-
prising, which should not be dis-
credited.

. Remarkably, their experimental results also suggest that detailed
balance is maintained, for midges that switch between the two phases [175].
That is to say, the probability that one midge goes from a dilute region to
a dense region, is equal to its counterpart for the reverse process. The de-
tailed balance suggested an equilibrated behaviour of animals at large scale,
even though the animal individuals are active and out of equilibrium. This
“regained equilibrium” at large scales had also been reported from computer
simulation [177].

Following this path, Sinhuber et al. presented a equation of state for
midges, written as

PV 1.7 = cNT 2 (2.5)

where c is a constant, while P represents an effective pressure, V represents
the volume of the convex hull constructed from the animal coordinates, and
T represents the effective temperature that links to the second moment of
the speed distribution. Even though this equation contains quantities with
heuristic definitions (the P, V, T have special definitions), and fitting pa-
rameters obtained from experiments (the value of c, and some exponents),
it predicted the changing macroscopic states of midges under different per-
turbations successfully [178].

Even though the thermodynamic approach is capable of predicting the
macroscopic behaviour the the animals, it is less used compared to other
approaches, perhaps for the lack of consensus on the definition of the suitable
thermodynamic state variables. However, it is valuable also from a data
science perspective, as a guide for us to project high dimensional data (the
phase space) to a low dimensional feature space (the space spanned by
few thermodynamic state variables). Such dimensional reduction analysis
was also carried out manually [1], or with machine learning methods[179],
without the thermodynamic inspiration.

2.5 Is Active Matter an Useful Concept?
Physicists mention animals as typical active matter in the literatures [35, 51,
79, 168, 180], but the biology community rarely acknowledges this perspec-
tive [171], except for some ecology literatures [179, 181]. The lack of mutual
engagement is understandable, as it is difficult to apply the knowledge of
active matter physics to biological topics. For instance, how does the ac-
tivity affect the fitness of the animal group in a given environment? Would
sick animals be less active in the wild? My fish is swimming strangely, does
activity help to explain the data? To the best of my knowledge, the answers
still remain elusive.

However, there are successful examples that bridge this gap between
statistical physics and biology. For instance, the observation and analysis
on the European starlings revealed two unexpected features, the topological
interaction [120], and the scale-free correlation [67]. These two findings
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are biological facts, even though their connection to the physiology is still
missing [171].

In chapter 7 we will present another attempt, to reduce the gap be-
tween the biology and physics. Operationally, we studied the behaviour of
the mutant fish, whose genetic modification is related to human diseases.
Using the correlation function introduced in section 2.3.4, we discovered
the mutant fish are, surprisingly, more active. We characterised the col-
lective behaviour of the mutant fish with the order parameter introduced
in section 2.3.1. We then explained the behaviour of mutant fish with a
microscopic active matter model, introduced in section 2.4. We hope this is
an example that the active matter physics can be useful.
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Summary of Chapter 2

• We gave a brief introduction on active matter, featuring the following concepts.

Active Matter
A out-of-equilibrium system, containing active particles which constantly inject
energy to the system.

Activity
The ratio of deterministic, self-propelling movement and the stochastic move-
ment because of thermal fluctuation. We can increase the activity, by increasing
the self-propelling speed, or by reducing the level of randomness.

Phase Behaviour
Active particles could exhibit different phase behaviours under different condi-
tions, for instance the MIPS and the order-disorder transition.

• We reviewed recent progress and challenges in the observation of collective motion of
animals. Tracking the 2D movement of animals is an easy task, but the 3D tracking
of a large group of animals for a long period of time is still challenging.

• We introduced following tools to analyse the collective motion for a group of animals.

Order Parameters
We can use order parameters to summarise the symmetry of the collective motion
of animals. Animals could be in different macroscopic states, and these states
might belong to different phases, characterised by different order parameters.

Correlation Functions
The different states can be characterised by correlation functions.

• We discussed three ways to model the animal behaviour, in order to get more insights
and to create predictive theory.

Microscopic Approach
Model the behavioural rules for each individual, and predict the animal be-
haviour with computer simulation.

Hydrodynamic Approach
Model the coupled evolution of the density field, velocity field, and other fields for
order parameters. Then predict the animal behaviour by analysing the solutions.

Thermodynamic Approach
Describe the macroscopic state of the animals with thermodynamic state vari-
ables, and predict the animal behaviour with the equation of state, which con-
strains the thermodynamic state variables.

• The linkage between active matter physics and biology is discussed.

19



Chapter 3

Observing Zebrafish in 2D

In this chapter we will focus on the methodology to observe zebrafish, swim-
ming in a quasi two dimensional environment. The system was chosen for
technical conveniences, as the 2D movement of fish can be captured by a
digital camera easily. In comparison, recording the 3D movement of fish is
a harder task, which will be discussed in chapter 4.

3.1 Introduction
The majority of the studies on the collective behaviour of fish were per-
formed in a quasi-2D environment, where the fish were confined in a shallow
water tank [76, 182–184]. The collective motion of the fish can be captured
by digital cameras and process by image processing algorithms, generating
the trajectories for all fish individuals.

The crucial step in this tracking process, is to correctly locate the fish,
and identify their identities. A considerable amount of softwares have been
designed to tackle the problem. For instance, Pérez-Escudero et al. pub-
lished an algorithm that is capable of determining the identity of the fish
from its image, and using the information to obtain correct trajectories
[92]. The key observation from Pérez-Escudero et al., is that the joint prob-
ability distribution of pixel distance and pixel intensity of a fish is unique.
Five years later in 2019, the same group published an update method, that
utilised an artificial neural network to identify the individual fish [94]. Un-
like most machine learning solutions to computer vision problems, the algo-
rithm from Romero-Ferrero et al. requires no human label, thanks to a very
carefully constructed preprocess pipeline, which makes it stands out as the
state of art method in the year of 2022 [95].

In addition to the ideas and algorithms, the realistic development and
deploy of an animal tracking software requires a lot of engineering work.
For instance, it is important to have a suitable programming language to
maximise the performance of the algorithm. An accessible graphical user
interface (GUI) and application programming interface (API) are also cru-
cial. In addition, the software should be easy to install on a new machine.
Practically, large research groups will develop a versatile research software,
like those from Walter and Couzin [95].

In this chapter, We will present a new 2D tracking method, whose re-
sults are suitable for the calculation of 3D locations of the fish. The key
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feature of our algorithm is the ability to locate fish without relying on their
morphological details (see Fig. 3.1 for examples). Our new method is nec-
essary, because the fish can swim closer or further to the camera in the 3D
experiment, casting different shapes on the camera. Therefore, the identity
of the fish can not be uniquely determined from their shapes in the image,
causing the identity-based approach ([92, 94, 95]) to have reduced validity.
The problem is termed no-detail tracking, as the details (the size, darkness,
and shape) of a fish in the image is not a reliable source for its identification.

With details

No detail

Figure 3.1: Top: a picture of
zebrafish with various details.
Bottom: a picture of two ze-
brafish with no detail.

In the methods section, the ideas needed to carry out no-detail tracking
will be discussed. The result of 2D swimming experiment, analysed by our
method, will be presented in the results section. The 2D coordinates of
zebrafish revealed two essential features. Firstly the spatial distribution of
the fish was inhomogeneous. The effective pairwise interaction of the fish
seemed attractive, and the attraction appear to decrease with the number
of individuals in a group.

3.2 Methods

3.2.1 Fish and Apprautus

The adult zebrafish, whose age is over one year old, were used to carry out
the experiment. Most experiments in this section was carried out in the fish
facility in Bristol, while some experiments were performed in room G59 in
the HH Physics Laboratory in Bristol. The fish were fed three times a day,
with natural day to night circles. The fish were hosted in their living tank
before the experiments, with a density of 5 fish per litre of water. The water
was filtered constantly, with a pH value close to 7 and the temperature close
or above 25 °C.

Before each experiment, the fish were transferred from their living tank
to the experimental environment, which will be referred to as the obser-
vation tank. During the transfer, the fish were placed inside a temporary
container, and then released into the observation tank. To make the fish
stay in a quasi-2D environment, a flat plate was placed in a bowl-shaped
tank, creating a shallow water environment (Fig. 3.2). The shape of the
bowl is especially chosen for a 3D tracking task, which will be introduced
in chapter 4.

Camera
Bulb Figure 3.2: The apprautus to

track the movement fish in a quasi-
2D environment. The camera is
placed above the fish to capture the
top view. A computer controls the
recording process as well as the il-

lumination.
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3.2.2 Metric Rectification

To record the video of the fish, a camera (Basler AC2040um) was fixed on
top of the tank, as illustrated in Fig. 3.2. The image size produced by our
camera is 2056 pixels × 1540 pixels, at a frequency of 15 frames per second.
We mounted a 6 mm fixed focal length lens (C Series, Edmund Optics)
on the camera, which yields a wide view, allowing us to place the camera
closer to the fish group. The typical distance between the camera and the
fish group is around 2 meters. With such setup, the fish (body length ∼ 30
mm) appear as black rods in the videos, as shown in Fig. 3.3.

The image and videos obtained from the camera have three limitations,
preventing it from being an accurate measurement tool. The first issue is the
distortion of images caused by the camera lens. In addition, the cameras
should be orientated exactly perpendicular to the water surface, so that
the captured images were from the top view. Such accurate orientation is
difficult to achieve without especially designed camera holders. Finally, we
also need to convert the unit of the image (pixels) to real life units (e.g.
meters). It is worth mentioning that these issues were more or less ignored
in conventional 2D animal tracking tasks [96], and the present method is
novel in the context of animal tracking.2020 Addressing these issues is “less

novel” in the computer vision com-
munity focusing on the 3D re-
construction. It is impossible to
retrieve 3D information correctly
without understanding all the de-
tails about computers and photos.

To solve the problems, we need to calibrate the camera, so that we know
the distortion of the camera lens, the orientation of the camera, as well as the
scale of objects in the images. To carry out the calibration, a chessboard
(the calibration board) was placed on the surface of the water. And the
image of the calibration board will offer enough information to tackle the
aforementioned issues.

The distortion can be recovered with standard camera calibration meth-
ods2121 The functions from the “opencv”

library were used for the calibra-
tions.

from the computer vision community [102, 185]. The distortion is
described with the following model,

xdistorted = x
(
1 + k1r

2 + k2r
4 + k3r

6
)

ydistorted = y
(
1 + k1r

2 + k2r
4 + k3r

6
)

where r is the radius of the pixels in the image with respect to the optical
centre. And ki values are the distortion coefficients, which will be used to
recover the undistorted image.

The imperfect orientation can be fixed by the knowledge of the camera
as well. Briefly, the same 2D plane in the 3D space, will form different pro-
jections with different cameras. These different 2D projections are related
to each other by a projective transformation. Likewise, the same 2D plane
for the fish in the imperfectly orientated camera is also related to its coun-
terpart from a perfectly orientated camera. Such a relation is termed as
homography , and can be represented by a matrix H ∈ R3×3. This matrix
can be calculated easily with the knowledge of the camera, following the
method from Hartley and Zisserman [102]. The homography allows us to
transform the image from the imperfectly orientated camera, to a virtual
image captured from a perfectly orientated camera. The transformed im-
age is called the rectified image. From the rectified image, the scale can be
recovered easily as we know the physical size of the calibration board. We
call the rectified image with a known scale the metrically rectified image.
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Figure 3.3: The process of metri-
cal rectification. Left: the original
image. Middle: the image where
camera distortion being removed.
Right: the metrically rectified im-
age. The circular outline of the 2D
boundary were outlined and over-
laid, to stress the change of the im-
age in different steps. The inserts
in the figures correspond to the cal-

ibration pattern in each process.

Figure 3.3 shows an example of the metric rectification. Comparing the
outline of boundary with/without distortion removed, it is clear that the
raw image from the camera were distorted by the lens. The camera in the
experiment were not perfectly perpendicular to the water surface, therefore
the outline of the tank boundary appears to be an ellipse, because of the
perspective transformation (H). The ellipse were reverted back to a circle
(right subfigure, Fig. 3.3) after the rectification process.

Notably, the image rectification only “works” for the plane, where the
calibration chessboard lies. For the fish data, the rectification is only ac-
curate for the fish exactly swimming on the water-air interface. In other
works, there will be tiny errors for the fish locations, when they swim inside
the water. Such inaccuracy is fundamental for 2D fish tracking, since the
fish is swimming a 3D space. To eliminate such error, we can carry out real
3D measurements, which will be introduced in chapter 4.

3.2.3 Image Processing
The metrically rectified images of the fish contain the information about
their behaviour. To get useful information out of the image, we still need
to perform image processing, to extract the coordinates of the fish from the
images.

In a normal image, the fish appear as a dark spot (see Fig. 3.3 and
Fig. 3.4 for instances). Ideally, we want to work with images containing
a collection of delta functions (see middle subplot of Fig. 3.8 for instance),
where the pixel intensities in the centres of each individual fish is maximised,
and the pixel intensities are zero everywhere else. Extracting the coordinates
of fish from such image, will therefore be a trivial task, as we only need to
find the pixels with non-zero values. Even though it is possible to construct
such transformation directly with machine learning based approaches [186],
it is still not an easy task, without large amount of human labelled training
data. Therefore, we restrict our goal for the image processing process to
be the removal of the static background. As a result, the processed image
should only contain the fish.

Traditional image processing methods, such as thresholding, blurring,
and morphological operations, were used in this project to perform the
background removal task. As a result, we get a foreground video where each
fish has high pixel intensity values, and the background intensity values are
zero. Figure 3.4 illustrates the result of the transformation. One frame of
the recorded video was shown in the left subfigure, while the same frame
from the foreground video was shown in the right subfigure.
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Figure 3.4: The screenshot of the
video at time point t, and its corre-

sponding foreground image.

0

255

The foreground videos of the fish are obtained after two steps, the re-
moval of the background and the removal of the noises. The background is
defined as the temporal average of the image, since the fish are constantly
moving while rest of the scene is static. In order to tackle the varying il-
lumination conditions2222 The brightness of the environ-

ment might change in the field ob-
servation, where the sunlight might
be temporally covered by the cloud.
In the laboratory, the sunlight will
also change the overall brightness
indoors.

, we can take a running average of a time–window,
instead of calculating the overall average. The pixel intensity of the back-
ground (Bij(t)) at time t, of pixel (i, j), can be written as

Bij(t) =
1

Tw

t+T∑
τ=t

Iij(τ) (3.1)

where Iij(t) is the pixel intensity of the video at time t in position (i, j), and
Tw is the duration of the window, usually taken as 40 seconds. The difference
between the background video and original video yields a foreground video
(Fij(t)), written as

Fij(t) = Bij(t)− Iij (3.2)

and the order of the subtraction ensures the fish, originally appear darker in
the video, to be represented by brighter pixels in the foreground video. The
subtraction result can be very noisy. To remove the noise, the gaussian filter
was applied to the foreground image. Then, the combination of the Ōtsu
threshold and local Gaussian threshold was applied to the image, to separate
the pixels belonging to the fish and other pixels. The Ōtsu threshold is a
single value that split the image into two groups, where the inter–group
variance was minimised. The local Gaussian threshold, on the other hand,
gives a collection of different values for different pixels, featuring the locally
bright pixels as foreground. Finally, the morphological operation “binary
opening” was applied to the image, to remove any possible remaining noise.
The results shown in Fig. 3.4 was obtained with this method.

Our method requires 3 parameters, including the standard deviation
(σblur) of the Gaussian kernel of the blurring process, the length scale for
the local threshold (llocal), and the length scale of the binary open operation
(lopen). In the different experiments, the images were similar, therefore the
same set of parameters (σblur = 2, llocal = 3, lopen = 3) was applied, and
works well for most videos.

3.2.4 Extracting Features from the Image

From the processed video, we need to extract the features2323 We explained the term “fea-
tures” by the end of the section.

in each frame
that correspond to the fish. In order to tackle the problem, we employed
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t=1 t=2 t=3

t=4 t=5 t=6

Many Fish

ErrorCross

Cross

Cross

Figure 3.5: The locations and ori-
entations, {(im, jm, om)}, of differ-
ent fish. The locations are ren-
dered as circles, while the orienta-
tions were rendered as short line
segments. The features were calcu-
lated from the feature tensor (Cijo).
Top: the movement of 4 fish in 6
successive frames labelled with the
detected features. An error where
one fish was mistakenly labelled as
two fish happened in the 6th frame.
Bottom: the movement of many
fish labelled with the detected fea-

tures.

a method that not only captured the positions, but also the information
of the fish orientations and body shapes. The basic idea is to calculate
the cross–correlation between the image (Fij) and a templated fish shape
(Tij), as the local maxima in the result would indicate the presence of a
fish, because cross–correlation is a measure of similarity between signals.

For a fixed 2D fish template (Tij), we can rotate it so that it contains
o different orientations. Calculating the cross-correlation of all the rotated
templates, we can effectively get o different results, and they can be con-
catenated into a 3D tensor, written as Cijo. One can think of the tensor
Cijo as a 3D volumetric image. A local maximum in Cijo, with coordi-
nate (im, jm, om), indicates the presence of a fish at location (im, jm), with
orientation om.

In addition, we are free to choose different templates for the fish shape, to
capture the different postures. The choice for the template will be discussed
in section 3.2.5. If s different shapes were selected as templates, all of which
were rotated into o different orientations, then there will be s× o different
templates. The cross-correlation of these templates with the image would
yield a 4D tensor that can be shaped into Cijos, noted as the feature tensor.
A local maximum of the feature tensor, with coordinate (im, jm, om, sm),
represents a fish located at (im, jm), whose shape is like the smth template,
with orientation om. All the local maxima, {(iim, jim, oim, sim)}, captured the
locations, orientations and shapes of all the fish in the image.

In summary, the cross–correlation between the image and the many tem-
plates yields a 4D feature tensor, whose local maxima give us the locations,
orientations, and shapes of different fish. This approach is especially help-
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ful for the dense system, where the fish constantly overlap with each other.
In such dense scenario, the overlapping fish will be separated into different
regions in the shape–rotation dimension in the feature tensor. For example,
the overlapped fish pair in Fig. 3.5 was correctly labelled, by calculating the
local maxima in the 4D tensor.

There is a fundamental flaw of our algorithm, where a big fish might
be mistakenly labelled as two small fish. One example of such error was
presented in Fig 3.5 (top row, t=6). This is partially due to the loss of
morphological details of the fish, as the cameras were placed relatively far
from the fish, in order to capture larger groups. Without the details, it can
also be hard for a human being to tell, whether a dark blob is a big fish
or it belongs to two smaller fish. Realistically, some of the errors produced
by our algorithm can be easily distinguished by human beings. Some post
processing methods of the features, based on the geometry of the fish, might
be useful to further refine our algorithm. The ultimate goal is to make the
feature detection algorithm being compatible with human observations.

Why are features called features, not positions?

In the computer vision community, people call the locations of objects
“features”. This term is rooted in the 3D reconstruction problem,
which will be discussed in the chapter 4. Briefly, the 3D information
can not be recovered from the background, like a purely white wall.
Instead, some “features” with intensity gradients are required [185].
Alternative names would be “positions” or “locations”. However, we
are interested in a “feature” of the photo, rather than a (physical)
location of a fish.

3.2.5 Finding Templates for the Features
To calculate the feature tensor Cijos, it is important to use suitable tem-
plates for the fish. The templates should represent characteristic fish shapes.
The following operations were carried out to find suitable templates.

1. Segment the individual fish and align the segmented images.

2. Project all the segmented images to a space with reduced dimension.

3. Find clusters for the data points in the reduced space, and the average
of each cluster to be the template.

The individual fish, defined as connected bright pixels, were segmented
from the foreground video (Fij(t)). The orientation of the segmented fish
were determined by the principle component analysis (PCA) [187]. These
segmentations were then reoriented, so that its first principle axis align
with the x axis. The reoriented individual fish were then zero-padded to
have the same shape, noted as S ∈ Rs×s where s is the size of the padded
images. Examples of the segmented and aligned images are illustrated in
Fig. 3.6. These images were collected over 1000 different frames, in a video
of 4 swimming fish. A total of 3070 individual shapes were collected.
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∈ X

∈ Xred

Figure 3.6: Top: the selected in-
dividual fish segmented from the
images taken by the camera. Bot-
tom: the fish shapes reconstructed
from a low dimensional feature

space Xred.

The collection of segmented fish is a very large dataset. For example, if
we use a small image of size 50 × 50 pixels, to stored each fish, then each
fish corresponds to a point in a 2500 dimensional space. The dimension of
such images can be drastically reduced by PCA [188, 189]. Operationally,
all of the m images of individual fish were flattened (Rs×s → Rs2), and
concatenated into a matrix (X ∈ Rm×s2).The singular value decomposition
(SVD) is then performed on the dataset X, following

X = UΣVT ,

where the matrices U and V contains all the left and right singular vectors,
and the matrix Σ contains all the singular values. The images (X) were then
project on the first k axes ordered by their corresponding singular values.
Effectively, the dimension of the matrix X were reduced from m × s2 to
m× k, forming a new matrix Xred ∈ Rm×k. Each row in Xred described one
fish.

Figure 3.7 shows the average fish shape as well as the projection of all
the segmented fish (X) on the first two principle axes. The first principle
axis (the x axis of Fig. 3.7) roughly captured the scale of the fish, and the
second principle axis (the y axis of Fig. 3.7) captures the information about
the bending of the fish. The overall distribution of those projected data can
be understood by the fact that the same fish can have different distances
and orientations, relative to the camera, so that their shapes will appear
different. The distribution of Fig. 3.7 is symmetric in the y direction, which
indicates the absence of chirality for the bending of fish. That is to say, the
fish do not prefer bending to the left, or the right.

With all the segmented fish being projected to low dimensional space, we
can use the k-means cluster algorithm to find representative cliques of the
fish shapes. Briefly, different data points (different fish images in Fig. 3.6)
will be assigned to different clusters. And the variance of points in the same
cluster will be minimised, while the variance of points from different clusters
will be maximised.

Each cluster corresponds to similar fish images with similar shapes. The
average shape of different clusters were used as the template. The different
scatters in Fig. 3.7 shows the different clusters, and their corresponding
average shapers were inserted. Here, the images (X) were projected to a
2 dimensional space (k = 2,Xred ∈ R3070×2). And the overall 3070 points
were separated into 7 different clusters. And the average shape of different
clusters (the inserted subplots in Fig. 3.7) can be used as the templates to
calculate the 4D tensor for tracking.

The number of clusters and the dimension of the reduced space (k) are

27



Figure 3.7: A collection of 2170
different fish shapes, projected onto
the first two principle component
axes. The data points were clus-
tered using the K-means algorithm,
into six different clusters, indicated
by different marker styles. The av-
erage shape of each cluster were

plotted in the inserted axes.
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free parameters, whose optimal values were hard to determine. Practically,
I always set k = 5, and separate the points into 8 different clusters, which
yields good2424 If the 2D features are not good,

the corresponding 3D reconstruc-
tion (chapter 4) will fail.

results for 2D tracking. The dimensional reduction method
(PCA) and the clustering algorithm (K-means) can be changed to other
tools with similar effects. For instance, it is possible to use non-linear di-
mensional reduction method such as isomap, and a gaussian mixture model
to obtain different clusters.

The mapping from the image to the large 4D tensor, Iij → Cijos requires
a large amount of calculation. The feature tensor is normally sparse, since
only a few pixels in the image contain the centre of the fish. The calculation
can be faster if such sparsity were to be exploited. Practically, we can only
calculate “promising” pixels, where fish is likely to appear. These pixels
correspond to the local intensity maxima in the foreground image Fij . Such
reduction of calculation improved the calculation speed significantly.

3.2.6 Convolutional Neural Network

There are two steps in the image processing that can be improved in the
image processing pipeline. The first one is the removal of background.
In my current method, I calculated a rolling average of the entire video.
The window size of the averaging operation is set by the user, which is
very difficult to optimise because the video processing typically takes hours
to finish. Practically, a rule-of-thumb number (600 frames) was applied.
However, the fish in the video are very distinct from their background, and
it is an easy task for people to spot the fish in a static image. This suggests
a static image contains enough information to distinguish the foreground
(fish) and background (tank).

The convolutional neural network (CNN) is very suitable for carrying
out both tasks at the same time, with far better efficiency. The overall
data process introduced from section 3.2.3 to section 3.2.5, is essentially a
transformation from the image (Iij) to a tensor (Cijos). In addition, the
information about the kernel is unnecessary2525 The shapes might be informative

for people studying the postures of
the swimming fish. But we will ig-
nore the shapes in this thesis as we
are interested in the collective mo-
tion of the fish.

in most cases, as we often
only care about the orientation and location of the fish, rather than its
shape. Hence, we need a model with the capacity to carryout the following
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Figure 3.8: The tracking result
of a convolutional neural network
(CNN). Left: the image (Iij) from
which the fish will be detected.
(The black dots in the image are the
holes drilled on the tank.) Middle:
the feature tensor (Cij) for all the
pixels generated by a conventional
2D tracking algorithm. This data
is used as training data for the neu-
ral network. The value of a pixel in
the tensor represents the probabil-
ity that a fish centre being located
inside this pixel. Right: the fea-
ture tensor (Cij) for all the pixels
predicted by the CNN model. The
network prediction should be close
to the label after the network being

trained.

transformations depending on our desired results:

Iij → Cijos location, orientation, and shape

Iij → Cijo (= max
s

Cijos) location, and orientation

Iij → Cij (= max
o

Cijo) location

And we can generate a big dataset containing images (Iij) and their corre-
sponding feature tensors (Cijos), and make a CNN to learn the underlying
rules for the transformation (Iij → Cijos). If we need less information from
the result, the targeted C can be contracted, by taking the maximum value
along the dimension of the unnecessary information.

As a proof of concept, a CNN model was built to carry out the trans-
formation of Iij → Cij . The training data for the network was generated
from the existing tracking result Cijos. The model was built with popular
framework tensorflow [190], and trained on the Colab online platform pro-
vided by Google [191]. Figure 3.8 shows the output of a trained network.
The network does not generate the exact same picture of the label, but
their results were similar. Notably, the network even fixed an error of the
original feature detection algorithm. This error is highlighted in Fig. 3.8.

However, due to the limited time for this project, the final CNN model
did not improve the calculation accuracy nor the processing speed signifi-
cantly. Nevertheless, it is achievable to having the calculations to be opti-
mised that the tracking can be performed in real time, since the prediction
of Cij on a GPU is very fast, reaching a speed of ∼ 50 frames per sec-
ond. The current speed-limiting step is the calculation of local maxima in
Cij with CPU. This calculation can be accelerated by either exploiting the
sparsity of Cij , where local maxima detection can be converted to an over-
lapping removing problem (see section 5.2.1). Alternatively, it might also
be helpful to carry out the calculation on GPU.
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3.3 Results
In this section, the spatial distribution of zebrafish will be presented. For all
the data shown below, the fish that were not swimming was excluded from
the calculation. The swimming fish was defined as the fish whose swimming
speed is larger than 60 mm/s. This specific value was chosen, based on the
fact that the average speed of zebrafish is around 120 mm/s.

3.3.1 A Single Fish-0.5 0.0 0.5
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Figure 3.9: The spatial distri-
bution of one adult zebrafish
in a quasi 2D environment,
present the joint distribution
of the x coordinates and y co-
ordinates of the fish positions,
with the shape of the bound-
ary being highlighted.

Figure 3.9 shows the spatial distribution of one adult wildtype zebrafish.
We can see from the figure that the fish have a slightly higher tendency to
stay near the boundary. The apparent attraction between the fish and the
boundary can have two reasons. Firstly, the fish may biologically prefer to
be near the boundary. The systematic preference for the wall of the tank
was documented for zebrafish previously [192].

In addition, the preference to the wall of the fish could emerge as a
physical consequence, if we think of fish as self-propelling particles [31, 193,
194], as justified in section 2.1. To understand this physical origin, it is
helpful to to imagine a fish who changes its orientation randomly. Without
the boundary, the fish would move constantly, regardless of its orientation.
On the other hand, if the fish were swimming against the wall, they have to
wait until the orientation changes, to leave the wall and continue swimming.
The extra waiting period near the wall would contribute to the spatial
distribution.

3.3.2 Two Fish
The movement of 2 adult zebrafish was recorded. The data was taken over 5
experiments, and each experiment lasted one hour. The spatial distribution
of 2 fish were shown in Fig. 3.10 (left). It is clear that the fish were not
uniformly distributed in the tank, which might also related to the environ-
mental factors, such as the illumination level [21, 97, 195]. Practically, we
also found the zebrafish would respond to the shadows casted by the objects
around the tank.

Figure 3.10: The spatial distribu-
tion of two adult zebrafish in a quasi
2D environment. Left: the joint
distribution of the X coordinates
and Y coordinates of the fish posi-
tions, with the shape of the bound-
ary being highlighted. Right: the
probability density function (PDF)
for the distance between two fish.
The PDF for the distance of 2 ideal
gas particles, uniformly distributed
in the tank, were also plotted. The
ratio of the two PDFs were taken
as the radial distribution function

(RDF).
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The pairwise distance of the 2 fish offered us the way the characterise
their cohesion. If the fish were attracted to each other, they would stay
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Figure 3.11: The spatial distri-
bution of three adult zebrafish in
a quasi 2D environment. Left:
the joint distribution of the X
coordinates and Y coordinates of
the fish positions, with the shape
of the boundary being highlighted.
Right: the probability density func-
tion (PDF) for the distance be-
tween two fish. The PDF for the
distance of 3 ideal gas, uniformly
distributed in the tank, were also
plotted. The ratio of the two PDFs
were taken as the radial distribu-

tion function (RDF).

close, and vice versa. The distribution of the pairwise distances, shown as
the probability density function (PDF), were plotted in the Fig. 3.10 (right).
There is a peak in the distribution, and it seems to be dominated by the
inhomogeneous distribution of the fish, as the length scale corresponding to
the peak matches the size of the high density blob. Such a length scale was
highlighted in Fig. 3.10 (left).

It is useful to compare the distribution of the pairwise distance of the
fish, with the distribution from the ideal gas. Here ideal gas means random
points uniformly distributed in the circular tank outlined in Fig. 3.10. The
distribution of the ideal gas were presented in Fig. 3.10 (right). The prob-
ability of finding particles at large distances, like 0.5 meter, is higher for
the ideal gas particles comparing with fish. This is also likely due to the
inhomogeneous distribution of the fish, as such length scale corresponds to
a big “void” in Fig. 3.10.

Inspired by liquid state theory, we define the ratio between the PDF of
the fish and that of the ideal gas as the radial distribution function (RDF),
which is also known as the g(r), as introduced in section 2.3. For a dilute
fluid at equilibrium, the shape of its RDF can be used to calculate the pair-
wise interaction potential. The mapping between pairwise potential and the
g(r) is invalid for the fish, because the individuals were constantly spend-
ing their biological energy to swim, driving the system out of equilibrium.
Nevertheless, g(r) is still a useful tool to characterise the cohesiveness of
the fish group. The RDF of 2 fish are plotted in Fig. 3.10, and it presents
a peak at very short separation. The hight of the peak (∼ 15) offered a
measure of the attraction amongst the fish, and more detailed analysis will
be provided in chapter 5.

3.3.3 Three Fish

The behaviour of 3 adult zebrafish is very similar to that from 2 fish. The
density distribution and the distribution of pairwise distances of 3 zebrafish
were shown in Fig. 3.11. Like the situations in the one fish and 2 fish system,
the distribution is not uniform. And the fish also present a typical peak in
the pairwise distance, whose location ( 0.08 m) corresponds to the size of
the high density blob of the inhomogeneous distribution.

Comparing the PDF of the pairwise distance of the fish, with that from
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Figure 3.12: The spatial distribu-
tion of 50 adult zebrafish in a quasi
2D environment. Left: the joint
distribution of the X coordinates
and Y coordinates of the fish posi-
tions, with the shape of the bound-
ary being highlighted. Right: the
probability density function (PDF)
for the distance between two fish.
The PDF for the distance of 50
ideal gas particles, uniformly dis-
tributed in the tank, were also plot-
ted. The ratio of the two PDFs
were taken as the radial distribu-

tion function (RDF).
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3 ideal gas, the fish also presents the typical void like the 2 fish scenario.
The RDF for 3 fish, shown in Fig. 3.11 (right) is very similar to that of 2
fish. The height value of the peak for 3 fish is close to 12, being slightly
smaller than that from 2 fish experiments. One possible explanation for such
reduced attraction, is the reduced danger perceived by the fish, when they
were in a large group [26]. As the fish will form a denser group when they
perceived danger [196]. As well be presented later, the reduced cohesion
with increased group number is a general observation.

3.3.4 Many Fish
The distribution of 50 fish was significantly different from the 1/2/3 fish
results, as presented in Fig. 3.12. Comparing with the 1/2/3 fish experi-
mental results, the density distribution of 50 fish were more homogeneous,
shown in the left subfigure in Fig. 3.12. However, it is still not uniform. The
homogenised picture for 50 fish might be related to the fact, that the fish-
fish interaction dominates the behaviour for 50 fish, while fish-environment
interaction dominates the behaviour of 1/2/3 fish. The same trend was
also observed in a 3D swimming experiment, which will be discussed in
section 4.3.4.

In addition, the PDF of the pairwise distance for 50 fish were much
broader comparing with its 2 or 3 fish counterpart. Nevertheless, we still
see the same trend, where the fish were cohesive in short length scales,
and presented “void” at larger separation distances. Such feature is also
likely due to the inhomogeneity of the density distribution. However, the
difference of the PDFs for the 50 fish and 50 ideal gas particles was less
significant. As a result, the RDF of the 50 fish contains only a broad peak,
whose height value (∼ 3) is significantly smaller the height value of the RDF
for 2 or 3 fish. This suggested a smaller effective attraction2626 The “attraction” is unlikely to

be biased by our choice of the mea-
surement, the RDF. The RDF is ef-
fectively a re-weighted PDF of the
pairwise distances. Other measure-
ments of the fish-fish distances are
therefore related to the RDF in dif-
ferent ways, which will be discussed
in Chapter 5. As an example, the
nearest neighbour distance is pro-
portional to the height of the peak
in the RDF (Fig. 5.9 and 5.12 in
Ch. 5).

between the
fish when they were in a large group. Our observation, the reduction of
peak height in the RDF, is consistent with previous study [132].
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Summary of Chapter 3

• Locating a group of fish in 2D is necessary for their 3D reconstruction. For this task,
existing methods utilise the morphological details of the fish for identification. These
methods are only accurate for fish swimming in a quasi-2D system.

• We proposed a new method to locate fish in 2D, where the fish are swimming in a
3D environment. Our method includes the following process.

0. Metric Rectification (optional)
The distortion and imperfect orientation can be removed by camera calibration.

1. Image Processing
The images, captured by the cameras, are separated into the foreground and the
background.

2. Finding Templates
The individual fish in the foreground are segmented, aligned, and projected to
a low dimensional space. Characteristic shapes were identified with clustering
algorithm for data points in the low dimensional space.

3. Constructing the Feature Tensor
The templates were rotated into different orientations. For every template and
orientation, its cross-correlation with the foreground is calculated. The results
correspond to a 4D feature tensor.

4. Extracting the Features
Local maxima in the 4D feature tensor correspond to the locations, orientations,
and shapes of the fish in the image. Each maximum is called a feature in the
image.

• We reported the analysis on the coordinates of zebrafish in a quasi-2D environment,
featuring different fish numbers.

One Fish
The fish tend to swim near the boundary.

Two Fish
The fish tend to swim near one side of the boundary. The heterogeneity of the
spatial distribution dominated the radial distribution function.

Three Fish
The behaviour of three adult zebrafish is very similar to that from two fish.

Fifty Fish
The spatial distribution of 50 fish presented a more uniformed manner, with
significantly reduced cohesiveness.
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Chapter 4

Observing Zebrafish in 3D

4.1 Introduction

This chapter presents the method to build up a system to observe a group of
zebrafish in 3D, and obtain the 3D coordinates of individuals in a group of
fish. The system is inspired by the pioneering work of Cavagna et al. [131]
as well as Kelley and Ouellette [116], where the 3D locations of European
starlings and midges were calculated and analysed.

The 3D observation is a difficult task. Compared to the the 2D obser-
vation introduced in chapter 3, both the hardware and the software were
more complicated for the 3D observation. Typically, we need to use multiple
cameras to capture the movement of the fish, where the images were taken
in a synchronised way. The calculation also needs more attention, since the
optical details, such as the refraction of light at the water–air interface, will
affect the final result.

Mathematically, it is important to understand the formation of the im-
age on a camera, because we need to reverse this process to calculate the
3D locations. For the relevant details, we refer the readers to [102, 185].
This chapter will instead focus on the implementation of the ideas. The
code responsible for the methods in this chapter is open source, and hosted
on website “GitHub”, with a project name of yangyushi/FishPy.

It is worth mentioning that the 3D observation method is also widely
applied in the study of fluid mechanics [197], dating back to the 1990s. The
name of the method is formally particle tracking velocimetry2727 The term “particle tracking” in

the fluid mechanics community and
the soft-matter community refers to
slightly different things. The for-
mer focus on the dynamic (veloci-
ties) of the particles, while the lat-
ter focus more on the structure (co-
ordinates) of the particles.

(PTV) in the
fluid mechanics literatures. Therefore, the new development from the fluid
mechanics community may provide opportunity to improve the animal. For
instance, by applying the field-programmable gate array (FPGA), the 2D
feature selection can be performed in real time, which reduced the amount
of processing time and data-storage space significantly [198].

In addition, the physicists and zoologists have pushed the boundary of
technology for field observations. For instance, Cavagna et al. developed
the system that can track the 3D movement of animals while moving the
cameras with a joypad2828 A joypad is a controller con-

nected to a computer, or other
game consoles. In many 3D video
games, the players rotate the vir-
tual cameras in the game to explore
the environment. This movement is
also needed to follow animals in the
field.

, enabling researchers to follow the movement of
birds for a long period of time [122]. Another example of advanced obser-
vation techniques is the reconstruction of a group of fish in the field, with
observers swimming together with the fish, while holding two cameras [123].
By incorporation the static environmental information, the movements of
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Figure 4.1: Left: The photo of
one experimental setup. Three
cameras are mounted to observe
the fish in the bowl-shaped tank.
Time–synchronised signals were
generated by an Arduino chip to
trigger the cameras for capturing
synchronised videos. The bowl was
immersed in a bigger tank, which
is a framed swimming pool. The
husbandry–related equipments,
such as the water filter, the heaters,
the UV lamp, were placed outside
the bowl but inside the bigger tank.
Right: The measured shape of the
observation tank. The scatters
were markers on the tank, which
were fitted by function z = 0.74r2,
where the unit of both z and r is

meter.

the cameras can be effectively estimated, which can be used to reconstruct
the trajectories of the fish.

Using the developed 3D observation system, I studied the behaviour of
one adult wildtype zebrafish, as well as groups of zebrafish with different
sizes (N = 2, 3, 50). The result section presents their spatial distribution
and the distribution of their pairwise distance. The observed results revealed
the important interaction between the fish and the environment. The dy-
namic of the system, which involves the time derivative of the locations,
will be analysed and discussed in chapter 5.

4.2 Methods

This section should serve as a practical tutorial for building a multiple
view 3D system to track animals. This system is capable of extracting 3D
location of the fish, with three commercial cameras. Our choice is not the
only technology to extract 3D information about animals. Instead, there are
alternative ways to follow the movement of animals such as binding animals
with global positioning system (GPS) [110] and tagging the animal bodies
[199]. Comparing with these solutions, our method is non-invasive and
relatively cheap. However, the obtained results are affected by the errors of
the 2D locating of fish individuals (section 3.2.3), and the ambiguity in the
stereo matching process (section 4.3.4).

4.2.1 Tank Design and Hardware

Figure 4.1 shows the experimental setup in the laboratory, where I mounted
3 cameras pointing to a bowl–shaped tank. This big bowl was immersed in a
framed swimming pool. Synchronised signals were generated with a Arduino
chip, and the cameras are able to capture time–synchronised videos with the
signals. The trigger signal for the camera is a 5V pulse, being the default
HIGH output signal of an Arduino chip.
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Figure 4.2: The illustrations for
the concept for locating one fish in
3D. (a) the schematic for the calcu-
lation of the 3D fish location from
three cameras. The “intersection”
of the refracted rays were magni-
fied, to stress the retrace distances.
(b): The illustration of retraced ray
from the 2D fish features. (c): The
effect of the refraction; (d): The
validation of the calculation for the
3D location of one simulated fish.
The solid line is the result where
the refraction is considered, and the
dashed line is the calculation result
that ignored the refraction effect.
The scatters represent the ground

truth.
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The big, white plastic bowl was specially designed and manufactured to
contain the fish. The choice of the shape was based on the fact that the
fish tend to stay in the corner of the tank, when they entered an unfamiliar
environment [200, 201]. Using a bowl–shaped container prevented the ag-
gregation at the corners. Except for the corner effect, the bowl also provides
no blind zone for all of the cameras, preventing the systematic disappear
and reappearing of the fish in the video.

In order for the zebrafish to exhibit normal behaviour, they should have
water conditions comparable to those used to house them. Typically, the
fish need a temperature between 25 ◦C and 30 ◦C, and the water should be
constantly filtered and sterilisation with UV light. All of the related appa-
ratusse were placed outside the bowl–shaped tank, but inside the swimming
pool, so that they would not affect the behaviours of the fish. The entire
system was heated by two commercial heaters. The warm water was cir-
culated into the inner bowl with a water pump. The bowl was able to
exchange water with outside via small holes drilled inside. The measured
temperature in the swimming pool ranges from 23 °C to 26 °C. The water
circulation is turned off during observations of fish swimming.

The 3D shape of the tank was measured, so we know the exact boundary
for the fish. The measurement was performed by placing markers on the
surface of the tank, and then reconstruct the markers in 3D. Since the tank
is rotationally symmetric around the z–axis, it is appropriate to describe its
geometry in the cylindrical coordinate system with the height (z) and the
radius (r). Figure 4.1 (Right) shows the results of the measurement, and
the shape of the tank can be modelled by function z = 0.74r2, where both
length variables have the units of meter. The shape of the tank, together
with the water level, are the boundaries for the movement of the fish.
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4.2.2 Locating One Fish in 3D
Figure 4.2 summarises the essential concept to locate the 3D position with a
three camera setup. The task of finding the 3D positions of zebrafish consists
of two parts. The first part is finding the features of fish in individual
cameras, as discussed in the chapter 3. These features corresponds to fi ∈ R3

in Fig. 4.2(a).29 29 The symbol fi stands for the
3D location of the detected 2D fea-
tures. We need the knowledge of
the camera to calculate fi from the
features in the image.

The second part is to retrace the ray from the features fi,
back to its original 3D location xi, as illustrated in Fig. 4.2 (b).

To carry out the 3D calculation procedure, we need to know the loca-
tion, orientation, and optical details about the camera. This information
can be obtained with the camera calibration [102, 202]. Essentially, the
knowledge of the camera can be represented by a 3× 4 matrix P3×4, named
the projection matrix. For a 3D point x = (x, y, z)⊤, the camera with pro-
jection matrix P3×4 will project the 3D point on a 2D plane, with coordinate
(u, v)⊤, satisfying equation,30 30 I use column vectors consistently

in this thesis. For instance, the vec-
tor (x, y, z)⊤ have the shape of 4×1;
while the vector (x, y, z) have the
shape of 1× 4.

P3×4 · (x, y, z, 1)⊤ = k(u, v, 1)⊤ (4.1)
where k can take any value. With proper decomposition of P3×4, it is also
possible to calculate the location of the camera centre, illustrated as c in
Fig. 4.2(a).

Equation 4.1 suggests an algebraical way to calculate 3D positions from
2D features. With known P3×4 and (u, v), Eq. 4.1 offered 2 constrains on
the values of x. Therefore, the 3D vector x can be uniquely determined by
2 or more “camera + feature” combinations.31 31 This method to find 3D location

is called triangulation.
However, the water in the

fish tank will refract the light. Figure 4.2 (c) shows the effect of refraction,
where the angle of incidence θ1 and the angle of refraction θ2 follows the
Snell’s law: n1 sin θ1 = n2 sin θ2. In our experiment, we have n1 = 1 for the
air, and n2 = 1.333 for the water. As a consequence, the calculation of x
involves the following steps,

1. For each feature fi, calculate its corresponding point on the water-air
interface ai.

2. Calculate the direction of refracted ray vi.

3. Find the interception of multiple refracted rays, as the location of fish
in 3D x.

The calculation of ai and vi requires knowledge of the water-air interface,
which was obtained during the camera calibration. Typically, we are free
to choose the orientation and location of the world coordinate frame. And
I set the frame so that the water-air interface is plane z = 0, as plotted
in Fig. 4.2(a). This extra constrain ensures the value of ai being uniquely
determined by a 2D feature (u, v). Following Eq. 4.1:

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

 ·

ax
ay
0
1

 = k

u
v
1

 ,

where ai = (ax, ay)
T, and k is a scaling variable that can take any value.

Notice there are 3 linear equations for 3 variables (ax, ay and k), meaning
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that we can easily calculate ai. The incident ray can be obtained from ai
and corresponding ci. Applying Snell’s law, we can calculate the direction
of the refracted ray, yielding vi.

Ideally, the knowledge of the refracted rays (ai and vi) from different
cameras yields the 3D location of the fish. Realistically, because of the
errors during the 2D feature detection and camera calibration, the retraced
rays will not meet each other in 3D space exactly, as pictured in the inset
in Fig. 4.2(a). Therefore, finding x is a minimisation problem. And the
value to be minimised is the sum of distances from x to all the retraced
rays. The distance from x to the retraced ray from camera i is called the
retraced error, noted as di. The value of di can be calculated as

di = |(x− ai)× vi|, (4.2)

where the retraced ray from camera i passed through point ai ∈ R3, with
the unit direction of vi ∈ R3. For the constant ai and vi, the squared sum
of the retraced error is a function of x, written as,

f(x) =
∑
i

d2i =
∑
i

(
|x− ai|2 |v2

i | − | (x− ai) · vi |2
)

where the operator | · | represents the norm of a 3D vector. We can think
of f(x) as a scalar field (like temperature), and the minimum of the field
can be found, by setting its gradient (∇f) to zero. The relation (∇f = 0)
yields a set of linear equations,

M · x = b. (4.3)

The values of M ∈ R3×3 and b ∈ R3 can be calculated as,

M =
∑
i

Ti =
∑
i

vi · vT
i − diag(vi ◦ vi)

b =
∑
i

Ti · ai,

where the symbol ◦ represents the Hadamard product. The function diag(x)
transform the vector x ∈ Rn to a diagonal matrix D ∈ Rn×n, where Dii = xi.
Solving the equation 4.3 is easy with standard linear algebra methods such
as Gaussian elimination.3232 Using the Python language, the

solution can be found with function
numpy.linalg.solve(M, b). In
C++ the task can be performed
with M.ldlt().solve(b), where
both M and b are matrix and vec-
tor from the Eigen library.

Figure 4.2 (d) shows the calculation of the 3D location of simulated
fish. The simulation was performed with software Blender, in which the
experimental apparatus was constructed virtually. The video was recorded
with virtual cameras in the software, and the aforementioned procedure
was used to calculate the fish locations. Comparing the calculation result
with the known ground truth, it is clear that our calculation yields correct
results. Since the water is relatively deep (300 - 400 mm in depth) in our
experiment, the effect of the refraction could not be ignored. In Fig. 4.2 (d)
we also present the consequence of ignoring the refraction, which leads to a
significant deviation from the ground truth.
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Figure 4.3: Tracking many fish
with three cameras. The cor-
rect identity match from different
views yields the intersection be-
tween the retraced rays, plotted as
solid lines. The unmatched rays
will not meet each other, illustrated

by the dashed lines.

4.2.3 Locating Many Fish in 3D
Calculating the 3D locations of many fish requires more work than locating
one fish in 3D. This is because the different fish in different views (captured
by different cameras) have to be matched correctly. An example of mis-
matched fish were shown in Fig. 4.3 as dashed lines. Since the three dashed
lines correspond to different fish identities, they do not meet together. It
is possible to use brute-force enumeration to generate all the possible iden-
tities matches, and then discarded the invalid ones. This algorithm was
summarised in algorithm 1, where all possible solutions were generated in
a triple for loop. These possible solutions were validated, and the invalid
values were discarded.

Algorithm 1: Brute force algorithm for locate many fish in 3D.
Result: A collection of valid location x
for i← 1, n1 do

for j ← 1, n2 do
for k ← 1, n3 do

x← Solution of M · x = b;
if x is valid then

put x in Result

Naively, we will use the retraced error (Eq. 4.2) to validate every solution
x. The operation is summarised in algorithm 2, where a threshold value of
dm is used to discard the solutions with large retraced errors.

Algorithm 2: Validate a 3D location with retraced error.
di ← (x− ai)× vi;
dj ← (x− aj)× vj ;
dk ← (x− ak)× vk;
if (di + dj + dk)/3 < dm then

return True
else

return False

However, this method is inadequate because of the correlation of the
retraced error and the location of the fish: The retraced error is larger when
the fish is deeper in the water. Such correlation is exhibited in Fig. 4.4, with
simulated data. The correlation between error values and depth will lead
to a systematic error, where the fish closer to the water-air interface will
be preferred. Such correlation might originate from the arrangement of the
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camera. As they were pointed to the water from above, the retraced rays
will be closer to each other when they were close to the water-air interface
(see Fig. 4.3).
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Figure 4.4: The reprojection
error (ϵ) and retraced error (di
in Eq. 4.2) as a function of fish
location.

To overcome such bias, we can use the reprojection error [102] to separate
the valid and invalid solutions of Eq. 4.3. The reprojection error is defined
as

ϵi =
∣∣∣(ux, vx)

⊤ − (u, v)⊤
∣∣∣ (4.4)

where (u, v)⊤ represents the 2D fish features in the camera, and (ux, vx)⊤

represents the projection of solution x to camera i. The essential calculation
for ϵ is to re-project a 3D point x back to the camera correctly, with the
optical details being considered explicitly. The reprojection error exhibits
no correlation with respect to the location of the fish, as shown in Fig. 4.4,
which makes it a suitable choice for the validation of fish locations x.3333 Unfortunately, the reprojection

error can not be used to find x. The
minimisation of

∑
i ϵ

2
i will not yield

a set of linear equations like Eq. 4.2.

The
algorithm for the validation with the reprojection error is summarised in
algorithm 3.

Algorithm 3: Validate 3D location with reprojection error.
ϵi ← reprojection-error(x, i);
ϵj ← reprojection-error(x, j);
ϵk ← reprojection-error(x, k);
if (ϵi + ϵj + ϵk)/3 < dm then

return True
else

return False

The result of 3D locating of 10 simulated fish were shown in Fig. 4.5.
The simulated 3D data were reprojected to different cameras. These pro-
jected coordinates were mixed with Gaussian noise, forming the 2D features,
to mimic the real life feature measurement. The information of the iden-
tity across different cameras was removed. Then our 3D locating method
(algorithm 1 and 3) was used to calculate the 3D locations from these 2D
features. It is clear from Fig. 4.5 that all of the 10 fish were correctly located,
even in the existence of 2D measurement errors.

4.2.4 Optimising the Stereo Matching

It is worth mentioning an optimisation idea proposed by Attanasi et al.
to refine the stereo matching of fish identities3434 The same process is called

stereoscopic linking in [107].
across different cameras

[107]. The idea is to minimise the sum of reprojection error while ensuring
the existence of all fish features in the valid solutions. For instance, in
a collection of valid 3d locations {xijk}, we want to minimise the sum of
their corresponding reprojection errors (Eq. 4.4), by discarding some “bad”
solutions. The result of this process is a subset of {xijk}, noted as {xijk}opt.
And the solutions in {xijk}opt are termed as the optimised solutions.

Without any constraint, the result of minimised error will be an empty
set, meaning {xijk}opt = ∅. This is not very effective because the algorithm
will trivially return nothing. A sensible way to remedy this situation is to
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(a) (b) (c)

(d)

Figure 4.5: Calculating the 3D lo-
cations of 10 simulated fish loca-
tions. (a)-(c): the location cap-
tured by different cameras. The
cross markers represent the known
ground truth. The squares repre-
sent the measured 2D features, con-
taining Gaussian noise. The circles
represent the projection of the cal-
culated 3D fish locations. (d): the
ground truth and the calculated fish

location in 3D.

enforce some kind of constraint, to ensure the existence of good results. The
essence of the idea from Attanasi et al., is the following constraint,

∀i
∑
jk

xijk ≥ 1, ∀j
∑
ki

xijk ≥ 1, and ∀k
∑
ij

xijk ≥ 1,

where i, j, k are the indices for features in the 3 cameras. The symbol xijk
represents a 3D boolean tensor, whose elements can take values of 0 or 1.
If the value of xijk = 1, then the feature i in camera 1, the feature j in
camera 2, and the feature k in camera 3 will form a optimised solution
(in {xijk}opt). Formally, the task can be written as a linear programming
problem, written as,

Minimize
∑
ijk

ϵijk

Subject to ∀i
∑
jk

xijk ≥ 1,

∀j
∑
ki

xijk ≥ 1

∀k
∑
ij

xijk ≥ 1

(4.5)

This problem can be solved effectively by modern optimisation libraries, and
they give satisfying results without significant increase in the computation
time.
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What is “Linear Programming”

The method linear programming is a very useful optimisation method.
We can use it to find the maximum value of a function, plus a set of
linear constraints. Equation 4.5 is an example of the problem that
linear programming could solve. To actually solve the problem, we
need to apply some complicated algorithms like the simplex algorithm.
The details of these algorithms are beyond the scope of this thesis.

Practically, we can use many existing libraries and softwares to
solve the linear programming problems. I used the CPLEX package
from the company IBM to carry out the linear programming calcula-
tion, following [107]. The package is not open-source, but offers free
academic licence for researchers. Being a powerful solver, the CPLEX
package can solve optimisation problems with quadratic constraints.
We will utilise this feature in chapter 5 to remove overlapping parti-
cles.

Confusingly, the “programming” in the name does not refer to
computer programmes. It originates from its first application, where
George B. Dantzig was invited to solve an assignment problem for
American military after world war II [203]. Internally, the schedules
in the army was called the programme. Dantzig formulated the prob-
lem into a system of linear inequalities, and published a paper under
the name of Programming in a Linear Structure. Later, he took the
suggestion from a friend, and changed the name of this method to
linear programming, while strolling on the Santa Monica beach in the
summer of 1948 [203].

4.2.5 Assessing the Algorithm

For the experimental videos, the realistic accuracy of the algorithm depends
on the distribution of the 2D error as well as the error in the camera cali-
bration process. It is difficult to estimate the effects of theses uncertainties
theoretically, and we refer the readers to [204] for relevant studies.

Practically, we can inspect the reprojected locations (ux, vx) to check
the accuracy. An example is shown Fig. 4.6 (a), where the reprojected 3D
tracking result as well as the detected 2D features were plotted on top of
the captured image from one camera. The distribution of the reprojection
error ϵ was plotted in Fig. 4.6 (c), featuring a peak at ∼ 2 pixels. The
distribution of ϵ indicates that the reprojected coordinates (ux, ux) are close
to the 2D features (u, v). Such proximity should give us confidence about
the algorithm on the experimental data. Notably, the 3D locating algo-
rithm is even capable of discarding some invalid 2D features, since their
corresponding invalid 3D result would be discarded by algorithm 3.

The complexity of the 3D locating algorithm is O(n3), because of the
triple for loop in algorithm 1. The performance of the algorithm is shown in
Fig 4.6 (d), where the wall time3535 The wall time refers to time

spent in real life, counted by a clock
on the “wall”

exhibits the expected cubic increase. To
get even better performance, one needs to improve the algorithm to reduce
the complexity from O(n3). A possible option is to exploit the epipolar
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(a) (b)

(c) (d)

Figure 4.6: (a) An image of 40 ze-
brafish in the experimental setup.
The detected 2D features, corre-
sponding to (u, v) in Eq. 4.4, were
plotted as white circles. The re-
projected 3D tracking result, cor-
responding to (ux, vx) in Eq. 4.4,
were plotted as the red cross mark-
ers. We cropped the image to fo-
cus on the fish group. (b) The re-
constructed 3D locations of 40 ze-
brafish from three different cam-
eras. (c) The distribution of re-
projection error ϵ. (d) The wall
time of the 3D locating algorithm
for different numbers of fish. The
dashed line shows the cubic fitting

(y = ax3 + b).

geometry [102], which can reduce the complexity of the algorithm. Further
optimisation of the 3D locating algorithm will be an important task of this
project in the future.

Even though the 3D locating algorithm was not optimised, it is good
enough36 36 To achieve high performance, a

fast programming language is im-
portant: the result in Fig. 4.6 was
from an implementation using the
C++ language, which is 1,000 times
faster than a Python implementa-
tion.

for relatively small group sizes (less than 100 fish). For these small
numbers, the bottleneck of the calculation is the 2D feature detection, which
took about 2s for each frame. With an image acquisition frequency of 15
FPS, the 3D locating calculation for group size < 40 can even be performed
in real time, if the 2D feature calculation time can be decreased dramatically.

4.3 Results
The 3D tracking yields the positions of the fish. From the positions, we can
estimate the spatial distribution, and measure the structure of a group of
fish.

4.3.1 A Single Fish

Figure 4.7 (a) shows the joint probability density function (PDF) of the
x and z coordinates of the fish, noted as fXY . This spatial distribution
shows that the fish tend to stay in the bottom of the tank. We observe this
behaviour repeatedly, when the fish were subjected to a new environment.
It is likely to be related to the “depth preference” of zebrafish [200], where
the fish prefer deep water naturally. In addition, the increasing anxiety
would also drive the fish to go to the bottom of the tank [205, 206].

The distribution of the planer radius, r =
√
x2 + y2 is shown in Fig. 4.7

(b), noted as fR(r). The shape of fR(r) is affected by the geometry of
the tank. To understand the effect of this boundary, we calculated the
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Figure 4.7: The spatial distribu-
tion of one zebrafish. (a) The joint
probability density function of x
and z components of the fish. (b)
The PDF for the planer radius r of
the fish. The dashed line shows the
same PDF for the ideal gas particles
distributed uniformly in the tank.
(c) The PDF for the z component
of the fish. The dashed line shows
the same PDF for the ideal gas par-
ticles distributed uniformly in the
tank. (d) The semi-log plot of the
excess PDF, f ex

Z in Eq. 4.6, for the z
component for the fish. Fitting its
initial decay revealed a lengthscale
of 1.1 cm. The region of the initial
decay is heighlighted in (c) and (d).
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distribution of the ideal gas particles, distributed uniformly inside the fish
tank (see chapter 6 for details). Compared to the ideal gas particles, the
distribution of r is closer the the centre. The shifted distribution of the
fish is related to their depth preference, since the fish will be forced to the
central region of the tank as they swim deeper in the water. There are
two peaks in fR(r), and this bimodal feature can be explained by the holes
drilled on the tank, which will be discussed in section 4.3.5.

The distribution of z component of the coordinate of the fish, noted as
fZ(z), is shown in Fig. 4.7 (c), which presents a very sharp peak around
z = 0 m. To get a better understanding of the fish, we calculated the excess
probability density function, f ex

Z (z), as

f ex
Z (z) =

f fish
Z (z)

f id
Z (z)

(4.6)

where the term f fish
Z (z) represents the height distribution of the fish, while

f id
Z (z) represents the distribution of the ideal gas particles. The logarithm

of f ex
Z (z) is shown in Fig. 4.7 (d), featuring a linear decay of the peak,

and a subsequent tail. This initial exponential decay is surprising, and it
is reminiscent of the height distribution of one colloidal particle, under the
gravitational field [207, 208]. We can fit this exponential decay with the
following function,

f ex
Z (z) = a exp

(
z

ξg

)
where a is free parameter, and ξg is a length scale related to the depth
preference of the fish. The value of ξg is a measure of the “effective gravity”
exhibited by fish, that is related to its depth preference. For one adult
zebrafish, the value of ξg is 1.2 cm. The effective gravity for the fish will be
further discussed in chapter 6.
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Figure 4.8: The spatial distribu-
tion of two adult zebrafish. (a) The
joint probability density function of
x and z components of the fish. (b)
The PDF for the planer radius r of
the fish. The dashed line shows the
same PDF for the ideal gas particles
distributed uniformly in the tank.
(c) The PDF for the z component
of the fish. The dashed line shows
the same PDF for the ideal gas par-
ticles distributed uniformly in the
tank. (d) The semi-log plot of the
excess PDF, f ex

Z in Eq. 4.6, for the z
component for the fish. Fitting its
initial decay revealed a lengthscale
of 1.9 cm. The region of the initial
decay is heighlighted in (c) and (d).
(e) The PDF of pairwise distances
of the fish and the ideal gas par-
ticles in the tank. The ratio of the
two, the radial distribution function

(RDF), is plotted as a solid line.

4.3.2 Two Fish
The spatial distribution of 2 zebrafish is presented in Fig 4.8. The behaviour
of two fish is similar to that of one fish, exhibiting the typical depth pref-
erence. However, the distribution of two fish is broader compared to that
of one fish. The broader distribution indicates an increased randomness,
which might related to the a decreased level of anxiety37 37 To the best of my knowledge,

there is no direct proof to suggest
that zebrafish perceive less danger
in a larger group. It is a rea-
sonable speculation, since zebrafish
form groups naturally in the wild
[21].

, as the fish were
swimming in pairs. In other words, one fish might be very vigilant in a new
environment, exhibiting the anxiety-driven depth preference [205], which
leads to a narrow distribution of fZ(z). For a pair of fish, this depth pref-
erence was reduced. The fitting result of f ex

Z (z) yields a ξg value of 1.8 cm,
which is larger than the ξg value of one fish (1.2 cm), as a result of reduced
depth preference.

The fish-fish interaction can be probed by the distribution of the pairwise
distances as well as the radial distribution function (RDF), as discussed in
chapter 3. The probability density function (PDF) of the pairwise distance
of 2 fish was shown in Fig. 4.8, along with the corresponding PDF of the
ideal gas particles uniformly distributed in the fish tank. The PDFs of
the fish distance exhibit a peak around 5 cm, which is dominated by the
inhomogeneity of the density distribution.

The RDF of 2 fish in the system exhibits a peak around 0.03m, with a
hight38 38 For the densely packed fluid,

like a collection of hard spheres at
volume fraction of 54%, the peak
height is ∼ 6.

value of ∼ 100. The hight value is significantly larger, comparing
with the RDF peak height (∼ 15) of 2 fish in 2D. However, this does not
imply the fish were swimming in a more cohesive fashion in 3D. Instead, the
RDF describes the depth preference of the fish, which generated significant
density inhomogeneity, illustrated in Fig. 3.10 (a). In other words, the fish
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Figure 4.9: The spatial distribu-
tion of three adult zebrafish. (a)
The joint probability density func-
tion of x and z components of the
fish. (b) The PDF for the planer ra-
dius r of the fish. The dashed line
shows the same PDF for the ideal
gas particles distributed uniformly
in the tank. (c) The PDF for the z
component of the fish. The dashed
line shows the same PDF for the
ideal gas particles distributed uni-
formly in the tank. (d) The semi-
log plot of the excess PDF, f ex

Z in
Eq. 4.6, for the z component for
the fish. Fitting its initial decay re-
vealed a lengthscale of 1.8 cm. The
region of the initial decay is high-
lighted in (c) and (d). (e) The PDF
of pairwise distances of the fish and
the ideal gas particles in the tank.
The ratio of the two, the radial dis-
tribution function (RDF), is plotted

as a solid line.
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appear to swim together in a more cohesive fashion in 3D, according to the
numerical value of the RDF. But the cohesion was not driven by the (biolog-
ical) fish-fish attraction. Instead, these fish were just bounded together by
their interaction with the environment, i.e. the depth preference. This bias
induced by the depth preference can be corrected with advanced sampling
method, which will be covered in chapter 5.

4.3.3 Three Fish
The spatial distribution of 3 zebrafish is presented in Fig 4.9. Being similar
to the 1-fish and 2-fish system, a group of 3 zebrafish presents the depth
preference, indicated by the biased joint PDF of z and z components of the
fish coordinates. The PDFs (fZ(z), fR(r), and fXZ) of 3 fish is very similar
to the results from 2 fish experiments. This similarity was also observed in
the 2D experiments (section 3.3.2).

The distribution of the pairwise distance of 3 zebrafish exhibits one peak
around 0.08m. The length scale matched the size of the high-density blob
in Fig. 4.9 (a), thanks to the depth preference of the fish. The RDF of 3
fish is similar to the RDF of 2 fish, with a peak at around 0.03 m. The
height of the peak is close to 100, due to the depth preference of the fish,
as discussed in section 4.3.2.

4.3.4 Many Fish
Figure 4.10 shows the spatial distribution of 50 adult zebrafish, as well
as the distribution of their pairwise distances and the RDF. The depth
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Figure 4.10: The spatial distribu-
tion of fifty adult zebrafish. (a) The
joint probability density function of
x and z components of the fish. (b)
The PDF for the planer radius r of
the fish. The dashed line shows the
same PDF for the ideal gas particles
distributed uniformly in the tank.
(c) The PDF for the z component
of the fish. The dashed line shows
the same PDF for the ideal gas par-
ticles distributed uniformly in the
tank. (d) The semi-log plot of the
excess PDF, f ex

Z in Eq. 4.6, for the z
component for the fish. Fitting its
initial decay revealed a lengthscale
of 3.0 cm. The region of the initial
decay is highlighted in (c) and (d).
(e) The PDF of pairwise distances
of the fish and the ideal gas par-
ticles in the tank. The ratio of the
two, the radial distribution function

(RDF), is plotted as a solid line.

preference is obvious for a group of 50 fish, as shown in the joint PDF of
x and z components of the fish coordinates. However, the distribution is
more homogeneous comparing with the 1/2/3 fish results. This homogeneity
could be the result of reduced depth preference, as the ξg value for 50
zebrafish is larger than that of the 1/2/3 fish. Biologically, the reduction of
depth preference (the increase of ξg) can be explained by our assumption,
that the fish perceive less danger in a larger group.

The distribution of the z component, interestingly, exhibits two sepa-
rated peaks. One of the peak is close to z = 0 m which can be explained
with the depth preference. The other peak is located at z = 0.35 m, which
corresponds to the top of the tank. This suggests the fish were also attracted
by the water-air interface. Such bimodal distribution is likely due to the
biological preference of the fish, which will be further analysed in chapter 5.

The 50 zebrafish also shows a broad distribution for their pairwise dis-
tances. This can be explained by the reduced density inhomogeneity of the
fish. Consequently, the group of 50 fish appears to be less cohesive, indi-
cated by the absence of sharp peak in their RDF, as shown in the bottom
panel of Fig. 4.10. The observation that a large group of fish exhibits less
cohesion and less spatial inhomogeneity, was also captured by the 2D fish
experiments shown in section 3.3.4.

4.3.5 The Holes on the Tank

Ta
nk

The holes on the tank
affected the zebrafish.

The holes drilled on the surface of the tank had an unexpectedly large effect
on the spatial distribution of the zebrafish. These holes were designed for the
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Figure 4.11: Left: the distribu-
tion of the planar radius (R), where
the location of the drilled holes were
marked with vertical lines. Right:
a photo of the bottom of the fish
tank, highlighting the location and

planar radius of the holes.
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circulation of the water in the tank. They appear as black dots in Fig. 4.11
(right). However, the location of these holes matched the R values of the
density distribution, where the discontinuous singularity happens, as shown
in Fig 4.11 (left). This indicates that the fish actively avoids swimming on
top of these holes.

For the distribution of 1 fish, the fish-hole interaction is very significant,
indicated by a very clear separation of peaks around R = 0.1. Such sepa-
ration is less significant in from the result of 2 fish and 3 fish experiments.
For 50 fish, the effect of the holes is not observed in Fig. 4.11. The result is
consistent with the observation in 2D, were the fish-tank interaction domi-
nates the 1/2/3 fish behaviour, while the fish-fish interaction dominates the
behaviour of 50 fish. Such observation indicates the necessity for the large
group animal behaviour experiments, if we are interested in the interaction
between animal individuals.

This information about the fish-tank interaction is important for the
purpose of the modelling. In chapter 6 we will show that a small group of
fish can be modelled as a system in equilibrium with pairwise interaction,
under the influence of the tank, the gravity, as well as the holes. The
Boltzmann energy weight, as a result of our equilibrium assumption for the
system, gives a good match for the observed spatial distribution.
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Summary of Chapter 4

• Locating fish in 3D requires synchronised images from different cameras. We Pre-
sented the experimental setup for this task.

• We introduced the idea to calculate the 3D location of one fish from its corresponding
2D features from different cameras.

• We presented a brute-force algorithm to locate multiple fish in 3D, highlighting the
importance of the reprojection error. We also introduced the optimisation of the
result with the help of linear programming. The accuracy and complexity of the
multiple-fish locating algorithm is assessed.

• We reported the analysis on the coordinates of zebrafish in a 3D environment, fea-
turing different fish numbers.

One Fish
The fish tend to swim near the bottom of the tank. The height distribution
exhibit an exponential decay, featuring the depth preference of the fish, which
can be characterised by a length scale ξg.

Two Fish
The fish tend to swim near the bottom of the tank, with slightly increased ξg
value, suggesting a reduced depth preference. The depth preference dominated
the radial distribution function.

Three Fish
The behaviour of three adult zebrafish is very similar to that from two fish.

Fifty Fish
The spatial distribution of 50 fish is more uniform, compared to the 1/2/3
fish results. As a result, the RDF of 50 zebrafish shows significantly reduced
cohesiveness.

• Surprisingly, the fish responded strongly to the small holes drilled on the surface of
the tank, leading to the peak split in the distribution of the planar radius, for the
1/2/3 fish behaviour. For 50 fish, the interaction between the fish and the holes
was not observable, indicating the behaviour of 50 zebrafish were dominated by the
fish-fish interaction, instead of the interaction between the fish and the environment.
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Chapter 5

Analysing Zebrafish
Behaviour

鱼相忘乎江湖

庄子

5.1 Introduction
The experimental setup described in chapters 3 and 4 provides the coordi-
nates of individual fish in 2D or 3D. These numbers gives us the information
about the structure of the fish group. To further obtain the “dynamics” of
the system, we need to link the coordinates into trajectories3939 The term “structure” refers to

the quantities calculated from the
coordinates of individuals in a sys-
tem. On the other hand, the term
“dynamics” refers to the quantities
whose calculation needs the incor-
poration of the velocities.

. With the
linked trajectories, we have access to the full phase space that a group of
fish explored. This information is similar to that we get from a molecular
dynamics simulation, or a real-space colloidal experiment.

From the trajectories, we can analyse the correlations of the fish in the
space and time. For instance, we may ask questions like “if a fish appears
at location A, what is the chance that another fish appears at location B?”,
or “if this fish is swimming very fast at time t, what is the most likely speed
of the same fish at time t+ δt?”. Answers to these questions4040 To answer the first question,

we can calculate the radial dis-
tribution function. For the sec-
ond question, we can calculate the
auto-correlation function of the fish
speed.

gave us the
characteristic lengthscale (the correlation length) and timescale (the relax-
ation time) of the fish group These quantities could help us understanding
the collective behaviour of the system. For instance, the divergence of the
correlation length and the relaxation time may indicate the system being
at a critical point [209]; and the existence of dynamical heterogeneity is a
feature for glassy systems [210].

For the purpose of pursuing lengthscales and timescales, a more explicit
and biology-orientated example is the dynamic scaling hypothesis [121].
For animal systems near a critical state, a universal form of their spatial-
temporal correlation function, Ĉ(k, t), was proposed from this hypothesis,
written as

Ĉ(k, t) = f (t/τk; kξ) ; τk = k−zg(kξ), (5.1)

where k and t represent the wavenumber (the reciprocal space) and the time,
while the τk and ξ are the typical timescale and lengthscale, respectively.
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The functions f(x) and g(x) are scaling functions, which only depend on
one variable, kξ. The exact forms of f and g are often not important, since
the truly remarkable thing about Eq. 5.1 is that all the correlations will
depend only on the correlation length ξ. That is to say, we can predict the
behaviour of the animals knowing just one quantity (lcorr), which absorbs
many biological features of the animal group. This reductionist picture of
animal behaviour seemed too good to be true, but it was indeed supported
by field observations of midges [121].41 41 However, there is a catch. This

idea of a universal behaviour for an-
imals only works, if the biological
system were in a mysterious “criti-
cal state”, whose nature is not ex-
actly clear. In addition, the ex-
istence of such criticality is ques-
tionable, with evidence suggesting
the flocking transition is discontin-
uous[160].

In this chapter, the necessary data processing tools will be introduced.
These methods include the refinement of the coordinates and the linking
procedure, which transforms the coordinates into trajectories. With the
trajectories, we will calculate the useful structural and dynamical quanti-
ties, to describe the behaviour of the fish. To obtain different lengthscales
and timescales, some spatial and temporal correlation functions will be cal-
culated. All the analysis in this section are applicable for results from both
2D and 3D observations, being potentially useful for the analysis of different
animal behaviour.

Having established all the necessary analytical tools, we will study the
behaviour of 50 zebrafish from 2D observations (chapter 3) and 3D obser-
vations (chapter 4). Crucially, we will see that the behaviour of a group of
zebrafish can be described by a dimensionless number, such as the ratio of
two lengthscales, the persistence length and the nearest neighbour distance.
This conclusion will be rationalised in chapter 6, in which we explain the
behaviour of fish with a simple self-propelling particle model with alignment
interactions.

5.2 From Locations to Better Locations

To correctly carry out the linking problem, where coordinates were con-
nected into trajectories, it is necessary to preprocess the locations of the
fish. The calculated fish locations contains overlapping pairs, where two
fish locations appear at an impossibly close distance. This error happens
during the tracking procedure introduced in chapter 3 and 4. In the practical
calculation, these overlapping coordinates make the linking result inaccu-
rate. A process to refine the coordinates, getting rid of the overlaps, helps
the final quality of the trajectory significantly.

5.2.1 Removing Overlapping and Hard Particles

When the overlap happens, the correct result can be obtained by discarding
one “bad” coordinate. Conceptually, the process is identical to the way we
optimise the stereo matching result in section 4.2.4. Likewise, we will apply
the linear programming method, to obtain a set of optimised coordinates
({x}opt) from the measured, error-prone coordinates ({x}).

Suppose there are N particles in total, and we wish to find K non–
overlapping particles, where each particle has an uncertainty value42 42 For 2D coordinates, the error

values can be the brightness of the
coordinate in the foreground image
(section 3.2.3). For 3D coordinates,
the error values would be the repro-
jection error defined in Eq. 4.4.

of ei.
The task can be written as a minimisation problem with quadratic con-
straints:
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Minimize
∑
i

eixi

Subject to x1d12x2 ≤ σ

x1d13x3 ≤ σ

...
xidijxj ≤ σ∑

i

xi = K

(5.2)

where dij is the distance between particle i and j, σ is the diameter of
the non–overlapping hard core of each particle, and K is the total number
of particles. The variable xi is an element in a boolean array, that take
the values of 0 and 1. If xi = 1, then the ith coordinate will be retained
in {x}opt. If xi = 0 the corresponding location will be discarded. The
solution to above cost function and constrains can be effectively solved by
the CPLEX optimisation package.

The value of K is a free parameter, whose optimum value is difficult
to estimate. A working heuristic is to find the maximum value of K that
satisfies the constraint in Eq. 5.2. Therefore, the overlapping problem is
solved with the following algorithm4343 Algorithm 4 can also be ap-

plied in the real-space colloidal mi-
croscopy, where the error term can
be the inverse of the fluorescent in-
tensity (to favour brighter centres)
or the response to a kernel function
(to favour a particular shape).

.

Algorithm 4: Remove overlapping locations.
Data: Locations {x}, cutoff σ
Result: Optimised locations {x}opt
N ← Size-of({x});
{dij} ← Pairwise-distance({x});
for K ← N to 1 do
{xi} ← Solve Eq. 5.2;
if {xi} is valid then

break;
{x}opt ← ∅;
for i← 1 to N do

if xi > 0 then
Put xi in {x}opt;

An alternative choice, instead of the linear programming approach, is to
apply a greedy algorithm. The idea is to gradually add “good particles” to
the optimised set {x}opt, until particle overlap happens4444 Equivalently, we can use algo-

rithm where “bad particles” were
removed from xopt gradually.

. This approach is
summarised in algorithm 5. The greedy algorithm is easier to implement,
but it is not guaranteed to find the optimum solution [211]. This is because
the greedy algorithm only compares the quality of two solutions iteratively,
rather than trying to find the best solution out of all possibilities.

Figure 5.1 shows the removal of overlapping particles with both algo-
rithm 4 and 5. The locations were sampled randomly, representing the ideal
gas particles. For both algorithms, the overlap was successfully removed
while the remaining particles are those with smaller error values. However,
the linear programming method find more non-overlapping particles, com-
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Algorithm 5: Greedy algorithm to remove overlapping locations.
Data: Locations {x}, cutoff σ, error {e}
Result: Optimised locations {x}opt
N ← Size-of({x});
{x}opt ← ∅;
{dij} ← Pairwise-distance({x}opt);
while min({dij}) > σ do

i← argmin({e});
put xi in {x}opt;
{dij} ← Pairwise-distance({x}opt);

(a)
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(b)

Greedy Algorithm
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Figure 5.1: The removal of over-
lapping particles with different al-
gorithms. The circles represent
particles. Their locations corre-
sponds to {x}, and their radius val-
ues are the hard core diameters (σ
in Eq. 5.2). The colour of the cir-
cles represents the error to be min-
imised. (a): the result of solv-
ing Eq. 5.2, implemented as algo-
rithm 4. The pentagons represent
the optimised result ({x}opt). (b):
the result of greedy algorithm (al-
gorithm 5). The hexagons repre-
sent the optimised result ({x}opt).
(c): the number ratio of optimised
positions from algorithms 4 (Nlp)
and algorithm 5 (Ngd) as a function
of average pairwise. The positions
were randomly sampled with differ-
ent densities. The error bars were
the standard error calculated from

25 different simulations.

pared to the greedy algorithm. This is expected, as the constrain of the
linear programming forced the algorithm to maximise the size of {x}opt.

The systematic difference between the two algorithms is presented in
Fig. 5.1(c). The ratio between the number of optimised particles, detected
by different algorithms is plotted against the average pairwise distance of
the particles. The linear programming method consistently generates larger
optimised set, especially in the high density region, when the average pair-
wise distance is close to 2. For the dilute system, the difference between the
two algorithms were negligible. The average pairwise distance of zebrafish
were close to 20 cm[1, 182], while the average body length of the fish was
∼ 3 cm. As a result, the fish is similar to the ideal gas particles where the
average pairwise distance is close to 6 σ, where the difference between the
two algorithms is significant. Because of its better performance, the linear
programming method was selected to remove the overlapping particles. In
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the experiments, the size of the hard core was chosen to be 1 cm, a value
that corresponds to the width of the fish.

5.2.2 Removing Overlapping and Soft Particles

The overlap removing algorithm can be improved slightly, to change the
strictly hard length scale (σ) to a “softer” counterpart. The idea was borrow
from the soft margin classification problem for the support vector machine
(SVM) algorithm in the machine learning (ML) community [189]. Following
the naming tradition in ML literatures, we introduce a slack variable ζij for
particle i and j. The value of ζij measures how soft the repelling is between
two particles. The larger ζij value corresponds to a softer particle. In the
language of physics, the ζij variables are essentially the pairwise potential
energy between atoms, whose sum (

∑
i

∑
j ζij) gives the internal energy of

a system, and should be minimised.
Formally, the overlap removing with soft interaction can be written down

as follows,

Minimize
∑
i

(ei + µ)xi + β
∑
i

∑
j

ζij

Subject to x1d12x2 ≤ σ − ζ12

x1d13x3 ≤ σ − ζ13
...

xidijxj ≤ σ − ζij

(5.3)

which is a slight modification of Eq. 5.2. Firstly, we remove the constraint
that forces the total number of particles to equal K. There are also two
additional parameters, µ and β. The parameter µ controls the number of
total particles in {x}opt. The smaller the µ value is, the more particles will
be included in the optimised set. In the context of statistical mechanics,
we can think of µ as the chemical potential. The parameter β before the
energy term

∑
i

∑
j ζij controls the softness of the excluding zone around

each coordinate, sharing the same meaning with the hyperparameter C in
the SVM algorithm. Within the context of statistical physics, the parameter
β is conceptually identical to the inverse temperature. Reducing the value of
β, we increase the temperature, and we make every particle appear softer.

The solution of Eq. 5.3 will be identical to the solution of Eq. 5.2, when
β → ∞ and µ ∼ −max({ei}). These solutions were ascribed to the “hard
removal” region in Fig. 5.2(c). Fixing the value of µ but decrease β grad-
ually, move overlap will be allowed, and more particles will be detected.
These regions were labelled as “soft removal” in Fig. 5.2. When the values
of both µ and β were small, all the particles will be retained in {xopt}, cor-
responding to the “no removal” region in Fig. 5.2(c). On the other hand,
the solution of Eq. 5.3 will lead to the removal of all particles, when the
value of µ is large. This scenario corresponds to the “excess removal” region
in Fig. 5.2(c).

This soft overlap-removal algorithm was implemented, but not tested nor
used for the fish data. This is because the determination of the parameters,
µ and β, is difficult. However, this soft overlap remove algorithm presents
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Figure 5.2: The removal of over-
lapping particles following equa-
tion 5.3. The circles represent par-
ticles ({x}). The colour of the cir-
cles represent their errors. (a): the
result with parameters β = 103 and
µ = −1. The pentagons repre-
sent the optimised result ({x}opt).
The result is identical to that in
Fig. 5.1. (b): the result with pa-
rameters β = 1 and µ = −1. The
pentagons represent the optimised
result ({x}opt). (c): the ratio be-
tween the number of particles af-
ter and before the optimisation, as
a function of the two parameters.
The x axis corresponds to the in-
verse temperature β, and the y axis
corresponds to the chemical poten-
tial µ. Different regions were la-
belled with their characteristic be-
haviour. The dashed line shows the
maximum value of the error. Each
grid in (c) represents the average of

25 ideal-gas simulations.

as a promising algorithm for the real-space colloidal microscopy, as the
energy term can take realistic, inter-colloidal interaction form, to match the
experimental system.

5.3 From Better Locations to Trajectories

The overlap-free positions can be linked into trajectories, from which we can
get the velocities of the fish. The term “link” means finding the fish j at
time t+1, which corresponds to the fish i at time t, and the pair (i, j) forms
a link. Such a linking process therefore gives us the identity of each fish in
different time points. The movement of a single fish, as a function of time,
forms a trajectory. The process of linking coordinates into trajectories is
commonly applied in different fields, for instance in the analysis of colloidal
experiments[212] as well as fluid dynamic experiments[108].

Two examples of the linking process are illustrated in Fig. 5.3, where
the locations of 6 simulated fish in 3 successive frames were linked into 6
trajectories. The good links were illustrated in Fig. 5.3(a) while the poor
links were shown in Fig. 5.3(b). Visually, the trajectories in (b) were poor
because the resulting trajectories contain sudden jumps between different
locations. Intuitively, we would not expect the fish to jump back and forth
from place to place.

The method of linking experimental coordinates of animals into trajec-
tories always involves some “educated guesses”. This is because we do not
know the underline dynamics of the animals that we were studying, as we
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Figure 5.3: (a): the good way to
link positions in 3 successive frames
into trajectories. (b): the bad way
to link positions in 3 successive
frames into trajectories. (c): The
distribution of total movement (∆)
for all the possible linking options
(6!2 = 518, 400 possibilities). The
good linking result corresponds to
the links that yields the minimum

of ∆.
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could not predict precisely where the animal will move to from its past
trajectory. In this section, two heuristic methods that “worked” will be
introduced.

5.3.1 Equilibrium Linking

With the observation in Fig. 5.3, it is reasonable to assume that the links
yielding smallest total movement for all the fish, are good links. Formally,
our linking procedure will aim at minimising the total squared movement
∆, which is written as

∆ =
∑
i

∑
t

δi(t)
2,

where i corresponds to all the linked trajectories, and δi(t) is the distance
that a fish travelled between time t − 1 and t. In fact, Crocker and Grier
showed that the minimisation of ∆ is equivalent to maximising the proba-
bility, if the fish were non-interacting diffusive Brownian particles in equilib-
rium [212]. Even though the underlying assumption is crude, this method
produces visually good trajectories for fish. The linking algorithm that
minimises ∆ is termed as equilibrium linking, since it is suitable for physical
systems in equilibrium.

Unfortunately, the minimisation of ∆ is a difficult task. Naively, we may
attempt to list all the possible links, and choose the one with minimum ∆
value as our linking result. However, the complexity of this approach is
O((N !)T−1) [212], where N is the number of fish, and T is the total number
of time points. For the experiment with 10 fish in 20 total frames, we need
to enumerate ∼ 10130 possible combinations, which is not practical.4545 To find the minimum number in

an array with size of 10130, we need
∼ 10103 years, using a laptop with
infinite memory. People die in the
timescale of ∼ 102 years.

To reduce the complexity, we restrain the particles to have a maximum
movement between two frames [212], and analyse the data frame-by-frame,
rather than optimise the entire trajectory. A good implementation of this
approach is available in the Trackpy package [213]. Unavoidably, the intro-
duction of extra assumptions will deviate the obtained solution, the linked
trajectories, away from the true global minimum of ∆. And even with the
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Figure 5.4: The linking process
to get trajectories from positions.
The grey solid scatters represents
the location ({x}) of simulated par-
ticles. The coloured lines represent
the linked trajectories. Some po-
sitions were discarded (rendered as
empty scatters) randomly to mimic
the experimental locations. (a) The
ground truth. (b) The result with
the active linking algorithm. (c) the
result with the equilibrium linking
algorithm. (d) The distribution of
trajectory length values for differ-
ent linking algorithms. Better al-
gorithms are expected to produce

longer trajectories.

reduced complexity, the equilibrium linking algorithm can be extremely
slow, when multiple equally good linking options being available.

5.3.2 Active Linking
For systems that are out of equilibrium, like a school of fish, the assumption
introduced in section 5.3.1 is not formally correct. In this project, another
good heuristic approach proposed by Ouellette et al. was used to link the
coordinates [108]. For particle i at time t and particle j at time t + 1, the
link (i, j) was established by minimising the tracking cost,

ϕt
ij =

∥∥∥xt+2
j − x̂t+2

i

∥∥∥ ,
where xt+2

j is the location of particle j in time point t + 2, and x̂t+2
i is

the predicted location of particle i in time point t+ 2. The prediction was
calculated with the following

x̂t+2
i = xt

i + vt
i + 2ati = 3xt+1

i − 3xt
i + xt−1

i

vt
i = (xt+1

i − xt−1
i )/2

ati = xt+1
i − 2xt

i + xt−1
i .

In reference [108] this method was named as the four frame best estimate
method. Operationally, for particle i in time point t, we search for all the
possible particle j in time point t+1, and establish link with the minimum
ϕt
ij , by predicting the location of the trajectory with link (i, j) in time point

t+ 2. This linking method is noted as the active linking method.
The behaviour of the two linking methods was exhibited in Fig. 5.4,

where simulated trajectories were used for the test. The model used in
the simulation is the inertial Vicsek model, which will be introduced in
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Figure 5.5: The effect of relinking
process with simulated data. (a)
The trajectories linked with the ac-
tive linking method. (b) The trajec-
tories extended with the relinking
method. (c) The distribution of the
trajectory length. The length val-
ues were rescaled by the total frame
number. The trajectory with length
value being close to 1 corresponds
to a full trajectory through out the

entire simulation.
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chapter 6. The model generates trajectories that are similar to that of
the zebrafish, and the generated coordinates were used to test the different
linking algorithm. Both methods generated visually good trajectories. How-
ever, the equilibrium linking method obtain shorter trajectories, as shown
in Fig. 5.4, which indicates that the behaviour of the equilibrium linking
method is poor. For all the fish data, the active linking method was used.

5.3.3 Extending the Trajectories

The linking algorithms typically give us some short trajectory segments.
These segments can be extended further following Xu’s method. The idea
is to join the two trajectories together, if the the prediction from earlier
trajectory matched the locations of the later trajectory [109].

The result of the relinking method is illustrated in Fig. 5.5. The coor-
dinates to be linked and relinked was generated from simulation, where 25
simulated agents were performing a U-turn together. Some of the coordi-
nates (2%) were deliberately removed during linking, in order to mimic the
various locating errors in reality.

For perfect coordinates, the active linking method was capable of ob-
taining correct trajectories. However, the introduction of missing particles
makes this linking process problematic. As illustrated in Fig. 5.5(a), many
short trajectory segments were obtained. The relinking process successfully
re-joined these segments into very long trajectories, as shown in Fig. 5.5(b).
The relinked trajectories were very long, and half of them have the full
length, as shown in Fig. 5.5(c). For the experimental fish coordinates, the
relinking process is valuable, as it always extends the short trajectories (from
the active linking method) into longer ones.
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5.4 From Trajectories to Behaviour
The trajectories contain rich information about the behaviour of the ze-
brafish. The analysis to reveal the behaviour of the fish will be discussed in
this section. For the structure of the fish group, we introduce the nearest
neighbour distance, the convex hull, and the radial distribution function,
as different characterisation tools. On the other hand, the average speed,
the orientational relaxation time, the polarisation order and the persistence
length will be discussed as the quantities to describe the dynamics of the
fish.

5.4.1 The Structure
The coordinates of the fish shed light on the the structure of the group,
giving answers to the following questions.

1. How close do a pair of fish stay to each other?

2. How big is the animal group in terms of the metric size?

3. Are the fish arranged in an ordered way (like atoms in a crystal) or a
disordered way (like atoms in a fluid phase)?

To answer the first question, we can calculate the nearest neighbour
distance of the fish, whose usage could be traced back to 1960s [100]. The
average nearest neighbour distance of fish (lnn) is defined as,

lnn =
1

N

∑
i

min
j( ̸=i)

(dij) (5.4)

where dij is the pairwise distance of fish i and j, and N is the total amount
of fish. The average nearest neighbour distance of a group could serve as a
measure of the cohesiveness of the fish. The group with smaller lnn value
appear more cohesive.

To measure the size of the group, we can measure area (for 2D data) or
the volume (for 3D data) of the convex hull, constructed from the coordi-
nates of the fish. The convex hull is the smallest subset of the space, which
contains all line segments connected by all pairs of points [214]. Intuitively,
the convex hull is the smallest polygon (or polyhedron for 3D coordinates)
that encloses all coordinates. An example of the convex hull constructed
from 50 fish were provided in Fig. 5.7(a). The area (Ach) or the volume
(Vch) of the hull can be transformed into a lengthscale46 46 To describe the completely ge-

ometry of the group, we need to
consider more details, since a group
of fish does not always present the
shape of a sphere. These extra de-
tails include the aspect ratio, or
the thickness. By assuming the
group shape to be spherical, we can
use just one number to describe it.
Such simplified description can be
thought of as a first order approxi-
mation.

, termed as the
effective convex hull diameter lch, which is defined as

lch =

(
4

π
Ach

) 1
2

(2D Coordinates)

=

(
6

π
Vch

) 1
3

(3D Coordinates),

(5.5)

where the shape of the convex hull were assumed to be circular (for 2D
coordinates) or spherical (for 3D coordinates). The effective convex hull
diameter is a measure of the group size.
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Both lengthscales, the effective convex hull diameter and the nearest
neighbour distance, capture the cohesiveness of the group. In fact, they were
often linearly correlated for the zebrafish, as shown in Fig. 5.6. Therefore,
we only need one of them to describe the fish behaviour. The nearest
neighbour distance was selected, because it is more widely used in the past.
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Figure 5.6: The joint proba-
bility density function (fXY )
of lnn and lch. The results
were obtained from 3D exper-
imental data of 50 adult ze-
brafish.

Finally, we can calculate the radial distribution function (the g(r)) of
the fish to inspect whether the structure of the fish was ordered or not.
However, the spatial distribution of a group of fish may not be homogeneous
in the experiment, possibly being affected by environmental factors such as
the distribution of brightness, as shown in the results in chapters 3 and
4. Therefore, the pairwise distances ({dij}) would be biased to favour the
lengthscale of the high density region. In other words, the fish appear to
swim together. But they were driven by an external field, instead of being
attractive to each other.

To remedy the effect of the external field, we can compare the pairwise
distances of the fish {dij}fish to the pairwise distances of the ideal gas par-
ticles {dij}gas, that share the same inhomogeneous spatial distribution with
the fish. Operationally, we calculate the density distribution of the fish,
and sample ideal gas particles drawn randomly from the same density dis-
tribution, using the tower-sampling method [42]. Therefore, the sampling
of the ideal gas particles is biased, in contrast to a uniform distribution in
the boundary. The biased sampling result was illustrated in Fig. 5.7(a) and
Fig. 5.10(a), where the distribution of the ideal gas is identical to that of
the fish.

Even though the biased ideal gas particles share the same density distri-
bution with the fish, these two systems are inherently different. The ideal
gas particles do not interact with each other, but the fish do. Such a dif-
ference will lead to different pairwise distances, whose probability density
function was noted as fd(r). For instance, we can not imagine two fish with
a separation of zero, as the fish can not physically overlap. Such a repul-
sive interaction will decrease the likelihood of finding two fish at very short
distances.

The ratio between the fd(r) from the fish and the ideal gas, was defined
as the radial distribution function, g(r):

g(r) =
ffish
d (r)

fgas
d (r)

. (5.6)

The value of g(r) indicates the likelihood of finding a pair of fish at the
distance r, with respect to the ideal gas particles. When g(r) is equal to
one, it is equally likely to find a pair of fish or to find a pair of ideal gas
particles, indicating the lack of correlation. When the value of g(r) is greater
than one, the density of the fish correlates positively, suggesting a cohesive
behaviour.

For the structure of dilute liquid, we often get a peak in the g(r), followed
by a monotonic decay. The location of the peak is often close the lnn.
The subsequent decay revealed another lengthscale, which was termed the
correlation length of the density (ξρ). The definition of ξρ is

g(ξρ) = 1; (ξρ > lnn). (5.7)
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Symbol Definition Value (2D) Value (3D) Meaning
lnn Eq. 5.4 61 ± 10 mm 51 ± 10 mm Nearest Neighbour Distance
lch Eq. 5.5 0.8 ± 0.46 m 0.29 ± 0.25 m Convex Hull Diameter
lp Eq. 5.13 ∼ 0.13 m ∼ 0.14 m Persistence Length
ξρ Eq. 5.7 ∼ 0.4 m ∼ 0.32 m Correlation Length of the Density
ξv Eq. 5.15 ∼ 0.15 m ∼ 0.12 m Correlation Length of the Speed
ξo Eq. 5.15 ∼ 0.38 m ∼ 0.24 m Correlation Length of the Orientation
τo Eq. 5.12 ∼ 1.3 s ∼ 0.9 s Relaxation Time of the Orientation
τρ Eq. 5.12 ∼ 900 s ∼ 180 s Relaxation Time of the Density

Table 5.1: Different Length Scales and Time Scales for 50 Zebrafish.

and we force the value of ξρ to be greater than lnn, effectively removing the
situation where g(r) reaches zero at very small distance values.

In addition to the lengthscales, the height of the peak of g(r) give us a
measure of the cohesiveness of the group. Inspired by liquid state theory,
we define the logarithm of the peak value of g(r) as the effective attraction
ϵ [128]:

ϵ = − log (max(g(r))) . (5.8)
The quantity ϵ is a better measure of the cohesion of the fish, because it
could differentiate whether the fish is cohesive or not. For a non-cohesive
group, the value of the g(r) will be close to one, leading a value of 0 for ϵ.
The lack of cohesion could be be identified by the lengthscales.

5.4.2 The Dynamics
The velocities can be calculated as the time derivative of the positions along
the trajectories, once we linked the coordinates. The velocities offered the
dynamics of the system, giving answers to the following questions.

1. How fast do the fish swim?

2. Is the movement of the fish ordered or random?

3. How long does it take for the fish group to forget its current state?

To answer the first question, we could simple calculate the average speed
of the fish, which is defined as,

v =
1

N

∑
i

∥vi∥, (5.9)

where the vi is the location of fish i, and N is the total amount of the fish.
With higher v value, the animals on average move faster. The distribution
of the average speed of 50 zebrafish in 3D was shown in Fig. 5.11(a).

Being conceptually similar to the average speed, the speed of the entire
group can be calculated as,

vg =
1

N

∥∥∥∥∥ ∑
i

vi

∥∥∥∥∥ .
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This quantity indicates the speed of the group centre. A large group speed
value indicates the fish moving collectively from one place to another. For-
mally, we define an order parameter to describe such behaviour, by modi-
fying the group speed:

Φ =
1

N

∥∥∥∥∥ ∑
i

oi

∥∥∥∥∥ =
1

N

∥∥∥∥∥∑
i

vi

∥vi∥

∥∥∥∥∥ , (5.10)

where Φ is called the polarisation4747 The polarisation is conceptually
similar to the magnetisation per
spin in the Ising model. When the
order parameter approaches one,
the system is ordered. The po-
larisation is identical to the mag-
netisation defined in XY model (in
2D) and Heisenberg model (in 3D),
when the orientations of the fish
was treated as the spin vectors
[209].

, and oi is the orientation of fish i. The
definition of Φ ensures it varies from 0 to 1, like other order parameters
in statistical mechanics. The movement of a group of fish is ordered if the
value of Φ ∼ 1, and the movement being disordered when Φ ∼ 0.

For a group of fish, their structural quantities (lnn, lch, g(r)) and their
dynamic quantities (v,Φ) change constantly. With the time-displaced au-
tocorrelation function (ACF) of these quantities, we can probe the typical
timescale for the fluctuation of these quantities. The ACF of quantity CA(t)
is defined as, [209]

CA(t) =

∫
dτ

(
A(τ)− Ā

) (
A(τ + t)− Ā

)
= ⟨A(t)A(t+ τ)⟩.

(5.11)

where Ā is the time-average A. For the ACF of the orientation of the fish,
the shape of Co(t) exhibits a typical exponential decay. Such ACF was
commonly obtained from the Markov processes, where the CA(t) could be
written as a sum of exponential functions,

CA(t) =
∑
i

(ai exp−t/τi)

∼ exp (−t/τ) .
(5.12)

Here the shape of CA is often dominated by the largest time scale (τ).48
48 This timescale corresponds to
the second largest eigenvector of
the transition matrix of the Markov
process.

Therefore, we define the timescale when Co reaches 1/e as the relaxation
time orientation, noted as τo. For other quantities, the shapes of their
corresponding CA(t) functions are complicated. We therefore define the
time when their corresponding CA(t) reach zero as their relaxation time
scales.

Regardless of the slightly different definition, the value of the relaxation
time τA indicates the time taken for a system to forget its current state. For
instance, the value of τnn is the time for a group fish to forget their nearest
neighbour distance. Because the two density-related quantities, lnn and lch,
are strongly correlated, their corresponding ACFs (Cnn(t) and Cch(t)) are
also very similar. Therefore, we term their relaxation time as the relaxation
time of density, written as τρ. The examples of relaxation time scales for
the orientation and density are available in Table 5.1. Practically, these two
time scales are the only dominating time scales for the fish, in all of our
observations.

In addition to the timescale of the structural quantities, we could also
calculate the lengthscale of the dynamical quantities. For instance, we can
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take the the product of the average speed v (Eq. 5.9) and the orientation
relaxation time τo (Eq. 5.12), as the persistence length:

lp = v τo. (5.13)

The value of lp corresponds to the distance that a fish travels in a straight
fashion. For the fish with a small lp value, its trajectory appear more curvy.

In addition to the persistence length, we can also measure the correlation
length of the dynamics of the fish. If a fish changed its speed at a certain
time point, it is interesting to know how far would such change reach. To
do so, we calculate the connected correlation function of the dynamical
quantities [148, 209]49 49 The correlation function CA(r)

with variable “r” is a spatial cor-
relation function, which gives us a
correlation length ξA. The corre-
lation function CA(t) with variable
“t” is a temporal correlation func-
tion, which gives us a relaxation
time τA.

:

CA(r) =

∫∫
drdr′

(
A(r)− Ā

) (
A(r + r′)− Ā

)
δ(∥r− r′∥ − r)

=

∑
i

∑
j ̸=i

[
(Ai − Ā)(Aj − Ā)δ(r − rij)

]∑
i

∑
j ̸=i δ(r − rij)

(5.14)

where δ(r − rij) = 1 when r = rij , and it equals zeros otherwise. The
correlation functions often exhibits a monotonic decay when r > lnn. We
define the length when the correlation function CA(r) reaches zero as the
correlation length of A:

CA(ξA) = 0. (5.15)

The examples of the correlation functions for the speed Cv(r) and for the
orientation Co(r) were shown in Fig. 5.8(e) and Fig. 5.11(e).

5.5 The Behaviour of 50 Zebrafish in 2D
The coordinates of 50 zebrafish in a quasi-2D experiment, obtained with the
methods introduced in chapter 3, were linked into trajectories, from which
the behaviour of these fish were analysed. The result for such experiment
will be introduced in this section.

5.5.1 The Structure
The structure of 50 zebrafish was shown in Fig. 5.7. The spatial distribution
was presented in Fig. 5.7(a), which was used to sample the biased ideal gas
particles. The distribution of the pairwise distance, fd(r), was presented
in Fig. 5.7(b). It is obvious the fish were more cohesive than the ideal gas
particles, indicated by the mode of the distribution of the pairwise distances.
The ratio of these distributions gives the g(r) of the fish (Eq. 5.6), which is
shown in Fig 5.7 (c). The distribution of lnn and lch are presented in Fig 5.7
(d).

The important structural feature revealed in Fig 5.7 is the separation of
ξρ and lch, as the effective convex hull diameter (lch, Eq. 5.5) is much larger
than the correlation length of the density (ξρ, Eq. 5.7). This corresponds
to the fragmentation of the fish group, where the 50 fish separated into
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Figure 5.7: The structure of 50
zebrafish in a quasi-2D experiment.
(a) The joint distribution of the x
and y coordinates of the fish and
the ideal gas particles. The distri-
bution of the ideal gas were biased
to be identical to the fish. The lo-
cation of 50 fish at one time point
were plotted as circles. The bound-
ary convex hull of these 50 scatters
were plotted as solid lines. (b) The
probability density function of the
pairwise distributions for the fish
and the ideal gas particles in 2D.
(c) The radial distribution function,
g(r) (Eq. 5.6) of the fish. It is de-
fined as the ratio between the two
PDFs in (b). Two important length
scales, the nearest neighbour dis-
tance and the size of the convex
hull were captured by the g(r). The
long distance region where g(r) <
1 corresponds to the void in the
tank, where the group were able
to explore. (d) The distribution of
the nearest neighbour distance and
the effective diameter of the convex

hull, of the fish.
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sub-clusters. This scenario was plotted in Fig. 5.7(a), where the locations
of the fish were represented as cross markers. There are clearly two dense
blobs within the convex hull. And the size of these dense blobs is accurately
captured by ξρ.

As a consequence of the monotonic decay in g(r), the fish group present
a void at larger separation distances, where the value of g(r) < 1, shown
in Fig. 5.7(a). As a result of the fragmentation of the fish group, the void
also appear inside the fish group. The fragmentation of the fish group could
explain the very wide distribution of lch observed in Fig. 5.7(d). If two
sub-groups meet, the entire group will have a small value for its lch. If the
sub-groups were separated, the fish will exhibit a large lch value.

5.5.2 The Dynamics

The dynamics of the 50 fish are shown in Fig. 5.8. Figure 5.8 (a) - (c) shows
the distribution of the polarisation Φ (Eq. 5.10) and the average speed v
(Eq. 5.9). Their joint distribution appear to be very weakly correlated, as
exhibited in Fig. 5.8(b). Overall, the fish were in a random state where
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Figure 5.8: The dynamics of 50
adult zebrafish in 2D. (a) The prob-
ability density function (fΦ) of the
polarisation (Φ, Eq. 5.10). (b) The
joint probability density function
(fΦv) for the polarisation (Φ) and
the speed (v). (c) The probability
density function (fv) of the aver-
age speed (Eq. 5.9). (d) The auto-
correlation function, CA(τ), of the
the polarisation (Φ), the average
speed (v), the nearest neighbour
distance (lnn), the effective convex
hull diameter (lch), and the orien-
tation of each fish (o). (e) The con-
nected correlation function of the
orientation (o) and speed (v), as a

function of pairwise distances.

Φ ∼ 0.25.
The ACFs (Eq. 5.11) of different quantities were shown in Fig. 5.8(d).

Two well separated time scales could be identified from these functions. For
the time scale of ∼ 1s, the fish changed its orientation, and the value of Co(t)
decays to 1/e. This timescale also dominates the ACF of the polarisation
(CΦ(t)).

Ones possible explanation for this observation, is to assign an intrinsic
orientational diffusion constant for the fish. In other words, we assume the
fish will sporadically change its swimming direction every now and then.
And these random change makes the fish forget its original orientation, in
the timescale of one second. Since the orientational diffusion is an inherent
property of the fish, it would affect the collective order (Φ) of a fish group.

On the other hand, the relaxation of the local density, as probed by
the ACFs of lnn and lch, is a much slower process. The two ACFs have
two similar relaxation timescales of 900s (15 minutes). This process might
corresponds to the fragmentation of the group. As a result, we use this
largest timescale (τρ ∼ 900s) to characterise the time it took for 50 zebrafish
to forget their state, in a quasi-2D experiment.

The connected correlation function of the fish, for their speed as well
as their orientation was plotted in Fig. 5.8(e). Surprisingly, the correlation
function of the orientation, Co(r), exhibits a much longer correlation length
(ξo ∼ 0.38m), compared to the correlation of the speed (ξv ∼ 0.15m). This
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Figure 5.9: (a) Sequence of radial
distribution functions, the g(r), at
different time points. In early times
(top curves) the fish are clustered
together so that the peak is large;
at later times (bottom curves) the
local density decreases and so does
the peak height. (b) Sequence
of the auto–correlation function of
the orientations Co(t) of the fish,
at different time points. (c) The
time evolution of the averaged be-
havioural quantities for 50 young
fish. Each point corresponds to the
average value in 15 minutes. The
error bars illustrate the standard er-

ror values.
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picture is very different from European starlings, whose correlations lengths
for both orientation and speed were similar [67]. Our result suggests the
lack of speed synchronisation for the zebrafish, which could be the reason
that the fish were always in a randomised state with a low Φ value.

5.5.3 The Changing States

Since the fish change their (macroscopic) states in a timescale of 15 minutes,
we segment the trajectory into different sections with the duration of 15
minutes. By doing so, we could study the structure and dynamics of the fish
as a function of time, since the fish could change their states continuously,
rather than being in a steady state.

The changing states of the fish as a function of observation time as
plotted in Fig. 5.9. The g(r) of the fish were shown in Fig. 5.9(a), were
the peak of the g(r) gradually decreases with the evolution of time. This
suggests a decrease of cohesiveness for the fish group. The ACF of the
orientation of the fish, Co(t), at different time were plotted in Fig. 5.9(b),
which exhibit less variation comparing with the g(r) functions.

The time evolution of 5 selected behavioural quantities, the orientational
relaxation time (τo, Eq. 5.12), the nearest neighbour distance (lnn, Eq. 5.4),
the effective attraction (ϵ, Eq. 5.8), the average speed (v, Eq. 5.9), and
the polarisation (Φ, Eq. 5.10), was plotted in Fig. 5.9(c). Each point in
Fig. 5.9(c) corresponds to the time average over 15 minutes. It is clear that
the structural quantities (ϵ and lnn) were correlated while the dynamical
quantities (v and Φ) were correlated.

Surprisingly, the orientational relaxation time seems to correlate with
the structural quantities, and the fish exhibit slower orientation relaxation
when they were in a less cohesive state. One possible explanation is that
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the orientation of the fish will be interrupted by a close neighbour, as a
consequence of the avoidance for collision. These extra interruptions, on
top of the intrinsic orientational diffusion of the fish, make the fish change
their orientations faster in a dense group. This picture is also consistence
with the observation that the polarisation of the fish increase as the nearest
neighbour distances of the fish increase [215].

5.6 The Behaviour of 50 Zebrafish in 3D

Following the same data processing procedure and analysis, we also studied
the behaviour of 50 zebrafish in a 3D observation. In contrast to the 2D
experiments where the fish were confined in a shallow water environment,
now the fish can explore a 3D space enclosed by the water-air interface and a
bowl-shaped tank. The result for one representative 3D experiment will be
introduced in this section, while multiple experiments have been repeatedly
carried out. The other experimental results will be discussed in section 5.7.

5.6.1 The Structure

The spatial distribution of 50 zebrafish was shown in Fig. 5.10 (a), where
the joint distribution of the x and z coordinate clearly shows the depth
preference of the fish, as discussed in section 4.3.4. With the ideal gas
sampled according to the distribution of the fish, we calculated the PDF
of the pairwise distances, fd(r), of the fish and the ideal gas. The result
is shown in Fig 5.10(b). It is clear that the fish are more cohesive, as the
mode of f fish

d (r) locates at a smaller distance value.
The ratio of two PDFs gives the g(r) (Eq. 5.6), presented in Fig. 5.10(c).

Like the 2D results (Fig. 5.7), the g(r) exhibits a typical disordered, fluid-
like shape, featuring a single peat at ∼ lnn with a monotonic decay. The
height of the peak reaches the value of 5, being larger than the peak height
(∼ 2.2, Fig. 5.7(c)) in the 2D experiment. This difference indicates that
the 50 fish were swimming in a more cohesive way in the 3D experiment,
comparing with the 2D experiment.

Importantly, the correlation length of the density (ξρ, Eq. 5.7) is close
to the effective convex hull diameter (lch, Eq. 5.5), as shown in Fig. 5.10.
This suggests the fish remained a compact, and cohesive group in the 3D
experiment. A snapshot of such a cohesive group was plotted as circular
markers in Fig. 5.10 (a).

Since the fish always form a compact cluster, a cohesive clique, when
they were swimming in the 3D observation tank, there is no void in the
length scale of the convex hull of the group. Comparing with the size of the
explorable environment, the lch is mush smaller, and the void corresponds
to the space where the fish aggregation could explore collectively.

The cohesive nature of the fish in the 3D experiment is also supported by
the distribution of the lch shown in Fig. 5.10, which is much narrower than
that from the 2D experiments. Interestingly, the distribution of lnn for the
fish swimming in both 3D and 2D environments were close. Numerically,
the averaged lnn value for the 3D experiments were slightly smaller than the
value from 2D experiments (Table 5.1).
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Figure 5.10: The structure of 50
adult zebrafish in 3D. (a) The joint
distribution of the x and z coordi-
nates of the fish and the ideal gas
particles. The distribution of the
ideal gas is biased to be identical
to the fish. The location of 50 fish
at one time point is plotted as cir-
cles. The boundary convex hull of
these 50 scatters is plotted as solid
lines. (b) The probability density
function of the pairwise distribu-
tions for the fish and the ideal gas
particles. (c) The radial distribu-
tion function, g(r) (Eq. 5.6) of the
fish. It is defined as the ratio be-
tween the two PDFs in (b). Two
important length scales, the near-
est neighbour distance and the size
of the convex hull were captured by
the g(r). The long distance region
where g(r) < 1 corresponds to the
void in the tank, where the group
were able to explore. (d) The dis-
tribution of the nearest neighbour
distance and the effective diameter

of the convex hull, of the fish.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

x(m)

0.1

0.2

0.3
z(
m

)

Fish Ideal Gas

(a)

Low

High

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r (m)

0

2

f d
(r

) (b) Fish

Ideal Gas

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r (m)

0.0

2.5

5.0

g
(r

)

(c)

lch

lnn

Void

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Length Scales (m)

0

50

P
D

F

(d) Nearest Neighbour Distance

Convex Hull

68



(b)

0

50

f X
Y

0 2fX
0.0

0.5

1.0

Φ
(a)

0.00 0.05 0.10 0.15 0.20 0.25

v (m/s)

0

20

f Y

(c)

10−1 100 101 102 103 104 105

t (s)

0.0

0.5

1.0

C
A(
t)

(d)
A = Φ

A = v

A = lnn

A = lch
A = o

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r (m)

0.0

0.2

C
o
(r

)

(e)

lch

lnn Orientation o

Speed v

0

5

C
v
(r

)

Figure 5.11: The dynamics of 50
adult zebrafish in 3D. (a) The prob-
ability density function (fΦ) of the
polarisation (Φ, Eq. 5.10). (b) The
joint probability density function
(fΦv) for the polarisation (Φ) and
the speed (v). (c) The probability
density function (fv) of the aver-
age speed (Eq. 5.9). (d) The auto-
correlation function, CA(τ), of the
the polarisation (Φ), the average
speed (v), the nearest neighbour
distance (lnn), the effective convex
hull diameter (lch), and the orien-
tation of each fish (o). (e) The con-
nected correlation function of the
orientation (o) and speed (v), as a

function of pairwise distances.

5.6.2 The Dynamics

The dynamics of the 50 zebrafish in a 3D observation experiment is shown in
Fig. 5.11. Figure 5.11 (a)-(c) shows the distribution of the speed (v) and the
polarisation (Φ), as well as the joint distribution of the two. Interestingly,
the speed exhibits a bimodal distribution (Fig. 5.11), indicating the fish were
changing between a slow state to a fast state during the observation. The
joint PDF of v and Φ exhibits a positive correlation, as shown in Fig. 5.11(b).

The ACF of different structural quantities and dynamical quantities for
50 fish were plotted in Fig. 5.11(d). Like the 2D results, these ACFs exhibit
two decays, featuring the relaxation of the orientation (τo ∼ 1s) and the
local density (τρ ∼ 120s). The latter timescale is used to separate the
observation into separate segments, to study the time evolution of the fish
states in section 5.6.3.

The connected correlation function of the speed and orientation of the
fish, Cv(r) and Co(r), was presented in Fig. 5.11(e). Being very similar to
the 2D results, the orientation of the fish exhibits a longer correlation length
compared with the speed. The two correlation length values, ξo and ξv, are
listed in Table 5.1.

Comparing with the 2D results in Fig. 5.8, the fish were swimming
at a similar speed in a 3D environment, with v2D = 0.11m/s and v3D =
0.098m/s. However, the fish were swimming in a more ordered way in a 3D
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Figure 5.12: (a) Sequence of ra-
dial distribution functions, the g(r),
at different time points. In early
times (top curves) the fish are clus-
tered together so that the peak
is large; at later times (bottom
curves) the local density decreases
and so does the peak height. (b) Se-
quence of the auto–correlation func-
tion of the orientations Co(t) of the
fish, at different time points. (c)
The time evolution of the averaged
behavioural quantities for 50 young
fish. Each point corresponds to the
average value in 2 minutes. The er-
ror bars illustrate the standard er-

ror values.
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observation, indicated by the high Φ values at the tail of the distribution
fΦ. It is notable that the ACFs of the structural quantities (lnn and lch)
and dynamical quantities (Φ and v) sharing the same shape for the fish in
the 3D observation. This similarity of the ACFs was not observed in the
2D experiments.

5.6.3 The Changing States

To study the changing states of the fish group, we separated the observation
into short segments of 120s, and analyse the behaviour of the fish in these
short periods separately. The results are shown in Fig. 5.12. For each
segment, we calculated the ACF of the orientation, as shown in Fig. 5.12
(b), as well as the g(r), plotted in Fig. 5.12(a). From these two correlation
functions, we extracted the changing τo and the changing effective attraction
(ϵ) values. Like the behaviour of fish during our 2D observation, the cohesion
among the fish gradually decreases, indicated by the decreasing height of
the peak in the g(r). However, no systematic change of the Co(t) were
observed.

The time evolution of different structural and dynamical quantities were
plotted in Fig. 5.12(c). All these quantities change with time, indicating
the fish were constantly changing their states. The speed is correlated with
the polarisation, and the nearest neighbour distance is correlated with the
effective attraction.

These correlations were also observed from our 2D experiments in Fig. 5.9.
The non-linear nature of the time-evolution of fish states revealed the com-
plexity of the behaviour of the fish, and more controlled experiments is
necessary to differentiate the possible origins, that are responsible for the
changing states of the fish. For instance, a sudden noise in the environment

70



1 2 3 4 5

Reduced Persistence Length κ = v · τo/lnn

0.0

0.2

0.4

0.6

0.8
P

ol
ar

is
at

io
n

Φ

Y1 (3D)

Y2 (3D)

Y3 (3D)

Y4 (3D)

O1 (3D)

O2 (3D)

O3 (3D)

O4 (3D)

2D

Figure 5.13: The relationship be-
tween the polarisation, the order
of the movement, and the reduced
persistence length of the fish. For
the 3D observation, multiple re-
peated measurement with differ-
ent fish groups at different dates
were collected (Y1-Y4: different
young fish groups; O1-O4: differ-
ent old fish groups). All of the ob-
served fish behaviour results were
collapsed onto a master curve. The
result of one 2D observation was
also included, as open circles. The
2D results does not collapse onto
the same master curve from the 3D
data, because of the difference in

the dimensions.

might trigger the jump in speed in Fig. 5.12. But such change, termed as
the spontaneous startle cascades in [216], might also emerge naturally with-
out any triggering factor. Unfortunately, the exact cause of these sudden
changes is unknown50 50 Ideally, I should monitor the

noise level and the vibrations of the
water in the tank, to study if they
affect the fish behaviour or not.
However, the relevant data was not
recorded. Practically, the experi-
mental setup was located in a rela-
tively quiet room. Closing the door
of a nearby room would make a no-
ticeable noise, whose effect on the
fish behaviour is unknown.

.

5.7 The Universal Behaviour of Zebrafish
The complicated changing states of the fish shown in Figs. 5.9 and 5.12, can
be captured by one number, regardless of the dimension of the swimming
environment. This number is termed as the reduced persistence length (κ),
whose definition is,

κ =
vτo
lnn

=
lp
lnn

. (5.16)

The value of κ correlates robustly with the value of polarisation Φ, as shown
in Fig. 5.13. This correlation is remarkable because it describes all the
experimental observations on different adult zebrafish groups, with different
ages. A very simple argument for the correlation is that each fish could
share its current moving direction with the group, in the lengthscale of
lp. Such information could be transmitted to more members in a cohesive
group, with smaller lnn value. When more members were exchanging their
information about the moving direction, the entire group is more likely to
form a consensus, and exhibit ordered movement with a high Φ value.

This explanation is helpful because it relates the property of the individ-
ual fish (the persistence length, and the local density) to the macroscopic
behaviour (the polarisation). Such connection is vital to understand the
behaviour of mutant zebrafish, which had significantly larger lp values com-
paring with the wildtype zebrafish. The relevant results will be presented
in chapter 7. In addition, it is easy to compare the observed experimental
result in Fig. 5.13 with the computer simulations of agent-based models,
since both κ and Φ are dimensionless numbers. Such comparison will be
discussed in chapter 6.

71



Summary of Chapter 5
• We discussed the methods to analyse the experimental coordinates of the zebrafish, in

order to study their collective behaviour. There are four steps.

1. Refining Coordinates
Some coordinates are very close to each other, which are physically impossible. These
overlapping particles can be removed with an optimisation algorithm.

2. Linking Coordinates into Trajectories
The refined coordinates can be linked into trajectories, and the short trajectories can
be extended using methods in section 5.3.

3. Analysing the Structure of the Fish Group
We use the nearest neighbour distance (lnn), the size of the convex hull (lch), and the
radial distribution function g(r) to characterise the structure of the fish group.

4. Analysing the Dynamics of the Fish Group
We use the average speed (v), the polarisation (Φ), the relaxation time scales (τ)
to characterise the dynamics of the fish group. In addition, we use the correlation
functions of the orientation and the speed, Co(r) and Cv(r), to measure the dynamical
lengthscales.

• We get the following results from the 2D movement of 50 zebrafish.

– The fish groups segmented into sub-clusters.
– The fish groups were in the disorder phase, with low polarisation values.
– The collective motion of the fish groups exhibited a short time scale related to the

reorientation of the fish individual (1 s), and a large time scale related to the relaxation
of the local density (15 minutes).

– The correlation length of orientation is longer than the correlation length of the speed.
– The macroscopic state of the fish group changes over time, indicated by the changing

quantities in Fig. 5.9.

• We get the following results from the 3D movement of 50 zebrafish.

– The fish group remained a cohesive cluster without fragmentation.
– The fish group switched between the ordered phase and the disorder phase, with

varying polarisation values.
– The collective motion of the fish group exhibit a short time scale related to the

reorientation of the fish individual (1 s), and a large time scale related to the relaxation
of the local density (2 minutes).

– The correlation length of orientation is larger than the correlation length of the speed.
– The macroscopic state of the fish group changes over time, indicated by the changing

quantities in Fig. 5.12.

• The change of the macroscopic states of the zebrafish groups is not totally random. The
ratio between the persistence length and the nearest neighbour distance, for both 2D
and 3D data, presents a robust correlation with the polarisation. The fact, that similar
conclusions were reached from 2D and 3D experiments, is in accordance with previous
studies [217, 218].
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Chapter 6

Modelling Zebrafish

人相忘乎道术

庄子

6.1 Introduction
In this chapter we will study the behaviour of the zebrafish with the help
of computer simulation. The goal of the simulation is to reproduce the
experimental results from chapter 3 to chapter 5. We will use the Monte-
Carlo simulation to study a system in equilibrium, in order to reproduce
the spatial distribution of the fish under the influence of the boundary,
the gravity, as well as the pairwise interaction. In addition, we will use
a dynamical simulation to study an agent-based51 51 The dynamical simulation is

similar to the Brownian dynam-
ics simulation for the liquid, where
all the particles were updated ac-
cording the force exerted on them.
It’s different from the Monte-Carlo
simulation where the particles are
moved randomly. The moving indi-
viduals in the model can take dif-
ferent names, like the “particles”,
“animals”, and “agents”. The term
“agents” will be used in this chapter
for consistency.

active matter model, in
order to recreate the dynamical feature of the fish group in the experiments.

The density distribution of the fish was strongly affected by the presence
of the boundary, as the fish were physically constrained in the tank. For the
3D experiment, the distribution of the fish was also affected by an “effec-
tive gravity”, as well as the holes drilled on the tank. These environmental
factors can be treated as external fields affecting the fish. In addition to
these external factors, the fish-fish interaction will also change their distri-
bution. With the Monte-Carlo (MC) simulation techniques, we can study
these effects individually. Using such simulation method, we assumes the
fish group were in equilibrium. Such assumption is not valid since a group
of fish is an active matter system. By applying this invalid assuption, we
implicitly tested the idea of mapping active matter system to an equilibrium
counterpart, where the non-equilibrium feature of the system, the activity,
was summarised by an effective temperature52 52 This “effective equilibrium” pic-

ture is supported by the exponen-
tial decay of the excess distribution
function shown in section 4.3.1, as
the decay suggests the Boltzmann-
like distribution commonly seen in
equilibrated systems.

[64, 219]. The MC approach
ignores the dynamics of the system, but will give us insights regarding the
structure (density distribution) of the fish group.

For a group of fish, the order of their dynamics, captured by the polar-
isation value (Eq. 5.10), correlates robustly with a non-dimensional value
κ, the ratio between the persistence length (lp) and the nearest neighbour
distance (lnn). Such a correlation suggests the local density and the persis-
tence motion of the fish dominated the polarisation of the system. Since the
persistence motion is a proxy to the activity of the fish, the entire group of
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50 zebrafish is behaving like an alignment dominated active matter system
(section 2.1.2). To confirm the similarity of a group of zebrafish, and a
model active matter system, we will use the dynamical simulation method
to simulate the famous active matter model, the Vicsek model [35]. Such
simulation ignores the structure of the fish group, where all the structural
features are absorbed into the number density parameter in the model (sec-
tion 6.4.1). To get a good fit between the model and the experiments, we
will have to modify the Vicsek mode and consider the orientational inertia
of the fish. The fitting of the model and the experimental result suggests
the existence of the effective alignment interaction among the fish. And the
changing states of the fish could be understood as a change of the noise
level for the model.

6.2 Simulation Methods

6.2.1 General Idea
If we think of fish as a collection of agents following pre-defined movement
rules, we could reproduce the movement of the fish with the computer sim-
ulation. Formally, we call a collection of agents a system. And the system
can change its (microscopic) states over time. By observing the system for a
long time, we could obtain the trajectory of the system, and then calculate
the quantities that we are interested in (see chapter 5 for examples). Such
process is summarised in the following algorithm (Algorithm 6). During
the simulation, the system change its states under some constraints. For
example, the constraints could be a controlled noise level (β), a constant
number density (ρ), and a fixed total number (N) of agents.

Algorithm 6: The Simulation Procedure
Data: Constraints {β, ρ,N, . . . }
Result: Trajectory
System ← initial microscopic state with {β, ρ,N, . . . };
repeat

change the microscopic state of the system with {β, ρ,N, . . . }
until System is stable, and forgets the initial microscopic state;
Trajectory ← ∅;
repeat

change the microscopic state of the system with {β, ρ,N, . . . };
Put current state in Trajectory;

until The statistics are good enough;

6.2.2 Monte-Carlo Simulation
There are multiple ways to change the state of the system in algorithm 6.
In a seemly arbitrary fashion, we could change the state of the system
randomly, and reject some states that is unlikely to happen. This method
is termed “Monte-Carlo” (MC) simulation, and the acceptance ratio were
often determined by the Metropolis algorithm. Typically, the acceptance
ratio from state ζ to ν, A(ζ → ν), is written as
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A(ζ → ν) =

{
exp (−β(Eν − Eζ)) if Eν − Eζ > 0
1 otherwise.

And the values of Eν and Eζ represent the energy values of state ν and ζ,
respectively. The value β is the inverse temperature. The smaller β value is,
the higher the temperature, and the larger randomness the system exhibits.
Sampling the states with this acceptance ratio, we are effective sampling an
equilibrium system, whose states follow the Boltzmann distribution. For a
microscopic state ν, its probability to be sampled is exp(−βEν)/Z, were Z
is a normalisation factor (the partition function).

With MC simulation, it is easy to constrain the agents in the fish tank,
by setting E = ∞ once an agent is outside the tank.53 53 Operationally, we reject the

states if any agent is outside the fish
tank.

In addition, the
effect of external fields, like gravity, can be added easily to the simulation.
However, due to the lack of “true” dynamics in the MC simulation, we
will not have access to the velocities of the system. Hence, this simulation
method is only used to model the spatial distribution of the zebrafish.

6.2.3 Dynamical Simulation
Another way to change the state of the system is to integrate the equation
of motion of all the agents. For animals, the equations to be integrated
represent the behavioural rules of the agents. Being different from the
conventional molecular dynamics simulation or mesoscale simulations [69],
the simulation of animal behaviour often incorporates more eccentric rules,
such as a fixed vision zone[80, 220], and an attraction to the group centre
[79]. Generally, the updating rules for the agents could be described by the
following equation,

vt+1
i = B[vt

i]

xt+1
i = xt

i + vt+1
i ,

where the operator B encodes all the behavioural rules of the animals. By
changing the coordinates and velocities of all the agents simultaneously, we
change the state of the system (Algorithm 6).

6.3 The Distribution of the Density
In this section we will model the spatial distribution of the fish in the 3D
experiment. The simulation will illuminate the effects of the environmental
factors, such as the fish tank and the gravity. By comparing with the
experimental density distribution, we can get phenomenological parameters
such as the effective temperature, to describe the behaviour of the fish.

6.3.1 The Effect of the Tank
The 3D geometry of the tank confining the zebrafish was determined in
section 4.2.1, and the shape of the tank can be expressed as,

z = cr2,
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Figure 6.1: The marginal proba-
bility density distribution of points
sampled uniformly inside the exper-
imental fish tank. Left: the distri-
bution the planar radius r. Right:
the distribution of the z component

of the points.
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where c = 0.74m−1 when both r and z were expressed in the unit of meters.
The volume (V ) of the tank can be calculated as

V =

∫ h

0
π
z

c
dz =

πh2

2c
,

where h is the height of the tank, the vertical distance between the water
surface and the base of the tank. The joint probability density function
(PDF) of random points, being uniformly distributed inside the tank, is
written as,

f(x, y, z) = V −1 =
2c

πh2
.

The joint PDF of the uniform distribution can be expressed in the spherical
coordinates as,

f(θ, r, z) =
2c

πh2
r, (6.1)

where θ is the azimuthal angle, r =
√

x2 + y2 is the radius in XY plane.
From the expressions above, we can calculate the marginal distribution of
r and z coordinates:

fR(r) =

∫ 2π

0
dθ

∫ h

cr2
dz f(θ, r, z) =

4c

h
r − 4c2

h2
r3,

fZ(z) =

∫ 2π

0
dθ

∫ √z/c

0
dr f(θ, r, z) =

2

h2
z.

(6.2)

The analytical result (Eq. 6.2) is checked against the numerical sampling
of random points inside the tank, as shown in Fig. 6.1. These PDFs can
be used as comparison for the distribution of real fish data, as presented in
section 4.3. The experimental distribution of the fish is very different from
the ideal gas distribution.
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Figure 6.2: The marginal proba-
bility density distribution of ideal
gas particles sampled uniformly in-
side the experimental fish tank,
where the particles were subjected
to the gravity field. Left: the distri-
bution the z component. Right: the
distribution of the r =

√
x2 + y2.

The scatters were result of Monte-
Carlo simulations, and the solid

lines were from Eq. 6.4.

6.3.2 The Effect of the “Gravity”
From the results presented in section 4.3, it is evident that the zebrafish
will be affected by an “effective gravity”, because of their depth preference
behaviour. This effective gravity is similar to As a first attempt, we could
calculate the density distribution of ideal gas particles in equilibrium, with
an Boltzmann weight exp(−βz) to capture the effect of the gravity. The
partition function (Z) of the system is written as,

Z =

∫ h

0
π
z

c
exp(−βz)dz =

π(1− exp(−βh)(1 + βh))

cβ2
.

With the partition function, we could then calculate the joint probability
density function of the ideal gas, in the spherical coordinate system (similar
to Eq. 6.1).

f(θ, r, z) =
r exp(−βz)

Z
=

c exp(−βz)rβ2

π(1− exp(−βh)(1 + βh))
(6.3)

where β = 1/(kBT ) is the inverse temperature. For a physical systems in
equilibrium, the vale of β relates to the real temperature measured by a
thermometer. However, the value of β for the fish only controls the level
of randomness of the system, without a concrete physical meaning. From
the function f(θ, r, z), we can calculate the distribution functions fR(r) and
fZ(z):

fR(r) =

∫ 2π

0
dθ

∫ h

cr2
dz f(θ, r, z) =

2c
(
exp

(
β(h− cr2)

)
− 1

)
rβ

exp(βh)− βh− 1
,

fZ(z) =

∫ 2π

0
dθ

∫ √z/c

0
dr f(θ, r, z) =

exp(−zβ)zβ2

1− exp(−βh)(1 + βh)
.

(6.4)

The results from Eq. 6.4 were checked against the Monte-Carlo simulation
results, as shown in Fig. 6.2. With the increase of β, hence the decrease of
temperature, the agents were pushed towards smaller z values and r values.
By “fitting” the experimental results with the analytical results from Eq. 6.4,
and setting β as a free parameter, we could obtain the effective temperature
for the fish.
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Figure 6.3: The effect of the holes
on the density distribution of ideal
gas in the fish tank subjected to
gravity field. (a): the distribution
the z. (b): the distribution of the
r. The colour of the lines indicates
the strength of the repulsive inter-
action of the holes on the tank. The
simulation was carried out with pa-
rameter β = 50, where 7.5 × 106

coordinates were sampled.
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6.3.3 The Effect of the Holes

In our 3D fish observation experiments, the holes on the tank disrupted the
density distribution of the fish. This disruption makes the result in Eq. 6.4
very different from the distribution of the fish, as shown in section 4.3.5. To
mimic such effect, we could model holes as an extra field, with the following
form,

H(r, z) = q
∑
i

[
(r − ri)

2 + (z − cr2i )
2
]−2

ri
, (6.5)

where ri represents the location of the holes on the tank. Specifically, there
are three sets of holes (Fig. 4.11), located at r1 = 96 mm, r2 = 213, and
r3 = 327 mm. The denominator (ri) in Eq. 6.5 represents the fact that
equal amount of holes were drilled on the circles. So that the larger circles
will have less holes per unit length. The factor q controls the strength of
the repelling interaction between the fish and the holes.

Calculating the corresponding density distributions, fR(r) and fZ(z),
analytically is difficult, but we can estimate the density distribution with
the Monte-Carlo simulation. Figure 6.3 shows the result of the simulation.
As expected, the distribution fR(r) appears bimodal with a locally minimum
q value at the location r = r1.

6.3.4 The Effect of Pairwise Interaction0.0 0.2 0.4
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fit

Figure 6.4: Fitting the u(r) of
fish with Eq. 6.6.

The simulations in section 6.3.1 to 6.3.3 treat the agents as ideal gas parti-
cles, without any interaction between the agents. This is not realistic, since
the g(r) of the zebrafish exhibits characteristic features (Fig. 5.10 (c) in sec-
tion 5.6.1). In order to enable the agents to behave more like the zebrafish
in the simulation, we added an effective interaction among the agents. We
assume the interaction is pairwise, and spherically symmetrical, therefore
ignored the possible many-body interactions [133].

To implement the pairwise interaction in the Monte-Carlo simulation,
we assign the effective potential energy5454 Notice the logarithm of g(r)

is −βu(r) for equilibrium systems.
Here we ignored the β, and we con-
trolled the strength of the pairwise
interaction with parameter q. The
reason for our choice is that we are
only interested in the approximated
shape of u(r), which makes the fish
forming a coherent group.

, u(r), for all the pairs of agents.
The potential energy is written as,

u(r) = −p log [g(r)]
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Figure 6.5: The effect of the pair-
wise interaction among the agents,
on their density distribution. (a):
the distribution the planner radius
r =

√
x2 + y2 of the agents’ coordi-

nates. (b): the distribution of the
z component of the agents’ coordi-
nates. The colour of the solid lines
indicates the strength of the pair-
wise interaction of the fish. The
dashed lines corresponds to the re-
sult where p = 0. The simula-
tion was carried out with parameter
β = 0.1, where 5 × 105 coordinates

were sampled.

where p is a free parameter that determines the contribution of the interac-
tion between the agents. To parameterise the experimental u(r), we fitted
it with function

u(r) = log(a1)− log(2)
[

log(1 + 2a2(r − a3)/a4)

a2

]2
, (6.6)

where a1 - a4 are fitting parameters. Figure 6.4 shows the fitting result,
where the potential energy took a minimum at the location of nearest neigh-
bour distance. We can incorporate this pairwise interaction into the energy
form during the Monte-Carlo simulation, to study its effects. Formally, the
energy of the system could be written as,

E =

{ ∑
i

[
zi +H(ri, zi) +

∑
j ̸=i u(dij)

]
if cri ≤ zi < h

∞ otherwise
(6.7)

where the coordinate of agent i is (xi, yi, zi)
⊤, with ri =

√
x2i + y2i . The

condition (cri ≤ zi < h) ensures the agents staying in the boundary. This
“energy” is a mixture of the effective gravity55 55 Notice we implicitly transformed

the height of the fish (zi) to the po-
tential energy in an effective gravi-
tational field in Eq. 6.7.

, the repulsive holes, and the
pairwise interaction, and it is controlled by parameter p and q. When both p
and q are equal to zero, the agents behave like ideal gas in the tank subjected
to the effective gravity. But tuning the value of p and q, we increase the
effect of the pairwise interaction and the holes.

The effect of the pairwise interaction of the fish on the density distri-
bution is shown in Fig. 6.5, where we fixed the value of q (which controls
the strength of the fish-hole interaction) to be 0, and set β = 0.1. These
parameters correspond to the condition where the effects of both the gravity
and the holes could be ignored. When the value of p is small, so that the
interaction among the agents are weak, the system behaves like ideal gas
particles under gravity, described by Eq. 6.5. When the value of p was grad-
ually increased from 10−2 to 1, the fish tend to aggregate near the bottom
of the tank in the centre.

Figure 6.6: The parameter p
controls the size of the group.

Notably, the further increase of p would change the density distribution
of the fish in a different fashion. As the value of p increased from 1 to
10, the fish are more frequently appear at higher r and z values. Such
non-monotonic behaviour could be understood by carefully examining the
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Figure 6.7: The comparison of
the density distribution of fish with
the model described by Eq. 6.7.
The data points represent the ex-
periment measurements, and the
solid lines were calculated from the
Monte-Carlo simulation. (a): the
distribution the z from 1 fish. (b):
the distribution of the r from 1 fish.
(c): the distribution the z from 2
fish. (d): the distribution of the r
from 2 fish. (e): the distribution
the z from 50 fish. (f): the distri-

bution of the r from 50 fish.
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effective interaction potential u(r) of the agents. Typically, the interaction
potential would constrain the agents to form a coherent cluster, to mimic
the observed structure of the fish group (section 5.6.1). And the size of
the cluster would decrease, with the increase of p, as shown in Fig. 6.6.
For smaller clusters, they would be able to explore the “corner” of the fish
tank, where both r value and z value are high. On the other hand, the
large clusters would have to deform its shape, paying extra energy cost, so
that they could enter the corner region. Therefore, the agents with stronger
pairwise interaction would explore more space in the tank, presenting higher
chance to appear in regions where r and z values are high.

6.3.5 Comparison to Experimental Data
We used the energy term in Eq. 6.7 to simulate the equilibrium density
profile of the agents, and compare the results with our experimental data
obtained in chapter 4. By tuning the parameters, typically the values of β,
q, and p manually, we can generated simulation result that is similar to the
experimental results. The fitting result is shown in Fig. 6.7.

For the distribution of one fish in the tank, the fitting results suggests
an effective inverse temperature of β = 200, and the strength of the fish-
hole interaction of a = 2 × 10−10, as presented in Fig. 6.7 (a) and (b). By
decreasing the value of β to 45, and incorporating the fish-fish interaction
with p = 10, we could model the density profile of 2 fish, as shown in Fig. 6.7
(c) and (d). There is a slight mismatch between the experiment and the
model, which might related to the non-equilibrium nature of the fish, which
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is absent in our Monte-Carlo simulation.
To match the density profile of 50 fish, the value of β needs to be further

decreased to 0.1, while keeping the q and p values unchanged. However, the
match between the experimental data and the model is poor. In fact, the
bimodal distribution of fZ(z) of 50 fish, shown in Fig. 6.7 (f), indicates the
presence of multiple states, as reported in section 5.6.3. To take multiple
states into consideration, we will need to overlay simulation results from
multiple systems with different parameters. Such a complex simulation is
beyond the scope of this chapter.

Even though the fitting between the experimental density distribution
and that from the Monte-Carlo simulation is not very good, the result is
in accordance with our previous discussion in chapter 3 and 4. Namely,
when the number of fish is small, the interaction between the fish and the
environment (gravity and holes) is significant. Such importance could be
translated to a high β value in our model. For a group of 50 fish, the fish-fish
interaction dominates their behaviour, corresponding to a low β value.

6.3.6 Limitation of the Model

It is important to stress the limitation of our model to describe the be-
haviour of the fish. Importantly, our Monte-Carlo simulation essentially
assumed the fish were in equilibrium states, in which detailed balance is
satisfied [209]. This is not true for the zebrafish, as a group of fish con-
stantly dissipate their biological energy to swim. Visually, the movement of
fish is very different from the movement of atoms in the gaseous or fluidic
phases. For example, if we play the movie of swimming fish backwards, it
looks very unnatural. In addition, the interaction between the fish and the
environment is speculative. Here we assumed the tank is a hard boundary,
and the depth preference of the fish were described by an effective gravity,
and the holes have an effective parabolic repelling interaction. And these
assumptions may not be accurate, which requires scrutiny.

6.4 The Order of the Dynamic

The movement of a group of fish can exhibit two visually different states.
The fish may exhibit ordered movement, swimming in the same moving
direction, with a high polarisation (Φ) value. Alternatively, the fish may
exhibit random movement, where they swim in different directions. The
switch between random movement and ordered movement is observed for a
group of fish in Chapter 5.

Intuitively, the ordered movement is a special state comparing with its
random counterpart. And animals have to somehow make something hap-
pen, to effectively align with each other and share the same moving direc-
tion. In this section, we will try to model this process.

6.4.1 The Vicsek Model

The Vicsek model is a very simple active matter model for the dynamics of
the animals [35]. Essentially, the agents align with nearby neighbours in the
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Figure 6.8: The phase behaviour
of the Vicsek model. The simu-
lation was performed at different
state points, with different density
and noise values. The total num-
ber of states was 50 × 50 = 2500.
For each state point, 200 agents
were simulated, whose speed was
fixed at 0.1. The system was up-
dated 2× 104 steps to reach steady
state. The polarisation of the sys-
tem was recorded in the subsequent
2× 104 steps. (a) The time-average
polarisation at different states. (b)
The standard deviation of the po-
larisation at different states. This
value represents the susceptibility
of the system. The dashed line in
both subplots indicates a linear re-
lationship between the transitional
density and noise. The end of the
dashed line does not imply the pres-

ence of a critical point.
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model, leading to the ordered movement. The Vicsek model and its deriva-
tives enjoyed considerable success in describing the collective behaviour of
animals. Typically, the equation of motion for the Vicsek model is written
as [35],

vt+1
i = v0Rη

Θ
∑

j∈Si

vt
j

 = V(vt
i)

xt+1
i = xt

i + vt+1
i ,

(6.8)

Figure 6.9: The scalar noise in
the Vicsek model.

where vt
i represents the velocity of the ith agent at time point t. The

symbol Si represents the set containing the neighbours of agent i within the
unit distance. The operator Θ is responsible for normalising a vector to unit
norm. The operatorRη will rotate a vector randomly around its orientation,
adding orientational noise into the system. Such random rotation effectively
draws a spherical cap around the vector to be rotated, and the value of η
determines the area of this spherical cap. Formally, the noise is referred
to as scalar noise in the Vicsek model, as opposed to vectorial noise [37].
We use the symbol V to represent the velocity updating rule of the Vicsek
model.

The important parameters for the Vicsek model are the noise (η) and
the number density (ρ), when we set the interaction range to one. The
noise controls the randomness of the system, and the density controls the
neighbour set Si for particle i. In addition to ρ and η, another contributing
parameter is the speed of the agents (v0 in Eq. 6.8), but its effect is less
significant than η and ρ. Therefore, we will only focus on η and ρ.

The behaviour of the Vicsek model is presented in Fig. 6.8 (a), char-
acterised by the polarisation (Φ) as the order parameter. In the low noise
and high density region, the system exhibits ordered behaviour. For the
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Figure 6.10: The effect of iner-
tia, noted as α in Eq. 6.9, for a
single agent in the Vicsek model.
(a) The relaxation time of the ori-
entation as a function of the orien-
tation noise (η). The dashed line
shows a polynomial fit, where we as-
sume τo ∼ η−2 [170]. For the Vicsek
model in the noisy region (η > 0.9),
the relaxation time is hard to mea-
sure because of its small numerical
value. (b) The trajectories of agents

with different α values.

low density and high noise simulations, the agents move randomly with a
small Φ value. Figure 6.8 (b) shows the standard deviation of the polari-
sation from the simulation, whose maximum value indicates the transition
between the ordered phase and the disordered phase. In the dilute region,
where ρ < 1, the transitional density ρc and noise ηc have a linear relation-
ship, as indicated by the dashed line in Fig. 6.8. Such linear relationship is
in accordance with previous 3D numerical simulation results [221].

If we try to compare the Vicsek model with the experimental result,
the model would fail, as shown in Fig. 6.12 (a). This is because the real
zebrafish reached the most random state (Φ ∼ 0.13), with a minimum κ
value of 1.5. That is to say, the fish would have some excess persistence
length even in their most random states. The excess persistence length is
expected, as the real fish do not change their orientation at arbitrarily high
frequencies. However, this “minimum persistence length” does not exist in
the Vicsek model, as the Vicsek agents do indeed, change their orientation
at a frequency ∼ ∞, in their most random state, where η = 1, and Φ ∼ 0.13.

6.4.2 The Effect of Inertia
One heuristic approach to modify the Vicsek model, so that the model could
fit the experimental result, is to remedy the extreme zigzag movement of the
agents in the high noise region. For a real zebrafish, we expect its swimming
pattern to be inertial, since the Reynold number for an adult zebrafish is
around 20000 [222]. To incorporate an effective inertia, we could simply
let the agents to remember their previous orientations, by rewriting the
equation of motion as the following,

vt+1
i = v0Θ

[
(1− α)V(vt

i) + αvt
i

]
xt+1
i = xt

i + vt+1
i ,

(6.9)

which is effectively a linear mixture of the Vicsek interaction, noted as
V(vt

i), and the original velocity (vt
i). The parameter α controls the ratio

between the moving direction from Vicsek interaction to the existing moving
direction, and we call it the inertia. When α is zero, the model is reduced
to the Vicsek model. When α is one, all the agents will travel ballistically
without any interaction. The trajectories of a single agent with different
α values are presented in Fig. 6.10(b). The agent with moderate α value
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Figure 6.11: The phase be-
haviour of the Vicsek model with
inertia. The simulation detail is the
same to those described in Fig. 6.8.
The horizontal bars represents the
region that matched our experimen-
tal results. (a) The time-averaged
polarisation at different states with
different ρ and η values, with α =
0.63. (b) The standard deviation of
the polarisation at different states
with different ρ and η values, with
α = 0.63. This value represents
the susceptibility of the system. (c)
The time-averaged polarisation at
different states with different α and
η values, with ρ = 1. (d) The stan-
dard deviation of the polarisation at
different states with different α and
η values, with ρ = 1. This value
represents the susceptibility of the

system.
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presents a smooth trajectory, as expected. Figure 6.10 (a) shows the scaling
relationship between the orientational relaxation time and the noise, where
τo ∼ η−2. Such relationship is in accordance with previous proposals [170,
221]. The incorporation of the “inertia” (α) does not change such the scaling
relationship, and it only slows down the relaxation of the orientation of the
agents.

The behaviour of the Vicsek model with the inertia is shown in Fig. 6.11.
The structure of the phase diagram5656 Figures 6.11 (a) and (c), as well

as Fig. 6.8 (a), revealed two phases
of the Vicsek model: the ordered
phase with high Φ values, and the
disordered phase with Φ ∼ 0.

is similar to that without inertial,
where the agents exhibits ordered behaviour in the high density and low
noise region, and they perform random movement in the dilute and noisy
states. However, the incorporation of the inertia (α = 0.63), visually, in-
creases the area of the ordered region in Fig. 6.11. Here we give a hand-
waving argument for such an observation. The increase of the α value would
increase the persistence length of the agents (Fig. 6.10). Therefore, these
agents would interact with more neighbours, before they forget their origi-
nal orientations. The increased interaction promotes the propagation of the
information within the group, leading to ordered movement.

At a moderate density level (ρ = 1), the phase diagram spanned by the
noise η and the inertia α is presented in Fig. 6.11 (c), with the corresponding
susceptibility shown in Fig. 6.11 (d). Generally, the increasing α value
expands the ordered region in the parameter space (Fig. 6.11), which is in
accordance with the argument that α increase the order of the system by
inducing more interactions among the agents.

6.4.3 Comparing with the Experiment
The parameters in the Vicsek model with inertia, namely the noise η, the
density ρ, and the inertia α, were manually adjusted to fit the 3D experi-
mental observations in section 5.7. The comparison was shown in Fig 6.12
(a), where the simulation results were plotted as a solid line, and it matches
the experimental results. This line was obtained by simulating the Vicsek
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namics of the zebrafish with the
Vicsek model simulation. (a) The
relationship between the rescaled
persistence length κ and the po-
larisation Φ. The scatters repre-
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tions. The solid line represent the
simulation result with Vicsek model
(v = 0.1, α = 0, ρ = 1, 0.18 ≤
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colour represent the simulation re-
sult of the Vicsek model with iner-
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represent the standard deviation of
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(b) The connected correlation func-
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perimental data (scatters) and the
simulation (solid line) in the low
κ region. (c) The connected cor-
relation function Co(r), calculated
from the experimental data (scat-
ters) and the simulation (solid line)

in the high κ region.

model with a fixed speed (v = 0.1) and fixed inertia (α = 0.63), while
varying the value of the noise term (0.65 ≤ η ≤ 1). The parameters being
simulated were also plotted as horizontal bars in Fig. 6.11.

The matching between the simulation and the experimental results in-
dicates the existence of effective alignment between the fish. And the in-
creasing persistence length at fixed nearest neighbour distance promotes the
transformation of information in the group, therefore increase the order.

We also calculated the connected correlation function (Co(r), Eq. 5.14)
of the orientation for the simulation results, and compared the results with
the one in the simulation. The comparisons were plotted in Fig. 6.12 (b)
and (c). In Fig. 6.12 (b), the correlation function from the states with a low
κ value were compared, and the results in Fig. 6.12 (c) shows the correlation
function in the states with high κ values. In both cases, the simulated agents
exhibits different Co(r), compared with the zebrafish. Such deviation is
expected, as the information about the spatial correlations, like the g(r),
was ignored in our model.

Our model for the dynamics of the fish revealed the importance of the
inertia. As mentioned in section 6.4.1 and shown in Fig. 6.12 (a), the Vicsek
model without inertia, whose α value equals zero, could not fit the experi-
mental result. The mismatch between the model is especially significant in
the low κ region where the noise term is high, which is related to the unre-
alistic zig-zag movement of the Vicsek agents (Fig. 6.10). The increasing of
the α value shifted the simulation result to the high κ region, that matches
the experimental result.

The simplicity of our model is important. The good fit between the
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simulation results and the experimental results indicates that the order of
the dynamics (the polarisation) for the zebrafish group can be described
the four parameters (the density, the inertia, the speed, and the noise) in
the model. This is because the dynamics of the fish group is dominated by
their effective alignment interaction. For a group of 50 fish, their changing
states can be captured by the noise parameter (η in Eq. 6.8), as shown in
Fig. 6.12 (a), suggesting the observed zebrafish behaviour is universal.

It is also important to point out that our model suggests that the fish
were effectively crossing the between the ordered phase and the disordered
phase (see the horizontal bars in Fig. 6.11). The location of the boundary,
for 50 agents, is located at κ ∼ 2, where the susceptibility of the polarisation
took its maximum, as shown in Fig. 6.12 (a). This result is expected for
the collective behaviour from a group of animals. Sometimes it is referred
to as a dogma that “all biological systems were poised near a critical state”
[223]. For the observed fish, they were clearly not just staying at a critical
state, because the state of the group was constantly changing (section 5.5.3
and 5.6.3). However, the simulation indicates that the fish were, at least,
close to the phase boundary between the ordered movement and disordered.
In other words, the animals tend to stay on the fence, between the ordered
state and the disordered state. Such choice is understandably beneficial,
because staying in the disordered state essentially means the group could
not move collectively. On the other hand, forcing the group in the ordered
state means the informed individual could not change the overall moving
direction of the entire group.

6.4.4 Limitations of the Model
Finally, it is important to address the several limitations of our simulation,
even though the fitting is visually good. First of all, the agents in the
Vicsek model have a constant speed (v in Eq. 6.8), and this is different
from the zebrafish. In addition, the only interaction between the agents is
the alignment, while we could see evidence for the repulsive interaction and
attractive interaction amongst the fish in section 5.5.1 and 5.6.1. Finally,
the inhomogeneity of the density inside the tank is ignored in the Vicsek
model, and the agents was enclosed in a periodic boundary, rather than a
fish tank.
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Summary of Chapter 6
• We modelled the density distribution of the fish as an equilibrium system, featuring

the following elements.

– The observation tank as a hard boundary.
– The depth preference of the fish as an effective gravity.
– The holes on the tank which repel the fish.
– The fish-fish interaction inferred from the g(r) of the fish.

• By fitting the experimental density distribution and the results from the model, we
get the following conclusions.

– For the 1/2/3 fish experiments, the interaction between the fish and the envi-
ronment dominates the density distribution.

– For a group of 50 zebrafish, the fish-fish interaction is important to their density
distribution.

• We modelled the ordering process of the dynamics of the fish group with an active
matter model (the Vicsek model). We get the following results.

– The original Vicsek model can not fit the experimental data.
– If an inertia term was added to the Vicsek model, the simulation results fit the

experimental data.
– The universal relationship between the reduced persistence length (κ) and the

polarisation (Φ) reported in section 5.7 can be understood, as the decreasing
noise (η) values in our model, which lead to higher polarisation.

• There are several limitations for our model.

– The simulations carried out in section 6.3, to model the density distribution of
the fish, ignored the dynamics of the system, by assuming the density profile
was from an equilibrium system.

– The simulations in section 6.4, to model the dynamics of the fish, ignored the
inhomogeneous density distribution, as well as the two point density correlation
observed from the experimental g(r) profile.
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Chapter 7

Collective Behaviour of
Mutant Zebrafish

7.1 Introduction

In this chapter, the methods developed in previous chapters will be applied
to study the behavioural change of zebrafish when they carry mutations in
genes relevant to human disease. The idea is to use the behavioural feature
as a probe, so that we could test the functions of different genes. Such
idea was implemented by the pioneering work from Tang et al., who tested
the behaviours of different fish groups with different genetic modifications
[179]. Even though the massive screening process could pick up different
features of different genetic mutations, there is little explanation for the
observations.

Instead of screening many different genes, we will take a different ap-
proach, and only focus on one particular gene in this chapter, the col11a2
gene. This gene is responsible for the production of an alpha chain of type
XI collagen [24]. Mutations to Col11a2 (as well as to Type II and Type IX
collagen) are associated with Stickler syndrome. Stickler syndrome is char-
acterised by hearing loss, problems with vision, and progressive changes to
the skeleton which result in severe early onset osteoarthritis [224, 225]. For
zebrafish, such mutation is also found to cause premature osteoarthritis [24].
Here we hypothesise that changes to the skeleton, or to visual and auditory
perception would lead to changes to swimming behaviour, either through
increased joint stiffness or a failure to correctly perceive their position in the
water. This expectation is supported by the reported correlation between
swimming performance and the development of bones [83] and cartilage
[226].

Observing, analysing, and modelling the 3D swimming behaviour from
both the mutant fish, and the wildtype (wt) fish, we studied the behavioural
differences caused by the col11a2 mutation. Notably, the mutant fish have
a significantly longer orientational relaxation time (τo in Eq. 5.12). And the
slow reorientation of the mutant fish leads to a longer persistence length,
since the speed of both kinds (the mutant and the wildtype) are similar.
Collectively, the mutant fish exhibit higher polarisation value, which can be
explained by the dynamical model in chapter 6. Our analysis provided the
behavioural feature of the mutant fish, and provide a direct link between the
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microscopic feature of the fish to their corresponding collective behaviour.
The linkage is remarkable, because it bridges the gap between the biological
feature of the fish and the collective behaviour of the group, under the
framework of active matter physics.

7.2 Method

7.2.1 Mutant Fish

The col11a2 mutant zebrafish have a nonsense mutation, i.e. in the mutants
the Coll1a2 protein is no longer produced. The mutant fish were obtained
from European Zebrafish Resource Centre and bred in the fish facility in
the university of Bristol [24]. Two generations of mutant fish were crossed
by Elizabeth A. Lawrence and Erika Kague respectively from the university
of Bristol. The wildtype zebrafish were also crossed and bred in the same
time, so that the two groups sharing the same growth condition can be
compared. For each generation, the number of wt fish is ∼ 50, and the
number of mutant fish is ∼ 30.

The two different generations of “mutant + wildtype” combinations,
crossed at different time points, exhibits consistent behavioural features.
The fish were observed when they were 40 days post fertilisation (dpf),
by which point they are relatively skeletally mature. We carried out the
observation repeatedly, until the fish were about 120 dpf.

7.2.2 Experiments and Analysis

Both the mutant fish and the wildtype fish were kept in aquarium tanks in
a separate room, without the observation equipment. The husbandry of the
fish is introduced in section 3.2.1.

For the one-fish experiment, we randomly took 10 fish from their living
tank, to the observation room, and recorded the movement of each fish
individually for 10 minutes at a frequency of 15 frames per second. We
then circulate the water in the observation tank for 5 minutes to remove
possible olfactory responses [200], then started recording for another fish.
We carried out the experiment for the two generations of the mutant and
wildtype fish, therefore tested 40 fish in total.

col11a2

wildtype

Figure 7.1: Typical trajecto-
ries of the col11a2 mutant ze-
brafish and the wildtype ze-
brafish

For the many-fish experiments, we randomly selected 25 fish, and trans-
ferred them to the observation tank. We waited 10 minutes for the group
to get familiar with the new environment, and then started recording their
movement. We carried out the experiment for the two different generations,
and we tested 4 groups, 100 fish in total.

The 3D fish tracking apprautus, introduced in chapter 4, was used to
record the 3D coordinates of the fish. These coordinates were then linked
into trajectories following the methods discussed in chapter 5. The trajec-
tories were analysed following the methods in chapter 5, yielding the results
that could be fitted with the modified Vicsek model with inertia (chapter 6).
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Figure 7.2: The behaviour of 1
mutant fish and 1 wt fish. (a)
The joint probability density func-
tion (PDF) of the 2D radius and
the Z coordinate of the fish. (b)
The marginal PDF of the 2D ra-
dius. (c) The PDF of the height
of the fish. (d) The distribution of
speed of the fish. (e) The average
auto-correlation function of the ori-
entation of the fish. The solid line
in (a) presents the outline of the ob-
servation tank. The solid lines in
(b) and (c) indicate the correspond-
ing distributions of ideal gas in the

tank.
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7.3 The Behaviour of A Single Mutant Fish

The movement of one single fish differs significantly between the wt fish
and the col11a2 mutant zebrafish, as shown in Fig. 7.2. For all the different
fish individuals, they tend to move near the surface of the tank, as seen
in Fig. 7.2 (a). Comparing with the col11a2 mutant zebrafish, the wt fish
prefer the bottom of the tank, as shown in Fig. 7.2 (c). Besides the spatial
distribution, the wt fish frequent stops swimming in the tank, indicated by
the peak around 0 mm/s in the speed distribution (Fig. 7.2 (d)). However,
the wildtype fish also have a longer tail in the speed distribution, meaning
they are more likely to enter the high speed state (speed > 300 mm/s).

A notable difference between the wt fish and mutant fish is the dynamics
of the orientation. The col11a2 mutant zebrafish took a significantly longer
time to change their directions, indicated by the auto correlation function
of the moving direction (Co(t), Eq. 5.11) of the fish. The results are shown
in Fig. 7.2 (e). By fitting the ACFs with an exponential function (Eq. 5.12),
we obtained the characteristic reorientation timescale of the wt fish (0.38s)
and col11a2 mutant zebrafish (0.8s). Visually, the slow re-orientation of the
col11a2 mutant zebrafish leads to a smoother trajectory, while the trajectory
of the wt fish appeared to be more zigzag. These characteristic trajectory
shapes were shown in Fig. 7.1. The slower re-orientation of the mutant fish
might be attributed to their altered skeletal phenotype in which joints are
abnormal [24]. But more work is needed to prove this causality.

It is important to point out, that we took extra care for the calculation
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Figure 7.3: The trajectories of 25
wildtype zebrafish and col11a2 mu-
tant zebrafish. (a) The trajectories
of wildtype zebrafish projected onto
a camera in 5s. (b) The trajectories
of col11a2 zebrafish projected onto
a camera in 5s. (c) The 3D trajecto-
ries of wildtype zebrafish in 5s. (d)
The 3D trajectories of col11a2 ze-

brafish in 5s.

of the relaxation time, since the re-orientation process of the fish can be
affected by extrinsic factors. For instance, the directional change of the
non-moving fish will be dominated by the tracking error, and the fish in
the bottom of the tank will be forced to change direction more frequently,
because the otherwise ballistic motion will be interrupted by the tank. To
exclude these extrinsic effects, we excluded the non-moving time points in
the trajectories (speed < 50 mm/s), and focused only on a specific hight
region (50mm < z < 150mm) during the calculation of the ACF. The choice
of the speed threshold or the height region will not affect the conclusion,
but will change the numerical value of these time scales.

In summary, we find three significant difference between the wt fish and
the col11a2 mutant zebrafish. The wt fish prefer the bottom of the tank,
and the wt fish tend to stop swimming during the observation. The col11a2
mutant zebrafish however takes much longer time to change their moving
directions, presenting a smoother trajectories over time (Fig. 7.1). These
features were robust, as we repeated the experiment by crossing two new
groups of wt fish and the col11a2 mutant zebrafish, and obtained results
leading to the exact same conclusions.

7.4 The Behaviour of Many Mutant Fish

In addition to the one fish experiment, we also observed a group (n = 25)
of wt fish and col11a2 mutant zebrafish, and analysed their behaviours.
Visually, the col11a2 mutant zebrafish are more likely to swim together,
while the movement of the wildtype fish seemed more random. The typical
trajectories of 25 wt fish and 25 col11a2 mutant zebrafish are shown in
Fig. 7.3. Where the trajectories captured by the cameras were presented
in Fig. 7.3 (a) and (b), whose corresponding 3D trajectories were shown in
Fig. 7.3 (c) and (d), respectively.
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Figure 7.4: The Collective Be-
haviour of 25 wt fish and col11a2
mutant zebrafish. (a) The joint
probability distribution of the lat-
itude radius (r) and the height (z)
of the wt fish (left) and the col11a2
mutant zebrafish (right). (b) The
probability density function of the
latitude radius (r). (c) The proba-
bility density function of the hight
(z). The solid line in (b) and (c)
represents the analytical distribu-
tion of uniformly random points.
(d) The probability distribution of
the speed. (e) The averaged auto-
correlation function of the fish ori-

entation.
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7.4.1 The Behavioural Features of col11a2 mutant zebrafish

All of the behavioural features of the mutant fish, summarised in section 7.3,
were also observed in the 25 fish experiment, as shown in Fig. 7.4. Namely,
the wt fish tend to distribute at the bottom of the tank (Fig. 7.4 (a) and
(c)), and these fish also tend to stop swimming, leading to a peak around 0
mm/s in the distribution of the speed values (Fig. 7.4 (d)). In contrast, the
col11a2 mutant zebrafish present different spatial distribution and speed
distribution, as the col11a2 mutant zebrafish were more likely to stay on
the top of the water, and tend to maintain a moderate swimming speed.

The different orientational relaxation time (τo) values, as illustrated in
Fig. 7.4 (e), were also observed in the many-fish experiment. The col11a2
mutant zebrafish have a typical value of τo = 0.5s, while the wildtype fish
have a typical relaxation time of τo = 0.27s. The standard deviation of
the ACFs from the 25-fish experiments are larger, comparing with the sin-
gle fish experiment. This is because we repeated the observation multiple
times. And the fish gradually grew during this period. In addition, the
repeated exposure to the experimental environments might also change the
behaviour of the fish [227]. Nevertheless, the different orientational relax-
ation time values for the col11a2 mutant zebrafish and wt fish were repeat-
edly observed, being a robust behavioural feature.
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Figure 7.5: The Collective Be-
haviour of 25 wt zebrafish. (a) The
ACFs of the polarisation (Φ), the
speed (v), and the nearest neigh-
bour distance (lnn). The first de-
cay corresponds to the relaxation of
the orientation, and the second de-
cay is taken as the average window
where the long trajectories were
segmented into. (b) The ACFs of
the orientations (Co(t)) of the fish
at different time points. (c) The
radial distribution function (RDF,
the g(r)) of the fish group at dif-
ferent time points. The heights of
the peaks are linked to the effective
attraction (ϵ) of the fish. (d) The
changing states of the fish captured
by the orientational relaxation time
(τo), the speed (v), the polarisation
(Φ), the nearest neighbour distance
(lnn), and the effective attraction

(ϵ).

7.4.2 The Changing States of col11a2 mutant zebrafish

The macroscopic states of 25 zebrafish change over time, like the scenario
presented in section 5.6.3 and 5.5.3. These changing states of wildtype fish
were plotted in Fig. 7.5. Figure 7.5 (a) shows the ACFs of the polarisation
(Φ), the speed (v), as well as the nearest neighbour distance (lnn). Again,
we observed the separated timescales, where the relaxation of orientation
caused the initial decay of the ACFs, followed by a second decay that indi-
cates the relaxation of the density.

We segmented the observed trajectories into short segments, whose du-
ration values were 120 seconds, indicated by the vertical bar “Average Win-
dow” in Fig. 7.5 (a). The statistical analysis on these segments revealed the
fluctuating behaviour of 25 wildtype fish. Figure 7.5 (b) shows the chang-
ing Co(t) functions of the wt fish, which lead to the fluctuating τo values in
Fig. 7.5 (d). Similarly, the fish group also presents varying degree of cohe-
sion, captured by the effective attraction ϵ in Fig. 7.5 (d). The changing
cohesion levels are also obvious in the radial distribution function of the fish
shown in Fig. 7.5 (c).

These changing states are visually correlated, like the results from sec-
tion 5.6.3 and 5.5.3. Importantly, the correlations are consistent. The dy-
namical quantities (Φ and v) are correlated, while the structural quantities
(lnn and ϵ) are correlated. The orientational relaxation time (τo) correlates
with the structural quantities, where the fish exhibited slower reorientation
when they were less cohesive. The changing relaxation time values could be
explained by the short range repulsive interaction of the fish (section 5.6.3).

For 25 col11a2 mutant zebrafish, we also observed their changing states
in a very similar fashion, as shown in Fig. 7.6. One notable difference
between the wt fish and the col11a2 mutant zebrafish is the ACF of the
nearest neighbour distance. Specifically, the first decay reached to a value
close to 0.3, meaning the system will forget about its current lnn quicker than
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Figure 7.6: The Collective Be-
haviour of 25 col11a2 zebrafish.
(a) The ACFs of the polarisation
(Φ), the speed (v), and the near-
est neighbour distance (lnn). The
first decay corresponds to the re-
laxation of the orientation, and the
second decay is taken as the aver-
age window where the long trajec-
tories were segmented into. (b) The
ACFs of the orientations (Co(t)) of
the fish at different time points.
(c) The radial distribution function
(RDF, the g(r)) of the fish group at
different time points. The heights
of the peaks are linked to the ef-
fective attraction (ϵ) of the fish.
(d) The changing states of the fish
captured by the orientational relax-
ation time (τo), the speed (v), the
polarisation (Φ), the nearest neigh-
bour distance (lnn), and the effec-

tive attraction (ϵ).
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the wt fish. For consistency, we still applied the duration of 120 seconds
to segment the trajectories of the col11a2 mutant zebrafish temporally, and
analyse the evolving states.

The orientational relaxation time of the col11a2 mutant zebrafish is
significantly longer than that of the wt fish. The wildtype fish have a τo
value around 1s, while the col11a2 mutant zebrafish have a τo value around
2s. These two values here are larger than that from section 7.4.1, because
the data presented in Fig. 7.5 and 7.6 were obtained when the fish were 40
dpf. In contrast, the results presented in section 7.4.1 are the average of
different experiments during which the fish were aging.

In addition, the col11a2 mutant zebrafish appear more cohesive than the
wt fish, characterised by the high peaks in the RDF of the col11a2 mutant
zebrafish. This feature can not be captured by conventional methods such as
the nearest neighbour distance. In fact, the col11a2 mutant zebrafish have
a larger lnn values compared with the wildtype counterpart. However, the
col11a2 mutant zebrafish are more cohesive because the are more likely to
have a pairwise distance around 10 cm. It is this probability that captured
the cohesive feature, rather than the physical length scale. Even though
these two are normally correlated.

7.4.3 Modelling the dynamics of col11a2 mutant zebrafish
We projected the changing states of the fish onto a “phase diagram”, spanned
by the persistence length (lp, Eq. 5.13) and the nearest neighbour distance
(lnn, Eq. 5.4). The result was shown in Fig. 7.7 (a). Compared to the wt
fish, the col11a2 mutant zebrafish have both larger lnn and lp. The larger
lnn values of the col11a2 mutant zebrafish might be related from the fact
that these mutant fish distribute in the upper location of the tank, where
they naturally get larger volume because of the geometry of the tank. Even
though the lnn value of the col11a2 mutant zebrafish is larger than the wt
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Figure 7.7: The behaviour of
25 zebrafish described by lnn and
lp. (a) The changing macroscopic
states of the fish projected on a 2D
state diagram spanned by lnn and
lp. The colour of the scatters rep-
resents the age of the fish. (b) The
changing states of the fish described
by the reduced persistence length
κ = lnn/lp, which correlates with
the polarisation (Φ) of the group.
The correlation is reproduced with
a Vicsek model with inertia (sec-
tion 6.4.2). The brightness of the
scatters indicates the age of the fish,

illustrated by the colour bars.

fish, these mutant fish appear to be more cohesive, as discussed in sec-
tion 7.4.2. The larger lp of the col11a2 mutant zebrafish is related to the
slow re-orientation of the mutant fish, as the persistence length is defined
as the product of the speed and the orientational relaxation time.

We observed the behaviour of 25 fish repeatedly, while the fish were
growing. As a result, we could also follow the change of the behaviour of
these fish over time. The age of the fish was coloured in Fig. 7.7. With
the growth of the fish, the value of lnn decreased for both the wt group
and the mutant group. This indicates that the fish group became more
closely packed as they grew from 40 dpf to over 100 dpf. The decreasing lnn
amongst the zebrafish was also observed by Buske and Gerlai [228].

For the the observed zebrafish, being whether wt or mutant, their re-
duced persistence length, defined as κ = lp/lnn, correlates with the polar-
isation, as shown in Fig. 7.7 (b). Such correlation is similar to the results
shown in section 5.7, from 50 adult zebrafish. Among the two groups, the
col11a2 mutant zebrafish have relatively larger κ values comparing with the
wt fish, hence presenting higher Φ values.

The relationship between the Φ and κ can be explained the variation of
the Vicsek model with an inertia term (α, Eq. 6.9). To fit the experimental
data, we changed the value of η from 0.5 to 1.0, while fixing the values of
other variables (v0 = 0.1, ρ = 0.5, α = 0.63). These fixed parameters also
fits the behaviour of 50 adult zebrafish, except for the value of the density
(we set ρ = 1 for 50 adult fish). The consistent fit suggests our proposed
model, regardless of its simplicity, does capture the essence of the collective
behaviour of zebrafish.

Biologically, the reason for the behavioural difference might related to
the compromised development of the cartilage, the bones, or the fine min-
eral stone in the ear of the fish. A careful examination of these intrinsic
factors affecting the mutant fish would be the next step, for a more com-
prehensive understanding of the behaviour, as well as the genetic functions
of the col11a2 mutant fish.
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Summary of Chapter 7
• We applied the methods developed in previous chapters (3 - 6), and studied the

behaviour of the col11a2 mutant zebrafish.

• A single mutant fish exhibited a slow reorientation during its movement, compared
to the wildtype zebrafish.

• A group (N = 25) of col11a2 mutant zebrafish exhibited larger persistence length,
and higher polarisation value, compared to the wildtype zebrafish.

• A single mutant fish behave like an agent in the inertial Vicsek model with lower noise
values, compared to the wildtype fish. Collectively, a group of col11a2 mutant ze-
brafish exhibit more ordered movement because of the effective alignment interaction
among the fish.
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Chapter 8

Conclusions

A group of animals is an active matter system, whose collective behaviour
could be interpreted in the framework of statistical physics. In this thesis,
we studied the behaviour of zebrafish with the existing concepts and tools
from the active matter community. For this purpose, we developed the
experimental system, the tracking software, and the analytical methods to
observe the 3D movement of fish in a quantitatively way. Using these tools,
we studied the effect of genetic mutation on the zebrafish, focusing on a
particular gene col11a2 that is associated with human diseases.

In chapter 3, we developed the image processing pipeline to record the
2D collective motion for a group of fish. The proposed pipeline is capable
of locating the fish in an image without the biological details. The ideas
and algorithms to recover 3D coordinates from 2D images are introduced
in chapter 4. It is expected that motivated readers can follow the path and
build their own 3D animal tracking systems. As a result, we could obtain
the locations of individual fish from our system at different time points,
yielding the structural information of the fish group.

The coordinates of the fish need further process, so that we can study
their collective behaviour. In chapter 5, we introduced the method to refine
the coordinates, and the way to recover dynamical information from the co-
ordinates, by linking the locations into trajectories. We then introduced the
different quantities that captured the behavioural features of the zebrafish,
and the different correlation functions for the dynamics and the structure
of the fish group. The ideas and algorithms introduced in chapter 5 are
expected to be helpful for other researchers. For instance, the coordinate
refinement method and linking algorithms can be applied to the study of cel-
lular behaviour or the movement of colloids. The correlation functions are
helpful for characterising the structure and dynamics of different complex
systems.

Using our developed method, we analysed the structure and dynamics
of 50 zebrafish. We learned that the fish exhibited two well separated time
scales, with the fast reorientation of individuals, and a slow relaxation of
the local density. In addition, a group of fish change their macroscopic
states constantly, whose collective motion could switch between ordered
and disordered. These changing states, nevertheless, can be described by a
single quantity that encodes the activity and density of the system.

To get further insight, we modelled the behaviour of the fish in chap-
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ter 6. To understand the density distribution of the fish, we numerically
simulated an equilibrium model to match the experimental results. The
model revealed the effects of the environment, the pairwise interaction, and
the group size. To understand the dynamics of the fish, we numerically
studied an active matter model where particles align with nearby neigh-
bours. The fit between simulation results and experimental data suggests
the importance of the inertia and alignment interaction.

Finally, we observed the collective motion of 25 wildtype zebrafish and
25 col11a2 mutant zebrafish, whose expression of type XI collagen was inter-
rupted. Analysing the movement of individuals, we discovered the mutant
fish have a significantly longer orientational relaxation time, presumably
due to their compromised collagen development. The increased relaxation
time leads to a higher activity for the col11a2 mutant zebrafish, yielding
more ordered collective behaviour. Such linkage could be explained by the
dynamical model developed in chapter 6.

Many technical improvements could be made, for studies that are taking
a similar route. For instance, the 2D image processing is still slow, which
is incapable of real-time tracking. The speed could be be improved with
the machine learning methods, and maybe other optimised algorithms. For
the 3D tracking, the urgent issue is to make the method more accessible,
requiring the implementation of good software engineering principles, such
as writing detailed documentation and helpful examples. Ideally, a graphical
user interface should be provided for non-specialists without background in
coding and computer vision.

For the study of zebrafish behaviour, a potential unexplored topic is the
large scale milling phase in 3D5757 The 2D milling phase was care-

fully studied by Tunstrøm et al.
[126].

, presented in chapter 2. We did not observe
such novel phenomenon in this project. To study this new pattern, and other
potentially interesting collective behaviour, it may be necessary carry out
field observations in the sea. In addition, it would be helpful to perform
more experiments under controlled conditions, to study the response of the
fish group to external stimuli.

For the understanding of zebrafish behaviour, we tried to model the
density distribution and the dynamics of the fish separately. We did not
craft a model that is capable of capturing both the structural features and
the dynamical features at the same time. It is worthwhile to seek a simple
model that recreates more experimental behavioural features.

Is active matter a useful concept, for the sake of biology? The statistical
tools helped us extracting important time-scales and length-scales of the
zebrafish. We understood their collective order-disorder transition with an
active matter model, and studied the effect of genetic mutation under the
same framework. At the end of the thesis, we provide positive answer to
this question.
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Appendix A

Alternative 2D Image
Analysis Methods

A.1 Introduction
It is possible to get information about the collective behaviour of zebrafish
in a quasi-2D environment, without locating each fish individual or link-
ing coordinates into trajectories. We will briefly describe a “tracking-free”
analysis and relevant results in this chapter. The experimental setup used
to observe the fish is identical to the one discussed in chapter 3.

This tracking-free method is helpful when the fish are very densely
packed, since the tracking would fail because of the constant visual oc-
clusion. The densely packed situation happens, as a group of fish exhibit
the coexistence between dense regions and dilute regions in certain con-
ditions. Such a “phase-separation” scenario is shown in Fig. A.1, where
the dense regions are outlined. This coexistence is reminiscent of the mo-
bility induced phase separation (MIPS) phenomenon, commonly seen in a
repulsion-dominated active matter system (chapter 2) [45].

Figure A.1: The dense and
dilute regions in a group of
fish. The group size is 200,
and the fish were confined in
a quasi-2D environment.

A.2 Estimating Density Heterogeneity
We can quantify the coexistence of the high-density “liquid” and low-density
“gas” with the heterogeneity of the density distribution. To do so, we sub-
divide the image into different grids with the same are, and measure the
brightness variation among the grids. One example of these grids5858 The areas of the grids seems

different because of the projective
transformation during the forma-
tion of the image. The areas are
the same in the rectified image.

is shown
in Fig. A.2. For a uniformly distributed fish group, the variation would be
close to zero. For phase-separated fish group, the variation would have a
large value. Operationally, We take the sum of bright pixels in the fore-
ground movie Fij(t) in each grid, as a measure of the density, noted as ρ̃.
We take the standard deviation of ρ̃ values from all grids, as a measure of
the density heterogeneity, noted as D = std(ρ̃).

Figure A.2 shows the measured D for 100 zebrafish. The grids were
shown in Fig. A.2 (c), and clearly different grids have different ρ̃ values.
The temporal evolution of D is shown in Fig. A.2 (a). We carefully kept the
illumination condition in the observation room constant, to avoid sudden
changes in D. Figure A.2 shows the probability density function of D,
exhibiting a single peak around 1.1.
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(c)

(a)

(b)

Figure A.2: Density Heterogene-
ity analysis of 100 zebrafish swim-
ming in a quasi-2D environment.
The units for ρ̃ and D are arbitrary,
which are related to the pixel inten-
sity in the image. (a) The density
heterogeneity D of the fish group as
a function of time. (b) The proba-
bility density function of the den-
sity heterogeneity D. (c) A snap-
shot of the density distribution of
the fish. The tank was partitioned
into different grids with the same
area. The colour indicates the pixel
brightness in each grid. Darker

colour = more fish.

(a) (c)

(b)

Figure A.3: The mobility analy-
sis of 100 zebrafish swimming in a
quasi-2D environment. The unit for
M is arbitrary, which is related to
the pixel intensity in the image. (a)
The mobility M of the fish group as
a function of time. (b) The proba-
bility density function of the mobil-
ity M. (c) The difference between
two success frames. The dark pixels

contains the moving fish.

A.3 Estimating the Mobility

If we think of a group of zebrafish as active matter, we would want to
measure its activity, which controls the phase behaviour of the system. The
direct measurement of the activity requires the trajectory of individual fish
from tracking result. A simpler measurement is the mobility of the fish
group, which is defined as

M =
∑
ij

|Fij(t+ 1)− Fij(t)| , (A.1)

where Fij(t) represents the pixel value of the foreground video at time t (see
section 3.2.3 for details).

Figure A.3 shows the measured M for 100 zebrafish. The different
between two success frames in the foreground video, ∆Fij(t), is shown in
Fig. A.3 (c), whose absolute sum is the mobility. The values of M as a
function of time is plotted in Fig. A.3 (a). The probability density function
of M is shown in Fig. A.3 (b), featuring a single peak.
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Figure A.4: The changing macro-
scopic states of zebrafish under dif-
ferent illumination conditions. The
macroscopic state is indicated by
the density heterogeneity (D) and
the mobility (M) of the fish group.
The error bars represent the stan-

dard error of the measurement.

A.4 Changing States of the Fish Group
We changed the macroscopic state of the fish, by applying different illumi-
nation conditions with a smart bulb. It was expected that the fish would
perceive more danger in a brighter environment, which leads to a higher
D value for the group. However, we found that the fish group have non-
monotonic response to the brightness of the environment.

The changing macroscopic states of different fish groups, with different
group sizes, is shown in Fig. A.4. It is not clear how increasing the brightness
level would change the D and M values of the fish group. The absence
of a monotonic relationship could be the result of the other biological or
environmental factors, which requires more studies in the future.

However, it is clear that the fish groups exhibited very different macro-
scopic states, under different illumination conditions. These changing states
is consistent with our analysis in chapter 5.

A.5 MIPS as a Possible Explanation
The different density heterogeneity D and mobility M values of the fish
group could be understood as a MIPS-like behaviour (chapter 2). The
result is organised in Fig. A.5, where we use the value of D/N as the order
parameter. A large D/N value indicates the coexistence of a dense phase
and a dilute phase, therefore the MIPS.

For the observed fish groups, the MIPS-like behaviour happened if the
mobility per fish (M/N , as a proxy to the activity) is large, and the fish
number (as a proxy to the density) is moderate. This is in-accordance of the
phase behaviour of repulsion dominated active matter systems (for instance
the active Brownian particles) [34].
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Figure A.5: The changing macro-
scopic states of zebrafish exhibiting
a MIPS like phase behaviour. The
fish number (N) is related to the
density, and the mobility divided
by the fish number (M/N) is a
proxy to the activity. In a high ac-
tivity and moderate density region,
we observe a high density hetero-
geneity per fish (D/N) value, cor-
responding to the coexistence of a
dense phase (liquid) and a dilute
phase (gas). The coexistence region
is drawn manually for illustration.

However, the emergence of MIPS-like behaviour for a group of fish is a
surprising result, which needs more careful studies. For instance, more state
points should be sampled in the phase diagram. In addition, more detailed
analysis is needed. For instance, one should check if the dense regions are
also slow, as a result of the feedback loop in MIPS. Finally, the “tracking-
free” analysis in this chapter is novel, which needs validation. For instance,
we should compare the results of this tracking-free analysis, with the results
from widely accepted analysis based on tracking individuals.

Summary of Appendix A

• We proposed a new method to analyse the video for a group of fish in a quasi-2D
environment, with out tracking the movement of the individuals.

• The density heterogeneity of the fish group can be estimated by subdividing the image
into grids, and calculating the intensity variation in different grids.

• The mobility of the fish group can be estimated by the difference between two suc-
cessive frames.

• The changing illumination condition changed the macroscopic states of the fish group.
But the fish respond to the changing brightness level in a non-monotonic way.

• The different macroscopic states of the fish group is similar to the MIPS behaviour
of repulsion-dominated active particles.
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