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Abstract

In computer vision, human action or movement assessment is the task of
evaluating the quality of a person’s movements when they perform specific
actions through observing their video. Typically, human movement assess-
ment approaches are view-specific and are not able to assess the quality
of human movement when they are applied to camera viewpoints different
to their training data, i.e. unseen viewpoints. This thesis explores view-
invariance in human movement assessment, with a particular focus on
the healthcare domain. Furthermore, the current approaches in the field of
healthcare are based on 3D skeleton data as the features derived from 3D
data are rich and can be leveraged to assess a wide range of movements.
However, acquiring 3D skeleton data can be cumbersome, if not impractical,
in in-the-wild scenarios. This thesis instead focuses on assessing the quality
of human movement from RGB data. As all existing action quality assess-
ment datasets are single view, this thesis also introduces two multi-view
human movement assessment datasets, SMAD and QMAR, to demonstrate
the superior performance of the proposed methods.

To deal with view-invariance, one solution is to develop a method that is
trained on data from multiple views. In this scenario, it is important the
method’s complexity does not increase with the number of training views and
the developed approach maintains a high performance on the single views.
To achieve this, a pose estimation approach is proposed that estimates high-
level pose in a canonical manifold space from RGB images, toward human
movement assessment under a multi-view learning scenario.

As capturing a dataset including numerous viewpoints is cumbersome and
rare, ideally, a view-invariant approach should be trained on data from as few
views as possible while it can operate on arbitrary viewpoints at inference.
Thus, this thesis develops an RGB-based approach that learns view-invariant
spatio-temporal features by training on only one or two viewpoints and is able
to analyse the quality of human movement on novel viewpoints.

This thesis also presents an unsupervised method that learns view-invariant
3D human posture representation from 2D RGB data for unseen view down-
stream tasks, e.g. action recognition and assessment, such that the pose
features can be transferred into other domains. The proposed method is par-
ticularly helpful in applications where the use of multi-view data is essential
and recording 3D skeletons is challenging, e.g. action quality assessment in
rehabilitation exercises.

This thesis includes results on SMAD, QMAR, KIMORE, and NTU RGB+D,



and obtains comparative evaluation results against the state-of-the-art ap-
proaches where it is possible.
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Chapter 1
Introduction

Human action or movement assessment includes the automatic analysis of the perfor-

mance of a participant when performing a specific task, e.g. rehabilitation exercises,

diving, and rolling pizza dough. To accomplish this task, a variety of input types such

as accelerometer data captured from wearable sensors [7, 29, 178], 3D skeleton data

extracted by RGB-D cameras or motion capture devices [22, 84, 98, 137], and RGB-D

images [31, 102, 108], can be employed.

Action quality assessment differs from action recognition [13, 40, 64, 154]. In action

recognition, the goal is to determine the type of a given action amongst different action

classes. However, in action assessment, the aim is to evaluate how well people perform

a target action. The action recognition task can be accomplished from key frames of a

video sequence, whereas action assessment is achieved by considering all video frames

[75].

The idea of developing a model to assess actions automatically originates from its po-

tential usage in applications, such as healthcare [3, 9, 83, 128], sports [76, 96, 99, 104,

118, 136], and skill determination for a particular task [31, 86, 105, 151].

Healthcare – In this field, action assessment can benefit in both the diagnosis of diseases

and recovery of patients. For instance, to diagnose Parkinson’s disease, neurologists

require to observe patients when they perform specific actions, such as walking or sitting-

to-standing, to establish an objective marker for their level of functional mobility. In

case the doctors identify the disease, they need to repeat this process both soon after

prescribing medication and longitudinally across weeks and months as the progress of

the disease is assessed. In addition, in such diseases, rehabilitation is also essential for

the patient’s recovery. By automating such mobility disorder assessment and home-care

1



physical therapy using computer vision, health service authorities can decrease costs,

reduce hospital visits, and diminish the variability in clinicians’ subjective assessment of

patients.

Sports – In the sports domain, action quality assessment can be applied to the judging

and scoring process or to improve the performance of athletes. For instance, automatic

human movement assessment from video footage can help judges and referees to minimize

human error. The athletes can also benefit by practising in front of the camera while

they receive real-time scores and feedback [108]. This brings about this opportunity for

them to improve their skills faster.

Skill Determination – Video learning has shown significant growth over the last decade

since it is a cost-effective training approach and obtains a more convenient and practical

learning experience compared to other training materials like text. For example, people

can learn many skills such as drawing, cooking, and painting, by observing the experts

when performing a specific task from video. Human action evaluation can be employed

in video learning platforms by analysing the skill level of both trainers and learners and

providing automated feedback for students to improve their skills.

To design an assessment framework, in addition to the accuracy which is essential, we

require to consider two important factors, (i) the developed approach should be wholly

view-invariant, otherwise the method will fail when it is applied to video data coming

from camera views which are not present in training data, i.e. unseen/novel viewpoints,

(ii) the proposed approach should be capable to run in in-the-wild scenarios, so it can

be used in uncontrolled environments, e.g. home, clinic, and stadium.

Previous efforts in action quality assessment, such as [9, 99, 104, 105, 136], are all view-

specific, and have not been designed to tolerate explicitly a large degree of view changes.

For instance, to assess the performance of sports actions, the authors in [102, 103, 104]

use Convolutional 3D (C3D), or Two-Stream Inflated 3D ConvNets (I3D) is employed

to design the models in [118, 136, 171]. Raihan et al. [111] propose a network based on

1D Convolutional Neural Network (CNN) to predict a quality score for rehabilitation

movements. However, as shown by Piergiovanni and Ryoo [107], current CNNs are

not able to extract view-invariant features and their performance drops significantly

when they are applied to novel viewpoint data. To the best of the author’s knowledge,

this thesis presents the first study that investigates view-invariance in human action

assessment, with a particular focus on the healthcare domain.

Existing approaches in the field of healthcare, such as [3, 9, 22, 83, 128], are based on 3D

skeleton data obtained from RGB-D cameras or motion capture devices since the features
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derived from 3D data are rich and can be applied to assess a wide range of movements.

For example, authors in [98, 137] train a continuous-state Hidden Markov Model (HMM)

from skeleton data generated by an Asus Xmotion camera to analyse the movements of

persons walking on stairs, or Elkholy et al. [37] extract a set of handcrafted features

from 3D skeleton data to estimate the degree of abnormality in patients performing

rehabilitation exercises by a Multiple Linear Regression (MLR) model. Liao et al. [84]

also design a deep learning assessment network that utilizes 3D motion capture data.

However, RGB-D cameras can estimate 3D pose only in optimal conditions, i.e. it is

dependent on several parameters, including distance and viewing direction between the

subject and the sensor. Although motion capture systems tend to be highly accurate,

obtaining 3D pose by such means is expensive and time-consuming, since it requires

specialist hardware, software, and setups. Therefore, acquiring 3D skeleton data can be

cumbersome, if not impractical, in in-the-wild scenarios. This thesis instead focuses on

assessing the quality of human movement from 2D RGB images that may be recorded

and used in unconstrained home or clinical settings.

The thesis begins to deal with viewpoint variations through training from multi-view

data. Then, it moves on to achieve view-invariance by training on data from as few

views as possible. Finally, it explores unsupervised and transfer learning to extract

view-invariant human posture representation for human movement assessment.

1.1 Challenges

There are two main challenges when dealing with the view-invariance in human move-

ment assessment from RGB images.

The first challenge is to extract rich view-invariant features from 2D data. In comparison

to the methods using 3D data (e.g. 3D skeleton and depth images), obtaining canonical

features from 2D images is inherently ambiguous due to the lack of depth information,

i.e. multiple 3D poses may correspond to the same 2D image after projection.

The second challenge is to overcome the above challenge while the method is trained

on data from as few views as possible. A highly challenging scenario is to be able to

perform well on a single-unseen view at inference while the approach is trained on data

from only one viewpoint.

A third challenge is to achieve high performance without requiring a large training

dataset. In applications of action quality assessment, particularly in the healthcare

domain, capturing and labelling a large amount of data can be impractical and expen-
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sive. For instance, recording video from Parkinson or Stroke patients who are at risk

of injury when performing the action types (e.g. falling), is difficult. In addition, this

procedure can become highly costly since we need to hire specialists for both recording

and annotating the dataset.

1.2 Contributions

This thesis investigates and tackles view-invariance in human action or movement as-

sessment from RGB data, and it’s key contributions can be summarized as follows:

• A method to estimate human pose in a high-level canonical space is proposed such

that the extracted pose features facilitate movement analysis from RGB images and

are suitable for human movement assessment under multi-view training scenarios.

• A novel method that extracts view-invariant spatio-temporal features for unseen

view human movement assessment from RGB video sequences is introduced which

tackles the challenge of achieving the view-invariance by training on only one view-

point.

• An unsupervised view-invariant 3D pose representation method is proposed where

the learned view-invariant pose features can be applied for unseen view downstream

tasks, e.g. action recognition and human movement assessment, and are able to

be transferred into other domains.

• The only existing multi-view human movement assessment datasets, SMAD and

QMAR, are developed, and QMAR is publicly released.

1.3 Thesis Overview

The rest of this thesis is organized as follows. Chapter 2 elaborates relevant background

work and salient concepts to the tasks of view-invariant human movement assessment,

and human pose estimation.

Chapter 3 presents two multi-view human movement assessment datasets, SMAD and

QMAR, and also reviews the relevant datasets in this area as well as the field of action

recognition.

Chapter 4 deals with viewpoint variations through training from multi-view data. It

introduces a pose estimation approach that facilitates the assessment process under

multi-view learning scenarios. The proposed approach is a CNN-regression network that
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estimates a set of high-level pose features in a canonical manifold space from RGB-based

body joint heatmaps and limb-maps.

Chapter 5 explores an RGB-based view-invariant approach that is able to assess the

quality of human movement from unseen view data while it is trained on data from only

one or two viewpoints. To achieve this, an end-to-end two-stage CNN-based network is

developed that first learns to extract canonical (view-invariant) body joint trajectories

from a single-view video clip, and then exploits the geometric relationship amongst the

canonical trajectories to estimate a movement quality score.

Following this, Chapter 6 proposes an unsupervised representation learning approach

to extract view-invariant 3D human posture representation from a 2D image toward

unseen view human movement analysis. A convolutional auto-encoder is designed that

disentangles canonical pose features and viewpoint parameters by exploiting the intrinsic

view-invariant properties of human pose between simultaneous frames from different

viewpoints and their equivariant properties between augmented frames from the same

viewpoint. The learned pose features are applied to two downstream tasks, unseen

view action recognition and human movement assessment. The efficiency of transferring

the learned representations from action recognition is shown to obtain the first ever

unsupervised results for (unseen view) human movement or action assessment.

Finally, Chapter 7 concludes the work presented within this thesis and provides directions

for future research.
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Chapter 2
Background

This chapter presents a background to the topic of view-invariant human movement as-

sessment and reviews the necessary related works upon which this thesis builds. First,

Section 2.1 discusses the relevant works in action quality assessment, then given the

lack of existing view-invariant human movement assessment techniques, related view-

invariant action recognition methods are considered in Section 2.2. As Chapter 6 tackles

view-invariance in human movement assessment by introducing an unsupervised view-

invariant 3D pose representation approach, Section 2.3 covers relevant unsupervised 3D

pose estimation techniques. Finally, Section 2.4 explains the protocols that are used by

this thesis to evaluate the performance of view-invariant approaches in action quality as-

sessment. Figure 2.1 illustrates a taxonomy of the topics presented in this chapter.

2.1 Action Quality Assessment

Action quality assessment aims to automatically evaluate the performance of a partic-

ipant when performing a particular task. Depending on the scope of the task and the

techniques required to analyse it, applications of action quality assessment are ‘sports

analysis’, ‘human movement assessment for healthcare’, ‘skill determination’, and many

others. In the video understanding domain, action quality assessment is a relatively new

field in comparison to other tasks, e.g. action recognition and action detection, and it

has gained attention recently via public datasets, such as MTL [104], AQA-7 [102], and

KIMORE [12], and with the advent of deep neural networks. This section focuses and

elaborates on aspect of action quality assessment works in sports analysis (Section 2.1.1)

and human movement assessment for healthcare (Section 2.1.2) which are relevant to

the scope of this thesis.
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2.1 Action Quality Assessment

Figure 2.1: Taxonomy of the topics presented in Chapter 2. This chapter
reviews related works on three main topics, action quality assessment, view-
invariant action recognition, and unsupervised 3D pose estimation, and also
explains the evaluation protocols applied to this thesis. For action quality as-
sessment, it focuses on supervised and unsupervised methods in the sport and
healthcare domains. For view-invariant action recognition, it covers relevant
supervised and unsupervised works using skeleton or RGB-D data, as well as
approaches concentrating on generation of synthetic multi-view images. It also
reviews the unsupervised 3D pose estimation methods employing 2D pose as in-
put, and the unsupervised methods learning 3D pose representation from RGB
images.
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2.1.1 Sports Analysis

Supervised Sports Analysis – The idea of automatically assessing the quality of sport

actions from video is introduced first by Gordon [46]. This paper develops a method to

estimate the score of performers in the gymnastic vault task. The scores are given to

the athletes from their trajectory by subtracting some points for acting against specific

properties defined specifically for the gym vault task.

Pirsiavash et al. [108] propose a regression-based method to score diving and figure

skating actions in an Olympic sports dataset (MIT-Olympic), that they also publicly

released. They train a Support Vector Regression (SVR) classifier on both low-level

edge and velocity features and high-level 2D pose features represented in the frequency

domain by the Discrete Cosine Transform (DCT). In addition to score prediction, they

obtain feedback for performers to indicate how they can improve their performance. The

feedback is generated through the pose estimation framework by predicting the way in

which a body joint should be moved to improve the overall performance. Figure 2.2

and 2.3 illustrates qualitatively some sample feedback produced by [108] for diving and

figure skating action respectively. The proposed method is also able to narrow down

which segments of a video include higher and lower scoring movements. To highlight

the most important segments, they remove some segments of the video and observe the

changes in estimated scores. Although this method predicts action scores better than

human non-experts, it is far from human expert judgment.

The authors in [6, 62] design models to analyse basketball games. For example, Bertasius

et al. [6] propose a method to rank a pair of first-person basketball videos. They train

Figure 2.2: Sample feedback suggested by [108] for some divers. Figure taken
from [108].

8
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Figure 2.3: Sample feedback suggested by [108] for some figure skaters. Figure
taken from [108].

a Convolutional Long Short Term Memory (Conv-LSTM) [158] to learn the features of

different segments of a video by detecting some predefined specific events (e.g. possessing

the ball and shooting the ball) in a sequence of frames. Then, the extracted features of

the various segments are combined and employed by a Gaussian Mixture Model (GMM)

to predict the performance of the players. Note, to concentrate on the important parts

of the video, before feeding the frames into Conv-LSTM, they use a fully convolutional

network [17] to detect and crop the region of the image around the ball.

Parmar and Morris [103] present and compare three different networks to assess sport

actions. Each of the networks first applies a C3D network on non-overlapped 16-frame

video clips of a video sequence to extract short-term spatio-temporal features. Then,

they use different ways to aggregate these features and estimate the final score of the

video sequence. In the first network, the video clip features are averaged and then used

by an SVR to predict a final score. The second network applies a Long Short Term

Memory (LSTM) network to learn the long-term information, and the third one employs

both LSTM and SVR to assess the quality of an action. They apply all networks to

diving, gym vault and figure skating actions, and their experiments demonstrate that

the first network (C3D + SVR) outperforms the other two networks (C3D + LSTM

and C3D + LSTM + SVR) and the prior method, Pirsiavash et al. [108], on all action

types.

Instead of looking at all frames of a video sequence uniformly, Xiang et al. [156] develop a

segment-aware approach. They first use a Temporal Convolutional Network (TCN) [74]

to classify all frames of a diving video sequence into five groups, including preparing,

jumping, dropping, entering into the water, and ending. Then, five distinct Pseudo-

3D Residual (P3D) networks [109] are trained on different segments, and the outputs
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Figure 2.4: Sample frames of 7 action types of AQA-7 dataset. Figure from
[102].

of all networks are concatenated to predict the overall score. Although this method

improves the state-of-the-art results on diving action, all the frames in the training set

must be annotated into different components. In addition, as the approach requires

running separate P3D networks on different segments, it makes the model unable to be

applied to longer actions as the complexity of the method increases with the number of

segments.

In [102], the authors introduce a new Olympic action quality assessment dataset (AQA-7)

and investigate whether it is possible to transfer knowledge amongst its different action

types. The AQA-7 dataset consists of seven action types, gym vault, ski big air, snow-

board big air, trampolining, diving, synchronous diving 3m platform, and synchronous

diving 10m platform. Figure 2.4 illustrates examples of all action types. Although the

actions have various scoring metrics, they share some common elements, such as flip-

ping, twisting, and performing somersaults, so the knowledge or features that are learned

through one of the actions can benefit in learning the others. Parmar and Morris [102]

study this with several transfer learning approaches and using C3D + LSTM as back-

10
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bone. For instance, instead of training separate networks for each action type, they

applied one network on all action classes and observed that the method’s performance

was improved on separate classes on average, or they trained a network on one action

class and then applied it to the rest of the action types (unseen action classes), and

observed that in most experiments, the method’s performance on unseen action types

was poor.

In another work, Parmar and Morris [104] improve the performance of action quality

assessment through multi-task learning where two extra tasks, action recognition and

commentary generation, are incorporated with action’s score prediction. They employ

a C3D network to extract the features of separate parts of a video sequence. Then,

for action assessment and recognition, the features are averaged to make a video-level

presentation, while for commentary generation, the features of different parts are fed

into its branch individually since the caption generation is a sequence-to-sequence task

(see Figure 2.5). They show that multi-task learning is specifically helpful when a large

training set is not available.

Figure 2.5: The overall schema of the multi-task learning network proposed in
[104]. Figure taken from [104].

The uncertainty in analysing sport actions is dealt in [136]. All the previous works look

at action assessment as a regression problem, while the score labels used for training the

network are subjective and ambiguous as they are given by different judges. For example,

for diving action, after a diver completes his/her task with the difficulty degree of 3.9,

several judges may assign their scores as 8.5, 8.0, 9.0, 9.0, 8.5, 9.0, 7.0. The top two and

bottom two scores are discarded, and his/her score is computed as: 3.9×(8.5+8.5+9.0).

To tackle this issue, instead of estimating a single score, Tang et al. [136] design a network

based on I3D to predict a set of Gaussian Distributions (ψ′ = {ψ′(si)}mi=1) for a given
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input video with score s. They optimize the proposed network through Kullback-Leibler

(KL) divergence loss such that the ground truth distributions (ψ = {ψ(si)}mi=1) are

generated as:

ϕ(si) =
1√
2πσ

exp(−(x− si)
2

2σ2
), (2.1)

ψ(si) = ϕ(si)/
m∑
i=1

ϕ(si), (2.2)

Loss =
m∑
i=1

ψ(si)log
ψ(si)

ψ′(si)
, (2.3)

where i ∈ {1, 2, ...,m}, and the mean of distribution si is sampled uniformly from a

normal distribution with mean of s. At inference, the score with maximum probability

is selected as final score S ′.

S ′ = argmax
si

{ψ′(s1), ψ
′(s2), ..., ψ

′(sm)}. (2.4)

In sports analysis, although there is a large variation in the scores of athletes, exploiting

the relations amongst their movements can provide important information in predicting

their score. Typically, action quality assessment approaches formulate the assessment

process as a simple regression problem that estimates a quantitative score for an ath-

lete from a single video. However, Yu et al. [164] introduce Group-Aware Contrastive

Regression (GACR) method that leverages the relations amongst videos to predict the

action’s score during both training and inference. They design a model that receives two

videos belonging to the same action type, main and exemplar, as well as the score of the

exemplar video, and is trained to estimate the score difference between the two videos.

At inference, the final score of the main video is predicted by averaging the results of the

network for several exemplars. For each main video, the exemplars are selected based

on some shared properties, such as action type and degree of difficulty. Note, in the

sports datasets (e.g. AQA-7), for some action types (e.g. diving action), in addition to

the score annotations, the degree of difficulty is obtained for all video sequences. Their

proposed network consists of two modules, an I3D-based network, and a group-aware

regression tree. First, the features of two input videos are extracted by I3D. Then, they

are concatenated along with the score of the exemplar to fed into a regression tree de-

signed based on Multi-Layer Perceptron (MLP) to produce the final result (see Figure

2.6).
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Figure 2.6: The overall schema of the Group-Aware Contrastive Regression
method proposed in [164]. First, an exemplar video is selected for each input
video (main video) based on its category and degree of difficulty. Then, the input
videos are fed into a shared I3D network to extract their spatio-temporal features.
The concatenated features with the score of the exemplar video are given into the
group-aware regression tree to estimate the score difference between the videos
and compute the final score of the main video. Figure taken from [164].

Unsupervised Learning for Sports Analysis – Jain and Harit [57] propose a self-

supervised method to evaluate the performance of people performing Sun Salutation

action by training on data from only experts. They design an LSTM-based auto-encoder

to reconstruct a spatio-temporal feature vector that is extracted by applying the K-

means algorithm on a sequence of 2D normalized poses. At inference, an input sequence

is fed into the model and the quality of the action is computed based on the Levenshtein

Distance between the input and output of the network. Jain and Harit [57] showed

that the proposed method outperforms the supervised state-of-the-art sport assessment

approaches.

Roditakis et al. [118] use Temporal Cycle Consistency (TCC) [35] to improve the per-

formance of estimated scores for diving action. Their method has two learning phases

and a temporal alignment step. In the first training phase, TCC is employed to build a

self-supervised embedding space which is subsequently utilized to align the video clips

temporally. Then, the aligned video clips are fed into the second learning phase to assess

the quality of actions. The second stage is supervised and uses the features encoded

by the two models, TCC and I3D, to predict the quality scores. During the supervised

training, the TCC model is frozen and only the I3D network is optimized through the

uncertainty loss function introduced in [136] (Equation 2.3). Figure 2.7 shows the details

of the proposed method.
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Figure 2.7: The overall schema of the self-supervised alignment for action as-
sessment. Each video sequence is aligned to a reference video that corresponds
to the video of the best performer in the training set, based on the TCC embed-
ding and Dynamic Time Warping (DTW) algorithm. Then the aligned videos
are broken into 16-frame segments, which are later fed into TCC and I3D mod-
els. The features generated by these two models are concatenated and used by a
temporal pooling that averages the features of all segments to obtain video-level
representation for quality score prediction. Figure from [118].

In [171], a semi-supervised approach is introduced where both labelled and unlabelled

data are exploited to assess the performance of the actions. Their proposed end-to-end

network has three modules, (i) a self-supervised module that learns the video represen-

tation without using any labels, (ii) an action assessment module that extracts the video

features in a supervised manner, and (iii) a representation distribution alignment module

that algins the distribution of video features of labelled and unlabelled data. The self-

supervised and action assessment modules contain a shared I3D backbone followed by

a shared encoder, while they have separate decoders. The distribution alignment mod-

ule is designed based on the Gradient Reversal Layer (GRL) to close the gap between

the the features learned from labelled and unlabelled videos. To learn the unsupervised

representation, Zhang et al. [171] mask one of the video segments and train the net-

work to reconstruct the masked part. This helps the network to leverage the temporal

dependency of the unlabeled data. The action assessment module is trained to regress

the quality scores. Zhang et al. [171] applied their method on three action assessment

datasets MTL [104], Rhy-Gymnastics [166], and JIGSAWS [42] and showed that their re-

sults outperform the state-of-the-art semi-supervised methods and the baselines designed

from [104, 136].

In summary, the majority of works in assessing the quality of sport actions are not

explicitly designed to learn the features of desired actions and extract the spatio-temporal

features by applying the 3D convolutional networks on video sequences. Therefore,
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Method Year USUP Backbone Input Dataset

-
2D Body

Gordon [46] 1995 ✗
Center

Gymnastic [46]

Pirsiavash et al. [108] 2014 ✗ SVR 2D Pose MIT-Olympic [108]

Bertasius et al. [6] 2017 ✗ Conv-LSTM RGB Basketball [6]

Parmar and Morris [103] 2017 ✗
C3D +

RGB
MIT-Olympic [108],

SVR/LSTM UNLV [103]

Xiang et al. [156] 2018 ✗ P3D+TCN RGB UNLV [103]

Li et al. [82] 2018 ✗ C3D RGB
UNLV [103],

MIT-Olympic [108]

Parmar and Morris [102] 2019 ✗ C3D+LSTM RGB AQA-7 [102]

Parmar and Morris [104] 2019 ✗ C3D RGB
MTL [104],UNLV [103],

MIT-Olympic [108]

Jain and Harit [57] 2019 ✔ LSTM 2D Pose Sun Salutation [57]

Xu et al. [159] 2019 ✗ C3D+LSTM RGB
MIT-Olympic [108],

Fis-V [159]

Tang et al. [136] 2020 ✗ I3D RGB
AQA-7 [102], MTL [104],

JIGSAWS [42]

Jain et al. [58] 2020 ✗ C3D RGB
MIT-Olympic [108],

UNLV [103]

Wang et al. [147] 2020 ✗ TCN RGB UNLV [103]

Roditakis et al. [118] 2021 ✔ I3D RGB MTL [104]

Dong et al. [27] 2021 ✗ P3D+TCN RGB UNLV [103]

Pan et al. [100] 2021 ✗ I3D+GCN
RGB+

UNLV [103]
2D Pose

Zhang et al. [171] 2022 ✔ I3D RGB
AQA-7 [102], JIGSAWS [42],

EPIC [30], BEST [31]

Table 2.1: Overview of the sports assessment approaches. Key works have
been explained in Section 2.1.1, while other works are worthy of note. USUP:
the method contains unsupervised learning phase. The gray high-lights indicate
non deep learning approaches.
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during the training process, they also learn unrelated context (e.g. rest of the scene)

which has a large impact on their performance. Designing a network that focuses on

only the action features is still an open question in this area. In addition, the extracted

features by these approaches are not view-invariant, so if they are applied to the data

recorded from viewpoints different to the training views, they will fail. Table 2.1 shows

an overview of sport assessment approaches.

2.1.2 Human Movement Assessment for Healthcare

Supervised Human Movement Assessment for Healthcare – Paiement et al. [98]

develop one of the first methods to automatically assess the quality of human movement

in the healthcare domain. They propose an online method that analyses the movement

of patients who walk on stairs. Their method uses 3D skeleton data captured by a

Kinect camera from frontal view as input and builds two statistical models, pose and

dynamic. The former represents the probability of normal poses through a probability

density function (pdf) and the latter models temporal information of normal sequences

by a continuous-state HMM. At inference, each frame of a sequence is classified to normal

and abnormal depending on how far away from these models it is, based on an empiri-

cally determined threshold on log-likelihood. Before using the skeleton data for training

and testing, this approach applies two preprocessing steps including normalization and

dimensionality reduction on the input data. The normalization is used to make the data

scale, transnational, and rotational invariant, and due to the curse of dimensionality of

skeleton data, Diffusion Maps [21] is applied to the input data. Paiement et al. [98] also

extend their work in [137] by applying their method to two other movement types, sitting-

to-standing, and gait. To evaluate the performance of the method, they introduce three

datasets, SPHERE-Staircase [98], SPHERE-SitStand [137], and SPHERE-Walk [137].

Section 3.1 will present details of these datasets.

To facilitate the process of movement assessment and eliminate the skeleton preprocess-

ing steps in [98], Crabbe et al. [22] develop a convolutional method based on AlexNet [71]

that estimates human pose in a low dimensional manifold space from depth images. The

ground truth pose annotations are generated by applying the Diffusion Maps [21] on nor-

malized skeleton data. Crabbe et al. [22] examine the performance of the pose features

for human movement assessment by employing the SPHERE-Staircase dataset.

Similar to [98], Elkholy et al. [37] propose a statistical-based approach to analyse the

quality of patient’s movements. They extract handcrafted features from 3D skeleton

data to classify a movement into normal and abnormal while for abnormal samples, they

also estimate the level of abnormality. They propose three types of feature descrip-
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tors including asymmetry, velocity magnitude, and Center of Mass (CoM) trajectory

deformation, to model spatio-temporal characteristics of movements. During training,

two probabilistic models, GMM and Kernel Density Estimation (KDE) are built upon

the descriptors of normal sequences. At inference, a sequence is classified as normal

or abnormal by computing its likelihood that is obtained through the trained GMM,

and comparing it with a learned threshold. Furthermore, a MLR is developed on the

proposed descriptors to estimate the degree of abnormality. To study the performance

of the proposed approach for abnormality detection, they employ SPHERE-Staircase,

SPHERE-SitStand, and SPHERE-Walk datasets. To demonstrate the efficiency of the

method in estimating the abnormality scores, they introduce a new dataset (EJMQA)

in which the movement’s scores are obtained by a professional physiatrist (see Section

3.1 for more details of EJMQA).

Liao et al. [84] introduce the first deep neural network to predict a quality score for

rehabilitation movements. Their proposed network consists of five temporal pyramid

sub-networks followed by LSTM layers (see Figure 2.8). Each sub-network has four

convolutional blocks that are applied to time-series skeleton data such that the first block

uses the information of the whole sequence, and the second to fourth blocks employs the

temporal data of 1⁄2, 1⁄4, and 1⁄8 of the sequence respectively. The outputs of the sub-

networks are concatenated and fed into the LSTM layers for further processing. The

aim of each sub-network is to exploit the spatio-temporal relations amongst body joints

of a specific body part (e.g. trunk). In a similar fashion to [98], Liao et al. [84] verifies

the dimensionality reduction of input data, and implements it through an LSTM-based

auto-encoder. They use UI-PRMD [140] which is a motion capture dataset, to evaluate

the method’s performance (see Section 3.1 for more details of UI-PRMD). Note, Liao

et al. [84] annotate and provide the ground truth scores for movements in UI-PRMD by

a performance metric based on GMMs.

The authors in [20] compare the strength of two sets of features extracted from 3D

skeleton data, in predicting quality scores of rehabilitation movements in KIMORE [12]

(see Section 3.1 for more details of KIMORE). They design two networks such that the

first one has only an LSTM module, while the second one includes a Graph Convolutional

Network (GCN) followed by LSTM layers. The first model is trained through a set of

handcrafted features which have been provided manually by physicians from skeleton

data, and the second model is trained from raw skeleton data. Their experiments show

when LSTM works jointly with GCN, it predicts the movement’s scores more accurate

than when it is trained alone on the handcrafted features.
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Figure 2.8: Top: the spatio-temporal network proposed in [84]. Bottom left:
temporal pyramid sub-network, and X1 to X4 indicates full, 1⁄2, 1⁄4, and 1⁄8 of
the input sequence respectively. Bottom right: multi-branch convolutional block
unsed in the temporal pyramid sub-network. Conv 1D, ch, d: 1D convolution
filter with kernel size d and ch channels. Figure from [84].

Raihan et al. [111] propose to use evolutionary computation to find the optimal param-

eters of a rehabilitation assessment network. They design a CNN network where its

parameters, such as number of layers, size of filters, and kernels’ size are selected by

genetic algorithm, and train it on feature vectors that are generated by applying a 1D

Local Binary Pattern (LBP) operator [15] on skeleton pose sequences.

To overcome the issue of data imbalance in human movement assessment datasets, Al-

bert et al. [1] propose a Generative Adversarial Network (GAN) based on an LSTM to

generate synthetic normal and abnormal skeleton sequences. They also design a 1D-CNN

network that learns to classify human movements in normal and abnormal categories by

training on both real and synthetic data. To reduce the computational complexity of

their proposed method, Albert et al. [1] apply their network on only the most informa-

tive joint and axis which are determined from a features ranking function. They use the

KIMORE dataset [12] to train the model and perform experiments.
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Method Year USUP Task Backbone Input Dataset

Paiement et al. [98] 2014 ✗ N & AB - Skeleton SPHERE-Staircase [98]

Crabbe et al. [22] 2015 ✗ N & AB AlexNet
Skeleton

SPHERE-Staircase [98]
+ Depth

SPHERE-SitStand [137],
Tao et al. [137] 2016 ✗ N & AB - Skeleton

SPHERE-Walk [137]

SPHERE-Staircase [98],

SPHERE-SitStand [137],Elkholy et al. [36] 2017 ✗ N & AB - Skeleton

SPHERE-Walk [137]

SPHERE-Staircase [98],

N & AB, SPHERE-SitStand [98],

Scoring SPHERE-Walk [137],
Elkholy et al. [37] 2019 ✗ - Skeleton

EJMQA [37]

Bruce et al. [9] 2020 ✗ N & AB GCN Skeleton UI-PRMD [140]

Liao et al. [84] 2020 ✗ Scoring
1D CNN

Skeleton UI-PRMD [140]
+ LSTM

Chowdhury et al. [20] 2021 ✗ Scoring
GCN

Skeleton KIMORE [12]
+ LSTM

Raihan et al. [111] 2021 ✗ Scoring 1D CNN Skeleton KIMORE [12]

Albert et al. [1] 2021 ✗ N & AB 1D CNN Skeleton KIMORE [12]

Bruce et al. [10] 2021 ✗
N & AB

GCN Skeleton
UI-PRMD [140],

Scoring EHE [10]

Du et al. [33] 2021 ✗ Scoring
GCN

Skeleton UI-PRMD [140]
+ LSTM

Nekoui and Cheng [95] 2021 ✔ Scoring
C3D 2D Pose UWA3D [110], UT [155],

+ LSTM + RGB KIMORE [12], INR [14]

Deb et al. [24] 2022 ✗ Scoring
GCN

Skeleton
UI-PRMD [140],

+ LSTM KIMORE [12]

Table 2.2: Overview of the human movement assessment approaches in health-
care. Key works have been explained in Section 2.1.2, while other works are
worthy of note. USUP: the method contains unsupervised learning phase. N
& AB: normal and abnormal. The gray high-lights indicate non deep learning
approaches.
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2.2 View-Invariant Action Recognition

Unsupervised Learning for Human Movement Assessment for Healthcare –

To assess the quality of human movement more accurately, Nekoui and Cheng [95] pro-

pose to use multi-modal data and design a two-stream network. One of the streams is a

C3D-based network that is trained from RGB images, and the other is an LSTM-based

model that learns motions from 2D poses. Nekoui and Cheng [95] also found that the

performance of the LSTM-based branch can be improved through a self-supervised ap-

proach. To achieve this, first, they separately train a GRU-based auto-encoder on pose

sequences to learn a sequence of unsupervised features, and then the learned represen-

tations are fed into the LSTM-based stream. To learn the unsupervised features, they

combine the idea of pace prediction [148] and skeleton sequence in-painting [176]. While

they benefit from self-supervised learning, it is applied to only part of the model that

uses pose data, and the rest of the network where the RGB features are extracted, is

trained in a fully supervised manner.

In a nutshell, most existing human movement assessment methods in the healthcare do-

main rely on 3D skeleton data, while acquiring skeleton data is challenging in in-the-wild

scenarios, and the majority of the approaches also require a prepossessing step including

dimensionality reduction and/or normalization to prepare the input data for the assess-

ment process. Furthermore, the current human movement assessment methods are all

view-specific and have not been designed explicitly to apply to unseen view scenarios.

This thesis instead focuses on view-invariant movement quality assessment from RGB

data and investigates the extraction of valuable features that can be applied directly for

human movement analysis without requiring any intermediate steps. Table 2.2 shows an

overview of action quality assessment methods for healthcare.

2.2 View-Invariant Action Recognition

Due to the lack of existing view-invariant action quality assessment methods, related

view-invariant action recognition works are reviewed in this section since similar to action

assessment, action recognition approaches work based on analysing the spatio-temporal

features although there are still differences between them, as discussed in Section 1. In

addition, in comparison to other video understanding tasks, e.g. action localization and

prediction, in the action recognition field, view-invariance has been explored more.

As stated in [141], standard action recognition approaches, such as [13, 40, 64, 154], are

not be able to deal with view-invariance, and their performance drops significantly if

they are applied to data coming from viewpoints not presented in the training data. To

tackle this problem, one solution would be to train a network on data from multiple views
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2.2 View-Invariant Action Recognition

[141]. However, in practice, capturing a labelled dataset of different views is cumbersome

and rare. Therefore, view-invariant action recognition approaches have been developed

such that the proposed models are trained from a few views and are tested on unseen or

novel viewpoints.

Before deep learning, view-invariant action recognition approaches, such as [39, 63, 113,

163], usually used handcrafted features. For instance, Farhadi and Tabrizi [39] first

model different activities with Histogram of Silhouette (HoS) and Histogram of Optical

Flow (HoF), and then, propose a method that is trained to transfer the learned activities

from a source view to a target view. Junejo et al. [63] introduce a spatio-temporal self-

similarity matrix (SSM) to represent video sequences in spatio-temporal view-invariant

maps. The self-similarity maps have different structures and patterns for distinct action

types while they similarly represent different viewpoints of the same action. The SSM

is generated based on the displacements of a set of descriptors over time such that the

descriptors can be extracted from point trajectories, Histogram of Gradient (HoG), and

HoF.

Deep learning approaches usually require large datasets, but capturing multi-view datasets

requires elaborate set-ups and is inevitably time-consuming and potentially quite expen-

sive. Therefore, multi-view datasets, such as IXMAS [153], N-UCLA [146], and UWA3D

[110], were benchmark datasets for view-invariant action recognition till Shahroudy et al.

[126] introduced a large multi-view dataset, Nanyang Technological University (NTU)

RGB+D dataset, which allows training deep neural networks. Recently, Ji et al. [59]

have also captured a large-scale dataset (UESTC) which provides RGB-D videos with

entire 360° view angles. Section 2.2.1 and 2.2.2 reviews recent skeleton and RGB-D based

deep learning approaches respectively.

2.2.1 View-Invariant Skeleton-based Action Recognition

Supervised View-Invariant Skeleton-based Action Recognition – Liu et al. [88]

introduce a skeleton visualization approach where they first transform view-dependent

skeleton sequences into a canonical view by applying a rotation matrix. Then, the

transformed sequences are represented into a set of colour images that encode the motion

generated by different body joints. Finally, all colour images are fed simultaneously into

a multi-branch convolutional neural network for action classification. Their results show

that their proposed method outperforms other view-specific methods, such as [126], on

unseen view data.

Attention learning has also been adapted for view-invariant action recognition. Ji et al.
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2.2 View-Invariant Action Recognition

[60] develop a model consisting of three branches, reference-view, target-view, and atten-

tion, by employing Spatial Temporal Graph Convolutional Networks (STGCNs) [161].

The reference-view and target-view networks are trained to learn spatio-temporal fea-

tures of the skeleton sequences in a reference view and arbitrary views respectively. The

attention module connects two feature learning branches to transfer attention from the

reference view to the arbitrary ones. The proposed network is optimized by computing

three losses, transfer, attention, and classification. The transfer loss works based on

KL divergence to measure the difference between the probability distributions of the

reference-view and the target-view features, while the two other losses are developed

based on cross-entropy.

To regulate the viewpoint variations when observing an action from novel views, Zhang

et al. [169] design an end-to-end LSTM-based model including view adaptation and

classification networks. The former network is trained to estimate the transformation

parameters of 3D skeleton data to a canonical view, and the latter classifies the action

from transformed canonical features. They later extend their work in [170] by adding

another stream to the network. The new stream also contains the view adaptation and

classification modules, but the new modules are modelled by convolutional filters instead

of LSTM layers. Each stream is trained separately through cross entropy loss, and at

Figure 2.9: The architecture of the two-stream network proposed in [170].
One stream is LSTM-based (VA-RNN) and the other one is convolutional-based
(VA-CNN). In each stream, the view adaptive sub-network estimates the trans-
formation parameters of 3D skeleton data to a canonical viewpoint, and the main
network classifies the action from canonical features. Figure taken from [170].
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2.2 View-Invariant Action Recognition

inference, the results of both streams are fused to make the final decision. Figure 2.9

shows the overall structure of the method.

Unsupervised View-Invariant Skeleton-based Action Recognition – Recently,

several methods, such as [79, 114, 174] focus on contrastive learning paradigm to extract

unsupervised view-invariant features. For example, Rao et al. [114] develop a framework

based on LSTM layers and train it by Noise Contrastive Estimation (NCE) loss. To

compute the NCE loss, the positive samples, which are referred to as query and key,

are generated from the input sequences by applying augmentation techniques, such as

rotation, shear, reverse, gaussian blur, and gaussian noise. The negative samples are

obtained through a large dictionary which accumulates the extracted features of all

samples, and the dictionary is updated in each iteration by replacing the current positive

samples with their old version. The proposed framework has two LSTM networks, query

encoder (Eq) and key encoder (Ek) that learns to encode the features of key and query

samples respectively. In each iteration, the Eq encoder is updated via the NCE loss,

whilst the parameters of the Ek are updated as:

θk = τθq + (1− τ)θq, (2.5)

where θq and θk are parameters of Eq and Ek respectively, and τ ∈ [0, 1) controls the

decay rate. After training the framework, Eq is employed for view-invariant action

classification. Their experiments on NTU, UWA3D, and SBU [165] datasets show that

their proposed method outperforms handcrafted methods, and also obtains competitive

results to the supervised skeleton-based approaches.

Paoletti et al. [101] address viewpoint variants in skeleton-based action recognition by

developing an auto-encoder that is designed by fully-residual 2D convolutional blocks.

The proposed auto-encoder is trained through three losses, (i) reconstruction loss, (ii)

Graph Laplacian (GL) regularization loss LGLR, and (iii) self-supervised view-invariant

loss LSSV I . The LGLR loss is computed by building a skeletal GL to apply Laplacian

regularization to the reconstructed space by the decoder. This loss aims to inject the

skeletal geometry information into the network. The LSSV I loss is computed through a

regression network that is connected to the encoder via a GRL. The skeleton sequence

is augmented by rotation and fed into the network. Then, while the regression network

tries to predict the rotation parameters of the augmented input, the encoder tries to

mislead the regression network by extracting view-invariant features.

Table 2.3 presents an overview of skeleton-based methods considered in this section, as

well as a few other works worth nothing. Although skeleton-based approaches achieve
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promising performance on unseen view action recognition, they rely on a significant

amount of 3D joint annotations, the provision of which is expensive and difficult in

in-the-wild scenarios.

Method Year USUP Backbone Input Dataset

Liu et al. [88] 2017 ✗ AlexNet Skeleton
N-UCLA [146], UWA3D [110],

NTU [126]

Zhang et al. [169] 2017 ✗ LSTM Skeleton SBU [165], SYSU [51], NTU [126]

MSRAction3-D [80], UTKinect [155],
Talha et al. [135] 2018 ✗ - Skeleton

Florence 3-D [123], Multiview3-D [135]

Zhang et al. [170] 2019 ✗
2D ResNet

Skeleton
SBU [165], SYSU [51], NTU [126]

+ LSTM N-UCLA [146], UWA3D [110]

Ji et al. [60] 2021 ✗ STGCN Skeleton NTU [126], UESTC [59]

Rao et al. [114] 2021 ✔ LSTM Skeleton SBU [165], UWA3D [110], NTU [126]

Paoletti et al. [101] 2021 ✔ 2D CNN Skeleton NTU [126], NTU-120 [89]

Li et al. [79] 2021 ✔ STGCN Skeleton NTU [126], NTU-120 [89]

Gao et al. [41] 2021 ✗
CNN

Skeleton
NTU [126], NTU-120 [89],

+ STGCN UESTC [59]

Gedamu et al. [43] 2021 ✗ 2D ResNet Skeleton
NTU [126], NTU-120 [89],

UESTC [59]

Table 2.3: Overview of the view-invariant skeleton-based action recognition
approaches. Key works have been explained in Section 2.2.1, while other works
are worthy of note. USUP: the method contains unsupervised learning phase.
The gray high-light indicates a non deep learning approach.
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2.2 View-Invariant Action Recognition

2.2.2 View-Invariant RGB-D based Action Recognition

To deal with view-invariance from non-skeleton data, a very few works, such as [44,

143, 144], extract view-invariant features from RGB images alone since obtaining view-

invariant features from ambiguous 2D data is highly challenging, while others like [26, 78],

use depth images along with RGB data. On the other hand, some works, such as [87, 141],

generate multi-view synthetic RGB images for training to increase the performance of

view-specific methods on real unseen view data.

Supervised View-Invariant RGB-D based Action Recognition – Wang et al.

[144] design a multi-branch deep neural network for view-invariant action recognition.

Their proposed network has a shared CNN that learns view-independent features, fol-

lowed by several view-specific CNN branches, and a novel message-passing module. The

message passing module is applied between every two CNN branches to improve the view-

specific feature extraction. Then, the refined features are passed through view-specific

classifiers whose outputs are fused for action classification (see Figure 2.10). The fusing

process is performed by a view-classifier trained on view-independent features. Note,

the number of view-specific branches is equal to the number of training views. As a

view-specific branch is added to the network for each training view, the complexity of

the model increases with the number of training viewpoints.

Figure 2.10: The overall schema of the multi-branch network proposed in [144].
Figure from [144].

Dhiman and Vishwakarma [26] develop a two-stream view-invariant action recognition

framework, which consists of Shape Temporal Dynamic (STD) and motion streams.

During training, each stream is optimized separately, and at inference, their outputs are

aggregated to classify the actions. STD includes a deep CNN block followed by two

25
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LSTM layers to learn view-invariant shape dynamics of an action over time. It extracts

the features through structural similarity index matrix (SSIM) [152] which is applied to

a sequence of human depth silhouettes. In the motion stream, first, the appearance and

dynamics of a sequence of RGB images are represented as dynamic images (DIs) by a

temporal rank pooling function, and then, DIs are sent to a pre-trained Inception-V3

network [133] to predict the action class. Dhiman and Vishwakarma [26] evaluate their

approach on several multi-view datasets including NTU, and show the importance of

different components of their method.

Ghorbel et al. [44] introduce a fast view-invariant approach that is trained on human

skeleton sequences generated from RGB images by applying the VNect method [93]

where the body joints and their location heatmaps are estimated by a CNN network.

First, Ghorbel et al. [44] extract a set of view-invariant features from the pose data

by exploiting the geometric relationship between different body parts, and the skeleton

alignment based on joint positions, velocity, and acceleration. Then, they train a Support

Vector Machine (SVM) on the learned view-invariant features to classify the actions. This

method outperforms the state-of-the-art methods on the N-UCLA and IXMAS datasets,

but they do not provide their proposed method’s results on the NTU dataset to allow

comparison against the recent state-of-the-art view-invariant approaches.

Unsupervised View-Invariant RGB-D based Action Recognition – Li et al.

[78] design an end-to-end recurrent convolutional auto-encoder to learn video represen-

tation from 3D scene flow and depth data which are later used for unseen view action

recognition. Their proposed network has one encoder and two decoders (reconstruction

and cross-view) and learns to obtain the view-invariant representation through the en-

coder by reconstructing the input sequence into two different views. The reconstruction

decoder reconstructs the same source view input sequence from the view-invariant rep-

resentation while the cross-view decoder predicts the input sequence in a target view.

The input of the encoder and the output of the reconstruction decoder are 3D scene

flows while the output of the cross-view decoder is depth images. Li et al. [78] also boost

the view-invariant representations by adding a view-adversarial classifier that encour-

ages the network to generate features that are invariant to view changes. They show the

efficiency of the proposed approach by training and testing on NTU RGB+D, and also

fine-tuning their pre-trained network on NTU for action classification on the N-UCLA

[146] and MSR-DailyActivity3D [145] datasets. However, this method relies on 3D scene

flow that obtaining this type of data is computationally expensive.

Vyas et al. [143] use video prediction and develop an unsupervised representation learning

framework to address multi-view action recognition. Their proposed framework receives
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several video clips of an action from different times and viewpoints as input to learn a

representation through representation learning network (RL-NET). A video rendering

network (VR-NET) takes the learn representation to predict an unseen view and time

video clip. The end-to-end proposed framework is optimized by computing the Mean

Squared Error (MSE) between the predicted video clip and the ground truth. After

learning the unsupervised representation, a classifier network (CL-NET) consisting of

2D convolutional layers followed by fully connected layers, is added on top of RL-NET

and trained through cross entropy loss for supervised action recognition. Figure 2.11

shows more details of the proposed network.

Figure 2.11: Video prediction for view-invariant action recognition. A: simul-
taneous video sequences from different viewpoints S = {si}mi=1, for a given action.
B: training video clips from different times and viewpoints V C = {vck}nk=1, that
are collected from S. C: Representation learning network (RL-NET) that takes
V C to learn the representation r. D: ENC-NET is embedded in RL-NET to
learn the individual video representation ek that is conditioned on its time tk

and viewpoint vk. E: The blending network (BL-NET) aggregates the video clip
representations {ek}nk=1, to make the final r. F: The unified representation r is
applied to predict an unseen view vq and time tq video clip from S by VR-NET.
G: The representation r is also used by CL-NET to classify the action types.
3D-U indicates to 3D convolutions filters that are combined with up-sampling.
Figure taken from [143].

Multi-view Synthetic Image Generation – In [87], synthetic multi-view RGB data

is employed to train a CNN-based network that extracts view-invariant pose features for

action recognition. Liu et al. [87] generate the synthetic data by fitting 3D human body

shapes with motion capture data and applying the graphic techniques. They also use a

GAN to improve the quality of the synthetic frames. For action classification, Liu et al.

[87] model the temporal information of view-invariant pose features with the Fourier

Temporal Pyramid (FTP) and SVM. Although in this work, the authors facilitate the

action recognition process using RGB images only, their method relies on a large amount

27
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of 3D data.

Similar to [87], Varol et al. [141] produce synthetic multi-view data to deal the view-

invariance. They train a 3D ResNet-50 [48] on both synthetic and real video sequences

to classify the actions. To generate the synthetic data, they apply VIBE [70] and HMMR

[65] on real single view action videos to estimate 3D pose sequence, camera, and body

shape parameters, and then the artificial data are generated by augmenting the camera

and body shapes parameters using graphics techniques. In their work, the synthetic

data can improve their method’s performance on unseen view data. However, when

their network is trained on only synthetic data, it performs poorly which indicates that

the synthetic videos do not represent realistic motion.

In conclusion, RGB-D based view-invariant approaches remove the need for 3D joint an-

notations. However, due to the inherent ambiguity of this kind of data, they usually rely

on synchronized multi-view images, Table 2.4 summarises the RGB-D based approaches

presented in this section, and a few other works worth noting.

2.3 Unsupervised 3D Human Pose Estimation

Although the majority of current RGB-based 3D human pose estimation approaches,

e.g. [45, 77, 106, 149, 160], are fully supervised and rely on a large amount of 3D joint

annotations, recently several works have been introduced that remove or decrease the

need for labelled data, such as [16, 18, 34, 50, 115, 139]. Among these approaches, authors

in [16, 18, 52, 55, 139] extract unsupervised pose features from 2D joints generated from

RGB data, while others, such as [34, 50, 72, 115], learn 3D pose representations directly

from RGB images.

Unsupervised 3D Pose Estimation from 2D Pose – Chen et al. [16] train a model

by lifting 2D pose to 3D joints and reprojecting 3D onto 2D through a geometrical

self-consistency loss that allows the network to learn in a self-supervised manner. The

proposed loss is designed based on the hypothesis that any 2D projection of a learned

3D pose should generate the same 3D pose. They show that self-consistency alone is not

sufficient to learn the 3D pose, and improve the performance of the network by adding

a spatial and a temporal 2D pose discriminator. The spatial discriminator is trained to

classify the projected 2D pose from real ones, and the temporal discriminator learns to

classify the differences in 2D poses in subsequent frames of a sequence as real or fake.

Their experiments demonstrate that incorporating the additional temporal discriminator

improves their method’s performance by 7%.
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Method Year USUP Backbone Input Dataset

Zhang et al. [168] 2018 ✔ - RGB IXMAS [153], WVU [112]

IXMAS [153], WVU [112],
Liu et al. [90] 2018 ✔ - RGB

MuHAVi [130], N-UCLA [146]

Wang et al. [144] 2018 ✗ TSN [150] RGB N-UCLA [146], NTU [126]

Li et al. [78] 2018 ✔
2D ResNet RGB +

N-UCLA [146], MSR [145]
+ LSTM Depth NTU [126]

2D ResNet
Ghorbel et al. [44] 2019 ✗

+ SVM
RGB IXMAS [153], N-UCLA [146]

Liu et al. [87] 2019 ✗
2D CNN RGB∗ + N-UCLA [146], UWA3D [110],

+ SVM MoCap NTU [126]

VI-DA [26] 2020 ✗
Inception RGB + N-UCLA [146], NTU [126]

+ LSTM Depth NTU [126]

Vyas et al. [143] 2020 ✔
3D CNN

RGB N-UCLA [146], NTU [126]
+ LSTM

Varol et al. [141] 2021 ✗ 3D ResNet
RGB∗ +

NTU [126], UESTC [59]
3D Pose

Table 2.4: Overview of the view-invariant RGB-D based action recognition
approaches. Key works have been explained in Section 2.2.2, while other works
are worthy of note. USUP: the method contains unsupervised learning phase. *:
the training data includes both real and synthetic images. The gray high-lights
indicate non deep learning approaches.

In [139], knowledge distillation is used to estimate both 3D pose representation and

Skinned Multi-Person Linear (SMPL) model parameters from 2D joints. The proposed

framework has a temporal backbone that is followed by a teacher and a student branch.

The input of the network is a sequence of 2D joints generated from RGB images, and the

output of the teacher and student sub-network is model-free 3D poses and SMPL body

shape parameters respectively. The proposed framework learns the pose representations

in two stages. First, the backbone and teacher branch are trained by a 3D to 2D

projection pose loss, temporal and bone length consistency losses, and an adversarial loss

coming from a temporal discriminator. Then, the backbone and the teacher are frozen,

and only the weights of the student branch are updated. In this stage, a knowledge

distillation loss is defined by computing the distance between the model-free 3D poses

estimated by the teacher network, and the 3D joints obtained via the SMPL model. They
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Figure 2.12: Unsupervised 3D pose estimation via knowledge distillation. Lmss:
projection 3D-2D loss. Ltc: temporal consistency loss. Lbl: bone length consis-
tency loss. LKD: knowledge distillation loss. LR, LB: regularization losses. LT

D,
LS

D: adversarial losses for teacher and student branches respectively. Figure from
[139].

also use two simple regularization losses for the pose parameters to prevent over-twisting,

and the same as the teacher branch, the estimated 3D joints via the SMPL model are

given to the temporal discriminator. Figure 2.12 shows details of the proposed framework

in [139].

To learn unsupervised 3D skeletons, Iqbal et al. [55] propose to leverage 2.5D poses

[54] instead of 2D body joints. The 2.5D pose representation is scale and translation

invariant and is defined as P = {(xj, yj, dj)}Jj=1, where xj and yj are the 2D coordinates

of the joint j, and dj is its metric depth with respect to the root joint. Iqbal et al.

[55] design a convolutional framework that takes a set of multi-view RGB images and

estimates 2D heatmaps generated from 2.5D pose representation. To train the network,

in addition to the reconstruction loss which computes the difference between the ground

truth and the estimated heatmaps, they use multi-view and limb length consistency

losses, and a regularization loss. The multi-view consistency loss is computed based on

the transformation of the estimated 3D poses between different viewpoints, while the

limb length loss imposes the kinematic constraints of the human body to estimate the

pose representation, and the regularization loss aims to help the network concentrate on

the foreground.

In [116], the authors aim to develop a network that is able to extract canonical 3D pose

features driectly from RGB images. To achieve this, [116] train a CNN network that

maps multiple views into a canonical pose through MSE, but as using only this constraint

may generate random features without any positional order consistency, they also use a
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small subset of 3D pose annotations to enhance the output.

Unsupervised 3D Pose Representation from RGB Images – Rhodin et al. [115]

train an auto-encoder that learns to disentangle 3D pose representation and the appear-

ance features from RGB images such that the pose features encode 3D geometry, and

the pretrained encoder is later used for supervised 3D pose estimation. As the 3D geom-

etry is already encoded in the learned representations, estimating 3D pose from them is

much easier and can be obtained through a smaller training set than fully supervised ap-

proaches. To enforce the network to separate the appearance and pose representations,

Rhodin et al. [115] divide the latent vector into appearance and pose feature vectors and

use two different frames of the same subject for training. They assume that the encoder

learns the same appearance representation for these frames, so the network should still

reconstruct them if their appearance features are swapped. Note, different images of

the same subject are selected from distinct frames of the same video sequence. The

3D geometry is learned by using the simultaneous images of the same person captured

from several views while the auto-encoder is trained to reconstruct the image captured

from one viewpoint from the image coming from another viewpoint. Their experiments

show that the proposed method improves the supervised state-of-the-art results and

outperforms the other semi-supervised methods by training on only 1% of the 3D pose

annotations.

The approach proposed in [115] requires multi-view data and camera parameters for

training. Zhang et al. [172] instead develop a method that can be trained from monoc-

Figure 2.13: An overview of the first learning stage of [172] where the proposed
network is trained on synthetic data in a supervised manner. Figure from [172].
m
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Figure 2.14: An overview of the second learning stage of [172] where the pro-
posed network learns to estimate 3D pose from real data in an unsupervised
manner by transferring the learned knowledge from synthetic data. Figure from
[172].

ular RGB data and without relying on viewpoint information. To do this, they apply

domain adaptation and knowledge transfer to leverage the pose information of synthetic

depth images to estimate 3D pose in real RGB data. Their proposed approach has two

training stages, (i) learning 3D pose from synthetic data in a supervised manner, and

(ii) transferring the learned knowledge from the first stage for unsupervised 3D pose es-

timation from real data. In the first stage, two auto-encoders, Er −Dr and Es−Ds, are

trained simultaneously to estimate 3D pose from depth images and body segmentation

masks respectively. Er − Dr also regresses 2D poses which are used to train the body

segmentation module (G). To encourage the auto-encoders to encode the same hidden

features for depth and body segmentation masks, a domain classifier is also added to the

model. Figure 2.13 shows details of the first learning stage. Then, in the second learning

stage, while Es−Ds and G are frozen, the model is optimized on real data without using

3D pose annotations (see Figure 2.14). Finally, at inference, Er −Dr is utilized for pose

estimation.

Honari et al. [50] leverage contrastive self-supervised (CSS) learning to encode the 3D

pose representation from single-view RGB videos. CSS approaches aim to learn the im-

age features by pulling the features of positive samples close to each other in embedding

space while pushing the features of the negative ones apart. CSS-based methods, such as
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2.3 Unsupervised 3D Human Pose Estimation

Method Year
Training

Sup. Dataset

MV PRM Pose VI

Rhodin et al. [116] 2018 ✔ ✗ 3D ✔ ✗
Human3.6M [53], MPII [92],

Ski[116]

Rhodin et al. [115] 2018 ✔ ✔ ✗ ✗ ✔ Human3.6M [53]

Zhang et al. [172] 2019 ✗ ✗ 3D ✗ ✗
Human3.6M [53], ITOP [47],

UBC3V [125]

Chen et al. [16] 2019 ✗ ✗ 2D ✗ ✗
Human3.6M [53], MPII [92],

LSP [61]

Tripathi et al. [139] 2020 ✗ ✗ 2D ✗ ✗
Human3.6M [53], MPII [92],

3DPW [142]

Iqbal et al. [55] 2020 ✗ ✗ 2D ✗ ✗ Human3.6M [53], MPII [92]

Honari et al. [50] 2021 ✗ ✗ ✗ ✗ ✔
Human3.6M [53], MPII [92],

Diving[50], Ski[116]

Table 2.5: Overview of the unsupervised 3D pose estimation approaches pre-
sented in Section 2.3. MV: multi-view. PRM: Camera parameters. VI: View-
invariant. Sup.: Supervision to map latent into 3D pose.

[124], apply this strategy to the whole feature vector. However, this idea does not work

properly if it is used on the frames of a video sequence since when a person moves, part

of the features like pose, changes over time, while the others, such as appearance features

are constant. To overcome this problem, Honari et al. [50] break the latent vector into

time-variant and time-invariant components and apply CSS on only the time-variant

one. Then, both vectors are concatenated and fed into a decoder to reconstruct the

input image. To train the model via CSS, they also proposed a novel distance-based

similarity loss that computes the similarity between any pairs of samples depending on

their temporal distance. The time-variant features that represent pose information are

later used for 3D pose estimation and tested on several datasets, such as Human3.6M

[53] and MPII [92]. The results show that the proposed CSS-based approach outper-

forms other unsupervised single-view methods. Table 2.5 provides an overview of the

unsupervised 3D pose estimation approaches presented in this section.

In summary, typically the unsupervised 3D pose estimation and representation ap-

proaches are view-specific and do not generate the same (i.e. canonical) 3D pose fea-

tures for different viewpoints, so they cannot be applied to unseen-view downstream

tasks (e.g. human movement assessment) and camera parameters and extra steps are
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2.4 Evaluation Protocols for View-Invariant Action Assessment

needed to map their view-specific output into a canonical view. The method proposed in

[116] estimates 3D pose in a canonical view, but it requires both labelled and unlabelled

data and camera parameters for training. In Chapter 6, this thesis proposes a method

that learns view-invariant 3D pose representation from input images and without using

any 3D joint annotations and viewpoint parameters such that the pose features can be

applied directly to unseen-view downstream tasks.

2.4 Evaluation Protocols for View-Invariant Action

Assessment

To demonstrate the performance of the proposed methods, this thesis follows the state-

of-the-art view-invariant action recognition approaches, such as [78, 126, 143, 144], and

applies two standard protocols, cross-subject and cross-view, where possible.

Cross-Subject Protocol – The cross-subject protocol (CS) aims to evaluate if a

method maintains a high performance when it is trained on several viewpoints. To do

this, distinct subjects are engaged for training and testing, while data from all viewpoints

are used in both phases.

Cross-View Protocol – The cross-view evaluation criteria (CV) aims to assess the

performance of the methods on novel viewpoints, so data from different viewpoints are

applied during training and testing, while all subjects are applied in both training and

testing sets.

2.5 Conclusion

This chapter presented an overview of the related works upon which this thesis builds.

Since this thesis presents work that relies upon action quality assessment, the related

works in this area, including sports analysis approaches and human movement assess-

ment methods in the healthcare domain, were first reviewed. Then, due to the lack of

existing view-invariant action quality assessment method, related view-invariant action

recognition works were discussed by covering both skeleton and RGB-D based view-

invariant techniques. Finally, as this thesis proposes an unsupervised approach to learn

view-invariant 3D human pose representation towards movement assessment, recent un-

supervised 3D pose estimation and representation works were discussed.
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Chapter 3
Datasets

In this thesis, several datasets are used; two multi-view human movement assessment

datasets, SMAD and QMAR, that have been developed in-house, and QMAR is pub-

licly released; a single-view human movement assessment dataset, KIMORE; and the

most popular multi-view action recognition dataset, NTU RGB+D. KIMORE and NTU

RGB+D are both available in the computer vision community.

SMAD is utilized to train and evaluate the proposed method in Chapter 4. QMAR,

along with KIMORE are involved in experiments of Chapters 5 and 6. NTU RGB+D is

also employed in Chapter 6.

This chapter begins by providing a summary of movement assessment datasets in health-

care and discusses the need for new datasets in Section 3.1. Then, in Section 3.2, it first

introduces SMAD and QMAR, and then reviews the details of the KIMORE and NTU

RGB+D datasets.

3.1 Human Movement Assessment Datasets

Paiement et al. [98] have collected one of the first human action analysis datasets,

SPHERE-Staircase. In another work [137], they introduce two other datasets, SPHERE-

Walking and SPHERE-SitStand. All three datasets include both depth and skeleton

data and have been recorded from frontal view. SPHERE-Staircase has been captured

with 12 participants and includes 48 abnormal gaits in going up the stairs with lower

musculoskeletal conditions (e.g. freezing of gait). In this dataset, all the frames of the

sequences have been labelled as normal or abnormal by an experienced physiotherapist.

SPHERE-Walking contains 40 video sequences of 10 subjects walking on a flat surface. It
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3.1 Human Movement Assessment Datasets

includes videos of normal walking and walking while the participants simulated Stroke

and Parkinsons ailments. In SPHERE-SitStand, Tao et al. [137] record 101 video se-

quences of 10 subjects performing sitting-to-standing. This dataset has normal and two

types of abnormal movements containing (i) freezing and (ii) restricted knee and hip

flections.

Although SPHERE-Staircase, SPHERE-Walking, and SPHERE-SitStand datasets allow

exploring automatic movement assessment, they are not large enough for training the

most recent deep learning backbones. To overcome this problem, authors in [10, 140]

have collected bigger skeletal datasets. Vakanski et al. [140] develop UI-PRMD using

Dataset Year MV Data Type
Annotation #Movement

#Subjects
Type Types

SPHERE-Staircase [98] 2014 ✗ Depth, Skeleton N & AB 1 12

SPHERE-Walking [137] 2016 ✗ Depth, Skeleton N & AB 3 10

SPHERE-SitStand [137] 2016 ✗ Depth, Skeleton N & AB 3 10

UI-PRMD [140] 2018 ✗
Motion Capture, Action

10 10
Skeleton Classes

Motion Capture,

RGB, Depth,SMAD [120] 2019 ✔

Skeleton

N & AB 4 19

EJMQA [37] 2019 ✗ Depth, Skeleton Score 3 43

RGB, Depth,
KIMORE [12] 2019 ✗

Skeleton
Score 5 78

EHE [10] 2021 ✗ Skeleton
Action

6 25
Classes

RGB, Depth,
QMAR [121] 2021 ✔

Skeleton
Score 6 38

Table 3.1: Details of known human movement assessment datasets reviewed in
Section 3.1, as well as action quality assessment datasets employed in experiments
of this thesis (gray highlights). MV: multi-view. N & AB: normal and abnormal.
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3.2 Datasets Used in this Thesis

a VICON system and a Kinect camera for physical rehabilitation exercises. It involves

10 healthy subjects who performed 10 types of exercises (e.g. deep squat, side lunge,

and standing shoulder extension) in both correct and incorrect fashion. The participants

have been asked to repeat 10 times each movement type. Bruce et al. [10] have recorded

EHE dataset from 25 older participants with Alzheimer’s disease completing six routine

exercises that patients usually perform in the elderly home. In total, the dataset includes

869 sequences.

As opposed to the datatests described above that annotated the movements with only

the types of abnormality or action classes, Elkholy et al. [37] introduce a single-view

dataset, EJMQA, for which the depth and skeleton sequences have been annotated by

a physiatrist to reflect the severity of the abnormality. The EJMQA dataset has been

recorded in a clinic from 41 participants, including both patients and healthy individuals,

performing walking, standing up, and sitting down action types.

Table 3.1 provides a summary of known human movement assessment datasets. The

existing datasets for human movement analysis are all single-view, and most datasets

do not include RGB images, while as outlined in Chapter 1, this thesis aims to deal

with the view-invariance when assessing the quality of human movement from RGB

images. Therefore, the current human movement assessment datasets are not suitable

for this purpose, and recording a multi-view dataset, including RGB images, is essential

to evaluate the performance of the proposed methods.

3.2 Datasets Used in this Thesis

3.2.1 SMAD: Sphere Multi-View and Multi-Modal Movement

Assessment Dataset

This thesis introduces the first known multi-view human action or movement assessment

dataset, SMAD [120] which combines, motion capture, skeletons, depth and RGB images.

It should be noted that SMAD has been collected by the researchers at the Digital Health

Group, University of Bristol, and has been post-processed by this author for use in this

thesis. Both stages are described in detail next.

3.2.1.1 Data Recording

SMAD has been recorded from 19 healthy subjects, 6 female and 13 male, who have

been trained by a specialist physiotherapist to perform a turn-walk action, i.e. a return

walk to approximately the original position, in both normally and with three types of
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3.2 Datasets Used in this Thesis

abnormalities: Stroke, Parkinson, and short-limp. Figure 3.1 illustrates examples of

all movement types. The normal movement has been repeated five times, while the

abnormal ones have been performed only once.
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Figure 3.1: Examples of all movement types of SMAD. Top row: normal turn-
walk action. Second row: turn-walk with Stroke. Third row: turn-walk with
Parkinson. Bottom row: turn-walk with short-limp.

SMAD has been captured by motion capture1 and four RGB-D cameras, three Prime-

sense and one Kinect, from four viewing directions for the entirety of each walk: towards

one camera and back to the opposite camera, one side view, and one downward view

of the scene, i.e. views 1, 2, and 3 are at ≈ 0◦, ≈ 90◦, and ≈ 180◦ respectively, and

view 4 is around ≈ 45◦ above view 3. Note that all the cameras have been synchronized.

Figure 3.2 illustrates the position of RGB-D cameras in SMAD, and Table 3.2 details

the number of frames and sequences for each movement type.

1The Optitrack Flex 3 acquisition system has been used for human motion capturing
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3.2 Datasets Used in this Thesis

Figure 3.2: Typical camera views in the SMAD dataset.

Turn-Walk Action # Sequences
#Frames/Video

Total Frames
Min-Max

Normal 85 172-394 103026

Stroke 8 675-1023 27512

Limp 8 720-1351 31644

Parkinson 12 600-1740 47948

Table 3.2: Details of movements in the SMAD dataset. The dataset contains
a total of 210130 frames representing 113 sequences of videos.

RGB and depth images have been collected for all four viewpoints, while the skeleton

data have been captured from only the Kinect camera, and the motion capture data are

available for only the normal movement types. The videos have been recorded in an

uncontrolled environment, a part of the old site of the Visual Information Laboratory at

the University of Bristol, so there are no control over the light and background of the

views. Figure 3.3 shows some RGB sample frames from four viewpoints of SMAD. To

track the body joint movements with the motion capture system, 39 markers have been

mounted on the subjects’ bodies. The locations for attaching the markers are shown in

Figure 3.4. Note that in addition to 3D skeleton data, 3D motion capture data have

been also collected in SMAD since motion capture systems are more accurate than the

RGB-D cameras that can estimate 3D pose only in optimal conditions, i.e. the pose

efficiency of the RGB-D cameras is depended on their distance and viewing direction

from the subject.
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3.2 Datasets Used in this Thesis
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Figure 3.3: Sample frames from SMAD for all views. Each column shows a
scene captured from 4 different camera views.

3.2.1.2 Data Post-Processing

Depth images and motion capture data require some post-processing steps before they

are applied in experiments.

Improving Quality of Depth Images – The depth images acquired by RGB-D cam-

eras frequently contain hole regions, i.e. unfilled areas where depth values are missing.

To overcome this problem, the hole filling algorithm proposed in [22] has been used to

improve the quality of depth data.

Labeling Motion Capture Data – After recording the motion capture data, a post-

processing phase including marker labelling and gap-filling is essential. First, the human

body skeletons have to be constructed from raw markers, so a marker labelling step

is required. Second, as during the motion capturing, some markers may disappear for

some frames due to noise or occlusion, a gap-filling step is also necessary. The data

post-processing in SMAD has been performed with VICON’s NEXUS skeleton building

software. Figures 3.5 shows a sample of motion capture data before and after labelling
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3.2 Datasets Used in this Thesis

and filling the gaps.

Figure 3.4: Locations for attaching the motion capture markers on the human
body in the SMAD dataset.

Text

a: b: c:raw motion capture data motion capture data after 

labelling

motion capture data after 

labelling and gap-filling

Figure 3.5: a, b, and c show a sample of motion capture data before joint
labelling and gap filling, after labelling and before filling the gaps, and after
labelling and gap-filling respectively.
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3.2 Datasets Used in this Thesis

View 1 (RGB)

View 2 (RGB-Depth)

View 3 (RGB) 

View 4 (RGB)
View 5 (RGB-Depth)

View 6 (RGB)

Figure 3.6: Typical camera views in the QMAR dataset with each one placed
at a different height.

3.2.2 QMAR: Multi-View Quality of Movement Assessment for

Rehabilitation Dataset

To better explore view-invariance in assessing the quality of human movement, this thesis

also introduces the second multi-view human action or movement assessment dataset,

QMAR2 [121], larger than the SMAD dataset. Note, this dataset has been recorded and

labelled specifically for this thesis.

Although SMAD allows studying view-invariance, it is limited by the number of action

types, sequences, and variety of participants. However, the QMAR dataset provides

further exploration opportunity by capturing more viewpoints and complex actions with

double the number of participants. In further contrast to the SMAD dataset where

movements have been annotated into normal and abnormal, the movements in QMAR

have been scored by the severity of the abnormality. All these features make QMAR a

suitable dataset for view-invariant human movement assessment to compare the strengths

and shortcomings of different approaches, and the size of dataset also allows training deep

neural networks.

3.2.2.1 Data Recording

To capture QMAR, the author of this thesis developed the necessary software and set up

the associated hardware. The QMAR dataset has been recorded using six Primesense

2The QMAR dataset is published at https://data.bris.ac.uk/data/dataset/1y37kc9a8y47y2cen7
j907bpm7
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Figure 3.7: Sample frames from QMAR for all views. Each column shows a
scene captured from 6 different camera views.

cameras in an uncontrolled environment, in the Visual Information Laboratory at the

University of Bristol. Figures 3.6 and 3.7 show the position of the six cameras and some

RGB sample frames from each of the viewpoints respectively. The dataset includes RGB,

depth, and skeleton data. As capturing depth data from six Primesense cameras is not

possible due to infrared interference, the depth and skeleton data have been retained
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3.2 Datasets Used in this Thesis

from only view 2 at ≈ 0◦ and view 5 at ≈ 90◦. Note, all the six cameras have been

synchronized.

QMAR has been captured with 38 healthy subjects, 8 female and 30 male. The subjects

have been trained by a physiotherapist to perform two different types of movements

while simulating two ailments, resulting in four overall possibilities: a return walk to

W-P W-S SS-P SS-S

T
im
e

Figure 3.8: Examples of all movement types of QMAR. First column: walk-
ing with Parkinsons (W-P). Second column: walking with Stroke (W-S). Third
column: sit-stand with Parkinsons (SS-P). Fourth column: sit-stand with Stroke.
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3.2 Datasets Used in this Thesis

approximately the original position while simulating Parkinsons (W-P), and Stroke (W-

S), and standing up and sitting down with Parkinsons (SS-P) and Stroke (SS-S). Figure

3.8 illustrates examples of all movement types.

In QMAR, the movements have been scored by the severity of the abnormality, and the

score ranges are 0 to 4 for W-P, 0 to 5 for W-S and SS-S, and 0 to 12 for SS-P. A score

of 0 in all cases indicates a normally executed action. It should be noted that the author

of this thesis has been trained by the physiotherapist to annotate QMAR, and after

recording and annotating the dataset, the movements and scores have been approved

by the clinical experts. Table 3.3 details the quality score or range and the number of

frames and sequences for each action type. Table 3.4 details the number of sequences

for each score.

Action
Quality

# Sequences
#Frames/Video

Total Frames
Score Min-Max

W Normal 0 41 62-179 12672

W-P Abnormal 1-4 40 93-441 33618

W-S Abnormal 1-5 68 104-500 57498

SS Normal 0 42 28-132 9250

SS-P Abnormal 1-12 41 96-558 41808

SS-S Abnormal 1-5 74 51-580 47954

Table 3.3: Details of movements in the QMAR dataset.The dataset contains a
total of 202800 frames representing 306 sequences of videos.

Action
Score

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

W-P 4 8 16 12 - - - - - - - -

W-S 10 14 19 15 10 - - - - - - -

SS-P 1 1 6 8 4 4 4 3 3 1 2 4

SS-S 3 19 19 13 20 - - - - - - -

Table 3.4: Details of abnormality score ranges in the QMAR dataset

3.2.2.2 Data Post-Processing

As with SMAD, depth data in QMAR also contains hole regions and requires a post-

processing phase to improve their quality. To perform this task, the hole filling algorithm

introduced in [22] has been applied to depth data.
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3.2 Datasets Used in this Thesis

3.2.3 KIMORE Dataset

KIMORE [12] is a single-view rehabilitation movement dataset for which the quality

of movements have been annotated for quantitative scores. KIMORE includes RGB,

depth, and skeleton joints positions and has 78 subjects (44 healthy, and 34 real patients

suffering from Parkinson, Stroke, and back pain) performing five types of rehabilitation

exercises for lower-back pain. Exercise 1 (Ex #1) contains the movement of the upper

limbs, exercises 2 to 4 (#Ex 2 to Ex #4) involve movement of the trunk, and Exercise

5 (Ex #5) contains the movements of the lower limbs. All videos are frontal view (see

sample frames in Figure 3.9).

In KIMORE [12], clinicians have defined a score with values in the range of 0 to 50

for each exercise. The scores are computed by the sum of two sub-scores, POS and

CFS which represent the exercise goal achievement and physical constraints during the

exercise respectively.
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Figure 3.9: Sample frames of KIMORE for five different exercises. Each row
shows frames belonging to a video sequence.
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3.2 Datasets Used in this Thesis

3.2.4 NTU RGB+D Dataset

NTU RGB+D[126] is the most popular multi-view action recognition dataset since it

is a large-scale dataset that allows training deep neural networks, whereas the other

available multi-view action recognition datasets, such as [110, 146, 153] are limited by

the size of training data, the number of classes, viewpoints, and participants. NTU has

56000 video sequences that have been recorded from 40 subjects performing 60 distinct

action types. It contains 17 different environmental settings captured by three cameras

from three different viewpoints, view 1 ≈ 0◦, view 2 ≈ 45◦ and view 3 ≈ 90◦. Figure

3.10 shows three samples of the NTU dataset for three views that have been recorded

under three different settings.

Figure 3.10: Sample frames of NTU RGB+D [126] for three different actions:
put on a hat, brush hair, and put on a shoe. Each column shows a different
viewpoint while each row represents a distinct environmental setting.
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3.3 Conclusion

3.3 Conclusion

This chapter provided a summary of human movement assessment datasets in the health-

care domain. As reviewed, all existing datasets are single-view and do not allow exploring

view-invariance in human movement assessment. In addition, this thesis aims to tackle

this challenging task from RGB images, whereas most datasets include skeleton and/or

depth data. To allow studying view-invariance from RGB sequences, this chapter in-

troduced two multi-view human movement assessment datasets SMAD and QMAR. It

also presented the details of KIMORE and NTU RGB+D which are employed in this

thesis.
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Chapter 4
Multi-View Training for Human Movement

Assessment

This chapter explores an approach that estimates 3D pose in a high-level low-dimensional

manifold space from RGB images such that the pose features are suitable for human

movement assessment under multi-view learning scenarios. The aim is to propose a

method where the complexity does not increase with the number of training views,

and it maintains a high performance on single-views. In addition, the proposed method

allows assessing the quality of human movement directly from the extracted pose features

without requiring any intermediate skeleton-based step. The work presented in this

chapter has been published in [120].

Section 4.1 gives an overview of the proposed pose estimation approach to human move-

ment assessment in multi-view learning scenarios. Subsequently, the proposed approach

is described in Section 4.2. Using the SMAD dataset, Section 4.3 obtains experiments

for the proposed pose estimation method and evaluate the performance of the learned

pose features for human movement assessment. Conclusions are in Section 4.4.

4.1 Overview of Proposed Method

Current action assessment methods in the healthcare domain are commonly based on

3D skeleton data, such as [3, 9, 67, 98, 128], since the features extracted from 3D poses

are rich and can be leveraged to analyse a wide range of human movements. However,

capturing skeleton data by RGB-D cameras (e.g. Kinect) or motion capture devices is

challenging in in-the-wild scenarios, e.g. in healthcare rehabilitation monitoring at home

or in the clinic.
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4.1 Overview of Proposed Method

Skeleton-based approaches usually require two pre-processing steps, (i) normalization

and (ii) dimensionality reduction. The skeleton data should be normalized since different

subjects come in various shapes and sizes and they also do not perform actions at the

same world coordinates. In addition, due to the curse of dimensionality, a dimensionality

reduction step becomes necessary to reduce the redundancy presented in this data. For

instance, Paiement et al. [98] use manifold learning techniques, or the authors in [36, 37]

manually select a subset of body joints based on the movement type (see Section 2.1.2

for more details).

To reduce the dimensionality of data, manifold learning techniques show promising per-

formance since they discover a low dimensional space while preserving the intrinsic ge-

ometrical structure of the original data. However, the approaches that use these algo-

rithms cannot be extended easily for multi-view learning scenarios, since almost all the

existing manifold learning techniques, such as [5, 21, 138, 173], work under single view

settings. To overcome this problem, there are two solutions (i) generating one manifold

per view and training the model on each independently, and (ii) operating iterative al-

gorithms, such as [167, 175], on single-view manifolds to exhaustively seek a multi-view

manifold space. In the former, the viewpoint information of the input data is required

to be mapped into the proper manifold space at inference. In the latter approach, the

complexity of the model increases with the rising number of views.

To tackle the challenges mentioned above, this chapter proposes a CNN-regression model

that estimates high-level 3D pose features in a canonical (view-invariant) manifold space

from RGB images towards human movement assessmet in multi-view learning senarios.

Figure 4.1 illustrates an overview of the proposed pose estimation approach and its

application to multi-view human movement assessment.

The inputs of the proposed CNN-regression model are body joint heatmaps and body

limb-maps, derived from RGB images to help the network exploit geometric relationships

amongst different body parts to estimate the pose features more accurately. The ground

truth poses come from a canonical manifold that is generated from normalized 3D motion

capture data.

Although the proposed method requires 3D skeleton data for training, it facilitates hu-

man movement assessment at inference by eliminating the need for 3D data. It also

removes the need for the pose-based pre-processing steps, i.e. normalization and dimen-

sionality reduction, as the extracted features are in a high-level manifold. Furthermore,

as the embedding space is canonical, i.e. the proposed method estimates the same pose

features for all simultaneous frames captured from different viewpoints, it can be ap-
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Figure 4.1: Top: first a canonical manifold is generated from normalized 3D
motion capture data. Then, (i) the proposed pose estimation method is trained
through the manifold space and images from different views, and (ii) the move-
ment assessment approach is trained on sequences of high-level canonical poses
in the manifold space. Bottom: for inference, the proposed pose estimation ap-
proach is applied to each frame of a sequence and then the estimated poses are
fed into the assessment method.

plied easily for the multi-view learning scenarios while the method’s complexity does not

increase with the number of training views. The proposed pose estimation approach is

described in detail next.

4.2 High-Level 3D Pose Estimation in Multi-View

Learning Scenarios

This section presents the proposed high-level 3D pose estimation approach for human

movement assessment in multi-view learning scenarios. It first describes the process of
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generating the ground-truth pose annotations (Section 4.2.1), and then it elaborates de-

tails of the proposed network and the loss function used for training (Section 4.2.2).

4.2.1 Ground Truth Pose Generation

The ground-truth pose features are obtained from 3D motion capture data such that they

are first normalized, and a manifold learning technique is then applied to them.

4.2.1.1 Data Normalization

The normalization aims to remove variations in scale, translation, and rotation from the

pose data since the subjects have various shapes and sizes and they also do not perform

actions at the same world coordinates. To do this, several normalization methods, such

as [98, 137], were applied to the data of this chapter, and the best result was conducted

through the following proposed approach:

Translation Invariance – To normalise for translation, given a pose P ∈ IR3×J where

J refers to the number of joints, its hip centre P⊙ is considered as the origin of the

coordinate system and the other joint positions are normalized relative to it as

P j = P j − P⊙ , (4.1)

where j = {1, 2, . . . , J} and J = 39 for the motion capture system used in this the-

sis.

Scale Invariance – To normalise for scaling, first a model skeleton ⊡ is defined as a

template and then its torso, hand and leg sizes are applied to normalise pose P as

ro = O(⊡)/O(P ), P i = P i × ro , (4.2)

rh∩ = H∩(⊡)/H∩(P ), P c1 = P c1 × rh∩ , (4.3)

rh∪ = H∪(⊡)/H∪(P ), P c2 = P c2 × rh∪ , (4.4)

rl∩ = L∩(⊡)/L∩(P ), P k1 = P k1 × rl∩ , (4.5)

rl∪ = L∪(⊡)/L∪(P ), P k2 = P k2 × rl∪ , (4.6)

where i ∈ torso, c1 ∈ upper hand, c2 ∈ lower hand, k1 ∈ upper legs, and k2 ∈
lower legs. O, H∩, H∪, L∩, and L∪ functions return the size of torso, upper hand,

lower hand, upper leg, and lower leg respectively by computing the Euclidean distance

between the upper and lower joints of that body part.
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Rotation Invariance – To normalise for rotation, Procrustes Analysis (PA) is applied

to data. Note, PA is not employed for translation and scaling since for translation

invariance, the centre computed by PA is different from the centre of the human body

shape, and for scale invariance, PA scales the whole shape at once, while different scale

ratios must be considered for different body parts.

4.2.1.2 Manifold Learning

Let D = {P ′
n}Nn=1 be the set of normalized 3D motion capture body joints obtained

through the previous section, where P ′
n ∈ IR3×J and J refers to the number of body

joints. To reduce the dimensinality of this data, following [22, 98, 137], Diffusion Maps

Φ [21] as a non-linear manifold learning technique is applied to D,

D̃ = Φ(D), (4.7)

where D̃ = {P̃n}Nn=1, P̃n ∈ IRM and M ≪ 3× J . Note, M refers to the new dimension of

pose data.

Diffusion Maps represent a dataset in a weighted graph and use the spectral properties

of the graph Laplacian to embed the high dimensional data into a lower-dimensional

space [2]. This method shows several advantages over classical dimensionality reduc-

tion approaches, such as Principal Component Analysis (PCA) and Multi-Dimensional

Scaling (MDS) [2, 21], since it is able to deal with data points that rely on nonlinear

manifolds, and preserves the local geometric structure of the original data. It is also

robust to noise.

Figure 4.2: The overall schema of the proposed network to estimate high-level
canonical 3D human pose.
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4.2.2 Proposed Network

The overall schema of the proposed CNN-regression is shown in Figure 4.2. The pro-

posed network exploits geometric relationships amongst 2D body parts to learn 3D pose

features in a high-level low-dimensional manifold space. To this end, a set of body joint

heatmaps and limb-maps are derived from RGB images and used as input to inject

priors on the position and structure of the human body into the network. Note that

utilizing these maps instead of raw RGB images also prevents over-fitting on the subject

appearances during the network training.

4.2.2.1 Network Inputs

Body Joint Heatmap – Given an RGB image, joint heatmap Hj represents the

probability of joint j occurring at each pixel position x ∈ IR2 of the image as:

Hj(x) = exp(−∥x− x⊕∥22
σ2

) , (4.8)

where x⊕ ∈ IR2 is the ground-truth position of joint j, σ determines the spread of the

peak.

Body Limb-Map – A body limb-map is a set of 2D vectors encoding the orientation

and location of a body limb. Given an RGB image, the value of limb-map Bl at each

pixel position x ∈ IR2 of the image is computed as:

Bl(x) =

v if x is on limb l

0 otherwise
, where v =

x⊛ − x⊚

∥x⊛ − x⊚∥
, (4.9)

x⊛ ∈ IR2 and x⊚ ∈ IR2 are the ground-truth pixel positions of body joints defining limb

l.

To generate heatmaps and body limb-maps, state-of-the-art OpenPose [11]1 is applied

to RGB data to produce 26 body joint heatmaps H = {Hj}26j=1 and 52 body limb-

maps B = {Bl}52l=1. Figures 4.3 and 4.4 show some body joint heatmaps and limb-maps

generated from a sample RGB image of SMAD by OpenPose.

1It should be noted that this work was carried out between 2018 and 2019 and at that time OpenPose
[11] was the stat-of-the-art 2D pose estimation method.
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Figure 4.3: Sample body joint heatmaps generated by OpenPose [11] for an
RGB images of SMAD.

Figure 4.4: Sample body limb-maps generated by OpenPose [11] for an RGB
images of SMAD.
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4.2.2.2 Network Architecture and Training

To design the proposed network, AlexNext [71], VGG [129], and ResNet [49] were in-

vestigated and it was found that ResNet obtains the best performance. This may be

attributed to addressing the vanishing gradient problem by ResNet architecture. Al-

though ResNet is a deep CNN network, using shortcut connections [8, 49, 117] in its

design, which operate as gradient superhighways, allows the gradients flow into earlier

layers during backward pass. Therefore, the proposed network is implemented by adapt-

ing a pre-trained ResNet-18 [49]2 such that the first layer of ResNet-18 is replaced with

a convolutional layer, with a depth of J + L where J and L denote the number of body

joint heatmaps and limb-maps respectively. The last layer of ResNet-18 is also replaced

with a regression layer with the size of the manifold dimension M .

The network is trained through MSE loss function that computes the difference between

the ground-truth pose P ∈ IRM in manifold space and the pose P̂ ∈ IRM estimated by

the proposed method:

Loss(P, P̂ ) =
1

M

M∑
i=1

∥pi − p̂i∥22 , (4.10)

where pi and p̂i are the ith coordinates of P and P̂ respectively.

4.3 Experiments and Results

This section reports the results of experiments that evaluate the performance of the

proposed pose estimation approach on the SMAD dataset. It also assesses the efficiency

of the learned pose features for the human movement analysis task under a multi-view

learning scenario, i.e. cross-subject protocol (see Section 2.4).

Comparison to Baseline – For evaluation against the closest possible approach, the

proposed method is compared against a baseline using the method of Crabbe et al. [22]

that was originally developed to estimate the pose features in the manifold space from

depth silhouette inputs for a single-view scenario. However, as their dataset is not multi-

view and does not contain RGB data, the only possible comparative analysis is to apply

their method on depth data of SMAD and adapt it for the multi-view learning scenario.

Crabbe et al. [22] uses AlexNet [71] to design their model, but for a fairer comparison,

ResNet-18 [49] was employed for all the experiments.

2ResNet-18 [49] is pre-trained on ImageNet [25].
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Sections 4.3.1 and 4.3.2 contain implementation details and evaluation metrics respec-

tively. Section 4.3.3 compares the proposed method to the baseline and examines the

importance of different input types in estimating the high-level pose features. Section

4.3.4 probes the robustness of the proposed method on multi-view training, and Sec-

tion 4.3.5 examines the method’s performance on unseen viewpoints. Finally, movement

quality assessment based on the learned pose features is presented in Section 4.3.6.

CNN-Regression Network

(Adapted ResNet-18)

First layer: {C2(3× 3, J + L)} × 64, BN, ReLU, {MP(3×3)}
Middle layers: As in ResNet-18

Last layer: {FC(M)}

Table 4.1: Details of the proposed CNN-regression network: {C2(3 × 3, J +
L)}×64: 64 2D convolution filters with size 3 and J+L channel size,MP (3×3):
2D max pooling with size 3, FC(M): fully connected (FC) layer withM outputs.
J and L are the number of body joint heatmaps and limb-maps respectively, and
M is the size of the manifold dimension.

4.3.1 Implementation Details

Details of Network Architecture – Details of the proposed CNN-regression network

are shown in Table 4.1.

Training and Testing Details – Size of manifold dimension for turn-walk action of

SMAD was set to M = 5 since the first 5 dimensions of the manifold generated by the

Diffusion Maps algorithm were able to represent 95% of the total variance of the original

data. This exceeds the three dimensions used in [22], since the more complex actions of

SMAD require more dimensions to be described. For pose estimation experiments, all

models were trained for 20 epochs using mini-batch stochastic gradient descent with an

initial learning rate of 0.001 that decreased by a factor of 10 every 5 epochs, momentum

of 0.9, and a batch size of 10. In addition, for all the experiments, the input images were

resized into 244× 244 pixels.

Dataset Splits – As size of SMAD was large enough to conduct both types of exper-

iments, pose estimation and human movement assessment, only one training and one

testing set were selected randomly, i.e. 60 normal sequences were selected for training

randomly and the remaining normal movements including 25 sequences were applied for
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testing. Therefore, no mean, standard deviation and/or p-value is required to be com-

puted for these experiments. In addition, as the cross-subject protocol was employed

to evaluate the results, the normal training and testing sequences were selected from

distinct subjects. The movement quality assessment models were additionally tested on

26 abnormal movements including 8 Stroke, 8 limp, and 12 Parkinson sequences. Note,

the pose estimation networks were trained and tested on the frames comeing from only

normal movements since as explained in Section 3.2.1, in SMAD, the motion capture

data were available for only normal sequences.

4.3.2 Evaluation Metrics

To evaluate the performance of the proposed pose estimation approach, MSE between

the ground-truth poses and estimated human poses were used. For human movement

assessment, as each frame of a sequence was classified into normal or abnormal, true

positive (TP), true negative (TN), false positive (FP), false negative (FN), true nega-

tive rate (specificity), true positive rate (sensitivity), precision, and recall were used for

evaluation.

4.3.3 Pose Estimation in a Multi-View Learning Scenario

This section presents the results of the proposed method in a multi-view learning scenario

where all four viewpoints of SMAD (views 1 to 4) are utilized for training and testing.

It also outlines ablation studies to examine the impact of the network inputs on learning

of the pose features.

Ablation Study – To ablate the network inputs, the proposed method was trained on

(i) RGB bounding box of subject (RGB BB), (ii) body joint heatmaps generated from

RGB data, (iii) body limb-maps extracted from RGB data, and (iv) combined heatmaps

and limb-maps. Furthermore, to train the baseline [22], in addition to depth silhouette,

the depth bounding box of subject (Depth BB) was also used as input and compared

against the proposed method since extracting the depth silhouette is challenging for the

cluttered environments in which SMAD has been recorded.

Comparative results on SMAD are shown in Table 4.2. The proposed method has the

least error in estimating the high-level poses when it is trained on combined heatmaps

and body limb-maps. It also outperforms the baseline [22] at 0.67, 0.67, and 0.66 where it

uses heatmaps, limb-maps and combined heatmap and limb-maps as input respectively.

The result from Crabbe et al. [22] using depth silhouettes is poorer than when Depth

BB is used potentially due to the general difficulty of inaccurate silhouette extraction.
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Note that for the rest of the experiments, the proposed method is trained with heatmaps

and body limb-maps, and to compare against Crabbe et al. [22]’s work, instead of depth

silhouettes, the simpler Depth BB is put through the network.

Crabbe et al. [22] (Depth) Proposed Method (RGB)

BB Silhouette BB Heatmap Limb-map
Heatmap

& Limb-map

MSE 0.70 0.72 0.72 0.67 0.67 0.66

Table 4.2: MSE between the ground-truth and estimated pose on SMAD under
multi-view learning scenario for the baseline and the proposed method, and for
different input types.

Testing Set Training Set Crabbe et al. [22] Proposed Method

View 1 View 1 0.73 0.67

Views 1-4 0.70 0.66

View 2 View 2 0.74 0.72

Views 1-4 0.72 0.71

View 3 View 3 0.73 0.66

Views 1-4 0.70 0.64

View 4 View 4 0.70 0.65

Views 1-4 0.69 0.63

Table 4.3: MSE between estimated pose and ground-truth on SMAD for single-
view testing sets where single and all views are used for training.

4.3.4 Robustness of Proposed Method for Multi-View Train-

ing

This section investigates if the proposed method can maintain a high performance on

the single views where multiple views are applied for training. Table 4.3 shows the

performance of the proposed method when only a single view is used for training in

comparison to when all views are employed. As shown by the results in Table 4.3, not

only can the proposed method learn well to distinguish between views when multiple

views are provided in the training set, but also the accuracy of the method is improved

as the network’s generalization increases by training on more diverse data. The MSE of
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the proposed method is lower than Crabbe et al. [22] at 0.66, 0.71, 0.64, and 0.63 for

views 1 to 4 respectively.

4.3.5 Performance of Proposed Method on Unseen View Data

Different from the previous sections that evaluate the efficiency of the proposed method

on the scenarios where the testing data come from the viewpoints that are present in

training data, this section examines the generalization ability of the proposed method

on unseen views by deploying distinct views in training and testing sets.

Table 4.4 shows that the performance of both methods drop significantly when they

are applied to data coming from an unseen viewpoint. This deterioration is especially

noticeable when the methods are trained on data from viewpoint 2. From these results,

it can be concluded that although the networks are trained to map the input images

into a view-invariant (canonical) pose, they cannot tolerate the appearance variations as

they have not been designed explicitly to address the viewpoint variations.

Training Set Testing Set Crabbe et al. [22] Proposed Method

View 1 View 1 0.73 0.67

View 2 1.40 1.38

View 3 1.23 1.18

View 4 1.20 1.07

Average 1.14 1.07

View 2 View 1 1.35 1.27

View 2 0.74 0.72

View 3 1.40 1.29

View 4 1.45 1.34

Average 1.23 1.15

View 3 View 1 1.14 1.09

View 2 1.42 1.41

View 3 0.73 0.66

View 4 1.05 0.97

Average 1.08 1.03

View 4 View 1 1.13 0.95

View 2 1.42 1.47

View 3 1.10 0.94

View 4 0.70 0.65

Average 1.08 1.00

Table 4.4: MSE between estimated pose and ground-truth on SMAD where
networks are trained on single-views and tested on single-(un)seen views.

60



4.3 Experiments and Results

4.3.6 Cross-Subject Human Movement Assessment

To evaluate the performance of learned pose features for human movement assessment,

the statistical method proposed in [98] that is a frame-by-frame movement assessment

approach was utilized. This method has two models, pose and dynamic, that are trained

on poses of normal movements.

Pose Model – Let p be a vector representing human pose in the high-level manifold

space. The pose model embodies normal poses by learning their pdf fP (p) using a Parzen

window estimator [98].

Dynamic Model –The dynamic model leverages temporal information of normal se-

quences through a continuous-state HMM [98]. The hidden states of the HMM are

modeled by a random variable St with value st ∈ [0, 1] that represents the progression

of movement at frame t, where St is set to 0 at the first frame and it increases linearly

to 1 at the last frame.

The observation model of the HMM is trained as

fPt(pt|st) =
fPt,St(pt, st)

fSt(st)
, (4.11)

where pt denotes pose p in manifold space at frame t, and fPt,St(pt, st) and fSt(st) are

computed by employing a Parzen window estimator.

The transition model of the HMM is defined as

fSt(st|st−1) =
1

σ
√
2π
exp(−1

2
(
∆st − ν∆ηt

σ
)), (4.12)

where ν = 1
N

∑N
i=1

∆si
∆ηi

, ∆st = st − st−1, ∆ηt = ηt − ηt−1, ηt is time at frame t, and N is

number of frames of a sequence.

The dynamic model classifies pt by a conditional pdf as

fPt(pt|p1, ..., pt−1) ≈ fPt(pt|ŝt)fSt(ŝt|ŝt−1), (4.13)

where ŝt denotes the optimum value for St that satisfies the constraints on the hidden

state, i.e. the hidden state linearly increases during a normal sequence. The derivation

of Equation 4.13 is presented in Appendix A.

To perform the experiments of this section, the pose and dynamic models were trained on

the high-level canonical poses derived from normal sequences of motion capture data. At

inference, each frame of a sequence, which can belong to normal or abnormal movements
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is given to the proposed pose estimation method, and its output is classified as normal or

abnormal depending on how far away from the pose and dynamic models it is, based on

two thresholds on the pose and dynamic log-likelihoods. The thresholds were empirically

set to 4.0 and 4.2 for the pose and dynamic models respectively. Figure 4.1 shows the

overall schema of the assessment framework.

Normal Stroke Limp Parkinson

Method TN FP TP FN TP FN TP FN

V
ie
w

1 Crabbe et al. [22] 4245 3620 4782 1971 5009 2902 7586 4401

Proposed Method 4856 3009 4337 2416 4351 3560 6200 5787

V
ie
w

2 Crabbe et al. [22] 4079 3768 4529 2224 5087 2824 7961 4026

Proposed Method 4936 2929 4244 2509 4419 3492 6948 5039

V
ie
w

3 Crabbe et al. [22] 4625 3240 4487 2266 4933 2978 7415 4572

Proposed Method 4880 2985 4259 2494 4213 3698 6648 5339

V
ie
w

4 Crabbe et al. [22] 3981 3884 4400 2353 4923 2988 7520 4467

Proposed Method 4964 2901 4259 2495 4630 3281 6706 5281

Table 4.5: Results of frame classification on SMAD for normal and abnormal
sequences. TN: true negative, FT: false positive, TP: true positive, FN: false
negative.

Tables 4.5 reports the results of the classification of individual frames for different views

separately under the cross-subject protocol. It presents TN and FP for normal sequences,

and TP and FN for abnormal sequences including Stroke, limp and Parkinson. Table 4.6

reports true negative rate (specificity) and true positive rate (sensitivity) for normal and

abnormal movements respectively, and precision and recall values for all sequences. Sim-

ilar to the previous sections, the performance of the proposed method is also compared

against the baseline using the method of Crabbe et al. [22] for pose estimation.

Table 4.6 shows that the specificity for the proposed method to estimate pose of normal

sequences for views 1 to 4 is higher at 0.61, 0.62, 0.62, and 0.63 than Crabbe et al. [22]

at 0.53, 0.52, 0.58, and 0.50 which implies that the estimated poses are close to motion-
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Specificity Sensitivity All Seqs

Method Normal Stroke Limp Parkinson Precision Recall

V
ie
w

1 Crabbe et al. [22] 0.53 0.70 0.63 0.66 0.82 0.65

Proposed Method 0.61 0.64 0.55 0.51 0.83 0.55

V
ie
w

2 Crabbe et al. [22] 0.52 0.67 0.64 0.66 0.83 0.65

Proposed Method 0.62 0.62 0.55 0.57 0.84 0.58

V
ie
w

3 Crabbe et al. [22] 0.58 0.66 0.62 0.61 0.83 0.63

Proposed Method 0.62 0.63 0.53 0.55 0.83 0.56

V
ie
w

4 Crabbe et al. [22] 0.50 0.65 0.62 0.62 0.81 0.63

Proposed Method 0.63 0.63 0.58 0.55 0.84 0.58

Table 4.6: Performance of human movement assessment on SMAD for normal
and abnormal sequences.

captured data. Crabbe et al. [22] tends to yield more abnormal pose outcomes than

the proposed method, in line with the results of previous experiments (Tables 4.2, 4.3,

and 4.4). This may contribute to explaining its poorer classification results on normal

sequences in Table 4.6 and its better results on the abnormal sequences.

The percentage of the frames that are classified as normal by the pose and dynam-

ics models of the movement assessment approach [98] is shown in Table 4.7. It can

be seen that the movement analysis modelling mostly finds pose to be normal, while

the dynamics is particularly abnormal in all abnormal sequences. This is in line with

the scenarios where all three abnormality types mostly imply abnormal dynamics with

relatively normal poses.

Note that from Table 4.6, the overall performance of the movement quality assessment

method compared to the previous uses of it in [22, 98, 137] is lower. This may not

necessarily indicate a poor performance of the pose estimation, but rather be due in

large part to the method being designed for modelling and assessing the quality of single

movements, i.e. walking action. However, in this chapter a more complex action made

up of two distinct basic movements, walking and turning, is considered.
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Normal Stroke Limp Parkinson
V
ie
w

1 Crabbe et al. [22] 80% / 62% 72% / 31% 80% / 38% 85% / 38%

Proposed Method 86% / 65% 76% / 37% 85% / 49% 87% / 51%

V
ie
w

2 Crabbe et al. [22] 81% / 58% 74% / 34% 82% / 37% 83% / 34%

Proposed Method 82% / 64% 77% / 41% 83% / 47% 84% / 44%

V
ie
w

3 Crabbe et al. [22] 83% / 66% 71% / 36% 79% / 39% 81% / 39%

Proposed Method 86% / 67% 75% / 38% 83% / 51% 85% / 49%

V
ie
w

4 Crabbe et al. [22] 83% / 56% 76% / 36% 80% / 40% 81% / 40%

Proposed Method 88% / 67% 80% / 40% 84% / 44% 85% / 46%

Table 4.7: Percentage of the frames classified as normal by the pose/dynamics
models on SMAD.

4.4 Conclusion

This chapter introduced a pose estimation method that obtains high-level 3D pose fea-

tures from RGB images for human movement assessment suitable for multi-view learning

scenarios. The proposed approach also facilitates the movement analysis process by re-

moving the skeleton-based pre-processing steps, e.g. normalization and dimensionality

reduction. However, the current method has some limitations which are outlined be-

low.

Requiring Motion Capture Data – Although this chapter proposes an approach

that facilitates human movement assessment using RGB images alone during the testing

stage, it relies on 3D motion capture data for training. Obtaining 3D data through

motion capture systems is expensive and time-consuming since these systems require

specialist hardware, software, and environmental setups. Chapters 5 and 6 will explore

the human movement assessment approaches that are trained and tested only on RGB

images.

Human Movement Assessment on Unseen View data – This chapter tackles

the problem of viewpoint variations by introducing a method that can be trained on

multiple views while maintaining a high performance on the single-views. Its complexity

also does not increase with the number of viewpoints. However, the proposed method
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fails on unseen view data since it has not been designed explicitly to address the changes

in the viewpoints which are not presented in the training data. Chapters 5 and 6 will

develop the methods that also perform well on arbitrary unseen view data while they

are trained on only one or two viewpoints.
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Chapter 5
Unseen View Human Movement

Assessment

Chapter 4 introduced an approach to extract high-level 3D human pose in a low di-

mensional manifold space from RGB images towards human movement assessment in

multi-view learning scenarios. Results showed that the proposed method outperforms

the adapted baseline, and it can maintain a high accuracy on single view data when mul-

tiple viewpoints are employed during the training. However, the proposed method has

a poor performance on unseen view data. In addition, although the proposed method

facilitates the testing process through RGB images alone, it still requires 3D motion

capture data for training.

This chapter instead proposes a movement quality assessment approach that is able to

analyse human movement from unseen or novel viewpoints. Furthermore, the proposed

method does not require any knowledge about camera parameters and works based on

RGB sequences alone during both training and testing. The work in this chapter has

been published in [121].

Section 5.1 discusses unseen view human movement assessment. The proposed method

to assess the quality of human movement from unseen views is described in Section

5.2. Then, in Section 5.3, experiments are conducted using QMAR and KIMORE [12].

Finally, conclusions are presented in Section 5.4.
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5.1 Assessing Quality of HumanMovement from Un-

seen View Data

To tackle view-invariance in human movement assessment, one solution is to train a

network on data from multiple views, e.g. the approach proposed in Chapter 4. However,

in practice, capturing a labelled dataset of different views is cumbersome and rare.

Ideally, a wholly view-invariant approach should be trained on data from as few views as

possible and be able to perform well on a single (unseen) view at inference time.

To the best of the author’s knowledge, there is no unknown view-invariant human

movement analysis method, but in the action recognition domain, most works, such as

[60, 88, 169, 170], employ 3D data (e.g. 3D skeleton data and depth images) to extract

view-invariant features to achieve some degree of invariance (see Chapter 2 for further

detail). However, as discussed in Section 4.1, acquiring 3D pose data is challenging in

in-the-wild scenarios. Other works, such as [87, 141], deal with this issue by deploying

multi-view synthetic videos to train their networks to perform action recognition given

novel viewpoints (see Chapter 2 for more detail). Although in these approaches, the ac-

tion classification task is performed from RGB data, they still use 3D pose annotations

to produce the synthetic data, and the newly generated videos have to be also labelled

by experts if they were to be used for specialist applications, such as healthcare (see

Chapter 2).

This chapter proposes an end-to-end View-Invariant Network (VI-Net) that assesses the

quality of human movement from a sequence of body joint heatmaps generated from

RGB data, and argues that using temporal pose information learned from 2D RGB

images, can be repurposed, instead of 3D data, for view-invariant movement quality

assessment. To achieve this, the proposed VI-Net first attempts to extract view-invariant

(canonical) spatio-temporal trajectory descriptors for all body joints, and then exploits

the relationship amongst the joint trajectories to estimate a score for the quality of

movement.

Recent works, such as [73, 78, 81, 144], provide unseen view results only when their

network is trained on multiple views, while as recently noted by Varol et al. [141], a

highly challenging scenario in view-invariant action understanding would be to obtain

unseen view results by training from only one viewpoint. Not only does this chapter

present unseen view results of VI-Net using a prudent set of two viewpoints only within

a multi-view training scenario, but also it rises to the challenge to provide unseen view

results by training solely from a single viewpoint.
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Figure 5.1: Sample images of a person walking in all six views, and the corre-
sponding trajectory maps of her feet for each view.

5.2 VI-Net: View-Invariant Network to Assess the

Quality of Human Movement

Although its appearance changes significantly when we observe an instance of human

movement from different viewpoints, the 2D spatio-temporal trajectories generated by

body joints in a sequence can be assumed affine transformations of each other. For

example, see Figure 5.1, where the trajectory maps of just the feet joints appear different

in orientation, spatial location and scale. This chapter proposes a view-invariant model

by relying on this hypothesis that by extracting body joint trajectory maps that are

translation, rotation, and scale invariant, the quality of human movement can be assessed

from arbitrary viewpoints one may encounter in-the-wild.

The proposed end-to-end View-Invariant Network (VI-Net) has a view-invariant trajec-

tory descriptor module (VTDM) that feeds into a subsequent movement score module

(MSM) as shown in Figure 5.2. The input of the network is a sequence of human

body joint heatmaps generated from RGB images. The aim of VTDM is to generate a

view-invariant (canonical) spatio-temporal trajectory descriptor map for each body joint

where later the canonical descriptors from all body joints are stacked and fed as input

into MSM. The MSM module learns to obtain a score for the overall quality of movement

by exploiting the relationship amongst the joint trajectories.

Details of how VTDM produces the view-invariant body joint trajectories are given in

Section 5.2.1. Section 5.2.2 describes how the trajectories are applied by MSM to assess

the quality of human movement. Finally, Section 5.2.3 explains the training and testing

process of VI-Net.
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5.2 View-Invariant Network (VI-Net)

Figure 5.2: The overall schema of VI-Net. It has a view-invariant trajectory
descriptor module (VTDM) and a movement score module (MSM) where the
classifier output corresponds to a quality score.

5.2.1 VTDM: View-Invariant Trajectory Descriptor Module

In VTDM, first a 2D convolution filter is applied to stacked heatmaps of each body

joint over the video clip frames to aggregate the spatial poses over time and generate

a trajectory descriptor map per body joint. Then, the Spatial Transformer Network
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5.2 View-Invariant Network (VI-Net)

(STN) [56] is applied to the trajectory descriptor to make it view-invariant. This process

is detailed next.

Body Joint Heatmap – Given an RGB image I t at timestamp t, body joint heatmap

H t
j ∈ IRW×H represents the probability of joint j occurring at each pixel position x ∈ IR2

of I t as

H t
j(x) = exp(−∥x− x⊕∥22

σ2
) , (5.1)

where x⊕ ∈ IR2 is the ground-truth position of joint j, and σ determines the spread of

the peak.

Generating a Joint Trajectory Descriptor – For each body joint j where j ∈
{1, 2, . . . , J}, its heatmaps over the T-frame video clip {H t

j}Tt=1, are stacked to get the

3D heatmap Hj ∈ IRW×H×T which then becomes the input to the VTDM module. To

obtain a body joint’s trajectory descriptor Λj, the processing in VTDM starts with the

application of a convolution filter Φ on Hj to aggregate its spatial poses over time, i.e.

Λj = Hj ∗ Φ , (5.2)

where Λj ∈ IRW×H×1.

Note, to implement this part of the network, both 2D and 3D convolutions were ex-

perimented with, and it was observed that a 3×3 2D convolution filter yields the best

results.

Forging a View-Invariant Trajectory Descriptor – In the next step of the VTDM

module, the Spatial Transformer Network (STN) [56] is deployed to forge a view-invariant

trajectory descriptor out of Λj. STN can be applied to feature maps of CNN’s layers

as normalization to make them translation, rotation, scale, and shear invariant. Note,

to make the trajectory descriptor view-invariant, STN [56], DCN [23, 177], and ETN

[134] networks were investigated, and it was observed that STN obtains the best perfor-

mance.

The STN network [56] is composed of three stages. At first, a CNN-regression network,

referred to as the localisation network, is applied to the joint trajectory descriptor Λj to

estimate the parameters for a 2D affine transformation matrix θ,

θ = floc(Λj). (5.3)
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5.2 View-Invariant Network (VI-Net)

Then, in the second stage, to estimate each pixel value of the view-invariant trajectory

descriptor Λ̄j, a sampling kernel is applied to specific regions of Λj, where the centres

of these regions are defined on a sampling grid. This sampling grid Γθ(G) is generated

from a general grid G = {(xgi , y
g
i )}, i ∈ {1, . . . ,W ′×H ′} and the predicted transformation

parameters, such that

(
x
Λj

i

y
Λj

i

)
= Γθ(Gi) =

[
θ11 θ12

θ21 θ22

]
×
(
xgi
ygi

)
, (5.4)

where Γθ(G) = {(xΛj

i , y
Λj

i ), i ∈ {1, . . . ,W ′×H ′} are the centers of the regions of Λj the

sampling kernel is applied to, in order to generate the new pixel values of the output

feature map Λ̄j.

Jaderberg et al. [56] recommend the use of different types of transformations to generate

the sampling grid Γθ(G) based on the problem domain. In VTDM, the 2D affine trans-

formations shown in Equation 5.4 is applied. Finally, the sampler takes both Λj and

Γθ(G) to generate a view-invariant trajectory descriptor Λ̄j from Λj at the grid points

by bilinear interpolation.

5.2.2 MSM: Movement Score Module

In the final part of VI-Net (see Figure 5.2-MSM), the collection of view-invariant trajec-

tory descriptors Λ̄j for joints j ∈ {1, 2, . . . , J}, are stacked into a global descriptor Λ̄ and

passed through a pre-trained 2D CNN network (e.g. VGG and ResNeXt) in the MSM

module to assess the quality of movement of the joints.

The pre-trained network needs to be adapted such that its first layer is replaced with a

new 2D convolutional layer for which its kernel size remains unchanged, while its channel

size is changed to J (instead of 3 used for RGB input images). The last fully connected

(FC) layer is also modified to allow movement quality scoring through classification where

each score is considered as a class, i.e. for a movement type with S possible scores, the

last FC layer of VI-Net has S output units.

5.2.3 VI-Net Training and Testing

The proposed network is trained from scratch for each movement type (e.g. W-P), and in

both the training and testing phases, video sequences (V = {Vn}Nn=1) are divided into T-

frame clips (without overlaps), Vn = {Cm
n }Mm=1 where C

m
n ∈ IRW×H×T, and length(Vn) =

M.T .
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5.3 Experiments and Results

Figure 5.3: Scoring process of VI-Net for a full video sequence in testing phase.

Training – In the training stage, the clips are selected randomly from amongst all video

sequences of the training set, and passed to VI-Net. Then, the weights were updated

following a cross-entropy loss,

LCm
n
(f, s) = −log( exp(f(s))∑S

k=0 exp(f(k))
) , (5.5)

where for given Cm
n as input, f(.) is the S dimensional output of the last fully connected

layer of VI-Net and s is the video clip’s ground truth label/score.

Testing – In the testing phase, every T-frame clip of a video sequence is passed to

VI-Net. After averaging the outputs of the last fully connected layer across each class

for all the clips, then the score for the whole video sequence is set as the maximum of

the clip scores (see Figure 5.3), that is,

s = argmax
k

(f̄(k) =
1

M

M∑
m=1

fm(k)) , (5.6)

where k ∈ {1, 2, . . . S} and M is the number of clips of the video.

5.3 Experiments and Results

This section first reports on two sets of experiments on QMAR to evaluate the perfor-

mance of VI-Net to assess quality of movement, based around cross-subject and cross-

view protocols. Then, to show the efficiency of VI-Net on other datasets and movement

types, it also presents the results of VI-Net on the single-view KIMORE dataset.
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Comparison to Baselines – As there is no prior work on view-invariant human move-

ment assessment, the performance of the VI-Net network is evaluated against1 (i) a C3D

baseline (fashioned after Parmar and Morris [104]) by combining the outputs of the C3D

network to score a sequence in the test phase in the same fashion as VI-Net, and (ii) the

pre-trained, fine-tuned I3D [13].

Ablation Study – This section also provides an ablation study for all scenarios by

removing STN from VI-Net to analyse the impact of this part of the proposed method,

and it also studies the effect of different pre-trained models applied in the MSM module

of VI-Net.

Implementation details and the applied evaluation metric are explained in Sections 5.3.1

and 5.3.2. Then, Sections 5.3.3, 5.3.4, and 5.3.5 compare cross-subject, cross-view, and

single-view results of the proposed method to baselines respectively, while they also

outline the ablation studies and qualitative results of VI-Net.

5.3.1 Implementation Details

Details of Network Architecture – Table 5.1 shows details of the proposed VI-Net

network architecture. To design the localization network in VTDM module, instead of

the original CNN in [56], which applied two 32-filter 5× 5 convolutional layers followed

by two FC layers, the localisation network is made up of two 10-filter 5×5 convolutional

layers followed by two FC layers. The rationale for this is that the proposed trajectory

descriptor maps are not as complex as RGB images, and hence fewer filters are sufficient

to extract their features. The flexibility of MSM is illustrated by implementing two

different pre-trained networks2, VGG-19 [129] and ResNeXt-50 [157], and their results

will be compared in the next sections. VGG-19 and ResNeXt-50 were chosen for their

state-of-the-art performances, popularity, and availability.

Training and Testing Details – Similar to [13, 102, 104], the inputs to the model

are 16-frame video clips with size 128 × 128 pixels. Human body joint heatmaps are

extracted by applying OpenPose[11]3. To reduce computational complexity, the first

15 joint heatmaps of the BODY-25 version of OpenPose are retained. This is further

motivated by the fact, highlighted in [98], that the remaining joints only provide repeti-

1It should be noted that between 2019 and 2020 when VI-Net was proposed, the approach proposed
by Parmar and Morris [104] was state-of-the-art for human movement assessment, and I3D [13] was
state-of-the-art for action recognition.

2VGG-19 [129] and ResNeXt [157] are pre-trained on ImageNet [25].
3Other methods (e.g. [69]) which estimate body joint heatmaps from RGB images can equally be

used.
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VTDM
MSM

(Adapted VGG-19 or ResNeXt-50)

V
I-
N
e
t

First layer: First layer VGG-19:

{C2(3× 3, T )} × 1, BN, ReLU {C2(3× 3, J)} × 64, BN, ReLU

Localisation Network: First layer ResNeXt-50:

{C2(5× 5, 1)} × 10,{MP (2× 2)}, {C2(7× 7, J)} × 64, {MP (3× 3)}, ReLU
ReLU, {C2(5× 5, 10)} × 10, Middle layers:

{MP (2× 2)}, ReLU, {FC(32)}, As in VGG-19/ResNeXt-50

ReLU, {FC(4)} Last layer: {FC(S)}

Table 5.1: Details of VI-Net’s modules: {C2(d× d, ch)}× n: n 2D convolution
filters with size d and ch channel size, MP (d × d): 2D max pooling with size
d, FC(N): FC layer with N outputs. T is the number of clip frames, J is the
number of joints and S is the number of possible scores for a movement type.

tive information. All models in this section were trained for 20 epochs using mini-batch

stochastic gradient descent. The initial learning rate was set to 0.001 and was decayed

by a factor of 10 every 5 epochs. The momentum and batch size were set to 0.9, and 5

respectively.

Dataset Imbalance – It can be seen from Tables 3.3 and 3.4 that the number of

sequences for score 0 (normal) is many more than the number of sequences for other

individual scores, so 15 normal sequences for W-P, W-S, SS-S movements and 4 normal

sequences for SS-P were randomly selected to mix with abnormal movements to perform

all the experiments. To further address the imbalance, offline temporal cropping was

applied to add new sequences.

5.3.2 Evaluation Metric

To evaluate the performance of the proposed method, similar to other action assessment

approaches, such as [82, 99, 104], Spearman’s rank correlation (SRC) was used to measure

the relationship between estimated and ground-truth scores. The SRC gives a value

between 1 and -1, with 1 indicating a perfect positive correlation, -1 showing a perfect

negative correlation, and 0 representing no correlation.

5.3.3 Cross-Subject Human Movement Assessment

This section provides cross-subject results on QMAR where all available views are used

in both training and testing, while the subjects performing the movements are distinct.
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For this scenario, as size of QMAR is small, the results are obtained by applying k-fold

cross validation where k is the number of scores for each movement type. Note, following

state-of-the-art action quality assessment approaches, such as [31, 32], that report only

average results for cross-valuation without reporting standard deviation and/or p-values,

only average results are provided for this section.

Comparison to Baselines – Table 5.2 shows SRC results for VI-Net and baselines

for each movement type. The VI-Net network outperforms networks based on C3D

(after [104]) and I3D [13] for all types of movements, regardless of whether VGG-19 or

ResNeXt-50 are used in the MSM module. While I3D results are mostly competitive,

C3D performs less well due to its shallower nature, and larger number of parameters,

exacerbated by QMAR’s relatively small size. Section 5.3.5 will show that C3D performs

significantly better on a larger dataset.

Ablation Study – To test the effectiveness of STN, VI-Net’s results are presented with

and without engaging STN in Table 5.2. It can be observed that the improvements with

STN are not necessarily consistent across the actions since when all viewpoints are used

in training, the MSM module gets trained on all trajectory orientations such that the

effect of STN is often overridden. Table 5.2 also shows that on average VI-Net performs

better with adapted ResNeXt-50.

Method Training
Action (SRC) Average

W-P W-S SS-P SS-S (SRC)

C3D (after [104]) scratch 0.50 0.37 0.25 0.54 0.41

I3D[13] fine-tune 0.79 0.47 0.54 0.55 0.58

V
I-
N
et

w/o STN scratch 0.81 0.49 0.57 0.74
VTDM+MSM

0.65

(VGG-19)
w STN scratch 0.82 0.52 0.55 0.73 0.65

w/o STN scratch 0.87 0.56 0.48 0.72
VTDM+MSM

0.65

(ResNeXt-50)
w STN scratch 0.87 0.52 0.58 0.69 0.66

Table 5.2: SRC between predicted scores and ground truth labels for cross-
subject analysis on different actions of QMAR. I3D was pretrained on Kinetic-400
[66]. The best and the second-best results are inBold and underline respectively.
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Qualitative Results – Figure 5.4 shows output scores of VI-Net on some sample of

QMAR for cross-subject scenario where VI-Net contained STN, and ResNeXt-50 was

used to design the MSM module.

W-P W-S SS-P SS-S

Figure 5.4: Example scores estimated by VI-Net on QMAR under cross-subject
protocol for all four movement types. First column: walking with Parkinsons (W-
P). Second column: walking with Stroke (W-S). Third column: sit-stand with
Parkinsons (SS-P). Fourth column: sit-stand with Stroke. Each row shows a
distinct viewpoint.
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5.3.4 Cross-View Human Movement Assessment

The generalization ability of VI-Net on unseen views is evaluated by using the cross-view

protocol, that is, distinct training and testing views of the scene, while data from all

subjects is utilised. The experiments of this section are performed under the assumption

that each test set contains a balanced variety of scores from low to high (see Section

5.3.1 on the data imbalance issue). Note in this scenario, each set of experiments only

has one possible training and one testing set, as such no mean, standard deviation, or

p-value is computed.

Recent view-invariant action recognition approaches, such as [60, 88, 143, 169, 170],

provide cross-view results only when their network is trained on multiple views. However,

this chapter rises to the challenge introduced by Varol et al. [141] and also provides

unseen view results by training solely from a single viewpoint. Therefore, the training

and testing for each movement type are performed such that (i) only one view was used

for training and all other views were applied for testing, and in the next experiment,

(ii) a combination of one frontal view (views 1 to 3) and one side view (views 4 to 6)

were used for training and all other available views were applied for testing. Since for

the latter case there are many combinations of views in QMAR, results for only selected

views are obtained: view 2 ≈ 0◦ with all side views, and view 5 ≈ 90◦ with all frontal

views.

5.3.4.1 Cross-View Results by Training from One Viewpoint

Table 5.3 shows the results of VI-Net, C3D baseline (after [104]), and pre-trained, fine-

tuned I3D [13] for each movement type of QMAR when only one view is used for train-

ing.

Comparison to Baselines and Ablation Study – The results show that when VI-

Net has STN with adapted ResNeXt, it performs best on average, and outperforms the

baselines on average rank correlation, at 0.70, 0.62, 0.39, and 0.43 for W-P, W-S, SS-P

and SS-S action types respectively.

From Table 5.3, it can also be observed that for walking movements W-P and W-S, VI-

Net is able to assess the movements from unseen views well, with the best results reaching

0.73 and 0.66 rank correlation respectively (green highlights), and only relatively affected

by short term occlusions. However, for sit-to-stand movements SS-P and SS-S, the long-

term occlusions during these movements affect the integrity of the trajectory descriptors

and the performance of VI-Net is not as strong, with the best results reaching 0.52 and

0.56 respectively (green highlights).
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Action
Training

VTDM+MSM VTDM+MSM C3D

I3D [13](VGG-19) (ResNeXt-50) (after [104])
View

w/o STN w STN w/o STN w STN

W-P 1 0.51 0.67 0.64 0.67 0.18 0.60

2 0.69 0.66 0.58 0.72 0.18 0.61

3 0.62 0.66 0.63 0.70 0.21 0.62

4 0.67 0.64 0.72 0.72 0.23 0.50

5 0.67 0.67 0.68 0.71 0.24 0.57

6 0.69 0.72 0.69 0.73 0.21 0.55

Average 0.64 0.67 0.65 0.70 0.20 0.60

W-S 1 0.51 0.43 0.60 0.64 0.14 0.49

2 0.47 0.54 0.55 0.62 0.10 0.44

3 0.64 0.56 0.61 0.59 0.23 0.52

4 0.60 0.59 0.60 0.66 0.20 0.54

5 0.62 0.60 0.62 0.63 0.17 0.45

6 0.46 0.40 0.53 0.60 0.17 0.54

Average 0.55 0.52 0.58 0.62 0.16 0.53

SS-P 1 0.30 0.32 0.25 0.25 0.10 0.18

2 0.27 0.31 0.31 0.32 0.10 0.21

3 0.16 0.23 0.36 0.43 0.12 0.25

4 0.10 0.34 0.44 0.49 0.17 0.20

5 0.50 0.52 0.43 0.45 0.12 0.37

6 0.41 0.24 0.48 0.44 0.09 0.18

Average 0.29 0.32 0.37 0.39 0.11 0.23

SS-S 1 0.36 0.49 0.44 0.45 0.26 0.43

2 0.47 0.40 0.56 0.56 0.30 0.49

3 0.37 0.52 0.38 0.43 0.25 0.40

4 0.38 0.34 0.41 0.54 0.32 0.50

5 0.26 0.50 0.50 0.48 0.20 0.46

6 0.21 0.28 0.13 0.16 0.18 0.20

Average 0.34 0.42 0.40 0.43 0.25 0.42

Table 5.3: SRC between predicted scores and ground truth labels for cross-view
analysis where only one view is used for training on QMAR. I3D was pretrained
on Kinetic-400 [66]. The Bold and underline numbers show the best and the
second-best results for each view of each action type respectively. The green
highlights indicate best results for each action type amongst all views.
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Qualitative Results – Figure 5.5 shows output scores of VI-Net on some unseen view-

points and for all movement types of QMAR where only one viewpoint was used for

training. Note, to obtain these results VI-Net contained STN, and ResNeXt-50 was used

to design the MSM module.
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W-P W-S SS-P SS-S

Figure 5.5: Example scores estimated by VI-Net on unseen views of QMAR
for all four movement types, where one viewpoint was employed for training.
First column: walking with Parkinsons (W-P). Second column: walking with
Stroke (W-S). Third column: sit-stand with Parkinsons (SS-P). Fourth column:
sit-stand with Stroke. The top row shows the viewpoint used during training,
and the rest of the rows show VI-Net’s results on simultaneous frames on novel
viewpoints at inference.
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5.3.4.2 Cross-View Results by Training from Two Viewpoints

Table 5.4 reports cross-view results when one side view and one frontal view are combined

for training.

Comparison to Baselines – It can be seen from Table 5.4 the VI-Net network performs

better than the baselines on average rank correlation at 0.83, 0.80, 0.54, and 0.59 for

W-P, W-S, SS-P and SS-S action types respectively, and VI-Net’s performance improves

compared to the single-view experiment in Table 5.3 with the best results reaching 0.92

and 0.83 for W-P and W-S movements (green highlights) and 0.61 and 0.67 for SS-P and

SS-S movements (green highlights), because the network is effectively trained with both

short-term and long-term occluded trajectory descriptors.

Ablation Study – The results also show that on average VI-Net performs better with

adapted ResNeXt-50 for walking movements (W-P and W-S) and with adapted VGG-19

for sit-to-stand movements (SS-P and SS-S). This is potentially because ResNext-50’s

variety of filter sizes are better suited to the variation in 3D spatial changes of joint

trajectories inherent in walking movements compared to VGG-19’s 3 × 3 filters which

can tune better to the more spatially restricted sit-to-stand movements.

It should also be noted that the fundamental purpose of STN in VI-Net is to ensure

efficient cross-view performance is possible when the network is trained from a single-view

only. It would therefore be expected and plausible that STN’s effect would diminish as

more views are used since the MSM module gets trained on more trajectory orientations

(which it was verified experimentally by training with multiple views in Table 5.4).

Qualitative Results – Figure 5.6 shows example output scores of VI-Net on unseen

views of QMAR for four movement types, W-P, W-S, SS-P and SS-S, where two views

(one frontal view and one side view) were used for training, and VI-Net has STN, and

ResNeXt-50 was applied to implement the MSM module.

5.3.5 Single-View Human Movement Assessment

To examine the performance of VI-Net on an independent publicly available dataset,

the KIMORE dataset is considered as the best possible candidate. To perform the

experiments, the network was trained to predict a final score for each action type, and

as the size of KIMORE was large enough, only one training and one testing set were

selected randomly, i.e. 70% of the subjects were used for training and the remaining

30% were applied for testing ensuring each set contains a balanced variety of scores from

low to high.
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Action
Training

VTDM+MSM VTDM+MSM C3D

I3D [13](VGG-19) (ResNeXt-50) (after [104])

Views
w/o STN w STN w/o STN w STN

W-P 2, 4 0.77 0.81 0.87 0.89 0.65 0.85

2, 5 0.72 0.75 0.90 0.92 0.65 0.87

2, 6 0.75 0.76 0.73 0.77 0.69 0.80

1, 5 0.70 0.76 0.80 0.75 0.63 0.79

3, 5 0.73 0.79 0.87 0.84 0.57 0.80

Average 0.73 0.77 0.83 0.83 0.63 0.82

W-S 2, 4 0.58 0.72 0.81 0.73 0.42 0.76

2, 5 0.74 0.74 0.80 0.81 0.37 0.71

2, 6 0.64 0.67 0.74 0.68 0.33 0.73

1, 5 0.70 0.68 0.83 0.81 0.48 0.71

3, 5 0.66 0.66 0.82 0.79 0.45 0.70

Average 0.66 0.69 0.80 0.76 0.41 0.72

SS-P 2, 4 0.55 0.52 0.41 0.46 0.25 0.48

2, 5 0.60 0.53 0.49 0.46 0.21 0.40

2, 6 0.48 0.35 0.36 0.42 0.30 0.47

1, 5 0.46 0.55 039 0.52 0.38 0.45

3, 5 0.61 0.40 0.43 0.47 0.37 0.39

Average 0.54 0.47 0.41 0.46 0.30 0.43

SS-S 2, 4 0.57 0.64 0.52 0.64 0.53 0.55

2, 5 0.62 0.56 0.63 0.61 0.45 0.60

2, 6 0.50 0.62 0.48 0.46 0.44 0.54

1, 5 0.64 0.53 0.48 0.58 0.30 0.62

3, 5 0.62 0.60 0.63 0.67 0.35 0.65

Average 0.59 0.59 0.55 0.58 0.41 0.58

Table 5.4: SRC between predicted scores and ground truth labels for cross-view
analysis where two views are used for training on QMAR. I3D was pretrained
on Kinetic-400 [66]. The Bold and underline numbers show the best and the
second-best results for each combination of views of each action type respectively.
The green highlights indicate best results for each action type amongst all view
combinations.
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Figure 5.6: Example scores estimated by VI-Net on unseen views of QMAR
for all four movement types, where two viewpoints were employed for training.
First column: walking with Parkinsons (W-P). Second column: walking with
Stroke (W-S). Third column: sit-stand with Parkinsons (SS-P). Fourth column:
sit-stand with Stroke. The top rows show the viewpoints used during training,
and the rest of the rows show VI-Net’s results on simultaneous frames on novel
viewpoints at inference.
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Comparison to Baselines and Ablation Study – Table 5.5 shows the results of C3D

baseline (after [104]), pre-trained, fine-tuned I3D [13] and VI-Net on KIMORE. It can be

observed that VI-Net outperforms the other methods for all movement types except for

Exercise #3. VI-Net with adapted VGG-19 performs better than with ResNeXt-50 for

all movement types. This may be because, similar to sit-to-stand movements in QMAR

where VI-Net performs better with VGG-19, all movements types in KIMORE are also

performed at the same location and distance from camera, and thus carry less variation

in 3D trajectory space. This shows that VI-Net’s results are consistent in this sense

across both datasets.

In addition, although all sequences in both training and testing sets have been captured

from the same view, VI-Net’s performance on average improves with STN. This can

be attributed to STN improving the network generalization on different subjects. Also,

unlike in QMAR’s cross-subject results where C3D performed poorly, the results on

KIMORE for C3D are promising because KIMORE has more data to help the network

train more efficiently.

Qualitative Results – Figure 5.7 illustrates example scores predicted by VI-Net for

all movement types of KIMORE, where VI-Net has STN, and ResNeXt-50 was applied

to implement the MSM module.

Method Training
Action Ex (SRC) Average

#1 #2 #3 #4 #5 (SRC)

C3D (after [104]) scratch 0.66 0.64 0.63 0.59 0.60 0.62

I3D [13] fine-tune 0.45 0.56 0.57 0.64 0.58 0.56

V
I-
N
et

w/o STN scratch 0.63 0.50 0.55 0.80 0.76
VTDM+MSM

0.64

(VGG-19)
w STN scratch 0.79 0.69 0.57 0.59 0.70 0.66

w/o STN scratch 0.55 0.42 0.33 0.62 0.57
VTDM+MSM

0.49

(ResNeXt-50)
w STN scratch 0.55 0.62 0.36 0.58 0.67 0.55

Table 5.5: SRC between predicted scores and ground truth labels for different
action types of the single-view KIMORE dataset. I3D was pretrained on Kinetic-
400 [66]. The Bold and underline numbers show the best and the second-best
results for each scenario of each action type respectively.

83



5.4 Conclusion

Ex #1 Ex #2 Ex #3

Ex #5Ex #4

Figure 5.7: Example scores estimated by VI-Net on the single-view KIMORE
dataset for all five movement types, Ex #1, Ex #2, Ex #3, Ex #4, and Ex #5.

5.4 Conclusion

This chapter introduced a view-invariant human movement assessment approach and

tackled a highly challenging scenario in this field, that is, assessing the quality of human

movement from novel viewpoints, where the method is trained on only one viewpoint.

As opposed to the proposed solution in Chapter 4 that requires 3D skeleton data for

training, the proposed approach in this chapter applies only RGB data while it does not

rely on any knowledge about camera viewpoints.

This chapter has evaluated the performance of the proposed approach on the multi-view

QMAR and the single-view KIMORE datasets and demonstrated that the proposed

method is applicable to multi-view (cross-subject) and unseen view (cross-view) scenar-

ios, and it can work across different datasets and movement types (see Sections 5.3.3 to

5.3.5). It was also shown that the proposed method outperforms the baselines on average

on all these scenarios. However, the proposed approach still has a few limitations that

highlight potential avenues for future work.

Occlusion – The proposed method’s performance drops in situations where long-term

occlusions occur, since OpenPose [11] fails in such cases. Thus, future work could explore

how to produce sufficiently consistent heatmaps when the occlusion happens.

Movement Quality Assessment Per Action Type – Another limitation of the

proposed approach is that it needs to be trained separately for each action type (e.g.

W-P). Future work could investigate to develop a multitask learning model such that

the network can recognize the action type and estimate its score simultaneously.
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5.4 Conclusion

Transfer Learning – In healthcare applications, e.g. rehabilitation monitoring at

home or in the clinic, capturing and annotating data is challenging and expensive. On

the other hand, there are several multi-view datasets in other domains, e.g. NTU [126]

that is a large-scale multi-view dataset for action recognition that can benefit learning

view-invariant features for human movement assessment. Chapter 6 takes this direction

and proposes an unsupervised method to extract 3D view-invariant (canonical) human

posture representation for unseen view downstream tasks, e.g. action recognition and

human movement assessment, and shows the learned view-invariant features can also be

transferred into a different domain.
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Chapter 6
Unsupervised View-Invariant Human

Movement Assessment

Chapters 4 and 5 presented supervised approaches to assess the quality of human move-

ment. These methods have certain limitations that are addressed in this chapter:

• The method proposed in Chapter 4 estimates 3D human pose for human movement

assessment. However, during training, the proposed approach requires not only 3D

joint annotations, but also action labels since it works based on generating separate

manifolds for distinct action types. Furthermore, it cannot be applied to novel-view

data.

• The movement quality assessment method proposed in Chapter 5 is capable of

analysing movements recorded from camera viewpoints that are not present in

training data, and the proposed method does not require 3D skeleton annotation for

training. However, as it assesses the movements by extracting spatio-temporal fea-

tures that are derived from action types and their abnormality scores, the learned

features through this method cannot easily be transferred amongst different action

types, tasks or domains.

This chapter introduces an unsupervised 3D human posture representation approach for

unseen view downstream tasks, e.g. movement assessment and action recognition. The

proposed method learns to extract view-invariant 3D pose features from a 2D image

without using 3D pose annotations and action type labels such that the learned repre-

sentations can be transferred into other domains. The work in this chapter has been

published in [122].

Section 6.1 discusses the need for an unsupervised view-invariant human posture repre-
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sentation method. Sections 6.2 and 6.3 detail the components of the proposed approach

and the temporal models that are applied to the unsupervised learned pose features for

two downstream tasks, action recognition and human movement assessment. Section 6.4

conducts comparative experiments for cross-view and cross-subject action recognition

on NTU RGB+D. It also shows the efficiency of transferring the learned representations

from NTU RGB+D and action recognition to obtain unsupervised cross-view, cross-

subject and single-view human movement assessment results on QMAR and KIMORE.

Finally, conclusions are in Section 6.5.

6.1 Unsupervised View-Invariant Human Posture Rep-

resentation

Most unsupervised RGB-based 3D pose estimation approaches, such as [16, 18, 34, 50,

115, 139], are view-specific and do not generate the same (i.e. canonical) 3D pose

features for different viewpoints, so they cannot be applied to unseen-view downstream

tasks. In such cases, camera parameters are needed to map their view-specific output

into a canonical view (Chapter 2 provides a full overview of these approaches). On the

other hand, there are a few works, such as [116, 132, 174], that obtain view-invariant

pose features from RGB data, but they are fully or weakly supervised and require 3D

skeleton data during training.

This chapter tackles the above challenges, and proposes a representation learning ap-

proach that disentangles canonical (view-invariant) 3D pose representation and view-

dependent features from either an RGB-based 2D Densepose human representation map

or a depth mask image without using 3D skeleton data and camera parameters such that

the learned view-invariant features can be applied directly by downstream tasks to be

resilient to human pose variations in unseen viewpoints.

Fig. 6.1 shows the proposed view-invariant pose representation learning framework and

its application on a view-invariant downstream task. The proposed network is an auto-

encoder comprising two encoders and a decoder. The first encoder is a view-invariant

3D pose encoder that learns 3D canonical pose representations from an input image, and

the second one is a viewpoint encoder that extracts rotation and translation parameters,

such that when they are applied to the canonical pose features, it would result in view-

dependent 3D pose representations which are fed into the decoder to reconstruct the

input image.

To train the proposed network, geometrical and positional order consistency constraints
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Figure 6.1: Top: the proposed network learns to disentangle canonical 3D
human pose representations and view-dependent features through simultaneous
frames from different views and augmented frames from the same view. Bot-
tom: the unsupervised learned canonical pose representation can be used for
downstream tasks.
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are imposed on pose representation features through novel view-invariant and equiv-

ariance losses respectively. The view-invariant loss is computed based on the intrinsic

view-invariant properties of pose features between simultaneous frames from different

viewpoints, while the equivariance loss is computed using the equivariant properties be-

tween augmented frames from the same viewpoint. After training, the 3D canonical pose

representations can be used for downstream tasks, such as view-invariant action recog-

nition and human movement assessment. The method is described in detail next.

6.2 Proposed Method

This section introduces the method that learns view-invariant 3D pose representation

from 2D images (RGB or depth) without relying on 3D skeleton annotations and camera

parameters. The proposed method leverages on geometric transformation amongst dif-

ferent viewpoints and the equivariant property of human pose. The proposed method is

an auto-encoder that includes a view-invariant pose encoder E⊙, a viewpoint encoder E∢,

and a decoder D arranged as shown in Figure 6.2. E⊙ learns 3D canonical pose features

from a given image which can be either an RGB-based 2D Densepose human representa-

tion map [97] or a depth mask image. As the extracted pose features are canonical, they

are mapped into a specific viewpoint using the parameters obtained through encoder

E∢ before being passed to D to allow the decoder to reconstruct the input image. The

network optimises through four losses to generate its view-invariant representation.

Figure 6.2: The overall schema of the proposed view-invariant posture repre-
sentation learning network.
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6.2.1 Model Architecture and Formulation

The view-invariant pose encoder E⊙ learns 3D canonical pose features P I
⊙ = E⊙(I) given

image I ∈ IR3×W×H where P I
⊙ ∈ IR3×N, and N refers to the number of 3D pose features.

E∢ estimates the viewpoint parameters (RI , T I) = E∢(I), i.e. rotation RI = (θx, θy, θz)

and translation T I = (tx, ty, tz). These viewpoint parameters are applied to the canonical

pose features P I
⊙ to transfer them into a specific viewpoint P I

⊛, such that P I
⊛ = RI

⋄·P I
⊙+T

I

where P I
⊛ ∈ IR3×N, and RI

⋄ is computed as

RI
⋄ =

1 0 0

0 cos(θx) −sin(θx)

0 sin(θx) cos(θx)

×

 cos(θy) 0 sin(θy)

0 1 0

−sin(θy) 0 cos(θy)

×

cos(θz) −sin(θz) 0

sin(θz cos(θz) 0

0 0 1

 . (6.1)
Then, decoder D reconstructs the input, Ĩ = D(P I

⊛). The network’s purpose is therefore

that it learns to extract the same canonical 3D pose features for simultaneous frames

from different viewpoints while maintaining equivariance for the pose features from their

augmented frames (shifted in position - see details in Section 6.2.3) from the same view-

point. The proposed network is trained by combining four losses, view-invariant Linvar,

equivariance Lequiv, and two reconstruction losses Lrec1 and Lrec2.

6.2.2 View-Invariant Loss

Let’s start with two simultaneous frames (Ivk , I
w
k ) from different views v and w of the

same scene from their corresponding video sequences at current frame k. These are

passed to encoders E⊙ and E∢ to extract the canonical 3D pose features P
Iϕk
⊙ = E⊙(I

ϕ
k )

and viewpoint parameters (Rϕ
k , T

ϕ
k ) = E∢(I

ϕ
k ), for ϕ ∈ {v, w}.

Each frame k has a distinct translation parameter, while the rotation is the same for all

the frames of a sequence captured from the same viewpoint. Thus, if the rotation param-

eters are estimated from two random frames Ivm and Iwn from corresponding sequences

and views instead, the network should still retrieve the view-specific pose features. This

constraint is used to prevent the model leaking any pose information through E∢ and

force it to concentrate on only the viewpoint parameters. Hence, with a probability of

0.5, the frame is randomly selected to predict the rotation parameters for the two views,

Rv =

Rv
k if r is < 0.5

Rv
m else

and Rw =

Rw
k if r is < 0.5

Rw
n else

, (6.2)
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where r ∈ U(0, 1), and U(0, 1) denotes a uniform distribution returning a number be-

tween 0 and 1.

As it is assumed E⊙ encodes the same canonical 3D pose features for Ivk and Iwk , then

swapping their pose features while their viewpoint features are retained (as depicted in

Figure 6.3), the network has to still be able to reconstruct them. Thus, the view-invariant

loss is obtained by

Ĩ ′
v

k = D(P ′Ivk
⊛ ) where P ′Ivk

⊛ = Rv
⋄ · P

Iwk
⊙ + T v

k , (6.3)

Ĩ ′
w

k = D(P ′Iwk
⊛ ) where P ′Iwk

⊛ = Rw
⋄ · P Ivk

⊙ + Tw
k , (6.4)

Linvar =
∑

ϕ∈{v,w}

MSE(Iϕk , Ĩ
′ϕ
k) . (6.5)

However, computing only Linvar is not enough to learn the view-invariant pose features,

and E⊙ still has to reconstruct the simultaneous frames even without swapping their

canonical pose features, otherwise the network learns to only assign random latent codes

for canonical pose features, so Lrec1 is introduced as a reconstruction loss, such that

Lrec1 =
∑

ϕ∈{v,w}

MSE(Iϕk , Ĩ
ϕ
k ) , (6.6)

where Ĩϕk = D(P
Iϕk
⊛ ) with P

Iϕk
⊛ = Rϕ

⋄ · P
Iϕk
⊙ + T ϕ

k for ϕ ∈ {v, w}.

6.2.3 Equivariance Loss

The effect of equivariance loss is to help teach the network to preserve the positional

order of the pose components. For example, if the ith dimension of the latent variable

indicates the right shoulder of a subject, it should be consistent for all the images. It is

assumed that the proposed network generates consistent order of pose features, and x

and y axes of view-specific 3D pose space are the same as the x and y directions of the

2D images, so when Ivk and Iwk shift by some pixels in the x and y directions, then all

components of the view-specific pose P
Iϕk
⊛ would shift similarly (see Figure 6.4). Hence,

an equivariance loss is proposed by computing from augmentations of Ivk and Iwk , where

the augmented images, İvk and İwk , represent positional changes of the human subject in

the scene, for example by c1 and c2 pixels respectively, i.e.

Lequiv =
∑

ϕ∈{v,w},j∈{1,2}

MSE(P
Iϕk
⊛ + cj, P

İϕk
⊛ ), (6.7)
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where P
İϕk
⊙ = E⊙(İ

ϕ
k ) and P

İϕk
⊛ = RIϕ

⋄ · P İϕk
⊙ + T İϕk for ϕ ∈ {v, w}.

Lequiv is computed based on the view-specific pose features while the reconstruction of

the augmented frames can also be used to improve on the pose representation, so Lrec2

is introduced as

Lrec2 =
∑

ϕ∈{v,w}

MSE(İϕk ,
˜̇Iϕk ) , (6.8)

where ˜̇Iϕk = D(P
İϕk
⊛ ). The total loss is computed as

Ltotal = α · Linvar + β · Lequiv + γ · (Lrec1 + Lrec2) (6.9)

Figure 6.3: Learning view-invariant pose features through simultaneous frames.
Two simultaneous frames Ivk and Iwk from different views v and w of the same
scene are reconstructed such that their canonical pose features are swapped while
their viewpoint parameters are retained.
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The weights are determined empirically to be α = 1.0, β = 0.001, and γ = 1.0. After

training the proposed network to learn the 3D canonical pose features, E⊙ is used for

the example view-invariant downstream tasks.

Figure 6.4: The equivariance loss is computed by assuming that the proposed
network extracts consistent order of pose features. Thus, if the subject is shifted
by some pixels in the x and y directions, all pose components of the view-specific
pose would shift similarly.

6.3 Downstream Tasks

This section outlines the proposed method to model temporal aspects of the canoni-

cal pose features for two downstream task, action recognition and human movement

assessment.

6.3.1 Action Recognition

The proposed auto-encoder can learn unsupervised 3D pose representations without

using any action labels. To encapsulate the temporal element of the action recognition

downstream task, a bidirectional gated recurrent unit (GRU), followed by one FC for

which its size is equal to the number of action classes, is added after the view-invariant
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6.3 Downstream Tasks

Figure 6.5: The proposed model to exploit temporal elements of the learned
view-invariant pose representations for action recognition and human movement
assessment downstream tasks.

pose encoder E⊙ (see Figure 6.5). Then, the network is trained on fixed-size 16-frame

input sequences with the cross-entropy loss function. Similar to [179], the sequences are

subsampled such that every sequence is divided into 16 segments and one random frame

is selected amongst all frames of each segment.

6.3.2 Human Movement Assessment

To study the efficiency of the learned representation for quality of human movement, as

in the action recognition task, a bidirectional GRU followed by one FC layer is added

on top of E⊙ to deal with temporal analysis (see Figure 6.5). The size of the FC layer

is equal to the number of possible scores for a movement type. However, as discussed in

Chapter 1, for movement quality assessment, every single frame of a sequence should be

analysed, so no subsampling strategies can be applied for this task, and the network is

trained and tested on consecutive frames. To do this, following Section 5.2.3 that divides

each video sequence into non-overlapping 16-frame video clips, the network is trained on

a random 16-frame clip through the cross entropy loss function. For inference, all 16-

frame clips of a video sequence are processed, then the score for a sequence is estimated

by averaging the outputs of the last FC layer, as in Section 5.2.3.
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6.4 Experiments and Results

As the learned pose features are unsupervised and in an unknown high-level canonical

space, there is no ground-truth to evaluate them directly, so the comparison is per-

formed only indirectly on downstream tasks. This section first presents the experiments

and results of applying the unsupervised learned view-invariant pose features for action

recognition. Then, the efficiency of transferring the learned pose representation from

action recognition for human movement assessment is investigated. The contribution of

the different components of the proposed method is also evaluated.

The datasets used in the experiments are outlined in Section 6.4.1. The implementa-

tion details and evaluation metrics respectively are described in Sections 6.4.2 and 6.4.3.

Action recognition experiments including quantitative and qualitative results, and ab-

lation studies are then presented in Section 6.4.4. Finally, Section 6.4.5 outlines the

experiments and results for the human movement assessment task.

6.4.1 Datasets

To learn unsupervised view-invariant pose representation, NTU RGB+D [126] was ap-

plied (see Section 3.2.4 for details of NTU RGB+D). Then, the performance of the

view-invariant pose features were evaluated on NTU (for short), based around cross-

view and cross-subject protocols (see Section 2.4 for further details). For both pretext

and downstream tasks, the same training and testing sets as in [126] were used.

The QMAR and KIMORE datasets were also applied to evaluate the efficiency of trans-

ferring the learned pose representations from NTU and action recognition to obtain

cross-view, cross-subject, and single-view human movement assessment results. To per-

form the experiments on QMAR and KIMORE, the same training and testing sets as in

Section 5.3 were used.

6.4.2 Implementation Details

Details of Network Architecture – The proposed auto-encoder is inspired by the

U-Net encoder/decoder [28, 38, 115, 119]. The U-Net is a convolutional or spatial latent

auto-encoder with skip connections between the encoder and the decoder parts, while

a dense one [4] without the skip connections is desired to encode the 3D pose features,

so it was adapted for the pose representation problem. Table 6.1 shows details of the

proposed auto-encoder architecture and the extra layers added after it for modeling the

temporal information in downstream tasks.
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Module Layers

P
o
se

R
e
p
re
se
n
ta
ti
o
n

(A
u
to

-e
n
co

d
e
r) E⊙

{C2(3× 3, 64), BN, ReLU} × 2, MP (2× 2),

{C2(3× 3, 128), BN, ReLU} × 2, MP (2× 2),

{C2(3× 3, 256), BN, ReLU} × 2, MP (2× 2),

{C2(3× 3, 512), BN, ReLU} × 1, {C2(3× 3, 512), ReLU} × 1,

{FC(1024), ReLU}, {FC(512), ReLU}, {FC(3× 70)}

E∢
{C2(5× 5, 128), BN, ReLU} × 2, MP (7× 7),

{C2(5× 5, 256), BN, ReLU} × 2, {FC(512), ReLU, Drp}, {FC(6)}

D

{FC(16× 16× 512), ReLU, Drp}, {C2(3× 3, 256), BN, ReLU} × 2,

{CT2(3× 3, 128), BN, ReLU} × 2, {CT2(3× 3, 64), BN, ReLU} × 2,

{CT2(3× 3, 3), BN, ReLU} × 2, tanh

Temporal Modeling b-GRU(2, 1024), FC(S)

Table 6.1: Details of the proposed network’s modules – All modules are 2D.
C2(d× d, ch): d× d convolution filters with ch channels, CT2: transposed con-
volution filters, b − GRU(l, h): l-layer bidirectional gated recurrent unit with
hidden state size h, MP : max pooling, BN : batch normalization, FC(O): fully
connected layer with O outputs. S is the number of classes and possible scores
for a movement type for action recognition and human movement assessment
downstream tasks respectively.

Training and Testing Details – The proposed model was implemented in Pytorch.

For the pretext task, it was trained for 20 epochs using Adam [68] with a fixed learning

rate of 0.0002, and batch size 5. During training, random horizontal flipping was applied

for data augmentation. For downstream tasks, the proposed network was trained for 50

epochs using Adam [68] with batch size 20 and an initial learning rate of 0.0002 that was

decayed by a factor of 10 every 10 epochs. During training, random cropping was applied

for data augmentation. Note, the depth mask images of NTU used in the experiments

contain bounding box of subjects as released by [126].

Hyper-Parameter Settings – To select the 3D canonical pose feature size P I
⊙ ∈ IR3×N,

cross-validation was used and the total loss Ltotal in Eq. 6.9 was evaluated for N in the

range between 40 and 190 with a step-size of 30. The lower bound was inspired by

motion capture systems that use 39 markers, and the upper bound was selected based

on Rhodin et al. [115] who set their latent code size at 3×200. As shown in Table 6.2, the

average Ltotal cross-validation results on the NTU dataset for both CV and CS protocols

is best when N = 70, hence the 3D canonical pose feature size is set at 3× 70.
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Ltotal
N

40 70 100 130 160 190

RGB
CS 0.0064 0.0061 0.0061 0.0062 0.0062 0.0062

CV 0.0088 0.0080 0.0084 0.0081 0.0081 0.0082

Depth
CS 0.015 0.015 0.016 0.016 0.016 0.016

CV 0.016 0.016 0.016 0.017 0.017 0.017

Table 6.2: Optimising P I
⊙ - Average Ltotal cross-validation results on NTU for

different canonical pose size (3×N). The Bold numbers show the best results.

6.4.3 Evaluation Metrics

To evaluate the performance of the pose features for action recognition task, classification

accuracy was used, and for human movement assessment, SRC was employed [82, 99, 104]

(see Section 5.3.2 for more details of SRC).

6.4.4 Action Recognition

This section evaluates the performance of the learned pose representations by the pro-

posed method for view-invariant action recognition. Tables 6.3 and 6.4 report the pro-

posed method’s results for cross-subject (CS) action recognition accuracy on the NTU

dataset where RGB and depth data are applied as input, and Tables 6.5 and 6.6 present

cross-view (CV) results on NTU for RGB and depth data. These tables contain the re-

sults of both supervised and unsupervised experiments such that the supervised results

were obtained by both fine-tuning E⊙ and training it from scratch during the downstream

task, while the unsupervised results were obtained after freezing E⊙’s parameters.

Tables 6.3 to 6.6 also present the CS and CV results of the state-of-the-art RGB and

depth based representation learning approaches on NTU. All the representation learning

methods on NTU that are compared to the proposed method here can operate on either

RGB or depth data for training and inference, except Li et al. [78] which requires both

RGB and depth for its training stage. Providing like-to-like evaluations against these

relevant methods is difficult since for all such techniques their method defines the nature

of their backbone architecture, for example they extract spatio-temporal features while

the proposed network learns pose representation, e.g. [143] uses 3D CNNs whereas the

proposed method is integrally a 2D design. In the case of [78] which applies a 2D ResNet

with added ConvLSTM [127], the results with the closest possible backbone, comprising

a 2D ResNet and an LSTM are provided.
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Method Year Backbone
Supervised (%)

Unsupervised
scratch fine-tune (%)

Luo et al. [91] 2017
VGG

- - 56.0
+ ConvLSTM

Li et al. [78] ✔ 2018
2D ResNet

36.6 55.5 48.9
+ ConvLSTM

Vyas et al. [143] ✔ 2020
3D CNN

- 82.3 -
+ LSTM

Proposed Method ✔ 2021
2D ResNet

66.7 73.8 63.0
+ LSTM

Proposed Method ✔ 2021 2D CNN 70.3 78.1 68.3
+ GRU

Table 6.3: Cross-subject action recognition accuracy on NTU for RGB based
representation learning approaches. The ✔ symbol highlights view-invariant
methods. The best and the second-best results are in Bold and underline re-
spectively.

Method Year Backbone
Supervised (%)

Unsupervised
scratch fine-tune (%)

Misra et al. [94] 2016 AlexNet - - 46.2

Luo et al. [91] 2017 VGG - - 61.4
+ ConvLSTM

Li et al. [78] ✔ 2018 2D ResNet 42.3 68.1 60.8
+ ConvLSTM

Vyas et al. [143] ✔ 2020 3D CNN - 71.8 -
+ LSTM

Proposed Method ✔ 2021 2D ResNet 63.1 72.7 58.0
+ LSTM

Proposed Method ✔ 2021 2D CNN 75.9 78.8 64.7
+ GRU

Table 6.4: Cross-subject action recognition accuracy on NTU for depth based
representation learning approaches. The ✔ symbol highlights view-invariant
methods. The best and the second-best results are in Bold and underline re-
spectively.
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Method Year Backbone
Supervised (%)

Unsupervised
scratch fine-tune (%)

Li et al. [78] ✔ 2018 2D ResNet 29.2 49.3 40.7
+ ConvLSTM

Vyas et al. [143] ✔ 2020
3D CNN

- 86.3 -
+ LSTM

Proposed Method ✔ 2021
2D ResNet

66.5 78.2 62.1
+ LSTM

Proposed Method
✔

2021
2D CNN

77.0 83.6 74.8
+ GRU

Table 6.5: Cross-view action recognition accuracy on NTU for RGB based rep-
resentation learning approaches. The ✔ symbol highlights view-invariant meth-
ods. The best and the second-best results are inBold and underline respectively.

Method Year Backbone
Supervised (%)

Unsupervised
scratch fine-tune (%)

Misra et al. [94] 2016 AlexNet - - 40.9

Luo et al. [91] 2017
VGG

- - 53.2
+ ConvLSTM

Li et al. [78] ✔
2018 2D ResNet

37.7 63.9 53.9
+ ConvLSTM

Vyas et al. [143] ✔ 2020
3D CNN

- 78.7 -
+ LSTM

Proposed Method ✔ 2021
2D ResNet

60.4 75.5 58.3
+ LSTM

Proposed Method ✔ 2021
2D CNN

76.7 82.5 67.5
+ GRU

Table 6.6: Cross-view action recognition accuracy on NTU for depth based rep-
resentation learning approaches. The ✔ symbol highlights view-invariant meth-
ods. The best and the second-best results are inBold and underline respectively.

As shown in Tables 6.3 to 6.6, for the unsupervised scenario, the proposed method with

2D CNN and GRU backbone significantly improves the state-of-the-art across CS and

CV tests, at 68.3%, 74.8% for RGB, and 64.7%, 67.5% for depth data, respectively. The

2D ResNet + LSTM incarnation of the proposed method also exceeds across the board on

the state-of-the-art in unsupervised results on NTU, e.g. achieving 62.1% in almost direct
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comparison to [78]’s 40.7% for cross-view RGB inference. For the supervised learning

case, the proposed method improves on all other works with depth data, whether training

from scratch or fine-tuning the proposed network with best results, at 78.8% and 82.5%

on CS and CV protocols respectively, and attains very competitive results using RGB

in comparison to the 3D CNN-based [143].

Table 6.7 reports the results of recent state-of-the-art unsupervised pose representa-

tion methods that operate on 3D skeleton data and compares them with the proposed

method’s results. Cheng et al. [19]’s result is marginally better than the proposed method

in CS mode, and Yao et al. [162] perform better than the proposed method in CV mode.

These result vindicate the proposed approach as a viable alternative to skeleton-based

methods which are altogether more cantankerous to deal with in real-world applications

than RGB or depth derived data.

Method Year Backbone Input
Unsupervised (%)

CS CV

Su et al. [131] 2020 GRU Skeleton 50.7 76.1

Lin et al. [85] 2020 GRU Skeleton 52.5 -

Yao et al. [162] 2021 GRU + GCN Skeleton 54.4 79.2

Cheng et al. [19] ✔ 2021 Transformer Skeleton 69.3 72.8

Rao et al. [114] ✔ 2021 LSTM Skeleton 58.5 64.8

Proposed Method ✔ 2021 2D CNN + GRU Depth 64.7 67.5

Proposed Method ✔ 2021 2D CNN + GRU RGB 68.3 74.8

Table 6.7: State-of-the-art action recognition accuracy results on NTU for
skeleton-based representation learning approaches vs. the proposed method’s
results. The ✔ symbol highlights view-invariant methods. The best and the
second-best results are in Bold and underline respectively.

Qualitative Results – Figures 6.6 and 6.7 show some qualitative results of the

proposed approach for the cross-subject scenario on RGB-based Densepose and depth

modalities respectively. The qualitative results of the network for cross-view scenario on

RGB-based Densepose and depth data are also illustrated in Figures 6.8 and 6.9.
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Figure 6.6: The reconstruction results of the proposed approach on unseen
subject data for two samples of NTU belonging to sit and brush teeth actions
for RGB-based Densepose modality. Views 1 to 3 show the simultaneous frames
belonging to the same scene captured from different viewpoints. The blue boxes
denote testing frames, and the green ones indicate their corresponding recon-
structed frames.
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Figure 6.7: The reconstruction results of the proposed approach on unseen
subject data for two samples of NTU belonging to sit and brush teeth actions
for depth modality. Views 1 to 3 show the simultaneous frames belonging to the
same scene captured from different viewpoints. The blue boxes denote testing
frames, and the green ones indicate their corresponding reconstructed frames.
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Figure 6.8: The reconstruction results of the proposed approach on unseen
view data for three samples of NTU belonging to brush teeth, brush hair, and
kicking something actions and for RGB-based Densepose modality. For each
sample, Views 1 to 3 show the simultaneous frames belonging to the same scene
captured from different viewpoints. The red boxes denote training frames, the
blue ones indicate their corresponding testing frame captured from the unseen
viewpoint, and the green ones present the reconstruction result of the testing
frame.
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Figure 6.9: The reconstruction results of the proposed approach on unseen view
data for three samples of NTU belonging to brush teeth, brush hair, and kicking
something actions and for depth modality. For each sample, Views 1 to 3 show
the simultaneous frames belonging to the same scene captured from different
viewpoints. The red boxes denote training frames, the blue ones indicate their
corresponding testing frame captured from the unseen viewpoint, and the green
ones present the reconstruction result of the testing frame.

Ablation Study – This section also ablates the losses to examine their impact on

the learning of the unsupervised pose features. Table 6.8 shows the unsupervised action

recognition accuracy on NTU as each or both of Linvar and Lequiv are dropped. It can

be seen that removing Lequiv from the training process, the results for both CV and CS

in both RGB and depth deteriorates. This verifies that positional order consistency is

essential in both cases. It is also observed that eliminating Linvar causes the method’s

performance to drop in all cases, except for the cross-subject case with depth as the

input modality. The increase in performance in this scenario may be attributed to the

removal of the extra geometrical constraints that are imposed on the features by the

extra simultaneous frames through the presence of the Linvar computation.
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Proposed Method with
Depth RGB

CS(%) CV(%) CS(%) CV(%)

Lrec1 + Lrec2 32.1 35.4 34.1 35.6

Lequiv + Lrec1 + Lrec2 65.5 64.1 64.9 69.1

Linvar + Lrec1 + Lrec2 52.5 59.6 63.3 70.3

Linvar + Lequiv + Lrec1 + Lrec2 64.7 67.5 68.3 74.8

Table 6.8: Ablation studies on different combinations of losses used in the
unsupervised learning process. The best and the second-best results are in Bold
and underline respectively.

6.4.5 Human Movement Assessment

This section aims to study the efficiency of transferring the learned representation on

NTU and action recognition task for quality of movement scoring on QMAR and KI-

MORE. It reports supervised and unsupervised results of cross-view, cross-subject, and

single-view human movement assessment. The unsupervised results were obtained after

freezing E⊙’s parameters during the downstream task while the supervised results were

obtained by both fine-tuning E⊙ and training it from scratch.

As this chapter offers the first ever unsupervised cross-subject and cross-view results on

the QMAR dataset, for further direct comparison with an unsupervised approach, the

results of [78] were obtained for this dataset. Note, similar to the proposed method, to

provide the unsupervised and fine-tuning results, [78] was pretrained on NTU. For the

supervised scenario, the performance of the proposed network is also evaluated against

the proposed method in Chapter 5 (VI-Net) and two other baselines introduced in Section

5.3. For single-view experiments on the KIMORE dataset, in addition to [78] and the

baselines, it includes the supervised and unsupervised results of the work presented in

[95].

Cross-Subject Human Movement Assessment – Table 6.9 shows the cross-subject

results on QMAR. It is observed that the unsupervised human movement analysis results

of the proposed method on QMAR outperforms Li et al. [78], reaching an average SRC

of 0.58. These are broadly already competitive to the supervised results on QMAR,

particularly when compared against the Kinetic-400 [66] pretrained, deep I3D network.

The supervised version of the proposed method, where the network weights are fine-tuned

after transfering the weights learnt through NTU training, exceeds VI-Net’s performance

on average and achieves 0.70.
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Method Year Training
Action (SRC) Average

W-P W-S SS-P SS-S (SRC)

Supervised

I3D [13] 2017 fine-tune 0.79 0.47 0.54 0.55 0.58

Li et al. [78] 2018 scratch 0.55 0.32 0.39 0.64 0.47

Li et al. [78] ✔ 2018 fine-tune 0.57 0.59 0.41 0.75 0.57

C3D (after [104]) 2019 scratch 0.50 0.37 0.25 0.54 0.41

VI-Net (VGG) ✔ 2020 scratch 0.82 0.52 0.55 0.73 0.65

VI-Net (ResNeXt) ✔ 2020 scratch 0.87 0.52 0.58 0.69 0.66

Proposed Method 2021 scratch 0.81 0.51 0.39 0.72 0.60

Proposed Method ✔ 2021 fine-tune 0.89 0.54 0.62 0.76 0.70

Unsupervised

Li et al. [78] ✔ 2018 - 0.21 0.10 0.24 0.47 0.25

Proposed Method ✔ 2021 - 0.70 0.50 0.48 0.66 0.58

Table 6.9: SRC between predicted scores and ground truth labels for cross-
subject analysis on different actions of QMAR dataset. I3D was pretrained on
Kinetic-400 [66], and the ✔ symbol highlights view-invariant methods. The best
supervised and unsupervised results are in Bold and the second-best supervised
results are underlined.

Cross-View Human Movement Assessment – Similarly to Section 5.3.4, two sets

of experiments are performed here, (i) only one view is used for training and the rest of

the viewpoints are applied for testing, shown in Tables 6.10 and 6.11, (ii) a combination

of one frontal view and one side view is used for training and all other available views are

applied for testing, shown in Tables 6.12 and 6.13 (see Section 5.3.4 for further details

of training and testing sets).

As shown in Tables 6.10 to 6.13, the unsupervised results of the proposed method on

QMAR outperforms Li et al. [78]. When two viewpoints are employed for training, it

reaches an average SRC of 0.77, 0.64, 0.39, and 0.56 for W-P, W-S, SS-P, and SS-S respec-

tively which are broadly already competitive to the supervised results on QMAR, partic-

ularly when compared against the Kinetic-400 [66] pretrained, deep I3D network.

106



6.4 Experiments and Results

Method Year Training
Training View (SRC) Avg

1 2 3 4 5 6 (SRC)

W
-P

Supervised

I3D [13] 2017 fine-tune 0.60 0.61 0.62 0.50 0.57 0.55 0.60

Li et al. [78] 2018 scratch 0.19 0.19 0.17 0.21 0.14 0.26 0.19

Li et al. [78] ✔ 2018 fine-tune 0.13 0.08 0.05 0.23 0.18 0.15 0.13

C3D (after [104]) 2019 scratch 0.18 0.18 0.21 0.23 0.24 0.21 0.20

VI-Net (VGG-19) ✔ 2020 scratch 0.67 0.66 0.66 0.64 0.67 0.72 0.67

VI-Net (ResNeXt-50)✔ 2020 scratch 0.67 0.72 0.70 0.72 0.71 0.73 0.70

Proposed Method 2021 scratch 0.21 0.42 0.45 0.43 0.45 0.51 0.41

Proposed Method ✔ 2021 fine-tune 0.70 0.66 0.64 0.53 0.39 0.69 0.55

Unsupervised

Li et al. [78] ✔ 2018 - 0.08 0.12 0.05 0.14 0.17 0.08 0.10

Proposed Method ✔ 2021 - 0.38 0.26 0.36 0.50 0.46 0.40 0.39

W
-S

Supervised

I3D [13] 2017 fine-tune 0.49 0.44 0.62 0.64 0.45 0.54 0.53

Li et al. [78] 2018 scratch 0.16 0.07 0.28 0.07 0.07 0.10 0.12

Li et al. [78] ✔ 2018 fine-tune 0.13 0.12 0.23 0.08 0.16 0.05 0.12

C3D (after [104]) 2019 scratch 0.14 0.10 0.23 0.20 0.17 0.17 0.16

VI-Net (VGG-19) ✔ 2020 scratch 0.43 0.54 0.56 0.59 0.60 0.40 0.52

VI-Net (ResNeXt-50)✔ 2020 scratch 0.64 0.62 0.59 0.66 0.63 0.60 0.62

Proposed Method 2021 scratch 0.35 0.25 0.24 0.33 0.10 0.33 0.26

Proposed Method ✔ 2021 fine-tune 0.41 0.37 0.43 0.60 0.61 0.51 0.48

Unsupervised

Li et al. [78] ✔ 2018 - 0.05 0.11 0.12 0.08 0.04 0.07 0.07

Proposed Method ✔ 2021 - 0.33 0.30 0.27 0.51 0.42 0.20 0.33

Table 6.10: SRC between predicted scores and ground truth labels for cross-
view analysis on W-P and W-S actions of the QMAR dataset, where one view-
point is used for training. I3D was pretrained on Kinetic-400 [66], and the ✔

symbol highlights view-invariant methods. The best supervised and unsuper-
vised results for each view are in Bold and the second-best supervised results
for each view are underlined. The green highlights indicate the best results for
W-P and W-S actions amongst all views.
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Method Year Training
Training View (SRC) Avg

1 2 3 4 5 6 (SRC)

S
S
-P

Supervised

I3D [13] 2017 fine-tune 0.18 0.21 0.25 0.20 0.37 0.18 0.23

Li et al. [78] 2018 scratch 0.10 0.20 0.10 0.06 0.11 0.09 0.11

Li et al. [78] ✔ 2018 fine-tune 0.23 0.07 0.05 0.05 0.11 0.09 0.10

C3D (after [104]) 2019 scratch 0.10 0.10 0.12 0.17 0.12 0.09 0.11

VI-Net (VGG-19) ✔ 2020 scratch 0.32 0.31 0.23 0.34 0.52 0.24 0.32

VI-Net (ResNeXt-50)✔ 2020 scratch 0.25 0.32 0.43 0.49 0.45 0.44 0.39

Proposed Method 2021 scratch 0.10 0.10 0.27 0.25 0.19 0.13 0.21

Proposed Method ✔ 2021 fine-tune 0.38 0.39 0.37 0.32 0.31 0.32 0.34

Unsupervised

Li et al. [78] ✔ 2018 - 0.22 0.13 0.13 0.09 0.06 0.15 0.13

Proposed Method ✔ 2021 - 0.30 0.20 0.31 0.22 0.23 0.27 0.25

S
S
-S

Supervised

I3D [13] 2017 fine-tune 0.43 0.49 0.47 0.50 0.46 0.20 0.42

Li et al. [78] 2018 scratch 0.25 0.13 0.21 0.38 0.08 0.15 0.20

Li et al. [78] ✔ 2018 fine-tune 0.09 0.23 0.40 0.26 0.16 0.08 0.20

C3D (after [104]) 2019 trained 0.26 0.30 0.25 0.32 0.20 0.18 0.25

VI-Net (VGG-19) ✔ 2020 scratch 0.49 0.40 0.52 0.34 0.50 0.28 0.42

VI-Net (ResNeXt-50)✔ 2020 scratch 0.45 0.56 0.43 0.54 0.48 0.16 0.43

Proposed Method 2021 scratch 0.21 0.37 0.37 0.31 0.30 0.11 0.28

Proposed Method ✔ 2021 fine-tune 0.39 0.42 0.43 0.41 0.32 0.28 0.37

Unsupervised

Li et al. [78] ✔ 2018 - 0.09 0.18 0.05 0.23 0.14 0.10 0.13

Proposed Method ✔ 2021 - 0.38 0.33 0.40 0.26 0.25 0.24 0.31

Table 6.11: SRC between predicted scores and ground truth labels for cross-
view analysis on SS-P and SS-S actions of the QMAR dataset, where one view-
point is used for training. I3D was pretrained on Kinetic-400 [66], and the ✔

symbol highlights view-invariant methods. The best supervised and unsuper-
vised results for each view are in Bold and the second-best supervised results
for each view are underlined. The green highlights indicate the best results for
SS-P and SS-S actions amongst all views.
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Method Year Training
Training Views (SRC) Avg

2, 4 2, 5 2, 6 1, 5 3, 5 (SRC)

W
-P

Supervised

I3D [13] 2017 fine-tune 0.85 0.87 0.80 0.80 0.80 0.82

Li et al. [78] 2018 scratch 0.34 0.22 0.18 0.19 0.15 0.21

Li et al. [78] ✔ 2018 fine-tune 0.37 0.14 0.17 0.15 0.23 0.21

C3D (after [104]) 2019 scratch 0.65 0.65 0.69 0.63 0.57 0.63

VI-Net (VGG-19) ✔ 2020 scratch 0.81 0.75 0.76 0.76 0.79 0.77

VI-Net (ResNeXt-50)✔ 2020 scratch 0.89 0.92 0.77 0.75 0.84 0.83

Proposed Method 2021 scratch 0.84 0.82 0.82 0.81 0.80 0.81

Proposed Method ✔ 2021 fine-tune 0.93 0.92 0.83 0.87 0.91 0.88

Unsupervised

Li et al. [78] ✔ 2018 - 0.27 0.12 0.11 0.12 0.11 0.14

Proposed Method ✔ 2021 - 0.84 0.81 0.70 0.75 0.78 0.77

W
-S

Supervised

I3D [13] 2017 fine-tune 0.76 0.71 0.73 0.71 0.70 0.72

Li et al. [78] 2018 scratch 0.08 0.15 0.11 0.10 0.19 0.12

Li et al. [78] ✔ 2018 fine-tune 0.06 0.38 0.13 0.17 0.17 0.18

C3D (after [104]) 2019 trained 0.42 0.37 0.33 0.48 0.45 0.41

VI-Net (VGG-19) ✔ 2020 scratch 0.72 0.74 0.67 0.68 0.66 0.69

VI-Net (ResNeXt-50)✔ 2020 scratch 0.73 0.81 0.68 0.81 0.79 0.76

Proposed Method 2021 scratch 0.59 0.68 0.63 0.71 0.68 0.65

Proposed Method ✔ 2021 fine-tune 0.76 0.76 0.73 0.85 0.77 0.77

Unsupervised

Li et al. [78] ✔ 2018 - 0.14 0.13 0.10 0.07 0.14 0.11

Proposed Method ✔ 2021 - 0.61 0.65 0.62 0.70 0.66 0.64

Table 6.12: SRC between predicted scores and ground truth labels for cross-
view analysis onW-P andW-S actions of the QMAR dataset, where two views are
used for training on. I3D was pretrained on Kinetic-400 [66], and the ✔ symbol
highlights view-invariant methods. The best supervised and unsupervised results
for each combination of views are in Bold and the second-best supervised results
for each combination of views are underlined. The green highlights indicate the
best results for W-P and W-S actions amongst all view combinations.
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Method Year Training
Training Views (SRC) Avg

2, 4 2, 5 2, 6 1, 5 3, 5 (SRC)

S
S
-P

Supervised

I3D [13] 2017 fine-tune 0.48 0.40 0.47 0.45 0.39 0.43

Li et al. [78] 2018 scratch 0.11 0.10 0.09 0.11 0.11 0.10

Li et al. [78] ✔ 2018 fine-tune 0.16 0.14 0.20 0.15 0.10 0.15

C3D (after [104]) 2019 scratch 0.25 0.21 0.30 0.38 0.37 0.30

VI-Net (VGG-19) ✔ 2020 scratch 0.52 0.53 0.35 0.55 0.40 0.47

VI-Net (ResNeXt-50)✔ 2020 scratch 0.46 0.46 0.42 0.52 0.47 0.46

Proposed Method 2021 scratch 0.16 0.17 0.27 0.20 0.25 0.21

Proposed Method ✔ 2021 fine-tune 0.50 0.58 0.47 0.52 0.61 0.53

Unsupervised

Li et al. [78] ✔ 2018 - 0.14 0.06 0.11 0.09 0.12 0.10

Proposed Method ✔ 2021 - 0.48 0.34 0.37 0.33 0.47 0.39

S
S
-S

Supervised

I3D [13] 2017 fine-tune 0.55 0.60 0.54 0.62 0.65 0.58

Li et al. [78] 2018 scratch 0.19 0.11 0.18 0.30 0.08 0.17

Li et al. [78] ✔ 2018 fine-tune 0.27 0.35 0.19 0.21 0.22 0.24

C3D (after [104]) 2019 scratch 0.53 0.45 0.44 0.30 0.35 0.41

VI-Net (VGG-19) ✔ 2020 scratch 0.64 0.56 0.62 0.53 0.60 0.59

VI-Net (ResNeXt-50)✔ 2020 scratch 0.64 0.61 0.46 0.58 0.67 0.58

Proposed Method 2021 scratch 0.59 0.59 0.56 0.52 0.39 0.53

Proposed Method ✔ 2021 fine-tune 0.64 0.66 0.62 0.63 0.69 0.64

Unsupervised

Li et al. [78] ✔ 2018 - 0.13 0.17 0.13 0.13 0.18 0.14

Proposed Method ✔ 2021 - 0.52 0.59 0.56 0.58 0.57 0.56

Table 6.13: SRC between predicted scores and ground truth labels for cross-
view analysis on SS-P and SS-S actions of the QMAR dataset, where two views
are used for training on. I3D was pretrained on Kinetic-400 [66], and the ✔ sym-
bol highlights view-invariant methods. The best supervised and unsupervised
results for each combination of views are in Bold and the second-best super-
vised results for each combination of views are underlined. The green highlights
indicate the best results for SS-P and SS-S actions amongst all view combina-
tions.
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In the supervised scenario, when one view is used for training (Tables 6.10 and 6.11), VI-

Net performs better than the proposed network. However, when the proposed network

is trained on two viewpoints (Tables 6.12 and 6.13) and its weights are fine-tuned after

transferring the weights learnt through NTU training, the proposed method exceeds VI-

Net’s performance on average and achieves rank correlation of 0.88, 0.77, 0.53, and 0.64

for W-P, W-S, SS-P, and SS-S action types respectively.

Single-View Human Movement Assessment – The results of the proposed method

on the KIMORE dataset are available in Table 6.14. This table shows that in the unsu-

pervised mode where all the convolutional filters are frozen during training, the results

of the proposed method are broadly competitive with the deep supervised networks

(e.g. I3D), especially for Exercises #3 to #5, its performance is even higher than the

deep supervised VI-Net network. Furthermore, the proposed method outperforms the

Method Year Training
Action Ex (SRC) Avg

#1 #2 #3 #4 #5 (SRC)

Supervised

I3D [13] 2017 fine-tune 0.45 0.56 0.57 0.64 0.58 0.56

Li et al. [78] 2018 scratch 0.80 0.77 0.65 0.74 0.82 0.75

Li et al. [78] 2018 finetune 0.76 0.67 0.52 0.71 0.83 0.69

C3D (after [104]) 2019 scratch 0.66 0.64 0.63 0.59 0.60 0.62

VI-Net (VGG-19) 2020 scratch 0.79 0.69 0.57 0.59 0.70 0.66

VI-Net (ResNeXt-50) 2020 scratch 0.55 0.62 0.36 0.58 0.67 0.55

Nekoui and Cheng [95] 2021 scratch 0.63 0.60 0.54 0.56 0.57 0.58

Nekoui and Cheng [95] 2021 finetune 0.66 0.60 0.61 0.59 0.61 0.61

Proposed Method 2021 scratch 0.74 0.63 0.58 0.67 0.66 0.65

Proposed Method 2021 finetune 0.75 0.77 0.61 0.78 0.91 0.76

Unsupervised

Li et al. [78] 2018 - 0.67 0.64 0.63 0.76 0.76 0.69

Nekoui and Cheng [95] 2021 - 0.60 0.56 0.37 0.59 0.54 0.53

Proposed Method 2021 - 0.70 0.62 0.65 0.78 0.75 0.70

Table 6.14: SRC between predicted scores and ground truth labels for different
action types of the single-view KIMORE dataset. I3D was pretrained on Kinetic-
400 [66]. The Bold and underline numbers show the best and the second-best
results for each scenario of each action type respectively.
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other methods on average, reaching the best rank correlation of 0.76 and 0.70 for super-

vised and unsupervised scenarios respectively. It can also be observed that the proposed

method performs better than [95] that employs a sequences of 2D poses as input for all

movement types and all scenarios.

6.5 Conclusion

This chapter presented a view-invariant human posture representation approach that

does not rely on any 3D joint annotations and is trained only from 2D images such that

the pose features can be applied for novel view downstream tasks, e.g. action recognition

and human movement assessment. It also explored whether the learned unsupervised

features on action recognition task can be transferred into the action quality assessment

task. The experiments showed that not only can the learned pose representations be

applied on unseen view videos from the same training data, but they can also be used

in different domains.

The proposed approach can benefit in decreasing the costs of training for view-invariant

action understanding applications. As the learned view-invariant pose features can be

transferred into other domains, the existing multi-view datasets can be employed for

training. This removes the need for collecting a new multi-view dataset which is ex-

pensive and time-consuming. Furthermore, the proposed method allows assessing the

quality of human movement from RGB images alone which is particularly helpful in ap-

plications where capturing 3D skeletons is challenging, e.g. in healthcare rehabilitation

monitoring at home or in the clinic.

As in the pretext stage, the proposed model requires synchronised multi-view frames

to learn view-invariant 3D pose representations, future work can investigate extracting

view-invariant pose features from a single view or non-synchronized frames to allow

learning to become a simpler process for application to any suitable dataset.
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Chapter 7
Conclusion

This thesis has explored view-invariance in human movement assessment from ambigu-

ous 2D RGB images. This was investigated in the healthcare domain, for instance, ob-

serving subjects synthesising Parkinson’s symptoms when they perform specific actions,

such as walking or sitting-to-standing, to estimate an objective score for their level of

functional mobility. To accomplish this challenging task, this thesis focused predomi-

nantly on learning and analysing view-invariant (canonical) spatial or spatio-temporal

human pose features. In addition, as all existing human movement quality assessment

datasets are single-view, this thesis has introduced two multi-view datasets, SMAD and

QMAR, to demonstrate the performance of the proposed approaches, and QMAR is

publicly released.

All previous approaches in movement quality assessment are view-specific and cannot

operate on data coming from different camera viewpoints from training data. In addi-

tion, in healthcare applications, the proposed approaches are based on 3D skeleton data

since this data obtain richer information than 2D images. However, capturing accurate

skeleton data is challenging in in-the-wild scenarios as it requires specific hardware and

environmental settings.

This thesis began dealing with view-invariance by training a model on multiple views.

This was facilitated by developing a pose estimation approach that learns 3D human

pose features in the same canonical manifold space for different viewpoints such that

the extracted pose features can be employed directly for human movement assessment

without requiring normalization and dimensionality reduction intermediate steps.

The thesis then explored a human movement assessment approach that can operate on

arbitrary novel viewpoints at inference time without requiring to be trained on many
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viewpoints. In the video understanding domain (e.g. action recognition), most state-of-

the-art view-invariant approaches need at least two viewpoints for training. However, this

thesis introduced a view-invariant model that not only can be trained on multiple views

but is also able to tackle the view-invariance by training on only a single viewpoint.

Finally, this thesis investigated an unsupervised solution for the novel view human move-

ment assessment task. It proposed a self-supervised approach that learns view-invariant

3D pose representation where the proposed method does not rely on 3D joint annotation,

action labels, and camera viewpoint parameters for training. It showed that the view-

invariant unsupervised features can be applied directly for unseen views downstream

tasks such as human movement analysis and action recognition and they are capable to

be transferred into the other domains. However, most current unsupervised 3D pose es-

timation methods are view-specific and camera information and further processing steps

are required to extract view-invariant features from their view-specific output.

7.1 Findings and Limitations

This section reviews briefly the findings and limitations of each chapter of this the-

sis.

Chapter 3 described recording and details of two multi-view human movement assessment

datasets, SMAD and QMAR. It first presented SMAD a multi-modal dataset including,

RGB, depth, motion capture, and skeleton data. SMAD has been collected from 4 dif-

ferent views and through 19 healthy subjects that were trained to perform a turn-walk

action in both normally and with three types of abnormalities comprising Stroke, Parkin-

son, and short-limp. Then, to explore further the view-invariance in action analysis, it

introduced QMAR, which provides more participants, action types, and viewpoints than

SMAD. QMAR has RGB, depth, and skeleton data, and has been recorded through 38

subjects and from six distinct views. The participants were trained to perform turn-walk

and standing up and sitting down action types while simulating Parkinson’s and Stroke

ailments. Additionally, in QMAR, the movements have label that reflects the severity

of the abnormality. However, both datasets have been recorded in a stationary envi-

ronment which does not allow to examine the generalisation of the proposed methods

under different environments, so in all experiments, both training and testing sets were

selected from the same environment.

Chapter 4 developed a 3D pose estimation method to facilitate assessing the quality of

movements from non-skeleton data in the multi-view training scenarios. The proposed

method was trained to map all the simultaneous frames of the same scene captured
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from different views into the same pose vector in a manifold space. The inputs of

the network were body joint heatmaps and body-limb maps generated from 2D RGB

images, and the ground truth poses were produced by applying Diffusion Maps, which is

a manifold learning technique, on the motion capture data. The accuracy of the proposed

method and the efficiency of the estimated pose features for human movement assessment

both were examined on the SMAD dataset. The experiments showed that the proposed

method can extract the pose features well on single view data even though multiple

views are employed for training. However, it cannot be applied to novel viewpoints as

it has not been designed explicitly to tolerate the viewpoint variations in unseen view

data. Furthermore, although the method removes the need for 3D skeleton data during

inference, it still requires motion capture data for training.

To overcome the limitations of the proposed approach in Chapter 4, Chapter 5 explored

a method to be capable to assess the quality of human movements from novel viewpoints

while it is trained on only one or two views from RGB images. In the end-to-end proposed

network, first, a view-invariant spatio-temporal trajectory map is extracted for each body

joint, and then the relationship amongst the joint trajectories is exploited to estimate

a score for the quality of movement. The performance of the proposed view-invariant

network was examined on all four action types of QMAR (W-P, W-S, SS-P, and SS-S)

under cross-view and cross-subject protocols, and on all five action types of KIMORE

(Ex #1 to Ex #5) under a single-view training scenario. The experiments demonstrated

that the proposed method outperforms the baselines in all scenarios on average rank

correlation results. However, the method’s performance decreases significantly when

long-term occlusion happens since its accuracy heavily relies on the quality of the joint

heatmaps employed as input.

Finally, Chapter 6 shifted the focus on unsupervised and transfer learning. It developed

a self-supervised network that learns view-invariant 3D pose representation without rely-

ing on any 3D joint annotations and is trained by exploiting the intrinsic view-invariant

properties between simultaneous frames from distinct views, and equivariant properties

of augmented frames from the same viewpoint. The proposed method was trained on

NTU RGB+D, and evaluated for cross-view and cross-subject action recognition accu-

racy. Then, the view-invariant 3D pose features learned from NTU RGB+D and action

recognition, were transferred into the human movement assessment domain where their

efficiency was examined for cross-view, cross-subject and single-view movement qual-

ity assessment on QMAR and KIMORE. The experiments showed the benefits of self-

supervised learning. However, the proposed method requires synchronized multi-view

data in the pretext stage which limits the potential multi-view datasets that can be
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applied for training.

7.2 Directions for Future Works

This thesis focused on view-invariance in human movement assessment. The findings

of this thesis are initial explorations in this area. As such, there are several interesting

avenues for future work in view-invariance in movement quality assessment and the other

areas of action understanding field. Four of these directions are outlined bellow.

General Methods for Movement Quality Assessment – In Chapters 4 to 6,

all the proposed approaches are trained separately for different action types to learn

features that are related to a specific movement type. Future work could investigate the

development of a model to be trained on all movement types at the same time. Then, it

examines whether the model can still maintain a high accuracy on individual tasks, or

explores how the shared representation between different tasks can improve the method’s

performance on specific tasks.

Learning from Unsynchronized Multi-View Images – Chapter 6 benefits syn-

chronized multi-view frames to learn 3D view-invariant features. However, capturing

multi-view datasets recorded by multiple synchronized cameras is challenging and costly.

This also limits the number of potential existing multi-view datasets for training. For

instance, Ji et al. [59] introduce a large-scale multi-view dataset (UESTC) which has

recorded RGB-D videos with entire 360° view angles, but the multi-view sequences have

not been captured simultaneously. The dataset has been recorded by two cameras such

that one of them is fixed (frontal view) and the other moves to record the rest of the view

angels. Another potential venue is to develop an approach that while benefiting multi-

view training to learn the 3D view-invariant features, removes the need for synchronized

multi-view data.

Unsupervised Synthetic Multi-View Video Generation – To tackle view-invariance,

one solution is to generate synthetic multi-view videos. The current approaches, such

as [87, 141], require 3D pose and use graphical techniques to generate the synthetic

data. However, recent advances in Generative Adversarial Networks (GANs), Varia-

tional Auto-Encoders (VAEs), and Neural Radiance Fields (NeRFs) can be utilized to

produce realistic and diverse synthetic multi-view data with less or no supervision.

View-Invariance Beyond Movement Quality Assessment – The issue of view-

invariance, which causes the method’s performance to drop significantly when applied to

unseen view data, is not unique to area of human movement assessment. This issue is also
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significant in many other domains of the computer vision field, such as human action

localization, prediction, and human-object interaction. To tackle the view-invariance

in movement quality assessment, Chapters 4, 5, and 6 proposed approaches to extract

view-invariant spatial or spatio-temporal features for unseen view human movement

assessment. As the proposed methods are general and not task-related, they can be

adapted and applied to different applications. Therefore, another future direction could

be to explore adapting the proposed approaches in this thesis for other computer vision

tasks and examine their performance in the new domains.
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[1] J. Albert, P. Glöckner, B. Pfitzner, and B. Arnrich. Data Augmentation of Kine-
matic Time-Series from Rehabilitation Exercises Using GANs. In Proceedings of
the IEEE International Conference on Omni-Layer Intelligent Systems, pages 1–6,
2021. 18, 19

[2] B. Bah. Diffusion Maps: Analysis and Applications. 2008. 53

[3] R. Baptista, E. Ghorbel, F. Moissenet, D. Aouada, A. Douchet, M. André, J. Pager,
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Appendix A

Deviation of Equation for fPt(pt|p1, ..., pt−1) – It may be computed as

fPt(pt|p1, ..., pt−1) =
fPt(p1, ..., pt)

fPt−1(p1, ..., pt−1)
, (1)

where fPt(p1, ..., pt) =
∫
ΩSt

fPt,St(p1, ..., pt, s0, ..., st), Pt denotes {p1, ..., pt}, St denotes

{s0, ..., st}, and ΩSt refers to the possible values for St.

If the following Markovian assumptions are used

fPt(pt|p1, ..., pt−1, s0, ..., st) = fPt(pt|st), (2)

fSt(st|s0, ..., st−1) = fSt(st|st−1), (3)

then,

fPt,St(p1, ..., pt, s0, ..., st) = fPt(pt|p1, ..., pt−1, s0, ..., st)fPt−1,St(p1, ..., pt−1, s0, ..., st)

= fPt(pt|st)fSt(st|p1, ..., pt−1, s0, ..., st−1)

fPt−1,St−1(p1, ..., pt−1, s0, ..., st−1)

= fPt(pt|st)fSt(st|st−1)fPt−1,St−1(p1, ..., pt−1, s0, ..., st−1)

...

= fS0(s0)
t∏

i=1

fPi
(pi|si)fSi

(si|si−1),

(4)

and Equation 1 becomes

fPt(pt|p1, ..., pt1) =

∫
ΩSt

fS0(s0)
∏t

i=1 fPi
(pi|si)fSi

(si|si−1)∫
ΩSt−1

fS0(s0)
∏t−1

i=1 fPi
(pi|si)fSi

(si|si−1)
. (5)

In [98], it is assumed that there is only one acceptable value for St that satisfies the
constraints on the hidden state, i.e. the hidden state linearly increases during a normal
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sequence, and it is computed as

Ŝt = {ŝ0, ..., ŝt} = argmax
{s0,...,st}

fSt(s0, ..., st, p1, ..., pt)

= argmax
{s0,...,st}

fPt,St(p1, ..., pt, s0, ..., st)

fPt(p1, ..., pt)

= argmax
{s0,...,st}

fS0(s0)
t∏

i=1

fPi
(pi|si)fSi

(si|si−1).

(6)

Therefor, Equation 5 may be simplified as

fPt(pt|p1, ..., pt1) ≈
fS0(ŝ0)

∏t
i=1 fPi

(pi|ŝi)fSi
(ŝi|ŝi−1)

fS0(ŝ0)
∏t−1

i=1 fPi
(pi|ŝi)fSi

(ŝi|ŝi−1)

≈ fPt(pt|ŝt)fSt(ŝt|ŝt−1).

(7)
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