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Abstract 

Background: Genome-wide association studies (GWAS) in Europeans have robustly 
associated 111 loci with atrial fibrillation (AF) and 22 loci with stroke risk. However, the 
functional consequences of these associations have yet to be elucidated. Therefore, this thesis 
seeks to identify shared genetic effects between methylomic, transcriptomic and metabolomic 
traits to help improve our understanding of molecular mechanisms underlying stroke and AF.  
 
Methods: To investigate this I developed and applied a multiple trait colocalization pipeline 
using the Bayesian “moloc” method. Molecular traits were considered to be colocalized with 
AF or stroke if they had a posterior probability of association (PPA)>80%. In addition, to 
demonstrate that there was evidence that genetic susceptibility for AF was linked to stroke, a 
two-sample Mendelian randomization (MR) study was conducted. 
 
Results: In Phase I of the study, 23 AF and 11 stroke loci were found to colocalize between 
DNA methylation and circulating metabolites within the cis region. In Phase II of the study, 
eQTL data was integrated on the top findings from Phase I. Multiple CpG sites, gene expression 
and metabolites (mainly lipids and lipoproteins) were found to colocalize with AF and stroke, 
suggesting shared regulatory relationships between these intermediate phenotypes.  Of the 34 
prioritized loci, only the 16q22 region (harbouring the HP and ZFHX3 genes) colocalized with 
both AF and stroke traits. MR analysis suggested that genetic predisposition to AF increases 
risk of stroke, although there was some evidence for a reverse MR effect. 
 
Conclusions: This thesis demonstrates the application of multi-omics approach to discover 
genetic pathways linked to cardiovascular disease, and illustrates complexities around issues 
involving statistical power, directionalities of molecular effects, and tissue specificity. The 
moloc pipeline and framework developed could be applied to other diseases in the future and 
will become increasingly valuable as new molecular datasets are published.  

 



Acknowledgements 

I greatly appreciate the contributions of the following individuals, organizations and groups to 

the research work undertaken in this doctoral thesis: 

My PhD supervisors: Prof Tom Gaunt, Dr Josine Min and Prof Caroline Relton, for their 

guidance, support and imparted wisdom over the last four years. 

My father for the funding of my 4-year studentship.  

The ALSPAC families and participants. 

My colleagues in the MRC-IEU at the Bristol Medical School, in particular Dr Denis Baird, 

Dr Jie Zheng and Dr Thomas Richardson for their advice and support. 

My parents and family, for their endless support and encouragement throughout the four years. 

 

 

  



	

	

4	

Declaration 

I declare that the work in this thesis was carried out in accordance with the requirements of 
the University of Bristol’s Regulations and Code of Practice for Research Degree 
Programmes and that it has not been submitted for any other academic award. Except where 
indicated by specific reference in the text, the work is the candidate's own work. Work done 
in collaboration with, or with the assistance of others, is indicated as such. Any views 
expressed in this thesis are those of the author.  

 
 
Signed: ___________________    Date: _______________________ 
 

  



	

	

5	

Table of Contents 

Abstract	........................................................................................................................................................	2	

Acknowledgements	..................................................................................................................................	3	

Declaration	.................................................................................................................................................	4	

Table	of	Contents	......................................................................................................................................	5	

List	of	Tables	...........................................................................................................................................	11	

List	of	Figures	..........................................................................................................................................	13	

List	of	Appendices	..................................................................................................................................	15	

List	of	Acronyms	.....................................................................................................................................	16	

Chapter	1	 Introduction	.............................................................................................................	19	

1.1	 Background	to	the	genetics	of	common	diseases	.........................................................	19	

1.2	 Genetics	of	atrial	fibrillation	and	stroke	.........................................................................	21	

1.2.1	 Common	genetics	of	atrial	fibrillation	..........................................................................................................	21	

1.2.2	 Common	genetics	of	stroke	...............................................................................................................................	23	

1.2.3	 Shared	genetic	aetiology	of	atrial	fibrillation	and	stroke	.....................................................................	25	

1.3	 The	molecular	aetiology	of	complex	traits	.....................................................................	27	

1.3.1	 Epigenome:	DNA	methylation	..........................................................................................................................	28	

1.3.2	 Transcriptome:	gene	expression	.....................................................................................................................	29	

1.3.3	 Metabolome:	metabolite	levels	........................................................................................................................	30	

1.3.4	 Integrating	QTLs	to	understand	mechanisms	of	disease	......................................................................	31	

1.4	 Statistical	methods	to	investigate	shared	genetic	effects	between	traits	............	33	

1.4.1	 Method	for	colocalization	of	a	pair	of	traits	...............................................................................................	34	

1.4.2	 Colocalization	for	multiple	traits	.....................................................................................................................	37	

1.4.3	 Other	colocalization	methods	...........................................................................................................................	38	



	

	

6	

1.5	 Mendelian	randomization	for	causal	inference	............................................................	40	

1.5.1	 Mendelian	Randomization	.................................................................................................................................	40	

1.5.2	 Single	SNP	MR	(Wald	ratio)	to	link	QTLs	to	disease	SNPs	...................................................................	41	

1.5.3	 Combining	MR	and	colocalization	to	find	causal	molecular	phenotypes	......................................	42	

1.5.4	 Multi-SNP	methods	to	evaluate	causality	between	intermediate	traits	and	disease	...............	43	

1.6	 Overarching	aims	of	this	thesis	..........................................................................................	44	

Chapter	2	 Methods	.....................................................................................................................	46	

2.1	 Data	sources	..............................................................................................................................	46	

2.1.1	 Atrial	fibrillation	GWAS	summary	statistics	..............................................................................................	46	

2.1.2	 Stroke	GWAS	summary	statistics	....................................................................................................................	46	

2.1.3	 The	Genetics	of	DNA	Methylation	Consortium	(GoDMC)	mQTL	.......................................................	47	

2.1.4	 Avon	Longitudinal	Study	of	Parents	and	Children	(ALSPAC)	mbQTL	............................................	47	

2.1.5	 The	University	College-London	School-Edinburgh-Bristol	(UCLEB)	mbQTL	..............................	48	

2.1.6	 eQTLGen	eQTL	.........................................................................................................................................................	49	

2.2	 Methods	......................................................................................................................................	49	

2.2.1	 Moloc	study	design	(overview	of	Phase	I	and	II)	.....................................................................................	49	

2.2.2	 Two-sample	Mendelian	randomisation	.......................................................................................................	62	

Chapter	3	 Dissecting	the	molecular	aetiology	of	atrial	fibrillation	.........................	65	

3.1	 Introduction	..............................................................................................................................	65	

3.2	 Methods	......................................................................................................................................	68	

3.2.1	 Phase	I	–	moloc	of	methylation,	metabolite	and	AF	................................................................................	69	

3.2.2	 Phase	II	–	moloc	of	methylation,	gene	expression,	metabolite	and	AF	at	prioritized	loci	......	70	

3.2.3	 Sensitivity	analyses	on	moloc	probabilities	...............................................................................................	71	

3.3	 Results	.........................................................................................................................................	72	

3.3.1	 Phase	I	–	Identification	of	AF	loci	that	colocalized	with	DNA	methylation	and	metabolite	

traits.	 72	



	

	

7	

3.3.2	 Phase	II	–	Mapping	Phase	I	methylome	and	metabolome	findings	to	the	potential	causal	

gene(s)	for	atrial	fibrillation	...............................................................................................................................................	76	

3.3.3	 Sensitivity	analyses	on	moloc	probabilities	...............................................................................................	87	

3.4	 Discussion	..................................................................................................................................	92	

3.4.1	 Main	findings	............................................................................................................................................................	92	

3.4.2	 Strength	and	limitations	.....................................................................................................................................	95	

3.4.3	 Future	directions	....................................................................................................................................................	97	

3.4.4	 Conclusions	...............................................................................................................................................................	98	

Chapter	4	 Dissecting	the	molecular	aetiology	of	stroke	...............................................	99	

4.1	 Introduction	..............................................................................................................................	99	

4.2	 Methods	....................................................................................................................................	101	

4.2.1	 Data	sources	...........................................................................................................................................................	101	

4.2.2	 Phase	I	–	moloc	analysis	of	methylation,	metabolite	and	stroke	.....................................................	101	

4.2.3	 Phase	II	–	moloc	analysis	of	methylation,	gene	expression,	metabolite	and	stroke	at	

prioritized	loci	.........................................................................................................................................................................	102	

4.2.4	 Sensitivity	moloc	Phase	I	and	II	analyses	..................................................................................................	102	

4.3	 Results	.......................................................................................................................................	103	

4.3.1	 Phase	I	–	results	of	methylation,	metabolite	and	stroke	moloc	analysis	.....................................	103	

4.3.2	 Phase	II	–	Mapping	Phase	I	findings	to	the	potential	causal	gene(s)	for	stroke	.......................	109	

4.3.3	 Sensitivity	moloc	analyses	...............................................................................................................................	116	

4.3.4	 Colocalized	genes	inform	drug	discovery	..................................................................................................	118	

4.4	 Discussion	................................................................................................................................	122	

4.4.1	 Main	findings	..........................................................................................................................................................	122	

4.4.2	 Strengths	and	limitations	.................................................................................................................................	127	

Chapter	5	 Follow-up	analyses	of	the	16q22	locus	.........................................................	128	

5.1	 Introduction	............................................................................................................................	128	



	

	

8	

5.1.1	 HP	gene	.....................................................................................................................................................................	128	

5.1.2	 Previous	colocalization	studies	between	HP,	AF	and	stroke	.............................................................	130	

5.1.3	 Questions	to	be	addressed	in	this	chapter	................................................................................................	131	

5.2	 Methods	....................................................................................................................................	132	

5.2.1	 Conditional	analysis	to	find	the	independent	mQTLs	..........................................................................	132	

5.2.2	 Association	between	the	16q22	region	and	haptoglobin	protein	abundance	in	ALSPAC	....	133	

5.2.3	 Conditional	analysis	to	find	independent	pQTLs	within	the	16q22	region	................................	134	

5.2.4	 Pairwise	colocalization	analyses	between	AF	and	stroke	at	16q22	locus	..................................	134	

5.2.5	 Pairwise	colocalization	analysis	between	AF	and	stroke	on	SNPs	in	the	AF	top	hit	LD	block

	 135	

5.2.6	 Pairwise	Conditional	and	Colocalization	(PWCoCo)	analysis	of	AF	and	stroke	........................	136	

5.3	 Results	.......................................................................................................................................	137	

5.3.1	 Conditional	analysis	to	find	the	independent	mQTLs	in	the	16q22	region	................................	137	

5.3.2	 Identification	of	independent	SNPs	associated	with	haptoglobin	plasma	levels	in	ALSPAC

	 138	

5.3.3	 No	relationship	between	AF	risk	variants	and	haptoglobin	plasma	levels	.................................	139	

5.3.4	 Pairwise	coloc	between	AF	and	stroke	at	the	16q22	locus	................................................................	142	

5.3.5	 Pairwise	coloc	between	AF	and	stroke	on	SNPs	in	the	AF	top	hit	LD	block	...............................	142	

5.3.6	 PWCoCo	analysis	to	confirm	that	AF	colocalizes	with	stroke	at	the	16q22	locus	...................	145	

5.4	 Discussion	................................................................................................................................	147	

5.4.1	 Main	findings	..........................................................................................................................................................	147	

5.4.2	 Strengths	and	limitations	.................................................................................................................................	150	

5.4.3	 Future	directions	..................................................................................................................................................	151	

Chapter	6	 Mendelian	Randomization	analysis	between	atrial	fibrillation	and	

stroke	 152	

6.1	 Introduction	............................................................................................................................	152	

6.1.1	 Current	knowledge	of	AF	and	stroke	relationship	................................................................................	152	



	

	

9	

6.1.2	 Motivation	for	a	two-sample	MR	...................................................................................................................	154	

6.1.3	 Aims	...........................................................................................................................................................................	154	

6.2	 Methods	....................................................................................................................................	155	

6.2.1	 Instrument	selection	and	preparation	........................................................................................................	155	

6.2.2	 Outcome	lookup	and	harmonisation	of	data	............................................................................................	156	

6.2.3	 Instrument	strength	............................................................................................................................................	156	

6.2.4	 Two-sample	MR	....................................................................................................................................................	157	

6.2.5	 Reverse	MR	and	Steiger	analysis	to	evaluate	the	directionality	of	MR	effect	............................	157	

6.2.6	 Validation	analyses	to	replicate	AF	and	stroke	MR	effect	in	another	cohort	.............................	158	

6.2.7	 Statistical	tests	for	the	evidence	of	instrument	heterogeneity	and	directional	pleiotropy	.	159	

6.2.8	 Leave-one-out	sensitivity	analysis	...............................................................................................................	160	

6.2.9	 Phenome-wide	association	studies	(PheWAS)	of	outliers	.................................................................	161	

6.3	 Results	.......................................................................................................................................	161	

6.3.1	 Instrument	selection	and	outcome	lookup	...............................................................................................	161	

6.3.2	 MR	relationship	between	AF	exposure	and	stroke	outcome	............................................................	162	

6.3.3	 Reverse	MR	relationship	using	stroke	as	exposure	and	AF	as	outcome	......................................	166	

6.3.4	 Assessment	of	instrument	heterogeneity	and	pleiotropy	..................................................................	171	

6.3.5	 Outlier	exclusion	and	leave-one-out	sensitivity	analyses	for	the	reverse	MR	..........................	172	

6.4	 Discussion	................................................................................................................................	177	

6.4.1	 Main	findings	..........................................................................................................................................................	177	

6.4.2	 Strengths	and	limitations	.................................................................................................................................	180	

6.4.3	 Future	directions	..................................................................................................................................................	180	

6.4.4	 Conclusions	.............................................................................................................................................................	180	

Chapter	7	 Discussion	...............................................................................................................	182	

7.1	 Main	findings	...........................................................................................................................	182	

7.1.1	 Multiple	trait	colocalization	on	AF	...............................................................................................................	182	

7.1.2	 Multiple	trait	colocalization	on	Stroke	.......................................................................................................	183	



	

	

10	

7.1.3	 Follow-up	analyses	of	the	16q22	locus	......................................................................................................	184	

7.1.4	 Two-sample	MR	between	AF	and	stroke	...................................................................................................	185	

7.2	 Using	a	multi-omics	approach	to	identify	causal	genes	in	AF	and	stroke	..........	185	

7.3	 Biological	function	of	the	prioritized	genes	.................................................................	188	

7.4	 Shared	genetic	pathway	between	the	HP	gene	and	AF	and	stroke	.......................	191	

7.5	 Context-specificity	of	molQTLs	.........................................................................................	194	

7.6	 Strengths	..................................................................................................................................	195	

7.7	 Limitations	and	future	directions	....................................................................................	195	

7.8	 Main	conclusions	...................................................................................................................	196	

References	.........................................................................................................................................	198	

Appendix	............................................................................................................................................	247	

	

  



	

	

11	

List of Tables 

Table 1. Summary of existing integrating and colocalization approaches. ............................. 39	

Table 2. 15 plausible scenarios summarising sharing or not sharing of a likely causal variant 

among GWAS, methylation and metabolite traits. .......................................................... 56	

Table 3. 15 plausible scenarios summarising sharing or not sharing of a likely causal variant 

among GWAS, methylation and expression traits. .......................................................... 60	

Table 4. 52 plausible scenarios summarising sharing or not sharing of a likely causal variant 

among GWAS, methylation, expression and metabolite traits. ....................................... 61	

Table 5. Colocalized CpG sites and metabolites identified in the phase I of moloc analysis. 74	

Table 6. Colocalized combination of traits identified in the phase II of moloc analysis of AF.

 ......................................................................................................................................... 78	

Table 7. Known functional evidence for genes prioritized in moloc analysis of AF. ............. 86	

Table 8. CpG sites and circulating metabolites identified in the moloc analysis Phase I. ..... 104	

Table 9. Metabolites categories and names identified in the moloc analyses. ...................... 107	

Table 10. Genes, CpG sites and metabolites identified in the phase II of moloc analysis of 

stroke. ............................................................................................................................. 112	

Table 11. Known functional evidence for genes prioritized in moloc analysis of stroke. ..... 121	

Table 12. Genetic variants detected as independent mQTLs for cg03463523 by GCTA-COJO.

 ....................................................................................................................................... 138	

Table 13. Conditionally independent pQTLs identified in the 16q22 region by conditional 

analysis. .......................................................................................................................... 139	

Table 14. Pairwise colocalization evidence for AF and stroke in the 16q22 region. ............ 143	

Table 15. Counts of instruments at each step of the instrument selection process at two 

instrument thresholds in the main and validation MR analyses. ................................... 162	



	

	

12	

Table 16. MR estimates for five different methods at two instrument cut-offs in the main and 

validation study. ............................................................................................................. 164	

Table 17. Reverse MR estimates for different methods at two instrument cut-offs in the main 

study. .............................................................................................................................. 167	

Table 18. Reverse MR estimates for different methods at two instrument cut-offs in the 

validation study. ............................................................................................................. 168	

Table 19. MR Steiger results from steiger directionality test. ............................................... 170	

Table 20. MR-Egger intercept results and Q statistics from heterogeneity test on instruments.

 ....................................................................................................................................... 172	

Table 21. MR estimates for SNPs excluded in the leave-one-out sensitivity analysis. ......... 175	

 

	 	



	

	

13	

List of Figures 

Figure 1. Colocalization explanations with regards to pleiotropy (i.e., either horizontal or 

vertical). ........................................................................................................................... 36	

Figure 2. Schematic diagram displaying the causal relationship between instrumental variable 

(Gj), exposure (X) and trait outcome (Y). ........................................................................ 41	

Figure 3. Flowchart of thesis analyses. .................................................................................... 45	

Figure 4. Schematic illustration of four plausible scenarios in a genomic region with 10 variants 

in common across GWAS, methylation and metabolite traits. ........................................ 50	

Figure 5. Moloc analysis pipeline flowchart. ........................................................................... 51	

Figure 6. Illustrative diagram displaying the defined 2Mb window overlapping with mQTLs 

and mbQTLs in a GWAS region. .................................................................................... 53	

Figure 7. Moloc study design diagram. ................................................................................... 59	

Figure 8. Schematic diagram of SNP-AF and SNP-molecular phenotype associations used in 

moloc analyses. ................................................................................................................ 68	

Figure 9. Manhattan plot displaying genetic risk loci associated with AF. ............................. 69	

Figure 10. Locus association plot displaying a single association peak for AF, cg03463523 

CpG site and HP gene in the cis region. .......................................................................... 79	

Figure 11. An explanation for colocalization between multiple molecular traits and a complex 

trait. .................................................................................................................................. 81	

Figure 12. Examples of mQTLs that colocalize with an eQTL that has the same or opposite 

effects on nearby genes. ................................................................................................... 82	

Figure 13. Main moloc results compared to sensitivity moloc results in phase I and II. ........ 89	

Figure 14. Scatter plot illustrating correlation between posterior probability of association 

(PPA) of main moloc results and LD score of regions in Phase I. .................................. 91	



	

	

14	

Figure 15. Main Moloc results compared to sensitivity moloc results (imposing more stringent 

priors) in phase I and II. ................................................................................................. 117	

Figure 16. Regional association plots displaying the pQTL association peaks for two 

independent AF signals in the 16q22 cis region. ........................................................... 141	

Figure 17. Regional association plot depicting a shared single association peak for AF and 

Stroke in the 16q22 region. ............................................................................................ 144	

Figure 18. Regional association plots displaying the association peaks for AF and stroke 

GWASs in the 16q22 region. ......................................................................................... 146	

Figure 19. Scatterplot showing the MR slopes for the AF versus stroke relationship in the main 

and validation study. ...................................................................................................... 165	

Figure 20. Main MR study of the effect of stroke on AF. ..................................................... 167	

Figure 21. Validation MR study of the effect of stroke on AF. ............................................. 168	

Figure 22. Error plots of results from two-sample MR studies. ............................................ 169	

Figure 23. Main MR study and outlier exclusion analysis of the effect of stroke on AF. ..... 174	

Figure 24. Leave-one-out sensitivity analysis of the effect of stroke on AF. ........................ 176	

 

  



	

	

15	

List of Appendices 

Appendix A. The CpG sites lookups ..................................................................................... 247	

Appendix B. MR analyses results tables ................................................................................ 249	

Appendix C. SNPs failed the Steiger directionality analysis. ................................................ 250	

Appendix D. MR analyses results table ................................................................................. 251	

Appendix E. Table of outlier exclusion analysis in the main MR analysis. .......................... 253	

Appendix F. Phenome-wide association (PheWAS) analyses results. .................................. 254	

 

  



	

	

16	

List of Acronyms  

AF  Atrial fibrillation 

AFGen  Atrial Fibrillation Genetics  

ALSPAC  Avon Longitudinal Study of Parents and Children 

ARIES  Accessible Resource for Integrated Epigenomics Studies  

CAD  Coronary artery disease 

CES  Cardioembolic stroke 

CHD   Coronary heart disease 

CpG   Cytosine-phosphate-Guanine 
 
CVD   Cardiovascular disease 

DNAm  DNA methylation 

eQTL   Expression QTL 

eQTS   Expression quantitative trait score 

EWAS  Epigenome-wide association studies 

GCTA   Genome-wide complex trait analysis 

GoDMC  Genetics of DNA Methylation Consortium 

GTEx   Genotype-Tissue Expression Consortium 

GWAS  Genome-wide association study 

HRC   Haplotype Reference Consortium 

HVH   Heart and Vascular Health 

ICH  Intracerebral hemorrhage 

IS  Ischemic Stroke 

ISGC  International Stroke Genetics Consortium 

IV   Instrumental variable 



	

	

17	

IVW   Inverse-variance weighted 

LAS   Large-artery atherosclerotic stroke 
 
LD   Linkage disequilibrium 

LncRNA Long non-coding RNAs 

LOO   Leave-one-out 

MAF   Minor allele frequency 

MbQTL  Metabolite QTL 

Moloc   Multiple-trait colocalization 

mQTL   Methylation QTL  

MR   Mendelian randomization  

NINDS The National Institute of Neurological Disorders and Stroke 

NMR   Nuclear magnetic resonance 

PC   Principal component 

PP  Posterior probability 

PPA  Posterior probability of association 

PRS   Polygenic risk score 

pQTL   Protein QTL 

pQTS   Protein quantitative trait score 

PWCoCo Pairwise conditional and colocalization   

QTL   Quantitative trait locus 

SiGN  NINDS Stroke Genetics Network 

SNP   Single nucleotide polymorphism 

SNV   Single nucleotide variant 

SVS  Small-vessel stroke 



	

	

18	

TWAS  Transcriptome-wide association studies 

UCLEB The University College-London School-Edinburgh-Bristol consortium 

WR  Wald ratio 

 

 

 



	

	

19	

Chapter 1 Introduction 
 

1.1 Background to the genetics of common diseases  

Over evolutionary time the genome accumulates point mutations, or single-nucleotide variants 

(SNVs), at random to the genetic code. A SNV is when a nucleotide base pair (Adenine (A), 

Cytosine (C), Guanine, (G), Thymine (T)) in a person’s DNA is substituted by a different base 

pair. If a SNV reaches an appreciable frequency in the population, for example a minor allele 

frequency of greater than 0.01 (MAF > 0.01), whereby different variations of the alleles 

become fixed in the population, then it becomes classed as a single-nucleotide polymorphism 

(SNP).  The 1000 Genomes project1 mapped 84.7 million SNPs with a MAF>0.01 in the human 

genome. Many of these SNPs have been demonstrated to be associated with risk of common, 

complex diseases, suggesting the genomic regions harbouring these SNPs have pathogenic 

consequences1,2. Other consortia such as the Encyclopaedia of DNA Elements (ENCODE) 

project3,4 and the NIH Roadmap Epigenomics Mapping Consortium5 have generated atlases of 

functional elements enabling these SNPs to be linked to downstream transcriptional activity.  

 

It is well-established that disease-causing genetic variation contributes to pathophysiological 

phenotypic changes in traits and inherited predisposition to many diseases. Rare variants 

(MAF<0.01) conferring large effects (“penetrance”) have been identified in families with 

extreme phenotypes, for example early-onset forms of cardiovascular diseases (CVDs) using 

linkage analysis6,7. Common variants (SNPs) have been associated with common CVDs in the 

general population which fit the common disease, common variant hypothesis where many 

common variants (MAF>0.01) each with a small effect contribute to susceptibility of the trait. 
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In this model, in contrast to highly penetrant monogenic or rare genetic variants, involvement 

of a specific individual SNP in causing a disease is neither essential nor adequate8. GWAS 

where millions of SNPs are interrogated for association with a human complex trait, have 

successfully mapped many variants associated with common diseases8,9,10. The GWAS design 

is based on linkage disequilibrium (LD) between SNPs that are genotyped and causal variants 

that are ungenotyped. The ungenotyped variants can be imputed with reference panels such as 

Haplotype Reference Consortium (HRC)11 or 1000 Genomes Project12.  

 

SNPs which are associated with disease have the potential to identify molecular mechanisms 

for a disease, which will help to give a deeper understanding of molecular mechanisms and 

could help to identify potential drug targets for therapeutic intervention. However, 

interpretation of GWAS loci is often challenging mainly because of the genomic correlation 

structure known as linkage disequilibrium (LD)13, which often causes ambiguity in identifying 

the true causal variants driving the association. A potential solution is to prioritize the SNPs in 

the region which can be mapped to the function of genes.  However, this approach can also 

lack resolution if multiple genes are in LD within the genomic region14.  

 

A major challenge for finding the causal SNP is that many of the disease risk variants identified 

by GWASs fall inside non-coding regions so the mechanism of action is often unclear.  Non-

coding regions include introns, intergenic sequence and non-coding RNAs such as microRNAs 

and long non-coding RNAs15, all which have functional roles in disease but through different 

molecular mechanisms16. Non-coding variants are significantly enriched within the functional 

elements such as enhancer and promoter elements, DNase I hypersensitive regions, chromatin 

marks and transcription factor binding sites17,16 , leading to the conclusion that the SNP effects 
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are likely to be mediated through regulation of gene expression18,19. However, for many SNPs 

it is unknown which genes they regulate, which cell types they act within, and what molecular 

pathways are involved. This has not been comprehensively examined due to limited availability 

of molecular datasets20,21 to test this on, for example, to integrate GWAS loci with expression 

data requires expression data from disease-relevant cell types and tissues which often have 

limited sample size making drawing reliable conclusions challenging. Instinctively, genes 

situated in nearest proximity to the GWAS associated hit may seem to make the most promising 

causal genes, but this has been demonstrated often not to be the case22,23.  

1.2 Genetics of atrial fibrillation and stroke 

Cardiovascular disease (CVD) affects more than 80 million people in the US. CVDs include a 

variety of disorders such as diseases of the circulatory vascular system, the heart’s electrical 

system, the myocardium and congenital heart disease (CHD)24,25. The highly prevalent CVDs 

including atrial fibrillation (AF), coronary artery disease (CAD), hypertension, stroke and heart 

failure (HF), have complex pathologies, indicative of the interaction between genetic and 

environmental factors. In this PhD thesis, I focus on further understanding the molecular 

mechanisms explaining two CVDs: AF and stroke.  

1.2.1 Common genetics of atrial fibrillation  

AF arises as a result of chaotically firing of the electrical impulses from different places in the 

atria (the hearts top two chambers). AF is the most common cardiac arrythmia (sustained 

irregular heartbeat) affecting more than 33 million individuals globally26. The prevalence of 

AF was estimated to be from approximately 2.7 to 6.1 million in the US in 2010 and it is 

calculated to increase to 12.1 million in 2030 in the US27. AF is associated with an increased 
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risk of major complications such as mortality28,27, HF29, myocardial infarction (MI)30, CAD31 

and ischemic stroke (IS)32,33,34,35. Anticoagulation treatment can reduce the risk of death from 

stroke36.  

 

The heritability of AF, particularly early onset AF demonstrates a common, complex 

disease37,38.  A study on Danish monozygotic and dizygotic twins estimated the twin heritability 

of AF to be 62%39. Individuals with first-degree relatives that suffered from AF had around 

40% increased hazard (after adjusting for AF clinical risk factors)40. The contribution of genetic 

factors in AF pathogenesis has been revealed by the detection of both common and rare variants 

in individuals with AF35,41,42,43,44. A study conducted by Weng et al showed the overall 

estimation of narrow sense heritability for AF explained by both common and low frequency 

variants to be 22.1% with small proportion attributable to rare variants35. This study estimated 

20.4% was explained by common variation (MAF>5%) whereas the rare variation (MAF 1-

5%) only explained 1.7% of the AF heritability. Atrial remodelling, changes in atrial 

activity45,46,47,48 and variable penetration caused by defects in rare genes49 are the potential 

mechanisms suggested to be involved in risk of developing AF in carriers of common genetic 

variation. Candidate gene-based association analyses and genome-wide association studies 

(GWAS) have discovered a number of common genetic variants showing predisposition to the 

risk of AF50,51. A multi-ancestry GWAS meta-analysis of AF in cohorts of more than half 

million individuals detected 97 loci associated with AF52. To date, the largest meta-analysis of 

GWAS studies (n=1,030,836) for AF has discovered 142 independent risk variants associated 

with AF in 111 genomic regions41. The genome-wide heritability of AF explained by all 

common genetic variation captured in this study was estimated 11.2%. 4.6% of AF heritability 

was calculated to be explained by the AF-associated variants41. The majority of AF-associated 
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SNPs have been found within intronic or intergenic regions of the genome. For example, the 

PITX2 locus on chromosome band 4q25 is the most strongly associated locus and associations 

at this locus have been replicated across multiple AF GWAS studies53,41,52. The risk variants 

located proximal to the PITX2 gene increase the risk of AF up to seven-fold54. Studies in a 

mice model showed that insufficiency of Pitx2, the nearest proximal gene to the AF variant 

rs2200733, was linked to an atrial arrhythmogenesis55. A study using CRISPR/Cas9 editing 

technology identified functional evidence for the PITX2 gene and revealed that long-range 

interaction of Pitx2c (which regulates transcriptional activity) with the gene’s promoter 

decreases susceptibility to AF56.  AF can also be caused by monogenic mutations, whereby 

some young patients with inherited diseases such as channelopathies or cardiomyopathies 

caused by monogenic mutations suffer from AF.  Rare form of familial AF has been reported 

to be caused as a result of mutations in atrial natriuretic peptide57, nuclear pore and potassium 

channel genes42. 

1.2.2 Common genetics of stroke  

The brain needs to be supplied with oxygen-rich blood in order to be metabolically active. The 

functions of brain cells are severely influenced by decreased blood flow under 10ml/100g per 

minute while neurons do not survive long under 5ml/100g per minute level58. If the blood 

supply to the brain disrupts for a few minutes, the hypoglycaemia and hypoxia caused by this 

interruption results in brain tissue infarction or stroke.   

 

Stroke is the second leading cause of lifelong disability and death among individuals over 60 

years worldwide59,60,61. Stroke is a clinical condition characterized by a severe focal 

neurological injury. There are two types of stroke. Ischemic stroke (IS) which mainly happens 

as a result of infarction in the brain caused by inadequate cerebral blood supply due to arterial 
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blockages62. IS (also referred to as brain infarction or cerebral ischemia) accounts for 

approximately 85% of all cases of stroke63,64.  The etiological subtypes of IS include 

cardioembolic stroke (CES), large-artery atherosclerotic stroke (LAS) and small-vessel stroke 

(SVS)65. The other type of stroke is hemorrhagic stroke or intracerebral hemorrhage (ICH) 

which is caused by rupture of a blood vessel and intracerebral bleeding. Approximately 15% 

of stroke has been attributed to ICH.  SVS also contributes to the cause of ICH.    

 

IS and ICH share similar risk factors. Hypertension in particular is an important ICH risk factor 

which is also involved in atherosclerotic disease, a leading cause of IS66. Susceptibility to IS 

as a complex disease may be affected by several related cardiovascular traits or risk factors 

including AF, CAD, systolic blood pressure (SBP), diastolic blood pressure (DBP), and HF as 

well as metabolomic traits such as levels of high-density lipoprotein (HDL) and low-density 

lipoprotein (LDL) cholesterol which show evidence of shared genetic loci with IS67,41. 

Moreover, hyperlipidemia is an important IS risk factor which results from intracranial and 

extracranial vessel atherosclerosis68. AF has been identified as a risk factor for development of 

CES in particular, which is the severe subtype of IS69. About 20-30% of patients over age 80 

with an IS have already been diagnosed with AF70,71. Furthermore, elevated inflammatory 

biomarkers have been causally linked to higher risk of AF by a multi-directional MR study72. 

This MR study also causally linked the genetic predisposition to AF to risk of CES72. 

 

Mendelian (single-gene) disorders have been found to be associated with stroke. Such disorders 

include CADASIL (Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and 

Leukoencephalopathy), an Autosomal Recessive equivalent (CARASIL)73 and arterial 

tortuosity syndrome74. Missense mutations within the NOTCH3 gene (located at the 19q12 
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locus) are associated with CADASIL, a vasculopathy of small vessel75,76.  In individuals with 

parental and family history of IS, the risk of stroke increases by 30% in mutations 

carriers77,78,79. Monogenic mutations in genes which are involved in coagulation have also been 

found to be linked to IS80,81,82.  

 

GWASs have estimated the heritability of IS subtypes as 32.6% for CES, 40.3% for LAS, and 

16.1% for SVS83,84,85. Previous GWASs in European ancestry samples have discovered genetic 

variants in 10 genomic regions associated with CES86,87, LAS88,89,90, SVS subtypes91,92 and 

ICH93 including some loci found to be linked to any stroke91 or more than one subtype of 

IS94,90,95,96,67. For example, a study by the EuroCLOT consortium showed associations of the 

genetic variant, rs505922 (located in the ABO gene which defines blood group) with 

coagulation protein levels (such as factor VIII and von Willebrand factor) in LAS and CES but 

not the SVS subtype of IS96. Another study comprising METASTROKE cohorts identified 

associations between the genetic variants in PITX2 and ZFHX3 and CES subtype, and HDAC9 

and LAS subtype97,98. Common genetic variants within the 9p21 region have been linked to the 

risk of IS, specifically to the LAS subtype99,98. A large-scale multi-ancestry GWAS meta-

analysis of stroke in a sample of 521,612 individuals detected 32 loci associated with all stroke 

and its etiologic subtypes67.  In the same study on the GWAS conducted in 446,696 European 

individuals a total of 22 independent risk variants were detected. The risk variants explained 

up to approximately 2% of the phenotypic variation, which will help us understand the 

pathophysiology of this highly heterogeneous disease more deeply.  

1.2.3 Shared genetic aetiology of atrial fibrillation and stroke 

Evidence at the phenotypic level suggests that AF and IS may share a common etiology.  

Studies revealed that 20-30% of individuals with IS have already been diagnosed with AF70,71. 
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Moreover, AF patients can also experience depression100, reduced quality of life101,102, 

cognitive impairment and lesions in the white matter of their brain103.  CES occurs mainly as a 

result of AF, is the most severe IS subtype, represents 25% of IS cases and its risk increase by 

age. Patients who suffer from AF have been reported to have a 3 to 5-fold increased risk of 

developing IS and approximately 25-30% of all IS cases arise from cardioembolism104,105.  

Some of the AF risk variants have been also found to be associated with IS and CES, likely 

because of asymptomatic or silent AF106,107,108. 

 

AF and IS have previously been found to share two loci in common. The PITX2 and ZFHX3 

loci are located on chromosome band 4q25 and 16q22 respectively and were originally 

identified as the two top loci for AF97,87. PITX2 encodes a transcriptional regulator which 

contributes to sinoatrial node development46  and regulation of genes involved in ion transport 

and intercalated disc structural remodelling109; ZFHX3 encodes a transcriptional factor 

involved in atrial arrythmia and remodeling110.  A GWAS study in an Icelandic cohort revealed 

that genetic variants conferring high risk for both AF and IS were particularly SNPs in these 

loci which also showed strong associations with the CES subtype97. Moreover, the associations 

of the PITX2 and ZFHX3 AF-associated gene variants with the CES subtype have been 

identified and replicated in GWASs97,107,87,67. 

  

Pulit et al111 used AF Genetics (AFGen) consortium AF GWAS data112 along with NINDS-

Stroke Genetics Network (SiGN) consortium (AF in cardioembolic stroke) cohort data90 and 

found that SNP associations between these two cohorts are highly correlated even when SNPs 

within PITX2 and ZFHX3 loci were removed. This study also demonstrated that 23.1% of the 

heritability in risk of CES is explained by genetic risk factors for AF. Polygenic risk score 
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(PRS) for AF was shown to be associated with cardioembolic IS after controlling for AF 

clinical risk factors111. Indeed, the genetic susceptibilities to the risk of both AF and CES are 

likely to contribute as part of a complex genetic predisposition8. 

 

Furthermore, genetic loci associated with subtypes of IS have also been implicated in its related 

vascular risk factors including AF, hypertension, CAD, formation of carotid plaque, venous 

thromboembolism (VTE) and lipid levels. Risk loci associated with AF (16q22 and 4q25) 97,87, 

blood pressure (6p21, 12q24, 7p21), CAD (9q34, 12q24, 7p21, 9p21, 19p13 and 4q31), LDL 

cholesterol levels (9q34 and 19p13), HDL cholesterol levels (12q24), formation of carotid 

plaque113 (4q31 and 11q22) and neuro-inflammation (1p13) have been found to have genetic 

overlap with loci for stroke in a genetic risk score (GRS) association analysis conducted by 

Malik et al67. Two loci for white-matter hyperintensities (WMH)114 (1q22 and APOE) have 

also been linked to ICH115,116. The genetic influences at the 9q34 (ABO) and 12q24 (SH2B3) 

loci have been found to be shared between IS subtypes67. It is possible that these loci might 

therefore be acting through a common biological mechanism, for example, by influencing 

atheroma, pathways of coagulation, and arterial thrombosis, by altering or increasing the risk 

of stroke risk factors such as AF (leading to blood clot) and hypertension85.  

1.3 The molecular aetiology of complex traits 

Common diseases have a complex molecular aetiology involving multiple molecular 

phenotypes across a number of tissues in the human body. In this thesis I consider the 

interaction between the methylome, transcriptome and metabolome to better understand the 

molecular pathways underlying AF and stroke risk. 
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1.3.1 Epigenome: DNA methylation 

Methylation of DNA is a process in which a methyl group added to the CpG dinucleotide 

sequence typically leads to a silencing of genetic information (gene transcription), which can 

occur by inhibition of transcription factors (TF) binding to gene promoters or recruitment of 

DNA binding proteins that affect chromatin remodeling117,118.  DNA methylation is therefore 

an epigenetic mark that plays a role in controlling many cellular processes including the 

regulation of gene expression, differentiation and maintaining genomic stability119. Hence, 

DNA methylation in response to perturbations in the environment can change disease risk120, 

and this in combination with broad role across biological systems makes DNA methylation 

important to consider when investigating the aetiology of common diseases. Genetic effects on 

cytosine methylation are typically estimated by comparing CpG methylation levels in 

individuals with different genotypes at a suspected regulatory locus, an approach termed 

methylation quantitative trait locus (mQTL) mapping. A number of mQTL studies have 

explored the correlation between genotype and DNA methylation levels mainly in 

blood121,122,123,124. A few studies have shown mapping of cis (local) or trans (distal) mQTLs 

across multiple tissues125,126. A number of mQTLs have also been demonstrated to be linked 

with changes in gene expression levels (in other words, they are also classified as expression 

QTLs or eQTLs)121,127,128.  

 

The effects of DNA methylation are assumed to be mediated by their impact on gene 

expression. Some studies have shown variation in the methylation of CpG sites located at the 

promoter regions is associated with higher expression of several genes129. More recent 

published studies have revealed a more complex situation, with both negative and positive 

associations between gene expression and DNA methylation traits in relation to cardiovascular 
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diseases such as CAD and IS130,131,121,127,132,125. This is compatible with a probable shared 

genomic regulation of DNA methylation and gene expression, and indeed several studies have 

evaluated the overlap in genomic regulation of expression and methylation in humans121,133,134. 

 

Epigenome-wide association studies (EWAS) have identified the association of DNA 

methylation variation at thousands of CpG sites with complex traits135. Particularly relevant to 

the work in this thesis are a whole blood EWAS study of AF in the FHS cohort136 and an EWAS 

of IS137 which has identified differentially methylated CpG sites associated with IS within IS 

genetic risk loci (including 16q22 locus). The 16q22 locus is involved in angiogenesis, 

inflammation, glycolysis pathways and lipid metabolism137. A number of CVDs have been 

reported to be correlated with defects in the pattern of DNA methylation from peripheral 

blood117,138,139,140,141,142. For example, one study has revealed that the DNA methylation 

patterns of patients with CAD can distinguish between those with and without HF143. 

Moreover, variability of methylation CpG sites or differential methylation (i.e., hyper and hypo 

methylated CpG sites) has been observed between different cardiovascular tissues of CAD 

patients144. 

1.3.2 Transcriptome: gene expression 

The transcription of genomic sequence into ribonucleic acid (“gene expression”) is a 

fundamental part of all human systems and biological processes and is extremely important to 

the development and progression of disease.  A large number of SNPs have been identified to 

be strongly associated with expression levels of protein-coding ribonucleic acid (RNA) (mature 

messenger RNA (mRNA)) and non-coding RNAs (e.g., long non-coding RNAs; lncRNAs). 

These expression-associated SNPs are known as expression quantitative trait loci (eQTLs), and 

have been identified in a number of different cell types and tissues145,146,147,148,149. It has been 
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reported that mRNA abundance of almost all genes is associated with one or more genetic 

variants146,149,150. Transcription levels can be modified by either cis (SNPs proximal to the 

gene) or trans (SNPs distal to the gene, often on other chromosomes) eQTLs. A typical 

definition used in many studies identifies cis eQTLs as those located on the same chromosome 

and within 1Mb physical distance from either side of a gene transcript start site (TSS). By the 

same definition, trans eQTLs are located more than 1Mb distant from the regulated gene or on 

a different chromosome151. Studies have found eQTLs to be highly enriched among complex 

disease risk loci149,146,152, suggesting that disease GWAS variants often drive their associations 

by influencing gene regulation. 

 

Previous studies to explore the mechanisms underpinning eQTL associations uncovered that a 

large proportion of eQTLs influence the binding of transcription factors (TF) to control gene 

expression153,154,155,156. It has been reported that gene expression levels may be changed through 

alterations in chromatin function at promoters or enhancers157,158,159,17 and some studies have 

identified genetic variants that influence the function of chromatin3,4,160 by analyzing inter-

individual variation in DNase I hypersensitivity, an indicator of chromatin accessibility17. 

Furthermore, disease-associated SNPs identified by GWASs are highly enriched and mapped 

within regions of active chromatin in relevant cell types16,161. 

1.3.3 Metabolome: metabolite levels 

Circulating metabolites (including blood lipids) are another type of intermediate phenotype 

which is located more distal to the genome in pathophysiological pathways than traits such as 

DNA methylation and gene expression. Metabolites are the products of metabolic processes or 

metabolism162,163 and may contribute to regulatory processes of gene expression and protein 

abundance and cellular activity164,163,165. Particular classes of metabolites can be quantified and 
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identified using either high-throughput nuclear magnetic resonance (NMR) spectroscopy 

platform (a targeted method)166 or mass spectrometry (MS)167. Although MS technology 

provides wide metabolite coverage, usage of NMR platform is more appropriate for large-scale 

studies as it is cheaper and can also quantify lipoproteins which MS cannot. In parallel with 

circulating metabolites (including plasma cholesterol, plasma triglycerides (TG), low-density 

lipoprotein (LDL), high-density lipoprotein cholesterol (HDL)), which have been recognized 

for their correlation with CVDs such as atherosclerosis, CAD and MI168,169,170, inflammation is 

another known factor involved in pathogenesis. For example, mechanisms of lipid-induced 

inflammation response in atherosclerosis have also been connected to MI progression171,172.  

 

Genetic variants that influence circulating blood metabolite levels (also called metabolite 

quantitative trait loci or mbQTLs) have been identified in several studies173,174,175 (including 

Avon Longitudinal Study of Parents and Children (ALSPAC) and The University College-

London School-Edinburgh-Bristol  (UCLEB) mbQTLs – unpublished data). Recently, genetic 

control of more than 249 metabolic biomarkers has been released and studied in blood samples 

of 130k from 500k participants in UK Biobank using Nightingale’s biomarker profiling 

technology176,177.  Several studies have linked elevated levels of lipoprotein(a) to increased risk 

of atherosclerosis and stroke174,178,179,180,181. 

1.3.4 Integrating QTLs to understand mechanisms of disease 

1.3.4.1 DNA methylation and gene expression 

eQTLs are frequently mapped to regulatory elements such as chromatin accessibility, DNase I 

hypersensitivity and histone modifications indicating coordinated epigenetic effects are likely 

to have a role in regulating gene expression182,159,21,183,184. For example, eQTLs are likely to act 

through the disruption of TF binding sites to control gene expression182,159,183,184. Information 
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on genetic variation associated with levels of DNA methylation and gene expression have been 

incorporated with disease and complex traits to find overlaps between mQTLs, eQTLs and 

trait-associated variants23,185,186,187,22,188. For example, Richardson et al integrated epigenetic 

data with cardiovascular traits, and found a putative causal role of DNA methylation at CpG 

sites (enriched in gene promoter regions and histone marks) on cardiovascular disease risk188.  

Follow-up analysis combining these loci with genetic information on gene expression data also 

revealed evidence of an influence of these variants on gene expression levels. 

 

1.3.4.2 Gene expression and metabolite 

Integrating genetic information on genome, transcriptome and metabolome has mapped the 

interaction of multiple genes whose expression is involved in immune activity with serum 

circulating metabolites, such as amino acids, fatty acids, lipids and lipoprotein subclasses, 

providing evidence for a likely contribution of products of these genes in metabolic 

inflammation189. Studies have also linked levels of acylcarnitine and amino acids to metabolic 

diseases in adults190,191. Integrating complex trait-associated SNPs with expression QTL data 

in blood mononuclear cells along with genetic data on metabolite levels revealed evidence for 

a putative causal role for genes which may regulate metabolism187.  Moreover, some studies 

have revealed that a large fraction of genetic variants associated with circulating metabolite 

concentrations (mbQTLs) were also cis-eQTLs192,193.  

 

1.3.4.3 DNA methylation and metabolite 

There is considerable evidence that supports the role of epigenetic mechanisms of DNA 

methylation in the regulation of metabolic traits and 

diseases194,195,196,197,198,199,200,201,202,203,204,205. While, these studies have underlined the 
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replication and overlap of CpG sites identified in cardiometabolic traits, the complete causal 

mechanisms between DNA methylation and circulating metabolites is unclear and needs to be 

elucidated. For example, some studies have shown that most of the putative causal variation in 

DNA methylation may be a consequence of alteration in circulating metabolites levels rather 

than a cause of it203,206,207,208,209,210. Studies which have assessed the correlation between DNA 

methylation at CpG sites and circulating metabolites, have detected several loci associated with 

complex diseases208,211. Recently a large EWAS of DNA methylation from leukocyte and 226 

serum metabolites (mainly lipid-related metabolites) has identified 161 CpG-metabolite 

associations (including fatty acids and lipoproteins). This study also found a link between five 

metabolite-associated CpG sites and alteration of gene expression levels in adipose tissue and 

blood and showed that methylation of metabolite-associated CpG sites correlated with 

expression of genes, obesity and MI212. 

1.4 Statistical methods to investigate shared genetic effects between 

traits 

Loci identified by GWAS are difficult to interpret due to LD and the fact that most complex 

trait-associated SNPs are located in non-coding regions of the genome. Performing lookups of 

GWAS SNPs in eQTL databases to find overlaps (where the GWAS SNP also associates with 

gene expression) is unreliable due to confounding by LD.  It also appears that causal genes are 

not necessarily the closest genes22,23. Moreover, a LD “block” (region of high LD) in the 

genome might contain multiple genes and the locus of interest might have a cell type-specific 

or tissue-specific effect requiring cell type specific data (which might not have sufficient 

sample size). These challenges have led to the development of advanced statistical methods to 

help us better understand regulatory mechanisms, and potentially uncover new causal genes.  
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Several approaches have been developed to integrate eQTL and disease GWAS data. 

Description of the various integrating and colocalization approaches is shown in Table 1.  For 

example, transcriptome-wide association studies (TWAS)213,214,215 use genetically predicted 

gene expression to identify differentially expressed genes associated with the trait. 

PrediXcan214 is a method for integration of eQTL and GWAS studies in order to prioritize 

candidate causal genes. This method detects the statistical associations between imputed 

expression of a gene (using eQTL) and the trait. GWAS individual-level data is used in the 

application of PrediXcan and GWAS summary-level data is employed in the application of S-

PrediXcan215. TWAS approach is not used in my thesis, rather I am concerned with 

identification of colocalization between intermediate molecular QTL and GWAS variants at a 

genomic locus. Genetic colocalization methods (also detailed in Table 1) have been developed 

to test whether association signals for different traits map to the same causal variant and thereby 

can be postulated to have a functional connection. In the following sections, I describe in detail 

different approaches to colocalization and the “moloc” multi-trait colocalization method216 I 

used in this thesis to determine shared regulatory effects at AF and stroke GWAS loci. I also 

describe the use of MR217,218,219 to infer potential causal relationships between traits. 

1.4.1 Method for colocalization of a pair of traits 

Coloc is a Bayesian colocalization approach to elucidate if the observed overlap between a pair 

of traits is due to a shared causal regulatory effect220,221. This approach has three key 

assumptions: (i) that the causal association signal is included in the set of common SNPs 

between both datasets, either well imputed or directly genotyped. In the absence of the causal 

variant, the power of detecting a common SNP will be decreased depending on the LD between 

the causal variant and other variants included in the model. (ii) that there is at most one causal 
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genetic variant for each trait in the genomic region. If multiple causal SNPs are present for 

each trait at the given locus, coloc is unable to detect colocalization of the primary association 

signal with other traits independent of secondary and additional signals. (iii) that the LD 

patterns and the allele frequencies are identical across independent studies216. Of note, the coloc 

approach is not sufficient to distinguish cases where apparent pleiotropic effects are causally 

related (‘vertical pleiotropy’) from those where the same causal association signal is 

influencing both molecular and complex trait via independent biological pathways (‘horizontal 

pleiotropy’) (Figure 1). 

Coloc220 computes posterior probabilities for each of 5 hypotheses: There is no association 

signal in the given region for either the GWAS phenotype or gene expression (H0), there is 

only one association signal for gene expression in the given region (H1), there is only one 

association signal for GWAS phenotype in the given region (H2), there are two distinct causal 

association signals in the given region for gene expression and GWAS phenotype (H3), There 

is one single (shared) causal association signal for both gene expression and GWAS phenotype 

in the given region (H4). Hypothesis 4 gives a posterior probability (PP4) of the presence of a 

single shared causal variant in a region which helps to prioritize the associated gene as 

potentially involved in the GWAS phenotype.  
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When a genetic variant (robustly associated with both molecular trait and complex trait (dependent of both traits)) is reliably shared 
between both molecular trait (i.e. DNA methylation, gene expression, protein and metabolite) and complex trait (i.e. AF), we postulate 
that there are four possible hypotheses that may explain this  is pleiotropy (either horizontal or vertical)

1. Colocalization 

Molecular trait Complex trait

Shared SNP
Molecular trait

1.1 Vertical pleiotropy 

Complex trait

Complex trait

Molecular traitDistinct SNP 

LD

1.2 Horizontal pleiotropy

2. Linkage

Shared SNP Complex trait Molecular trait

B. Reverse causality 

A. Causality  

Shared SNP

GWAS SNP

1. Colocalization is pleiotropy (either horizontal or vertical)

Figure 1. Colocalization explanations with regards to pleiotropy (i.e., either horizontal or 
vertical). 
Explanation 1.1– Vertical pleiotropy (A) – Causality: A shared variant influences complex trait 
risk through changes in levels of the colocalized molecular phenotype at a locus; (B) – Reverse 
causality: A shared variant influences complex trait risk via biological pathways other than 
through the colocalized molecular phenotype (i.e., downstream effects of disease on 
intermediate phenotype levels). Explanation 1.2 – Horizontal pleiotropy: A shared variant 
affects both molecular phenotype levels and complex trait risk by two independent molecular 
pathways. Explanation 2 – A GWAS variant that affects the complex trait is in LD with another 
distinct variant which regulates changes in levels of the molecular trait (i.e., confounded by 
LD). Colocalization can distinguish explanation 2 from explanation 1.1 or 1.2 but, can’t 
distinguish explanation 1.1 from 1.2. 
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1.4.2 Colocalization for multiple traits 

Coloc can be applied to test the colocalization of just two traits, however, in 2018 a technique 

called Multiple-trait-colocalization (Moloc)216 was reported which can investigate shared 

regulatory effects across multiple traits at GWAS risk loci. Moloc extends the coloc framework 

(posterior calculation) for integration of summary statistics of multiple traits to 

comprehensively estimate joint probabilities that a single association variant is causal across 

all traits tested. Moloc has more statistical power and better resolution for multiple traits, as it 

can evaluate all combinations jointly rather than carrying out a series of pairwise colocalization 

analyses. Moloc uses a Bayesian statistical framework to estimate the posterior probability of 

association (PPA) that multiple intermediate molecular traits and a complex trait share a single 

causal genetic variant. The PPA for each of 15 hypotheses (H0...H14), combining three traits 

is computed as a ratio: 

 

𝑃(𝐻$|𝐷)
𝑃(𝐻(|𝐷)

= *
𝑃(𝐷|𝑆)
𝑃(𝐷|𝑆(),∈,!

	× 	
𝑃(𝑆)
𝑃(𝑆()

 

𝑃(𝐻$|𝐷)
𝑃(𝐻(|𝐷)

=0𝜋2		
2∈$

*𝐵𝐹5,2

7

589

 

 

where 𝑃(𝐻$|𝐷) is the probability of the data D for each hypothesis h, 𝑃(𝐻(|𝐷) is the likelihood 

of baseline hypothesis of no association with any trait 𝐻(, BF5,2 are the Bayes factor of a SNP 

among the traits of interest indexed in s and the prior probabilities that SNP i is the causal 

variant under a particular model are p.  
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1.4.3 Other colocalization methods 

Other eQTL-GWAS colocalization approaches (Table 1) such as regulatory trait concordance 

(RTC)222, Sherlock223, QTLMatch224, Coloc220, eCAVIAR225, enloc226 can be applied to detect 

genes whose expression is under influence of the same causal genetic variants underlying 

GWAS association. Both RTC and Sherlock (a Bayesian statistical framework) adjust for the 

LD structure to detect the common causal signal in both studies. QTLMatch224 is a method 

where the colocalized variant arises from co-occurrence or causal relationship between GWAS 

and eQTL variants. eCAVIAR225 (eQTL and GWAS Causal Variant Identification in 

Associated Regions) models LD correlation between SNPs in the region to account for multiple 

causal variants and compute the colocalization posterior probability (CLPP) for the variant 

causal for both traits based on GWAS summary statistics. PWCoCo (developed locally at 

University of Bristol) carries out COJO (conditional and joint) analysis227,228 to condition out 

the independent signals within a genomic region, and then conducts Bayesian pairwise coloc 

on any conditioned association peaks that remain for both traits (unpublished tool). SuSiE (Sum 

of Single Effects)229 combines the resolution of fine-mapping with coloc approach. It first fine 

maps to identify credible sets belonging to each independent SNP in the region and then 

conducts colocalization on the credible intervals. For a single pair of traits, all of these methods 

exist, however, for exploring colocalization of multiple traits fewer methods are available. At 

the time of starting this PhD project the only tool available was moloc, but another method 

became available later on HyPrColoc230 (Hypothesis Prioritization in multi-trait 

Colocalization). HyPrColoc is a Bayesian technique using GWAS summary statistics along 

with summary information of multiple molecular traits to simultaneously identify 

colocalization across many traits (i.e., jointly analysis of 3-100 traits) (Table 1). 
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Method name 

(publication date) input data description category 

PrediXcan 
(2015) 

Individual-level 
data 

TWAS approach which generates 
genetically predicted transcript 
expression levels imputed from 

eQTL data and tests this for 
association with GWAS trait.  

TWAS 

S-PrediXcan  

Summary statistics 
and LD estimates of 

a reference 
population 

PrediXcan algorithm adapted for 
use with GWAS summary levels 

statistics. 
TWAS 

QTLMatch 
(2009) Summary statistics 

Bayesian statistical method, 
performed on specific genes for 

GWAS top hits  

Colocalization 
(single variant 
assumption) 

Coloc 
(2012, 2014) Summary statistics Bayesian statistical framework  

Colocalization 
(single variant 
assumption) 

Moloc 
(2018) Summary statistics 

Extension of coloc method to 
estimate joint colocalization 

probabilities when using multiple 
traits.  Method used in my PhD. 

Colocalization 
(single variant 

assumption, multiple 
traits less than 5 at 

one time) 

HyPrColoc 
(2021) Summary statistics 

Multiple trait colocalization 
methods that selects traits 

(hypothesis prioritization) based 
on a clustering algorithm to 

improve computational efficiency 

Colocalization 
(single variant 

assumption, many 
traits) 

RTC  
(2010) 

Summary statistics 
from GWAS, 

individual level data 
of gene expression 

and LD estimates of 
a reference 
population 

Conditional analysis technique 
which removes the effect of a 

GWAS SNP from eQTL to see if 
an effect still remains in a region 

Colocalization 
(multiple 

independent SNPs) 

Sherlock 
(2013) 

Summary statistics 
and LD estimates of 

a reference 
population 

Bayesian statistical method which 
adjusts for LD between SNPs in 

the region 

Colocalization 
(multiple 

independent SNPs) 

eCAVIAR 
(2016) 

Summary statistics 
and LD estimates of 

a reference 
population 

Bayesian statistical framework 
that models LD to account for 

multiple independent variants in a 
region  

Colocalization 
(multiple 

independent SNPs) 

Table 1. Summary of existing integrating and colocalization approaches. 
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Method name 
(publication date) input data description category 

enloc 
(2017) 

Summary statistics 
and LD estimates of 

a reference 
population 

Bayesian statistical method which 
incorporates fine-mapping and 

regulatory elements information 

Colocalization 
(multiple 

independent SNPs) 

SuSiE 
(2021) 

Summary statistics 
and LD estimates of 

a reference 
population 

Extension of the coloc method 
that fine maps region beforehand 

to provide colocalization 
probabilities per credible set. 

Colocalization 
(multiple 

independent SNPs) 

PWCoCo 
(unpublished) Summary statistics pairwise conditional analysis and 

colocalization analysis 

Colocalization 
(multiple 

independent SNPs) 

 

1.5 Mendelian randomization for causal inference 

Whilst colocalization methods test for shared genetic variants between a molecular phenotype 

and disease, they do not test directionality (causality). Mendelian randomization is an approach 

which aims to address this challenge. 

1.5.1 Mendelian Randomization  

Mendelian randomization (MR) is a type of instrumental variable (IV) analysis in which 

genetic variants are used as instruments to make causal inferences in epidemiological 

research217,218,219. These instruments robustly associated with the exposure are employed to 

proxy the exposure of interest, owing to the fact that genetic variants are far less inclined to 

confounding and reverse causation. A confounder is a common cause of both exposure (X) and 

outcome (Y), which will result in a biased association if not adjusted for. Suppose we have 

unmeasured confounder (U) of exposure (X) and outcome (Y) relationship. MR attempts to 

find evidence of causality by removing this confounding through instrumenting on genetic 

variants (G). A schematic causal diagram is displayed in Figure 2. 
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The key set of IV assumptions for MR231  

IV1 – Instrument (Gj) must be robustly associated with the exposure (X). 

IV2 – Instrument (Gj) must not be associated with confounders (U) of the exposure-

outcome relationship.  

IV3 – Instrument (Gj) must only be associated with trait outcome (Y) through exposure (X) 

(i.e., horizontal pleiotropy is not allowed). 

 

 

 

1.5.2 Single SNP MR (Wald ratio) to link QTLs to disease SNPs 

Acquiring a large sample with individual participant summary data is often impractical. Two-

sample MR (2SMR) using summary statistics of molecular quantitative trait loci (molQTLs) 

and SNP-outcome associations from independent and large populations not only can overcome 

this issue but also increases the statistical power of the analysis232,233,219. Moreover, obtaining 

Figure 2. Schematic diagram displaying the causal relationship between instrumental 
variable (Gj), exposure (X) and trait outcome (Y).  

Solid lines indicate Gj is a valid IV. Dashed lines show IV assumption violations. 
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data with disease outcomes and all the molecular traits would be challenging, but the 2SMR 

framework allows us to integrate data from different sources219. The molQTLs are normally 

identified in separate non-overlapping studies to the outcome trait of interest, and are 

independent of each other (i.e., not in LD). Two-sample MR incorporates these SNPs as 

instrumental variables (IVs) to estimate the causal effect of the exposure on the trait outcome 

using two distinct study samples233. In the 2SMR model, molQTL is valid as an instrument if 

it is only associated with the outcome via its effect on the molecular trait or risk factor231.  

GWAS summary data for different traits are often publicly accessible and can be used for 

application of MR10,234. 

 

In molQTL analysis, the single SNP weight (Wald Ratio) from MR can be utilized to discover 

the causal role of intermediate phenotypes (such as gene expression and protein levels) on 

complex diseases by instrumenting on molQTLs with robust associations232. For example, for 

a particular gene all eQTLs (𝛽=) can be found and then SNPs can be looked up in outcome 

data (𝛽>) and the Wald ratio (𝛽?@) can be computed, which estimates the genetically predicted 

increase in disease risk per unit change in gene expression. Another method which conducts 

MR using gene expression as an exposure and complex trait as an outcome is 

SMR/HEIDI22,235,236. SMR finds shared genetic effects between expression and GWAS traits 

using a two-sample MR approach.   

1.5.3 Combining MR and colocalization to find causal molecular phenotypes 

Wald ratio analysis is augmented with colocalization to ensure that the MR is not due to the 

QTL and GWAS trait sharing coincidently due to LD patterns in the region. Using this 

approach, MR studies have led to the discovery of causal links between the methylome188, 
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transcriptome237,238,239,22 and proteome240 and human complex traits. Zhu et al conducted SMR 

followed by HEIDI to determine colocalization of signals, using summary statistics from five 

complex traits and blood gene expression and identified 126 candidate genes whose expression 

levels are likely to causally influence the traits. This included 25 newly discovered genes which 

were not previously reported in the literature and 77 genes (61%) which were not 

located/mapped to the closest physical proximity to the GWAS lead SNP in the region22. 

Phenome-wide MR analyses conducted by Richardson et al identified potential causal effects 

for 1,148 cis-mQTLs on 139 human complex traits. Moreover, integration of eQTL data 

showed that 306 of the mQTLs influenced both methylation levels at CpG sites and variation 

in 47 traits also affect gene expression188.  

1.5.4 Multi-SNP methods to evaluate causality between intermediate traits 
and disease 

For QTL based MR analysis, the Wald ratio method is used by necessity due to the sparsity of 

instruments available, often only allowing MR to be conducted on a single SNP.  However, 

MR is traditionally performed on multiple SNPs, allowing for more robust inference and 

improved evaluation of modelling assumptions (i.e., examination of bias due to pleiotropic 

factors). For many intermediate traits, such as circulating biomarkers, multi-SNP MR will be 

conducted.  In a multi-SNP MR setting, Wald ratios are calculated between the instrument-

exposure and instrument-outcome SNP effects, and then pooled together. Different methods 

for combining the Wald ratios have been developed each with different modelling assumptions 

regarding the influence of pleiotropy on the final MR estimate (see Methods (2.2.2) for more 

detail).  It is common practice for a MR study to compare results across multiple MR methods, 

and then nominate findings that show consistency as these are likely to be robust against 

pleiotropic bias234.  
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1.6 Overarching aims of this thesis 

The main aims of this doctoral thesis are to employ multi-trait colocalization approach to gain 

insights into the molecular mechanisms of AF and stroke GWAS loci by uncovering the shared 

regulatory effects of intermediate molecular phenotypes and prioritizing candidate causal 

features (such as CpG sites, genes, and metabolites) for gene regulation. AF and stroke were 

selected to be studied for several reasons: first, these are well-defined common CVDs which 

create a significant health burden on society and have extensive published evidence of a 

relationship between them. Second, recent large GWAS were available for both diseases. 

Third, large-scale molecular QTL resources typically only exist for blood, and therefore 

probably best reflect the cardiovascular system which is likely to be a disease relevant tissue 

for both AF and stroke. In terms of molecular traits, I first conducted analysis on DNA 

methylome and the metabolome as I gained early access to these QTL resources: the Genetics 

of DNA Methylation Consortium mQTL (GoDMC)124  and the UCL-LSHTM-Edinburgh-

Bristol (UCLEB) Consortium and Avon Longitudinal Study of Parents and Children 

(ALSPAC) mbQTL summary statistics, which I call Phase I of the study.  Later on in Phase II 

of my study I then integrated the top findings from Phase I with eQTL data from eQTLGen241, 

when the public release of this dataset became available. 

 

I applied the multi-trait colocalization pipeline to all recently identified AF and stroke loci from 

the most recent GWAS meta-analyses to explore regions which show evidence of 

colocalization with different combinations of molecular phenotypes and therefore identify the 

genes that may underpin AF and stroke associations. The aims of each Chapter are as follows: 

In Chapter 3, moloc is performed to explore whether the overlap between molecular traits and 

AF are explained by a single shared regulatory effect at each locus and identify the potential 
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causal genes responsible for these shared effects at AF GWAS loci. In Chapter 4, moloc is 

conducted to explore whether the overlap between molecular traits and stroke are explained by 

a single shared regulatory effect at each locus and identify the genes involved at stroke GWAS 

loci. In Chapter 5, I conduct pairwise colocalization and pQTL analyses to relate AF and 

stroke GWAS variants to functional effects through HP expression at the 16q22 locus (this 

locus was colocalized with both AF and stroke in previous chapters). In this chapter, I 

hypothesized that AF might be an intermediate step before stroke and this pathway may be 

partly mediated by the HP gene, leading to the work in Chapter 6. In Chapter 6, to further 

investigate shared aetiology and determine whether a causal relationship exists between AF 

and stroke MR analyses are performed. Thesis workflow is shown in Figure 3. 

 

 

Moloc analysis of 
mQTL, mbQTL, 

eQTL and AF

Overlapped SNPs within +/-1Mb distance 
from AF GWAS SNPs (SNPs in common 
between all 3 GWAS/mQTLs/mbQTLs or 

Phase II: 4 datasets GWAS/mQTLs/eQTLs or 
GWAS/mQTLs/mbQTLs/eQTLs or
GWAS/mbQTLs/eQTLs
Phase II: between colocalized combination 
of traits

eQTLGen cis-eQTLs: only SNPs within 
+/-1Mb distance from each transcript probe 
were available

GoDMC Cis & trans mQTLs: only SNPs with 
p<1e-5 were included in the analysis

E.g., 1 locus x n cpg sites x 230 metabolites

Sensitivity analysis

TwoSampleMR R package
https://github.com/MRCIEU/TwoSampleMR

moloc R package 
https://github.com/clagiamba/moloc

Moloc sensitivity analysis
moloc was applied as before except 
utilizing more stringent prior setting 

GWAS locus

≥

Moloc sensitivity 
analyses: Zero 

imputation, prior 
sensitivity, and LD 

score impact 

Chapter 3

Moloc analysis of 
mQTL, mbQTL, 

eQTL and Stroke

Moloc 
sensitivity 

analyses: prior 
sensitivity

Chapter 4

pQTL analysis of 
the shared AF 

and stroke locus 
at 16q22 

colocalization 
analyses of AF 

and stroke 

Chapter 5

Conditional 
Colocalization 

analysis on the two 
independent AF 
SNPs (PWCoCo) 

Two-sample MR to 
determine if a 

causal relationship 
exist between  AF 

and Stroke

Sensitivity analyses: 
bidirectional MR and  

Steiger filtering, 
outlier analysis, AF 
GWAS that did not 

overlap with stroke 
as exposure

Chapter 6

Literature 
assessment: 

gene function 
lookups in 
OMIM and 

Open Targets

Literature 
assessment: gene 

function lookups in 
OMIM and Open 

Targets

Figure 3. Flowchart of thesis analyses. 
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Chapter 2 Methods 
 

2.1 Data sources  

The colocalization and MR approaches used in this thesis are based on the analysis of summary 

level genetic association information generated in other studies (i.e., regression coefficients, 

standard errors and P values from GWA studies or molQTL analysis). The summary data used 

in this thesis are described in this section. 

2.1.1 Atrial fibrillation GWAS summary statistics 

I used summary statistics from the most recent and large-scale GWAS meta-analysis of AF41 

in European participants which were publicly accessible at 

http://csg.sph.umich.edu/willer/public/afib2018/ (date accessed: 3 August 2018). Nielsen et al 

performed the AF GWAS meta-analysis on over 1,000,000 individuals of European ancestry 

including 60,620 cases and 970,216 controls using Haplotype Reference Consortium (HRC) 

imputed genetic data.  

2.1.2 Stroke GWAS summary statistics 

I used the largest publicly available stroke GWAS meta-analysis dataset in Europeans for any 

type of stroke67. The full genome-wide summary association statistics were downloaded from 

the GWAS Catalog FTP website (https://www.ebi.ac.uk/gwas/studies/GCST006906) on the 

5th May 2020. This stroke meta-analysis included 446,696 individuals of European ancestry 

comprising 40,585 cases and 406,111 controls (number of SNPs=8,211,693). The summary 

statistics were generated by the MEGASTROKE consortium using samples from 15 cohort 

studies and 2 consortia (the METASTROKE and CHARGE consortia) with genotypes imputed 
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to 1000 Genomes Project (1000G) phase I haplotype panel242. This analysis used five stroke 

phenotypes; any stroke (stroke, n = 39,067 cases), any ischemic stroke (IS, n = 32,686 cases), 

IS subtypes: large artery stroke (LAS, n = 4,113 cases), cardioembolic stroke (CES, n = 6,820 

cases), and small vessel stroke (SVS, n = 4,975). The genetic information at 22 stroke risk loci 

(11 loci for stroke, 8 loci for IS, 2 loci for CES subtype and 1 locus for LAS subtype) identified 

by this published GWAS were employed for the application of moloc in Chapter 4. 

2.1.3 The Genetics of DNA Methylation Consortium (GoDMC) mQTL 

I used GoDMC mQTL meta-analysis data124 (http://mqtldb.godmc.org.uk/) which was 

generated by Min et al using a two-phase design across 36 datasets of European origin. Genetic 

and DNA methylation data were pre-processed in a standardized way and analyzed by each 

cohort analyst using the same pipeline (https://github.com/MRCIEU/godmc). The mQTL 

analysis was performed using 1000G imputed genetic data and DNA methylation profiles 

derived from blood samples of European ancestry and measured on Illumina Infinium 

HumanMethylation450k arrays. Summary statistics were available for cis and trans mQTL 

associations. An overview of the meta-analyses in GoDMC along with descriptive summary 

text can be found in “Supplementary Note” GoDMC publication124. 

2.1.4 Avon Longitudinal Study of Parents and Children (ALSPAC) mbQTL 

I used ALSPAC mbQTL summary data for 230 metabolites which were provided on request 

from the lead analyst (Fotios Drenos, personal correspondence). The ALSPAC 

(http://www.bristol.ac.uk/alspac/) samples from children were genotyped by a customized 

Illumina 550 array. After quality control (QC) check, these data (MAF>0.01) were imputed 

into the combined UK10K/1000 Genomes reference panel of 28 million SNPs using 

IMPUTE2. Metabolic phenotypes were measured in serum samples of the ALSPAC cohort by 
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Nuclear Magnetic Resonance (NMR) spectroscopy (as previously described243) and rank 

inverse normal transformed. The metabolite QTL analysis was performed on all metabolic 

measures of plasma metabolites from the oldest time point available in ALSPAC children 

cohort244 using SNPtest 2.5245. In regression model the metabolic data were adjusted for age, 

sex and the first 10 principal components (PCs) of the genetic data. The residuals which were 

rank inverse transformed to normality were then used in regression model to test for association 

with SNPs using an additive model which took uncertainty of imputation into account. The 

mbQTL data (n=5589 participants) provided to me for this project were restricted to top 

association signals (i.e., significant results) with P value less than 1x10-4. 

2.1.5 The University College-London School-Edinburgh-Bristol (UCLEB) 
mbQTL 

I used mbQTL summary statistics for 288 metabolites generated by UCLEB consortium. The 

UCLEB samples were genotyped using the Illumina Cardio-Metabochip array. After quality 

control (QC) check, these data (MAF>0.001) were imputed into the 1000 Genomes Project 

phase I as previously described246. Metabolite profiles for UCLEB individuals were generated 

using serum samples taken at recruitment with age ranges from birth to 62 years. Levels of 288 

metabolites were measured using a high-throughput serum nuclear magnetic resonance (NMR) 

platform following methods previously described elsewhere167. Metabolites were rank reverse 

transformed to normality. The metabolite QTL meta-analysis was conducted applying the 

fixed-effect inverse variance method implemented in the METAL software package247. The 

mbQTL meta-analysis used samples of European ancestry (UK-based) consisting of 

approximately 30,000 participants from 7 contributing studies. The analysis Early (pre-

publication) access to these full mbQTL data were kindly provided by the UCLEB 

consortium246 co-authors/analysts from UCL Institute of Cardiovascular Science, Population 
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Science and Experimental Medicine, Centre for Translational Genomics. 

2.1.6 eQTLGen eQTL 

The most recent eQTL summary statistics with the largest sample size were downloaded from 

eQTLGen (https://www.eqtlgen.org). The eQTLGen dataset includes association data for 

19,942 genes conducted in a total of 31,684 samples (mostly Europeans) in blood meta-

analyzed across 37 eQTL datasets146. The eQTLGen data contained full cis-eQTL association 

information on pseudogenes, non-coding and protein coding RNAs without a P value threshold 

cut-off. 

2.2 Methods 

This thesis used multi-omics colocalization technique to integrate statistical evidence for the 

potential involvement of different intermediate phenotypes in AF and stroke. The principal 

techniques used in this thesis are described in this section. The methods section of each analysis 

chapter provides additional details.  

2.2.1 Moloc study design (overview of Phase I and II) 

Moloc is a Bayesian statistical technique that integrates summary level information from 

GWAS studies with multiple molecular QTL data to identify a shared regulatory effect between 

molecular phenotypes and a complex trait216. The main reasons for selecting moloc was that it 

can be applied to up to 4 traits and because it works with summary level data.  In these analyses, 

disease GWAS, DNA methylation, gene expression and circulating metabolite traits were 

designated as G, M, E, and Mb respectively for simplicity. Examples of four possible 

colocalization scenarios are illustrated in Figure 4. I was able to use publicly accessible data 
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with the largest available sample size for both the whole blood eQTL and GWAS data. 

Moloc analyses were conducted in two Phases (Figure 5). The main reason for performing 

Phase I analyses (integration of epigenetics and metabolomics data with GWAS) was early 

access to large QTL summary statistics datasets (i.e., GoDMC mQTLs and ALSPAC 

mbQTLs). eQTL were not included in Phase I as the eQTLGen data was not available at that 

time, and other resources (e.g., GTEx148) were based on smaller sample sizes. The reason for 

performing Phase II analyses was to integrate the new eQTLgen data to prioritize candidate 

causal genes which may mediate the phenotypic effects of shared variants at disease 

colocalized loci identified in Phase I. Moloc study pipeline (Figure 5) was developed to 

conduct multi trait colocalization analyses of all identified AF and stroke loci.   

 

 

0

20

30

10

40

50

genomic position

-lo
g1

0 
(P

 v
al

ue
)

GMMb

Resources
GWAS
mQTL
mbQTL

0

20

30

10

40

50

genomic position

-lo
g1

0 
(P

 v
al

ue
)

GM

0

20

30

10

40

50

genomic position

-lo
g1

0 
(P

 v
al

ue
)

GM.Mb

0

20

30

10

40

50

genomic position

-lo
g1

0 
(P

 v
al

ue
)

G.M.Mb

Figure 4. Schematic illustration of four plausible scenarios in a genomic region with 10 
variants in common across GWAS, methylation and metabolite traits. 

Scenarios where two or more traits have distinct causal variants are indicated by separating 
those traits with a “.” (e.g. GM.Mb indicates colocalization of GWAS and DNA methylation, 
but a distinct non-colocalizing signal for metabolite). 
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Figure 5. Moloc analysis pipeline flowchart. 
Phase I: My moloc analysis pipeline was applied to each GWAS locus (AF and stroke) and each 
distinct GWAS-CpG-metabolite combination of trait (E.g., 1 locus x n CpG sites x 230 
metabolites). Phase II: moloc was then applied to each AF or stroke prioritized locus and each 
distinct GWAS-CpG-gene or GWAS-gene-metabolite or GWAS-CpG-gene-metabolite 
combination of trait. Phase II was only conducted on colocalized combinations found in Phase I.  
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2.2.1.1 Phase I: Identifying methylation CpG sites and metabolites colocalized at 

GWAS loci  

In Phase I of these analyses, three datasets were employed containing summary level 

information for the genetic effects on methylation at CpG sites (mQTLs), circulating 

metabolites (mbQTLs), and complex trait (GWAS). Only common SNPs between all 3 datasets 

were kept for moloc analyses. Here I describe the analysis for AF, exactly the same approach 

was applied to stroke.  

 

(i) Define GWAS region to conduct colocalization analysis on 

A window size of 2Mb was defined in 111 AF genomic regions identified by Nielsen et al for 

colocalization analysis. The window was defined as 1Mb either side of the GWAS lead SNP 

at each of these genomic regions. 

(ii) Extract the overlapping QTL and GWAS SNPs within each region 

The summary statistics for all SNPs in common between the GWAS, mbQTL and mQTL 

datasets were extracted within the defined window (Figure 6). All three datasets were filtered 

by minor allele frequency (MAF) > 0.01 (1%). 

(iii) Retrieve all mQTLs for each corresponding CpG site 

All mQTLs (either cis or trans mQTLs) falling within the region were extracted.  Every mQTL 

within the defined window was mapped to multiple CpG sites (ranging between 8 and 50 CpG 

sites per mQTL).  The summary statistics for all the mapped mQTLs were extracted regardless 

of the CpG site location (i.e., CpG sites may fall outside our defined window).  
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(iv) Retrieve all mbQTLs for each corresponding metabolite 

All mbQTLs falling within the cis region were extracted.  Every mbQTL within the defined 

window was mapped to multiple metabolites (approximately 230 per mbQTL).  The summary 

statistics for all the mapped mbQTLs were extracted. 

(v) Harmonisation of SNP effects 

Data harmonisation was performed using the harmonisation functionality of the 

TwoSampleMR234 (version 0.5.5) R package (version R-3.3.1-ATLAS) within our framework 

to ensure that the SNP effects of molecular traits and outcome trait correspond to the same 

strand and the same allele (i.e., the effect of a SNP on the DNA methylation and metabolite 

and the effect of that SNP on GWAS trait must each correspond to the same allele). Two sets 

of harmonisations were undertaken (treating the GWAS data as reference): harmonising the 

variant effects on DNA methylation to GWAS effect alleles, and separately harmonising the 

variant effects on metabolites to GWAS effect alleles. The two datasets were then merged 

together. 

 

Figure 6. Illustrative diagram displaying the defined 2Mb window overlapping with mQTLs 
and mbQTLs in a GWAS region. 



	

	

54	

(vi) Run loci-wide moloc 

To detect evidence of a shared causal variant across the mQTL, mbQTL and GWAS traits in a 

specific genomic region a multiple-trait colocalization implemented in the moloc216 R package 

(v0.1.0) was applied. Moloc was run for each GWAS locus and each distinct combination of 

GWAS-CpG-metabolite (E.g., 1 locus x n CpG sites x 230 metabolites). In total, posterior 

probabilities of 15 potential scenarios (summarizing how a methylation CpG site, a metabolite 

and GWAS trait share a single causal variant in a given risk region) were calculated. The 

scenarios are listed in Table 2. Moloc analysis was only conducted on windows that had greater 

than 50 SNPs within them. The default priors of 1x10-4, 1x10-6 and 1x10-7 were used for the 

prior probability for any one layer of association (p1), for any two layers of associations (p2) 

and for colocalization of all three layers of associations (p3) across the traits. In these analyses, 

scenarios that support a possible sharing of the association signal for more than one of the 

phenotypes (i.e., GM, GM.Mb, GMb, GMb.M for two and  GMMb for three phenotypes) were 

prioritized. A posterior probability of association (PPA) equal to, or greater than 0.8 

(PPA>=80%) for these scenarios was defined as evidence of colocalization in the test region 

(Figure 7). Moloc analyses were conducted in R (version 3.3.1), using moloc downloaded as 

an R package (v0.1.0), which is available at Github (https://github.com/clagiamba/moloc).  

 

For example, the code below was used to execute moloc of 3 traits. 

 

ABF <- adjust_bfs_overlap(moloc_input_data, overlap=F, prior_var=0.15^2, 

from_p=F) 

lkl <- config_coloc(ABF, n_files=3, priors=c(1e-04,1e-06,1e-07)) 

 

moloc_input_data contains R data frames of all three trait datasets (GWAS=G, 

mQTL=M, mbQTL=Mb) that are listed to be tested for colocalization in moloc. For example, 
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a data frame for a GWAS trait contains “SNP”, “CHR”, “POS”, “A1”, “A2”, “EAF”, “BETA”, 

“SE”, “PVAL”, "N", which are vectors of the SNP-GWAS chromosome number, position, 

effect allele, alternative allele, effect allele frequency, coefficients, standard errors, p value, 

and sample size respectively.  

ABF (Adjusted Bayes factors) is an array containing the log adjusted Bayes Factors (moloc 

logBFs) for each SNP and each configuration combination was returned using 

adjust_bfs_overlap function. 

lkl (Likelihood frame) is a data frame containing 15 likelihoods and posterior probabilities 

(PPA) values for each of the 15 scenarios or combination of traits (e.g., AF, a specific CpG 

site, a specific metabolite) in the input using config_coloc function. 

 

For my main moloc analyses priors were set to p1=1x10-4, p2=1x10-6 p3=1x10-7. For sensitivity 

moloc analyses priors were set to p1=1x10-5, p2=1x10-7, p3=1x10-8. 
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Scenario Hypothesis Colocalization of variant 

Null H0- no association to any trait no associations 

G H1- association for GWAS only no colocalization 

M H2- association for methylation only no colocalization 

Mb H3- association for metabolite only no colocalization 

GM H4- association for GWAS and methylation GWAS and mQTL 

MMb H5- association for methylation and metabolite mQTL and mbQTL 

GMb H6- association for GWAS and metabolite GWAS and mbQTL 

G.M H7- association for GWAS and methylation - two distinct causal variants no colocalization 

M.Mb H8- association for methylation and metabolite - two distinct causal variants no colocalization 

G.Mb H9- association for GWAS and metabolite - two distinct causal variants no colocalization 

G.MMb H10- association for all traits - two distinct causal variants mQTL and mbQTL not GWAS 

GM.Mb H11- association for all traits - two distinct causal variants GWAS and mQTL not mbQTL 

GMb.M H12- association for all traits - two distinct causal variants GWAS and mbQTL not mQTL 

G.M.Mb H13- association for all traits - three distinct causal variants no colocalization 

GMMb H14- one single association for all 3 traits - one causal varaint GWAS and mQTL and mbQTL 

 

 

2.2.1.2 Overview of Phase II: Mapping to the putative causal gene(s) at prioritized loci 

The pipeline described in Figure 5 was extended further to integrate eQTL data from the 

eQTLGen consortium to map the likely causal genes responsible for the shared GWAS signals. 

Phase II was conducted as a follow-up analysis on the loci prioritized from Phase I (Figure 7) 

as data only became available after phase I had been completed. The same steps described for 

Phase I were followed, but with the addition of eQTLs as a third layer for scenarios where two 

traits colocalized or as a fourth layer for scenarios where three traits colocalized. These 

analyses were conducted on all cis-genes that lay within the defined window. The trans eQTL 

effects were not considered as all the prioritized CpG sites were cis-acting. The full eQTL 

summary statistics (with no p-value cut-off) were used in this analysis. 

Table 2. 15 plausible scenarios summarising sharing or not sharing of a likely causal variant 
among GWAS, methylation and metabolite traits. 
Hypotheses for association of each trait with a genetic variant in a region. The “.” separates traits 
with independent (non-colocalizing) causal variants. 
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(i) Extract gene transcripts 

A 2Mb window around each GWAS signal (GWAS SNP -/+ 1Mb) was taken (i.e., either 

GWAS top hit or additional independent variant identified as a shared variant in phase I) to 

select all cis-Genes at each locus. These cis-genes were extracted for all colocalized loci using 

the GENCODE.v19 annotation file based on overlap with the start or end point of the gene 

(gene annotation file mapped to GRCh37 genome build reference). The Ensembl gene IDs 

extracted from the Gencode annotation file were then merged with the same gene IDs provided 

with the eQTLGen summary statistics. Summary statistics for the cis-acting eQTLs within each 

window were then harmonized and merged with the summary statistics from the colocalized 

traits in Phase I. Moloc analysis was then conducted on each of these harmonized regions to 

estimate the probability of the cis-gene expression sharing the same likely causal variant as the 

other traits. A posterior probability (PPA) ≥ 80% for colocalization of a gene was considered 

as evidence for a potential causal gene. 

 

If considering colocalization of 3 traits (GWAS, mQTL, and eQTL) the moloc technique 

calculates the evidence underpinning the 15 possible scenarios or combinations of traits 

(H0...H14) (Table 3), of sharing of a causal signal at the specific risk locus across all traits. In 

the case of integrating 4 traits, moloc computes the 52 possible scenarios (H0...H51). The 

scenarios considering 4 traits are listed in Table 4. For example, the code below was used to 

execute moloc integrating eQTL data as a fourth layer of trait. 

 

ABF <- adjust_bfs_overlap(moloc_input_data, overlap=F, prior_var=0.15^2, 

from_p=F) 

lkl <- config_coloc(ABF, n_files=4, priors=c(1e-04,1e-06,1e-07,1e-08)) 
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moloc_input_data contains data frames of all four trait datasets (GWAS=G, mQTL=M, 

eQTL=E, mbQTL=Mb) that are listed to be tested for colocalization in moloc. 

ABF (Adjusted Bayes factors) is an array containing the log adjusted Bayes Factors (moloc 

logBFs) for each SNP and each configuration combination was returned using 

adjust_bfs_overlap function. 

lkl (Likelihood frame), a data frame containing 52 likelihoods and posterior probabilities 

(PPA) for each of the 52 scenarios or combination of traits (e.g., AF, a specific CpG site, a 

specific metabolite and a particular gene) in the input using config_coloc function. 

 

For my main moloc analyses of four traits, priors were set to p1=1x10-4, p2=1x10-6 p3=1x10-

7, p4=1x10-8. For sensitivity moloc analyses of four traits, priors were set to p1=1x10-5, 

p2=1x10-7, p3=1x10-8, p4=1x10-9. 

 



 

 

Each GWAS locus was tested for colocalization with different CpG sites and different 
circulating metabolites at phase I. The 15 hypotheses/scenarios computed by moloc represent 
the possible combinations of the three traits in phase I. Each locus which colocalized in phase I, 
was then tested for colocalization with gene expression at phase II. The 52 hypotheses/scenarios 
computed by moloc represent the possible combinations of the four tested traits in phase II. 
Scenarios of interest were those that passed a posterior probability of colocalization threshold of 
80% (PPA>=80%). 

Figure 7. Moloc study design diagram.



 

Scenario Hypothesis Colocalization of variant 

Null H0- no association to any trait no associations 

G H1- association for GWAS only no colocalization 

M H2- association for methylation only no colocalization 

E H3- association for expression only no colocalization 

GM H4- association for GWAS and methylation GWAS and mQTL 

ME H5- association for methylation and expression mQTL and eQTL 

GE H6- association for GWAS and expression GWAS and eQTL 

G.M H7- association for GWAS and methylation - two distinct causal variants no colocalization 

M.E H8- association for methylation and expression - two distinct causal variants no colocalization 

G.E H9- association for GWAS and expression - two distinct causal variants no colocalization 

G.ME H10- association for all traits - two distinct causal variants mQTL and eQTL not GWAS 

GM.E H11- association for all traits - two distinct causal variants GWAS and mQTL not eQTL 

GE.M H12- association for all traits - two distinct causal variants GWAS and eQTL not mQTL 

G.M.E H13- association for all traits - three distinct causal variants no colocalization 

GME H14- one single association for all 3 traits - one causal varaint GWAS and mQTL and eQTL 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. 15 plausible scenarios summarising sharing or not sharing of a likely causal variant 
among GWAS, methylation and expression traits. 

Colocalization hypotheses for association of each QTL with GWAS trait in a region. The “.” 
separates traits with independent (non-colocalizing) causal variants. 
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Scenario Hypothesis Colocalization of variant 

Null H0 no associations 
G H1 no colocalization 

G.M H2 no colocalization 
G.E H3 no colocalization 

G.Mb H4 no colocalization 
G.ME H5 no colocalization 

G.MMb H6 mQTL and mbQTL not GWAS 
G.EMb H7 eQTL and mbQTL not GWAS 

G.MEMb H8 mQTL and eQTL and mbQTL not GWAS 
G.M.E H9 no colocalization 

G.M.Mb H10 no colocalization 
G.M.EMb H11 eQTL and mbQTL not mQTL not GWAS 
G.E.Mb H12 no colocalization 

G.MMb.E H13 mQTL and mbQTL not eQTL not GWAS 
G.ME.Mb H14 mQTL and eQTL not mbQTL not GWAS 
G.M.E.Mb H15 no colocalization 

M H16 no colocalization 
M.E H17 no colocalization 

M.Mb H18 no colocalization 
GE.M H19 GWAS and eQTL not mQTL 

GMb.M H20 GWAS and mbQTL not mQTL 
M.EMb H21 eQTL and mbQTL not mQTL 

GEMb.M H22 GWAS and eQTL and mbQTL not mQTL 
M.E.Mb H23 no colocalization 

GMb.M.E H24 GWAS and mbQTL not mQTL not eQTL 
GE.M.Mb H25 GWAS and eQTL not mQTL not mbQTL 

E H26 no colocalization 
E.Mb H27 no colocalization 
GM.E H28 GWAS and mQTL not eQTL 
GMb.E H29 GWAS and mbQTL not eQTL 
MMb.E H30 mQTL and mbQTL not eQTL 

GMMb.E H31 GWAS and mQTL not mbQTL not eQTL 
GM.E.Mb H32 GWAS and mQTL not eQTL not mbQTL 

Mb H33 no colocalization 
GM.Mb H34 GWAS and mQTL not mbQTL 
GE.Mb H35 GWAS and eQTL not mbQTL 
ME.Mb H36 mQTL and eQTL not mbQTL 

GME.Mb H37 GWAS and mQTL and eQTL not mbQTL 
GM H38 GWAS and mQTL only 

GM.EMb H39 GWAS and mQTL, eQTL and mbQTL 
GE H40 GWAS and eQTL only 

GE.MMb H41 GWAS and eQTL, mQTL and mbQTL 
GMb H42 GWAS and mbQTL only 

Colocalization hypotheses for association of each QTL with GWAS trait in a region. The “.” 
separates traits with independent (non-colocalizing) causal variants. 

Table 4. 52 plausible scenarios summarising sharing or not sharing of a likely causal variant 
among GWAS, methylation, expression and metabolite traits. 
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Scenario Hypothesis Colocalization of variant 
GMb.ME H43 GWAS and mbQTL, mQTL and eQTL 

ME H44 mQTL and eQTL only 
MMb H45 mQTL and mbQTL only 
EMb H46 eQTL and mbQTL only 
GME H47 GWAS and mQTL and eQTL only 

GMMb H48 GWAS and mQTL and mbQTL only 
GEMb H49 GWAS and eQTL and mbQTL only 
MEMb H50 mQTL and eQTL and mbQTL only 

GMEMb H51 GWAS and mQTL and eQTL and mbQTL 

 

2.2.2 Two-sample Mendelian randomisation  

I used 2SMR analysis in my thesis to determine whether there was evidence for a relationship 

between genetically predicted AF and stroke liability using the SNP summary statistics 

available from AF and stroke GWASs (see section 2.1). To conduct the MR analysis, I used 

the mr function provided by the TwoSampleMR R package (version 0.5.5) maintained by MR-

Base234 (https://www.mrbase.org/). Detailed description of how MR was applied provided in 

Chapter 6. Below is a brief description of the different MR methods I used: 

 

2.2.2.1 Wald ratio (WR) 

Wald ratio (WR) is a very basic method to perform two-sample MR where only a single genetic 

instrument is required to estimate the magnitude of the causal effect by dividing the SNP-

outcome coefficient by the SNP-exposure coefficient248,218,249: 

𝛽?@ = 	
𝛽>
𝛽=

 

WR MR was performed using the mr-singlesnp function provided by the TwoSampleMR R 

package (version 0.5.5), and these effect estimates pooled using the following different 

methods.   
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2.2.2.2 Inverse variance weighted (IVW) MR  

The Inverse Variance Weighted (IVW)250 method uses a fixed effect meta-analysis to calculate 

an unbiased estimate of the overall causal effect in which each instrumental variant contribution 

is weighted by the inverse of the variance of the instrument-outcome effect. The IVW method 

has the most statistical power but does not adjust for invalid instruments and assumes that all 

genetic variants are valid IVs, whilst other methods have different assumptions to adjust for 

invalid instruments. If the IV1-IV3 assumptions hold, the causal estimate obtained from IVW 

linear regression model is unbiased231,234.  

 

2.2.2.3 MR-Egger   

In the presence of directional horizontal pleiotropic effects, where the effect of the genetic 

instrument on the disease outcome is mediated through pathways other than the exposure, the 

MR-Egger regression technique251 returns an unbiased effect estimate by allowing pleiotropic 

effects to exist, provided that there is no correlation between the size of these pleiotropic effects 

and the size of the instrument-exposure effects, known as the InSIDE (Instrument Strength 

Independent of Direct Effect) assumption251,252.  

 

2.2.2.4 Weighted median 

The weighted median approach provides an unbiased causal effect estimate in the presence of 

a number of invalid instruments (that is in the case when the greater number of the instruments 

are valid) by taking all SNPs median effect with stronger SNPs contributing more to the 

estimate253. 

 

2.2.2.5 Weighted mode 

If a number of SNPs have a pleiotropic effect the weighted mode groups SNPs by considering 
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their causal effects and evaluates an unbiased causal estimate based on the biggest cluster of 

SNPs with valid instruments254. 

 

 

 



Chapter 3 Dissecting the molecular aetiology of atrial 
fibrillation 

 

3.1 Introduction 

AF is the most common sustained arrythmia which is associated with an increased risk of major 

complications such as mortality28, heart failure29, myocardial infarction30 and stroke33,34,35. A 

large GWAS meta-analysis by Nielsen et al. has identified 111 genetic loci with increased 

susceptibility to AF41. As most of the identified SNPs mapped to non-coding regions of the 

genome, it is challenging to map these genetic loci to the causal gene(s) and underlying 

molecular mechanisms. These AF SNPs are strongly enriched in regions of open chromatin 

and active enhancers41, supporting the hypothesis that most common genetic risk signals affect 

transcriptional regulation rather than influencing the coding regions of genes directly18. In 

Nielsen et al41 different methods were applied to identify potential functional effects of SNPs. 

The candidate genes in each of the regions were prioritized based on several criteria which 

included (i) physical proximity of the gene to the AF variant (ii) overlap of the gene’s eQTLs 

with an AF associated region (iii) the gene containing a non-synonymous SNP which is in LD 

with the AF variant and (iv) the gene has tissue specific expression consistent with AF 

phenotype. The identified candidate genes perform a wide range of functions: they encoded  

transcription factors with a potential role in mediation of events related to development (e.g. 

GATA4, ZFHX3 and PITX2), cell structural proteins likely to be involved in skeletal and 

cardiac muscle integrity and function (e.g. MYOZ1, RBM20, and SYNPO2L), and genes likely 

to regulate endocrine function (e.g. ESR2 and CGA) and be involved in intracellular signal 

transduction process in the heart (e.g. CAMK2D and CALU) and function of cardiac ion 

channels (e.g. HCN4 and KCNN3)41. This study also prioritized AF candidate genes in several 
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heart-related tissues using GTEx datasets. However, for most of the loci Nielsen et al detected 

the molecular mechanism underpinning the genetic associations remains unknown.  

 

A common approach to map genetic association signals to molecular mechanism is to identify 

shared genetic variants between the GWAS signal and potential molecular mediators225,188,255. 

Several studies have found genetic variants associated with circulating metabolite 

concentrations (mbQTLs) were also cis-eQTLs174,193. Other studies have shown that DNA 

methylation is also associated with metabolite levels200,201,202,203,204,205, therefore an integrative 

multi-omics investigation of these two molQTLs should be informative. Indeed, previous 

studies demonstrated that integration of multi-omics data (DNA methylation, metabolite levels 

and gene expression) can be usefully applied to expand our knowledge of molecular 

mechanisms at several loci237,238,239,22,255. For example, multi-omics studies of AF have 

identified candidate genes which might have a functional mediatory role along the pathway to 

AF susceptibility256,257. Assum et al integrated atrial tissue-specific genetic information on 

transcriptome (cis-eQTLs), proteome (cis-pQTLs) along with AF GWAS and found potential 

relationships between gene expression and protein abundance controlled by the same variant 

at several loci. Assum et al also constructed eQTSs (expression quantitative trait rank scores) 

based on the AF PRS association with transcript expression and trans pQTSs (protein 

quantitative trait rank scores) based on the AF PRS association with protein abundance to 

explore the trans-acting regulatory mechanisms at AF loci. A follow-up analysis using trans 

eQTSs and trans pQTSs identified a regulatory role for transcription factor (TF) NKX2-5 as a 

mediator along the pathway from AF GWAS signal (rs9481842) located at the 6q22 locus to 

AF susceptibility257. Interestingly, the AF-relevant pathways reported involved in metabolism 

and contractile function of the heart258,259,260. Wang et al used multi-omics approaches on whole 
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blood data from AFGen GWAS of AF261, EWAS of AF136 and transcriptome-wide association 

study (TWAS) of AF262 and found 1931 genes relevant to AF. Follow-up analysis incorporating 

gene set findings with cardiac-specific gene interaction network, uncovered cardiac related 

molecular pathways linked to AF susceptibility256. 

 

In this chapter I employ a multi-omics colocalization technique to further understand the 

genetic pathways contributing to the risk of AF. Herein, a large-scale two-phased multi-omics 

colocalization study of AF loci in Europeans was performed by employing GWAS of AF 

(n=1,030,836), summary statistics of DNA methylation (GoDMC, n=27,750) and circulating 

metabolite levels (ALSPAC, n=5,589), to identify shared regulatory effects between DNA 

methylation, metabolome and AF (Figure 8). In a second phase, moloc analysis was further 

extended to integrate eQTL data from eQTLGen (n=31,684), to map the potential causal genes 

responsible for these shared effects. I used moloc to explore whether the observed overlap 

between molecular traits and AF may be due to a single variant driving the shared regulatory 

effect at each AF risk locus.  
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3.2 Methods 

I downloaded AF GWAS summary statistics41 (number of SNPs = 34,459,399) from: 

http://csg.sph.umich.edu/willer/public/afib2018/ (date accessed: 3 August 2018). Quality 

control (QC) check was conducted by removing SNPs with non rsIDs (identifiers), indels and 

multi allelic SNPs. SNPs with MAF>0.01 were kept, leaving 22,760,461 associations for 

moloc analyses. SNP associations were further filtered based on P value>0.05, keeping 

5,538,471 SNP associations to generate a Manhattan plot. I used the SNP2GENE function of 

FUMA (https://fuma.ctglab.nl/)263 to provide the Manhattan plot for genetic associations of AF 

GWAS (Figure 9).  

 

 

Figure 8. Schematic diagram of SNP-AF and SNP-molecular phenotype associations used in 
moloc analyses. 
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3.2.1 Phase I – moloc of methylation, metabolite and AF  

A large-scale multi-omics colocalization analysis was conducted on 111 AF-associated loci by 

employing GWAS of AF, mQTL summary statistics of DNA methylation sites profiled with 

the Illumina Infinium HumanMethylation 450k array (GoDMC) and mbQTLs of plasma 

metabolite levels profiled with NMR platform (ALSPAC). Analyses were performed by 

defining a window size of +/–1Mb around each of the top AF risk SNPs at 111 loci. For each 

AF risk locus, the moloc analysis pipeline was applied to identify statistical evidence of a 

shared regulatory effect between AF, each methylation CpG site (n=ranging from 8 to 50) and 

each metabolite (n~230). Detailed description of my pipeline and how it was applied at each 

locus can be found in Chapter 2 2.2.1). Across all analyses, a scenario (i.e., combination of 

traits) was considered “colocalized” or with “evidence of colocalization” if its posterior 

probability of association (PPA) was equal to or greater than 80%. Overall, 23 loci were 

prioritized at this phase. CpG sites for which I found shared genetic effects with metabolite and 

AF were annotated to CpG site physical position in the genome and the gene they are annotated 

Figure 9. Manhattan plot displaying genetic risk loci associated with AF. 
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to, using the meffil (v1.0.0) R package264 (https://github.com/perishky/meffil/).  

3.2.2 Phase II – moloc of methylation, gene expression, metabolite and AF at 
prioritized loci 

In the second phase, the moloc analysis pipeline was extended to integrate eQTL data from the 

eQTLGen consortium to identify the potential causal gene(s) responsible for the shared AF 

signal at each of the 23 prioritized loci. The pipeline is described in Chapter 2 2.2.1). At each 

locus, colocalization of all cis-genes (ranging from 5 to 98 genes) with each combination of 

traits (i.e., GM (colocalized AF-CpG site), GMb.M (colocalized AF-metabolite but not CpG 

site), GMMb (colocalized AF-CpG site-metabolite) was tested.  

 

3.2.2.1 Assessment of current state of knowledge to evaluate putative drug targets 

The colocalized genes were looked up in two publicly available data resources to evaluate the 

potential druggability and functional evidence for involvement in related CVDs specially AF 

pathology. The following online resources were used: (i) Open Targets265 to detect if the gene 

is used or known as pharmaceutical drug target for any indications/diseases. The Ensemble 

ENSG gene identifier was used in the Open Targets Genetics database 

(https://genetics.opentargets.org)	 to view information on the gene. In addition, the “Mouse 

Phenotypes” section in the Open Targets platform was searched for evidence that gene knock 

down/out experiments recapitulated/demonstrated cardiovascular system phenotype, (ii) 

Online Mendelian Inheritance in Man (OMIM)266 was used to look for relevant human 

monogenic cardiovascular disorders caused by mutation(s) in the gene. The “Allelic Variants” 

field of the OMIM website (https://omim.org) was manually reviewed for the specific gene and 

any evidence of phenotypes related to CVDs caused by a single-gene mutation was recorded. 

The literature was also searched for evidence in animal models if there was no data available 
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in the Open Targets Mouse Phenotypes annotations section. 

3.2.3 Sensitivity analyses on moloc probabilities 

3.2.3.1 Selection of more stringent priors 

In phase I and II analyses, the priors in moloc (v0.1.0) were set to the default settings (i.e., 

p1=1x10-4, p2=1x10-6, p3=1x10-7 and p4=1x10-8 when the fourth layer was included). p2 is the 

prior for one genetic variant associated with two traits and p3 and p4 are the prior probabilities 

for association with three or four traits. To assess whether the results were robust to these 

default settings, moloc analyses were re-run applying more stringent prior probabilities for p1, 

p2, p3 and p4 (p2=1x10-5, p2=1x10-7, p3=1x10-8 and p4=1x10-9) for AF regions (n=23 in phase 

I and n=10 in phase II) with evidence of colocalization.  

 

3.2.3.2 LD score analysis 

Colocalized findings might be confounded by the LD pattern and number of SNPs in the region.  

The LD score is defined as the sum of the pairwise r2 between the lead variant and all the 

variants residing within 500kb of a region. It provides a representation of the extent of the 

variant correlation with nearby SNPs, capturing both quantity of correlated SNPs and strength 

of LD. To estimate LD scores267, all the overlapping SNPs (MAF>0.01) in each colocalized 

region (with no r2 cut-off) were used and LD data from HRC-imputed unrelated ALSPAC 

individuals was employed as an LD reference panel. The ld-score command implemented in 

GCTA software (gcta_1.91.1beta)227 was used. LD scores of regions were then compared to 

the PPA values. 

 

3.2.3.3 Zero imputation of missing GoDMC mQTL data (P=1, Beta=0) 

For computational reasons, the GoDMC mQTL data has been generated using a two-phase 
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design (see Methods 2.1.3) across 36 datasets and therefore doesn’t include summary statistics 

on all SNPs. Instead, it has summary statistics on all SNPs across all 36 datasets that were P 

value<1x10-5 in at least one dataset for cis-mQTLs and two datasets for trans-mQTLs. As I 

only used overlapping SNPs across all 3 datasets for colocalization, many SNPs were removed 

from the tested region. Therefore, as a sensitivity analysis, the mQTLs were zero imputed in 

the 17q12 region (where evidence of colocalization (PPA.GMMb=80.4%) was detected with 

149 SNPs in the region) to test if this would affect the moloc PPA value. mQTLs for 

cg22833065 CpG site were imputed using the 1000G SNP file (nSNPs=10,085,072; 

MAF>0.01) (which had all SNPs tested in GoDMC mQTL analysis) to map all missing mQTLs 

in the 17q12 region.  This imputation was performed by replacing the missing mQTLs with 

null effects, using a completely flat effect size (β coefficient) =0.00 and P value=1.00. The 

minor allele for each of the missing variants was selected as the effect allele.  

3.3 Results 

3.3.1 Phase I – Identification of AF loci that colocalized with DNA 
methylation and metabolite traits. 

In the first phase of this study, colocalization analyses were performed on 111 AF loci to map 

shared genetic effects linking AF loci to two types of intermediate molecular phenotypes: DNA 

methylation and metabolite levels. Of the 111 loci for AF, evidence for colocalization was 

detected at 3 loci across all three traits, 23 loci with a CpG site only and 1 locus with metabolite 

traits only comprising a total of 23 loci with evidence of colocalization. Multiple scenarios 

were found at 3 loci (Table 5). 
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3.3.1.1 Regions with evidence of colocalization between methylation and AF 

While we were most interested in finding evidence of colocalization where the same single 

SNP is shared among all three traits (GWAS, mQTLs and mbQTLs (GMMb)) colocalization 

was detected at 23 loci where AF risk variants are shared with a significant cis mQTL only 

(P<1x10-8) for at least one CpG site (PPA.GM >=80%, 41 unique SNP-CpG combinations), 

(Table 5). Of the 23 loci, 9 (39.1%) showed evidence of colocalization with genetic effects of 

methylation at multiple different CpG sites whereas 14 (60.9%) loci colocalized with mQTLs 

that were associated with a single CpG methylation site. For example, the AF risk SNPs at 

1q32 and at 12p12 shared a cis-acting genetic variant associated with DNA methylation at three 

and four CpG sites respectively (Table 5). The finding that a substantial number of shared 

variants might influence the risk of AF through DNA methylation at multiple CpG sites is 

consistent with the existence of co-methylated blocks in the genome that are partly genetically 

regulated268. However, horizontal pleiotropy should be considered as another potential 

interpretation (Figure 1, explanation 1.2). All the mQTLs that colocalized with AF risk signals 

were found to be associated in cis with methylation CpG sites (i.e., cis-acting influences with 

distance <1Mb between mQTL and CpG site). In addition, among the shared AF-mQTL SNPs, 

both mQTL effect size and significance tend to increase as the distance between CpG site and 

the shared variant decreases, suggesting that colocalized CpGs closer to the shared AF-mQTL 

signal are more likely to be strongly affected by the shared AF variant.    
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locus  risk SNP scenario  nSNPs CpG site  metabolite main moloc Sensitivity 
moloc  

1p36 rs7529220 GM 297 cg16583536   96.6 90.5 
1q21 rs11264280 GM 123 cg19233405   96.8 96.2 

1q24 rs577676* GM 165 cg22693806   96.3 86.3 

1q32 rs10753933 GM 

92 cg03900565   91.4 81.0 

62 cg11656175   88.6 49.2 

115 cg23098069   89.3 51.3 

3p25 rs7650482 GM 504 cg24848339   95.6 92.7 

3p14 rs34080181 GM 69 cg15724417   89.4 48.9 

4q34 rs10520260* GM 
208 cg24950233   97.5 95.4 
92 cg18575740   96.9 87.0 
57 cg13935962   96.8 86.9 

5q35 
rs6891790 

GM 

105 cg13004182   89.0 83.8 
416 cg12825773   83.9 78.1 
186 cg18839504   88.4 83.6 

rs28439930* 370 cg06889108   90.3 63.2 

7q21 rs56201652 GM 74 cg10481072   85.4 39.6 

7q32 rs55985730 GM 

200 cg18693656   95.5 94.0 

308 cg13951589   95.3 95.1 

410 cg10826733   94.9 93.6 

8q24 rs6994744 GM 

610 cg26291848   93.6 89.0 

612 cg14396066   87.9 50.3 

632 cg10996527   82.3 36.4 

9q34 rs2274115 GM 207 cg04455058   97.2 96.5 

10q21 rs12245149 

GM 879 cg01631684   80.1 50.1 

GMMb 879 cg01631684 

M_VLDL_C_PC 80.5 55.9 
S_HDL_CE_PC 82.5 58.5 

S_VLDL_CE_PC 80.1 52.7 
S_VLDL_C_PC 84.0 61.9 

S_VLDL_TG_PC 84.8 63.3 
XS_VLDL_C 83.5 60.5 

XS_VLDL_FC 84.4 63.0 

GMb.M 197   DHA 82.0 31.4 
DHA_FA 82.0 31.3 

Table 5. Colocalized CpG sites and metabolites identified in the phase I of moloc analysis. 

Number of SNPs in the given region (nSNPs) with scenarios represents sharing of variant 
between AF and methylation CpG site (GM), sharing of variant between AF and circulating 
metabolite but not CpG site (i.e.,2 causal variants) (GMb.M), sharing of variant between AF, 
methylation CpG site and metabolite (GMMb), posterior probability (PPA) of colocalization 
between molecular traits and AF in the main moloc and sensitivity moloc analysis. Variant with 
* indicates the additional independent AF risk variant at the locus. High density lipoprotein 
(HDL), Very low-density lipoprotein (VLDL). Lipoprotein subclasses and their ratio : Total 
cholesterol to total lipids ratio in medium VLDL (M_VLDL_C_PC), Cholesterol esters to total 
lipids ratio in small HDL (S_HDL_CE_PC), Cholesterol esters to total lipids ratio in small 
VLDL (S_VLDL_CE_PC), Total cholesterol to total lipids ratio in small VLDL 
(S_VLDL_C_PC), Triglycerides to total lipids ratio in small VLDL (S_VLDL_TG_PC), Total 
cholesterol in very small VLDL (XS_VLDL_C), Free cholesterol in very small VLDL 
(XS_VLDL_FC), Fatty acids and saturation : 22:6, docosahexaenoic acid (DHA), Ratio of 22:6 
docosahexaenoic acid to total fatty acids (DHA_FA), Amino acids: Alanine (ALA), 
Apolipoproteins: Ratio of apolipoprotein B to apolipoprotein A-I (APOB_APOA1). Each row 
in the locus column represents a single AF hit locus, with sub-rows representing the different 
colocalized molecular traits. 
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locus  risk SNP scenario  nSNPs CpG site  metabolite main moloc Sensitivity 
moloc  

10q22 rs60212594 

GM 
75 cg16228286 

  
90.1 62.3 

73 cg24637261 86.2 60.1 

GMMb 
75 cg16228286 

ALA 
85.7 80.1 

73 cg24637261 80.8 62.1 

10q24 rs11598047 GM 147 cg17426192   97.2 91.6 

12p12 rs17380837 GM 

247 cg22232504   94 69.2 

127 cg11332519   92.3 59.7 

229 cg07725355   94.6 72.1 

129 cg02593205   93.7 66.3 

14q24 rs74884082 GM 58 cg25949241   87.6 44.2 

15q24 rs74022964 GM 

74 cg10576051   84.5 37.7 

78 cg06071033   88.1 58.9 

239 cg01796676   93.6 81.8 

15q25 rs2759301* GM 
60 cg12292492   85.3 38.9 

1018 cg13148921   85.8 46.3 

16q22 rs2359171 GM 82 cg03463523   92.2 60.9 

17p13 rs9899183 GM 665 cg01557754   89.6 55.6 

17q12 rs11658278 GM 149 cg22833065   81.3 32 
GMMb APOB_APOA1 80.4 63.4 

17q25 rs12604076 GM 343 cg23834688   84.6 40.1 

 

 

3.3.1.2 Regions with evidence of colocalization between methylation, metabolite and 

AF  

Three loci were identified with PPA above 80% for the GMMb scenario supporting the 

evidence of sharing the same variants between DNA methylation, metabolite and AF traits 

(Table 5). These colocalizations corresponded to 10 unique AF-CpG-metabolite combinations 

(PPA.GMMb) and 2 unique AF-metabolite pairs (PPA.GMb.M). The top AF hit rs12245149 

at the chromosome 10q21 locus was found to be shared with DNA methylation at cg01631684 

and circulating metabolites (multiple lipoprotein subclasses). Analysis of colocalization in the 

10q22 region demonstrated that the AF risk variant, rs60212594 was shared between AF, two 

CpG sites (cg16228286 and cg24637261) and Ala (Alanine) amino acid. Moreover, 

rs11658278 at the 17q12 locus was shared across all three traits (PPA.GMMb=80.4%). At this 

locus, cg22833065 CpG site and ApoB_ApoA1 (Ratio of apolipoprotein B to apolipoprotein 
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A-I) colocalized with AF-associated signal, rs11658278. The shared variant resides within the 

large LD block spanning multiple genes including ZPBP2, GSDMB and ORMDL3. These 

colocalized loci were further studied in Phase II to identify which gene(s) may be prioritized 

as a putative causal gene(s) responsible for the shared genetic effect of AF. 

 

3.3.2 Phase II – Mapping Phase I methylome and metabolome findings to the 
potential causal gene(s) for atrial fibrillation 

3.3.2.1 Regions with evidence of colocalization between AF, methylation, metabolites 

and/or gene expression   

Multi-trait colocalization analyses were expanded by integrating eQTL data at 23 colocalized 

loci found in phase I. The number of loci and their unique combinations of traits at PPA>80% 

in these analyses are reported in Table 6. Ten loci were identified with probability of a shared 

variant (PPA>80%) for at least one of the 3 possible molecular colocalization scenarios. Of 

these loci, I identified 9 loci with 23 GME scenarios (unique AF-CpG-gene configurations), 2 

loci with 3 GMEMb scenarios (unique AF-CpG-gene-metabolite configurations) and 1 locus 

with 4 GEMb.M scenarios (unique AF-gene-metabolite configurations and not CpG site).  At 

the 17q12 locus, evidence of colocalization was found between ERBB2 gene expression, 

cg22833065 methylation, ratio of apolipoprotein B to apolipoprotein A-I (APOB_APOA1, an 

apolipoprotein) and AF (PPA.GMEMb=81.8%). The C allele of rs11658278 was significantly 

associated with decreased expression of ERBB2 gene in the eQTLGen data (ß=-0.092, 

P=7.21x10-15 [i.e., cis-eQTL]). These findings suggest that the genetic variant driving the 

observed effect on AF might be responsible for alterations in cg22833065 methylation, ERBB2 

gene expression and APOB_APOA1 metabolite levels at this locus. Of the 10 genes tested for 

colocalization with AF-cg03463523 pair (PPA.GM=92.2%) at the 16q22 locus, only HP 
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(haptoglobin) had evidence of colocalization. This locus encompasses two independent AF 

variants (rs2359171 and rs876727) with ZFHX3 gene residing in close physical proximity to 

both independent variants. The top AF risk variant, rs2359171-T (ß=-0.175, P=4.65x10-91) at 

this locus associated with DNA methylation at cg03463523 CpG site (cis-mQTL; ß=0.143, 

P=1.87x10-36) colocalized with the cis-eQTL SNP that was associated with decreased 

expression level of the HP gene (ß=-0.095, P=7.45x10-10) in this analysis (PPA.GME=96.7% 

rs2359171-cg03463523-HP combination) (Figure 10). No evidence of colocalization was 

identified between the nearby ZFHX3 gene (PPA.GM.E=93.2%) and the colocalized AF-

cg03463523 pair found in the phase I analysis. Rs2359171 was not associated with the 

expression of ZFHX3 (P=0.24). The secondary AF risk variant, rs876727 at this locus (ß=-

0.084, P=1.97x10-23) was showed only weak evidence of association with the expression of the 

HP gene in whole blood (ß=0.045, P=1.62x10-3). This locus is studied in more detail in 

Chapter 5. 
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locus  risk SNP scenario  nSNPs CpG site  gene metabolite main 
moloc 

Sensitivity 
moloc 

1q21 rs11264280 GME 106 cg19233405 

DAP3   84.7 83.4 
SYT11   90.9 90.1 

YY1AP1   98.0 97.9 
MSTO2P   98.2 98.2 

1q32 rs10753933 GME 62 cg11656175 CHI3L1   89.8 83.3 
109 cg23098069 KLHL12   84.9 76.1 

7q21 rs56201652 GME 72 cg10481072 GATAD1   96.2 94.5 
KRIT1   93.3 89.4 

7q32 rs55985730 GME 190 cg18693656 RBM28   99.9 99.9 
296 cg13951589   99.9 99.8 

10q21 rs12245149 GEMb.M 197   

NRBF2 DHA 87.7 77.8 
JMJD1C DHA 93.4 89.6 
NRBF2 DHA_FA 87.7 77.8 

JMJD1C DHA_FA 93.4 89.6 

10q22 rs60212594 
GME 

70 cg16228286 CAMK2G   94.6 92.0 
P4HA1   91.0 87.2 

68 cg24637261 
BMS1P4-AGAP5   93.0 87.9 

P4HA1   89.0 78.9 
MRPS16   83.7 66.4 

GMEMb 70 cg16228286 CAMK2G ALA 82.6 82.7 
GMEMb 68 cg24637261 BMS1P4-AGAP5 82.5 82.3 

14q24 rs74884082 GME 58 cg25949241 
PSEN1   98.1 97.7 
ACOT4   87.4 83.8 

AC004846.1   95.5 92.9 
16q22 rs2359171 GME 80 cg03463523 HP   96.7 95.2 

17q12 rs11658278 GME 147 cg22833065 

ERBB2   95.4 92.0 
IGFBP4   90.1 81.7 

RP11-94L15.2   84.5 72.1 
GMEMb ERBB2 APOB_APOA1 81.8 81.6 

17p13 rs9899183 GME 629 cg01557754 RP11-186B7.4   93.4 91.8 

 

 

 

 

Number of SNPs in the given region (nSNPs) with scenarios represents sharing of variant between 
AF, methylation, and expression (GME), sharing of variant between AF, expression, metabolite but 
not methylation (i.e.,2 causal variants) (GEMb.M), sharing of variant between AF, methylation, 
expression and metabolite (GMEMb), posterior probability of colocalization between molecular 
traits and AF in the main moloc and sensitivity moloc analysis. Each row in the locus column 
represents a single AF hit locus, with sub-rows representing the different colocalized molecular 
traits. 

Table 6. Colocalized combination of traits identified in the phase II of moloc analysis of AF. 
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Figure 10. Locus association plot displaying a single association peak for AF, cg03463523 
CpG site and HP gene in the cis region.  

The top hit for AF (rs2359171) colocalized with the independent hit (mQTL) for cg03463523 
and the independent hit (eQTL) for HP gene at the 16q22 locus (PPA.GME=96.7%). The 
secondary hit for AF (rs876727) is weakly associated with the expression of the HP gene. 
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3.3.2.2 Evidence of molecular pleiotropy 

Among 10 loci with evidence of colocalization with multiple traits, eight loci were found with 

shared genetic effects between AF and multiple molecular phenotypes of the same kind (i.e., 

different CpG sites, different genes, and different metabolites) whose regulation is under the 

influence of a shared cis-regulatory signal. Two loci (10q21 and 10q22) were identified with 

multiple AF-CpG-metabolite combinations (GMMb) (Table 5), 7 loci (1q21, 1q32, 7q21, 

7q32, 10q22, 14q24, and 17q12) with multiple AF-CpG-gene combinations (GME), 1 locus 

(10q21) with multiple AF-gene-metabolite combinations (GEMb.M), and 1 locus (10q22) with 

multiple AF-CpG-gene-metabolite combinations (GMEMb) (Table 6). These loci may act as 

master regulators (a SNP that controls groups of intermediate phenotypes) on the methylation 

of multiple CpG sites or may co-regulate the expression of multiple genes (including causal 

and non-causal genes) and/or multiple metabolites (Figure 11).   

 

3.3.2.3 Direction of effects for colocalized variants for SNP-CpG-gene and SNP-CpG-

metabolite combinations  

Among 23 unique AF-CpG-gene combinations with strong evidence of colocalization 

(PPA.GME>80%), the direction of association of the variant with methylation and expression 

was in the opposite direction for 52.2% of the associations and in the same direction for 47.8% 

in the same directions (i.e., roughly equal). For the 10 colocalized unique AF-CpG-metabolite 

combinations, the direction of the effect of the variant on methylation and metabolite level was 

more frequently in the opposite direction (80%) than in the same direction (20%). Two 

examples of mQTLs that colocalized with an eQTL that has the same or opposite effect on 

nearby genes are shown in Figure 12. This is consistent with the hypothesis that the decrease 

in methylation of CpG site located in the promoter region is indicative of a more open 

chromatin state and/or upregulation of gene expression or transcriptional activity and that 
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increased promoter CpG methylation is indicative of induced transcriptional repression. 

 

 

 

 

 

 

 

 

 

 

 

When a genetic variant (robustly associated with both molecular trait and complex trait (dependent of both traits)) is reliably shared 
between both molecular trait (i.e. DNA methylation, gene expression, protein and metabolite) and complex trait (i.e. AF), we postulate 
that there are four possible hypotheses that may explain this  is pleiotropy (either horizontal or vertical)

1. Colocalization 

CpG site 1

Co-regulated 
metabolites 

Shared SNP Complex traitCpG site 2

CpG site 3

Gene 1

Gene 2

Gene 3

metabolite 1

metabolite 2

metabolite 3

Co-expressed 
genes

Co-methylated 
CpG sites

Figure 11. An explanation for colocalization between multiple molecular traits and a 
complex trait. 

Potential scenarios that can explain colocalization of multiple traits of the same kind. A shared 
genetic variant influences a complex trait through multiple CpG sites or/and genes or/and 
circulating metabolites which are co- methylated, expressed or regulated with one another. I.e., 
colocalization scenarios: GM, GMb, GMMb, GME, GEMb, GMEMb. Colocalization can 
pinpoint potential causal gene(s) and prioritize biological candidate molecular traits which 
might have relationship with one another. Any of the CpG sites/genes/metabolites might be 
causal and the other CpG sites/genes/metabolites might be non-causal (as a bystander) but, are 
co-regulated together. Alternatively, multiple molecular phenotypes of the same kind might be 
co-regulated by a single shared variant and all might be involved in the same pathway to the 
GWAS trait.  
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Results for the CpG selected for colocalization analysis (green) are shown on the bottom of each 
plot (descending), overlaid with the eQTL results (dark/light blue and pink). For the 1st scenario 
(a), the methylation-decreasing allele (rs56201652, G) at the 7q21 locus is associated with 
increased expression of the GATAD1 and KRIT1 genes. For the 2nd scenario (b), the 
methylation-decreasing allele (rs74884082, C) at the 14q24 locus is associated with increased 
expression of the PSEN1 and AC004846.1 (lncRNA) but decreased expression of ACOT4 
(shown (descending) in light blue). 

Figure 12. Examples of mQTLs that colocalize with an eQTL that has the same or opposite 
effects on nearby genes. 

a) 

b) 
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3.3.2.4 Colocalized genes inform drug discovery  

To evaluate if the genes prioritized by moloc might be candidate targets for drug discovery or 

be druggable genes, existing literature was reviewed. 18 protein coding genes were assessed 

for prior biological evidence of a causal link to cardiovascular diseases. Of the 18 genes, two 

were identified as potential drug targets (ERBB2 and PSEN1), two (GATAD1 and YY1AP1) 

were identified as containing monogenic mutations and five genes (CHI3L1, KRIT1, CAMK2G, 

IGFBP4 and JMJD1C) had experimental evidence from animal models (Table 7).  As these 

genes have a demonstrated biological role that can be observed at the phenotypic level, they 

make strong candidates for genes to be taken forward as potential drug targets to treat disease 

in the early drug discovery process. However, it should be noted that these genes were 

identified using GWAS and therefore are susceptibility loci, and it is not certain whether this 

will have a similar role in disease progression.  

 

Two of the 18 genes (ERBB2 and PSEN1) showed evidence for being druggable targets for 

approved pharmaceutical drugs that have been clinically tested and used commercially. A 

member of the epidermal growth factor (EGF) receptor family is encoded by ERBB2 gene. 

ERBB2 targeted drugs, such as AFATINIB (inhibitor) and trastuzumab (inhibitor) have been 

approved and used for non-small cell lung carcinoma and breast cancer respectively (Open 

Targets annotations). ERBB2 signaling has been found to play a crucial role in adult heart 

function according to adverse side effects such as cardiac dysfunction revealed by the 

anticancer drug (trastuzumab, cyclophosphamide and anthracycline) that targets this 

gene269,270. A mutant mouse model deficient in ERBB2 showed various dilated cardiomyopathy 

related physiological phenotypes including reduced contractility, wall thinning, chamber 

dilation, and cardiac dysfunction (OMIM 164870, Animal Model)271,272. Negro et al identified 
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impairment of cardiac contractility in the hearts of Erbb2 knockout mice273. ERBB2 has been 

shown to be essential for electrical function of the atria and proliferation of cardiomyocytes 

during development274,275,276. Therapeutic drugs such as SEMAGACESTAT-inhibitor for 

Alzheimer's disease; TARENFLURBIL-modulator for dementia; RG-4733-inhibitor for non-

small cell lung carcinoma, ovarian carcinoma, fallopian tube carcinoma, Different body organs 

carcinoma and cancers have been also approved to target PSEN1 gene (Open Targets 

annotations). PSEN1 plays an important role in cardiac development and its 

morphogenesis277,278 and has been reported to be involved in smooth endoplasmic reticulum 

calcium ion homeostasis279. Missense mutations in PSEN genes were identified to cause dilated 

cardiomyopathy and heart failure (PSEN1 (Asp333Gly) and PSEN2 (Ser130Leu)) (OMIM 

104311)277. Genetically modified mice with Psen1 knocked out or deleted have reduced 

muscles fibers, sarcomere lengths in cardiomyocytes and diastolic dysfunction of the heart280. 

In addition, abnormal development of blood vessel and capillary morphology was reported in 

a mouse model with a defect in the PSEN1 gene (Open Targets, Mouse Phenotype 

annotations)281. 

 

Two genes (GATAD1 and YY1AP1) had monogenic mutations that resulted in cardiovascular 

disease. GATAD1 encodes a protein containing a zinc finger domain which controls gene 

expression. Missense mutations in the GATAD1 gene cause an autosomal recessive dilated 

cardiomyopathy (OMIM 614518)282,283. An in vivo model of Gatad1 knockout adult zebrafish 

showed phenotypes similar to HF284. Loss-of YY1AP1 function results in Grange syndrome 

which affects the blood vessels with internal carotid artery stenosis and hypertension 

phenotypes (OMIM 607860)285,286,287. Moreover, homozygous missense variants in YYA1P1 

leads to Grange syndrome with a later onset cardiovascular disease such as ischemic stroke and 
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hypertension288. A novel biallelic mutation in the YY1AP1 gene leads to an early onset 

hemorrhagic stroke and/or hypertension with Grange syndrome289.   

 

Five of the 18 genes (CHI3L1, KRIT1, CAMK2G, IGFBP4 and JMJD1C) were detected with 

only related CVD phenotypes in mouse models. CHI3L1 encodes a glycoprotein involved in 

the biological process of inflammation response and is secreted by cells of the innate immune 

system. CHI3L1 originates at the inflammation site, for example in the myocardium in contrast 

to other inflammatory biomarkers such as HP and C-reactive protein (CRP), which originate 

in the liver. A study in mice revealed inhibition of CHI3L1 expression and increased 

microRNA levels enhanced the influence of dexmedetomidine (DEX) preconditioning to 

protect myocardial ischemia–reperfusion injury290. Furthermore, murine models have shown 

that CHI3L1 and miR-24 are two important biomarkers for vascular inflammation and 

abdominal aortic aneurysm291. Studies of the KRIT1 gene in a mouse model have been reported 

to result in abnormal heart development, abnormal dorsal aorta morphology, abnormal 

pericardium morphology; aorta dilation; abnormal blood vessel morphology; aortic endothelial 

dysfunction292,293,294,295,296. CAMK2G is part of the Ca(2+) and calmodulin-dependent protein 

kinase subfamily involved in the regulation of calcium ion transport, skeletal muscle adaptation 

and muscle contraction297. Chelu et al identified increased predisposition to AF caused by 

enhanced ryanodine receptors (RyR2s) phosphorylation by CAMK2 due to swift atrial pacing 

in mice with gain-of RyR2s function mutation298. The increased activity of CAMK2 was also 

reported in patients diagnosed with chronic AF298,299,300. Moreover, increased AF was detected 

in diabetic mice as a result of increased oxidized CAMK2301. IGFBP4 is part of the insulin-like 

growth factor binding protein (IGFBP) family contribute to negatively regulation of canonical 

Wnt signaling pathway302. Canonical Wnt signaling is essential for cardiogenesis and both in 
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vitro and in vivo experiments showed that knockdown of Igfbp4 cause attenuation of 

cardiomyogenesis302. Upregulation of JMJD1C has been detected in human and mice with 

hypertrophic heart303. In cardiomyocytes, knockdown of Jmjd1c displayed decrease in 

expression of hypertrophic genes and suppressed the mediation effect of angiotensin II on 

increasing cardiomyocyte size303.  

 

colocalized 
gene gene name 

gene direction for 
increased AF risk 

(my study) 

cardio human 
phenotype (PMID) 

(OMIM) 
cardio animal model 

ERBB2 ERB-B2 receptor tyrosine 
kniase 2 increased expression no 

yes (PMID: 27390088, 
11984589) (OMIM 

164870) 

RBM28 RNA Binding Motif 
Protein 28 reduced expression no no 

SYT11 Synaptotagmin 11 reduced expression no no 

DAP3 Death Associated Protein 
3 reduced expression no no 

YY1AP1 yin yang 1-associated 
protein 1 reduced expression 

yes (PMID: 27939641, 
31633303, 31270375) 

(OMIM 607860) 
no 

CHI3L1  Chitinase 3 Like 1 reduced expression no yes (PMID: 33461162, 
25358394) 

KLHL12 Kelch Like Family 
Member 12 increased expression no no 

GATAD1  GATA Zinc Finger 
Domain Containing 1 increased expression yes (PMID: 21965549) 

(OMIM 614518) yes (PMID: 28955713) 

KRIT1  KRIT1 Ankyrin Repeat 
Containing increased expression no 

yes (PMID: 24990152, 
20668652, 14993192, 
25625206, 31590384) 

CAMK2G 
Ca2+/calmodulin 

dependent protein kinase 
II Gamma 

reduced expression no 
yes (PMID: 19603549, 
24030498, 33151911, 

29903013) 

P4HA1 
collagen enzyme P4HA1, 

protein is higher in 
atrioventricular valves 

reduced expression no no 

MRPS16 Mitochondrial Ribosomal 
Protein S16 reduced expression no no 

Table 7. Known functional evidence for genes prioritized in moloc analysis of AF. 

GeneCards (http://www.genecards.org/) was used to look-up the gene name. The Open Targets 
Genetics database (https://genetics.opentargets.org)	was used to look-up information linking the 
gene to the CVD related phenotype based on experimental work in animal model. The Online 
Mendelian Inheritance in Man (OMIM) platform (https://www.omim.org/)  was used for evidence 
on CVD caused by defects in the gene and knock down/out in animal model. The publication 
reporting the evidence for the candidate gene (PMID). 
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colocalized 
gene gene name 

gene direction for 
increased AF risk 

(my study) 

cardio human 
phenotype (PMID) 

(OMIM) 
cardio animal model 

PSEN1 Presenilin 1 increased expression yes (PMID: 17186461) 
(OMIM 104311) 

yes (PMID: 28617969, 
12834865) 

ACOT4 Acyl-CoA Thioesterase 4 reduced expression no no 

HP Haptoglobin increased expression no no 

IGFBP4 Insulin Like Growth 
Factor Binding Protein 4 increased expression no yes (PMID: 18528331, 

24610529, 32597006) 

NRBF2 Nuclear Receptor Binding 
Factor 2 increased expression no no 

JMJD1C Jumonji Domain 
Containing 1C reduced expression no yes (PMID: 32625104) 

 

3.3.3 Sensitivity analyses on moloc probabilities 

3.3.3.1 Comparison of main moloc findings against more stringent priors 

It has been reported that the colocalization posterior probability is affected by selecting 

different prior values304. Therefore, sensitivity analyses were conducted where main moloc 

results using the default prior settings, p1=1x10-4, p2=1x10-6, p3=1x10-7, p4=1x10-8 (see 

section 2.2.1.1 for definition of prior probabilities) were compared against more stringent prior 

settings for both phase I (p1=1x10-5, p2=1x10-7, p3=1x10-8) and phase II (p1=1x10-5, p2=1x10-

7, p3=1x10-8, p4=1x10-9). These analyses showed that evidence of colocalization (PPA>80%) 

remained for only half of the findings from the main moloc analyses using the more stringent 

prior thresholds. The number of colocalized findings dropped from 53 to 18 (34%) when 

p1=1x10-5, p2=1x10-7 and p3=1x10-8 priors were used in phase I (Table 5) and from 30 to 24 

(80%) in phase II sensitivity moloc (Table 6). This was not only due to a thresholding effect 

as 35 (40%) of the colocalized results showed large differences of greater than 0.2 in PPA 

values between the different prior settings. These results suggest that moloc findings at some 

loci are sensitive to the priors specified and should therefore be treated with caution. However, 



	

	

88	

approximately 50% of all moloc results were robust to stringent priors with 28.6% of this 

attributed to phase 2 colocalization evidence. An inverse correlation (Pearson r2=-0.35, 95%CI 

[-0.564 -0.0850], P=1.08x10-2) was observed between the number of SNPs in the region and 

the posterior probability (PPA) of the shared causal variant (Figure 13). Colocalized 

combinations with small numbers of SNPs were less sensitive to priors (p2 or p3) than those 

with large numbers of SNPs. These results demonstrate that having less SNP density in the 

region will not necessarily decrease the chance of finding colocalization.  
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Figure 13. Main moloc results compared to sensitivity moloc results in phase I and II. 

a) Comparison including all results from moloc phase I. (b) Same plot but restricting to all 
results from moloc phase II. Main moloc analysis used p1=1x10-4, p2=1x10-6 and p3=1x10-7 (in 
phase I) and p4=1x10-8 (in phase II when expression trait was added) for prior values. Sensitivity 
moloc analysis used p1=1x10-5, p2=1x10-7 and p3=1x10-8 (in phase I) and p4=1x10-9 (in phase II 
when expression trait was added) for prior values. Size of coloured points reflect number of 
SNPs in a region for different scenarios (i.e., trait combinations). 

a) 

b) 
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3.3.3.2 LD pattern of region and PPA 

The correlation structure of the genomic region (i.e., local LD pattern) could influence the 

posterior probability (PPA) of finding a shared causal variant216. Therefore, the relationship 

between the LD score for each AF lead variant and all possible moloc probabilities was tested 

for the SNP-CpG (PPA.GM), SNP-metabolite (PPA.GMb) and SNP-CpG-metabolite 

(PPA.GMMb) combinations using phase I colocalization results. Pearson’s correlations 

between LD score of regions versus PPA of trait combinations in phase I of main moloc 

analysis showed inverse association between these two factors (r2=-0.44, 95% CI [-0.64 -0.20], 

P=9.30x10-4). Moreover, testing for correlation coefficient between numbers of SNPs and LD 

scores of the regions showed positive significant association (Pearson’s correlation: r2=0.73, 

[95% CI=0.58 0.84], P=4.16x10-10) between these two factors that affect PPA values (Figure 

14). A total of 24 of the 53 (45%) combinations of traits in the main moloc analysis in phase I 

had a relatively high LD score of greater than 50. In these regions the moloc probabilities may 

be biased towards lower probabilities (i.e., increased risk of missing a moloc finding in these 

regions of high LD). These findings are consistent with the findings of a previous study which 

examined the impact of LD structure of the regions on colocalization probabilities304. This 

relationship demonstrates that there is more uncertainty in determining sharing of a causal 

signal in genomic regions with large numbers of highly correlated variants (i.e., when many 

variants are in high LD).   
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3.3.3.3 Zero imputation of missing GoDMC mQTL data 

Because of the absence of complete mQTL summary statistics in the GoDMC mQTL data, one 

region was selected to include missing SNPs and to test the impact of the number of SNPs in 

the region on the PPA value. This sensitivity moloc analysis was performed on the 17q12 

region where 4419 SNPs were in common between AF, cg22833065 CpG site and 

APOB_APOA1 metabolite datasets. This analysis showed that posterior probability only 

slightly attenuated to PPA.GMMb=78.0% when the missing SNPs in the region where zero 

imputed as compared to a PPA of 80.4% where only 149 SNPs were available for moloc 

analysis. This result is in concordance with the earlier results found in this chapter. 

Figure 14. Scatter plot illustrating correlation between posterior probability of association 
(PPA) of main moloc results and LD score of regions in Phase I. 

Size of black points reflect number of SNPs in a region for different scenarios (i.e., GM, 
GMb.M and GMMb trait combinations) found in Phase I. 
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3.4 Discussion 

3.4.1 Main findings 

In this study, a moloc analysis pipeline was developed and applied to evaluate the shared 

genetic influences of molecular traits at AF-associated loci by colocalization to elucidate 

molecular mechanisms in atrial fibrillation. 23 loci with evidence of colocalization between 

methylation and metabolites were identified.  Of the 23 loci, 10 found to be also colocalized 

with expression of a gene. The gene lookups in two public databases showed that of the 18 

genes, ERBB2 and PSEN1 are drug targets and GATAD1 and YY1AP1 have human monogenic 

cardiovascular phenotypes, highlighting an important role in disease.  

 

Colocalization revealed evidence of molecular pleiotropy for 8 loci (i.e., region colocalized 

with multiple molecular phenotypes). For example, for a set of highly correlated metabolites 

(very small VLDL lipoprotein subclasses) the genetic effects on circulating metabolite levels 

were found to be shared with the AF lead variant, rs12245149 at the 10q21 locus which also 

colocalized with methylation of CpG site, cg01631684. It is hypothesized that the 

colocalization of multiple metabolites with one CpG at this locus may be due to the shared 

genetic variant co-regulating levels of different circulating metabolites through changes in 

methylation levels of CpG site. In addition, colocalization of JMJD1C (PPA.GEMb.M=93.4%) 

and NRBF2 (PPA.GEMb.M=87.7%) genes with DHA and DHA_FA (22:6, docosahexaenoic 

acid, an omega-3 fatty acid, and its ratio to total fatty acids), was found at this locus. Notably, 

the rs12245149 variant is in LD (r2=0.71) with the rs10740118 variant (P=8.1x10-9) near 

NRBF2 which has been associated with the n6 fatty acids linoleic acid (LA) in the CHARGE 

cohorts305. NRBF2 encodes for nuclear receptor binding factor 2 which upon interaction with 
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a transcription factor, PPAR-α (which is highly expressed in the skeletal muscle) upregulate 

oxidation of fatty acid and lipoprotein lipase activity306,307. JMJD1C encodes jumonji domain 

containing 1C, a histone demethylase and has been shown to be involved in demethylation of 

histones and chromatin modification308.  Inhibition of JMJD1C has been correlated with the 

attenuation of cardiac hypertrophy309,303. Genetic variation, rs10761741 in JMJD1C (in LD 

with the AF shared variant r2=0.71) has been reported to affect pathways that are involved in 

platelet reactivity as well as modulation of platelet development310. Increased serum 

testosterone genetic predictors in the JMJD1C gene region have been linked to lipids, CAD 

and IS311. MR studies have found a causal relationship between plasma phospholipid 

arachidonic acid (previously linked to coagulation and inflammation) and IS, ischaemic heart 

disease (IHD), venous thromboembolism (VTE) and peripheral artery disease312. This evidence 

taken together with the moloc findings, suggests pleiotropic effects of the shared genetic 

variant on AF through regulation of likely causal genes, JMJD1C, NRBF2 and fatty acids at 

this region. 

 

The moloc findings showed shared genetic effects on multiple CpG sites and multiple genes at 

1q32, 10q22 and 7q32 loci. Among these regions, pairs of methylation CpG sites were found 

to have a shared mQTL signal that is enriched for opposite directions of effect (CpG pairs with 

inverse associations - cg11656175, cg23098069 at 1q32 and cg16228286, cg24637261 pairs at 

10q22) and concordant directions of effect (cg18693656, cg13951589 pair at 7q32 with 

negative associations) in GoDMC. These findings are consistent with previous reports by 

Bonder et al128  that have linked multiple CpG sites with each gene and also revealed the 

existence of both positive and negative correlation between methylation of DNA and gene 

expression. Gene annotations for these colocalized CpG sites and their genomic locations 
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showed that the colocalized CpG pairs reside comparatively in close relation with each other 

and were annotated to the same gene at a locus. Evidence of colocalization for GM (phase I) 

and GME (phase II) scenarios showed that colocalized pairs of CpG sites are more likely to be 

co-regulated in a region. These results are consistent with findings that the levels of methylation 

for proximally located CpG sites are often correlated313,268, equivalent to the correlation 

structure of the genome (LD). For example, two neighboring CpG sites (cg16228286, 

cg24637261) located within 3kb of each other were found to be influenced by the shared signal 

in the 10q22 region. These two CpG sites colocalized with multiple genes (such as CAMK2G, 

P4HA1, MRPS16 (protein coding genes) and BMS1P4-AGAP5 (lncRNA)), suggesting that a 

shared variant may co-regulate the expression of cis-genes through cis-effects on the 

methylation of adjacent CpG sites. However, the extent to which unique pairs or combinations 

of intermediate molecular traits implicated by the colocalized association signals, are causal 

for AF or represent genuine biological mechanisms is further complicated by overlap of 

multiple molecular traits in each region and by potential horizontal pleiotropy. Taken together, 

it is likely that many of these regions represent a mixture of vertical and horizontal pleiotropy. 

 

Several sensitivity analyses were performed to evaluate the robustness of the results. First, 

using more stringent prior thresholds in sensitivity moloc analyses, which although reducing 

the type I error rate (i.e., false positive finding), is likely to also increase the type II error rate 

(i.e., false negative finding). Secondly, examining the potential effects of LD score of the 

region on PPA identified that power to detect the true causal variant is lower when LD score 

of the lead variant is higher. Third, zero imputation of P values and effects for missing mQTLs 

slightly attenuated the posterior probability of colocalization for GMMb combination. In fact, 

zero imputation the region with missing genetic information down-weighted the colocalization 
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probabilities which may be due to this conservative approach assuming missing mQTLs were 

null, which is unlikely to be true. This result is consistent with the simulation study shown in 

the GoDMC study where sparse summary data performed comparably to complete summary 

data with regards to power or FDR124. 

 

3.4.2 Strength and limitations 

A major strength of this study is the systematic application of a moloc analysis pipeline to 

integrate multiple molecular QTL data with AF which allowed fuller understanding of 

molecular pleiotropy and master regulators to be identified. Moloc was performed integrating 

multiple omics data in a single analysis (i.e., either 3 or 4 traits), which captured colocalization 

of unique molecular phenotypes with shared genetic effects in the cis region. While many of 

the shared variants exert a small effect in risk of AF individually through different molecular 

phenotypes, targets based on evidence from colocalization are more likely to be therapeutically 

well grounded compared to those that are not. Moreover, the use of summary statistics from 

the largest mQTL, eQTL and AF GWAS studies ensured that the moloc analyses were highly 

powered to detect share regulatory signals between the traits.  

 

Another strength is that moloc requires only information on genetic associations (i.e., summary 

statistics) and there is no requirement for LD estimates of the datasets when in-population LD 

is not available, although the statistics (posterior probabilities of combinations) depend on the 

pattern of association (LD) and the number of correlated SNPs in the region216.  

 

However, moloc studies in Phase I were of limited genomic coverage and lack of power for 

the mbQTL dataset since the ALSPAC mbQTL study was limited by small sample size and 
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therefore, failed to investigate the shared genetic regulatory effects between AF and 

metabolomic traits in regions which otherwise could improve detection of circulating 

metabolites with potential roles in pathways towards pathogenesis of AF.  Moreover, moloc 

analysess were limited by the lack of full summary datasets for methylation and metabolite 

traits (i.e., missing of mQTLs and mbQTLs for some CpG sites and metabolites, respectively). 

Therefore, only mQTLs and mbQTLs at the threshold of P<1x10-5 and 10-4 were analyzed in 

moloc. However, restricting molQTLs to genetic variants that are significant ensured that the 

SNPs robustly associated with DNA methylation and metabolite traits are present in the model, 

but this approach might be conservative as moloc requires >50 SNPs in the model.  

 

Blood is thought to be a good proxy as a high degree of consistency in overlap between mQTLs 

and eQTLs and risk variants has been observed across blood and relevant tissues239,128,314,315. 

This study detected shared genetic influences in peripheral blood, which may not be the most 

suitable tissue in which to look for genetic overlaps between intermediate phenotypes and AF 

and more conspicuous shared genetic effects may be detected in human cardiac tissue (such as 

left and right atrial appendages). Moreover, blood has multiple cell types which may all have 

different methylation levels. Therefore, studies using large-scale QTL mapping of DNA 

methylation and gene expression in relevant tissues or cell types to identify whether the shared 

genetic variants are tissue or cell type specific and also infer whether another candidate gene 

is responsible for a shared regulatory effect, are needed. However, distinguishing between 

tissue-specific and subject-specific effects of variants is not possible without having summary 

statistics data calculated from tissue samples of the same individuals which are often not easily 

accessible.  
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3.4.3 Future directions 

Colocalization of summary statistics of genetic, epigenetic, transcriptomic and metabolomic 

profiles from multiple studies provides an opportunity to characterize the relationship between 

hierarchies of molecular phenotype regulation and untangle how these regulatory associations 

affect a vast array of cardiovascular diseases through shared genetic variation of molecular 

phenotypes and trait. Detailed understanding of this relationship helps us to correctly interpret 

the contribution of genetic, epigenetic, transcriptomic and metabolomic variations to AF. The 

availability of multi-omic statistics from GoDMC, eQTLGen and ALSPAC studies enabled 

evaluation of statistical evidence supporting a common causal variant at AF risk loci across 

multiple traits using moloc. Moloc findings suggested that the shared variant might be 

influencing the risk of AF through changes in DNA methylation, gene expression and 

circulating metabolites, although horizontal pleiotropy should be considered as another 

potential interpretation. 

 

Further studies such as multivariable Mendelian randomization (MVMR)316,317 or two step 

mediation MR318 analysis to unravel the independent contributions of each individual 

molecular phenotype found to be colocalized or co-regulated (e.g., multiple CpG sites, multiple 

genes) to AF risk should facilitate investigation of causality (mediation) and horizontal 

pleiotropy.  

 

Extending these analyses beyond DNA methylation, gene expression and metabolite levels to 

other molecular phenotypes such as variable histone modification and protein levels can greatly 

intensify the mechanistic and functional interpretation of AF genetic associations. Furthermore, 

inclusion of pQTL summary statistics as a fifth layer would facilitate discovery of proteins 
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influencing the risk of AF through methylation at a particular CpG site and expression of a 

specific gene. Access to large-scale molecular QTL datasets is important for application of the 

moloc approach, and so these other analyses will become possible as other molQTL sample 

sizes grow in the future and future studies establish better coverage of the genome (e.g., the 

450k array captures only 2% of the genome124. 

 

3.4.4 Conclusions 

A comprehensive multiple-trait colocalization analysis was carried out to explore the molecular 

mechanisms underpinning AF. Combining the largest mQTL dataset available with 

metabolomic and gene expression data identified evidence of shared genetic etiology with 

molecular traits at 23 loci, including 20 with at least two molecular traits involved. Whilst this 

approach does not distinguish horizontal from vertical pleiotropy it does provide more insights 

into the pathways which are influenced by genetic predisposition to AF, which could be of 

value in drug target prioritization or in identifying biomarkers for early detection of disease. 
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Chapter 4 Dissecting the molecular aetiology of stroke  
 

4.1 Introduction 

Stroke is the second leading cause of lifelong disability and death among individuals over 60 

years worldwide59,60,61. IS accounts for approximately 85% of all cases of stroke63,64 in contrast 

to ICH which accounts for around 15% of stroke65. GWA meta-analyses in European ancestry 

have identified several risk loci associated with IS subtypes85,67. IS has been estimated to have 

a high heritability (h2=16-40%)85 and may be affected by several related cardiovascular traits 

or risk factors including AF, CAD, blood pressure (systolic and diastolic BP), and HF as well 

as metabolomic traits such as levels of HDL and LDL cholesterol which showed evidence of 

overlapping genetic loci with IS41,67. Moreover, 4q25 and 16q22 loci identified to be associated 

with CES by Malik et al are concordant with genetic pathways involved in regulating the 

cardiac mechanisms associated with AF97,87. Among loci identified to be associated with IS, 

two loci showed associations with more than one IS subtype including 9q34 (ABO) locus with 

shared genetic effects between LAS and CES and 12q24 (SH2B3) locus with shared genetic 

influences between LAS and SVS as analysed by GWAS-pairwise analyses67.  

 

Variants which influence methylation, gene expression and metabolite levels have been linked 

to stroke risk in the literature. One recent study has integrated IS GWAS and brain eQTL and 

mQTL datasets to link functional genetic variants to IS through methylation and gene 

expression and found IS susceptibility loci overlapped with loci influencing DNA methylation 

and gene expression319. Circulating lipoprotein lipids have previously been identified as risk 

factors for IS320. Moreover, triglyceride-rich lipoproteins have been linked to the risk of IS321 
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and CHD322,323. MR studies have found causal relationships between circulating lipoprotein 

lipids and apolipoproteins with risk of IS324,325,326 and its risk factor CHD327. It has been 

revealed that elevated levels of APOB, triglycerides, and LDL cholesterol increase the risk of 

IS324,326,328. This contrasts with the MR studies that found a relationship between high 

apolipoprotein A-I (APOAI) and HDL levels and lower risk of IS which indicates that APOAI 

and HDL levels may have protective roles324,326,329. The 9q34 (ABO) and 12q24 (SH2B3) loci 

have been shown to be associated with CAD through multiple circulating proteins330 and have 

been previously linked to both CAD and IS331. 

 

This chapter aims to improve the statistical power of detecting evidence of colocalization for 

different intermediate molecular phenotypes at stroke loci by incorporating a larger blood 

metabolite QTL resource from the UCLEB consortium246 meta-analysis (n ~ 30,000) of 

circulating metabolites (n~230) using the Illumina Cardio-Metabochip platform. Here, moloc 

was applied to identify shared genetic aetiology between stroke and intermediate molecular 

phenotypes such as DNA methylation, gene expression and circulating metabolites (including 

lipid and lipoproteins). By investigating the shared genetic aetiology of multi-omic phenotypes 

I aim to provide evidence to prioritize potential causal genes, candidate CpG sites and 

metabolites at susceptibility loci and improve our understanding of the molecular mechanisms 

implicated in any stroke pathophysiology. 
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4.2 Methods 

4.2.1 Data sources 

In this analysis summary statistics from the largest publicly available GWAS meta-analysis for 

any type of stroke (described in section 2.1.2) was used. The genetic information at 22 stroke-

associated loci (11 loci (1p36, 1p13, 6p21, 9p21, 10q24, 13q14, 19p13 (SMARCA4-LDLR), 

1q22, 6p22, 6p25, 16q24) for stroke, 8 loci (4q25 (ANK2), 4q31, 5q23, 7q21, 19p13 (ILF3-

SLC44A2), 9q34, 12q24, 11q22) for IS, 2 loci (4q25 (PITX2) and 16q22) for CES subtype and 

1 locus (7p21) for LAS subtype) identified by this published GWAS were employed for the 

application of moloc in this chapter.  

 

GoDMC mQTL, UCLEB mbQTL and eQTLGen eQTL data used in this moloc study described 

in Chapter 2, section 2.1. 

 

The same study design for stroke was used as AF, where moloc was performed between mQTL, 

mbQTL in Phase I followed by integrating eQTL in Phase II. (see section 2.2).   

 

4.2.2 Phase I – moloc analysis of methylation, metabolite and stroke 

I extracted all SNPs in common between stroke GWAS, DNA methylation (GoDMC 

consortium) and metabolite (UCLEB consortium) datasets that were within a 2Mb window 

centred on each of the 22 stroke GWAS index SNP (see Chapter 2, section 2.2.1 “Define a 

GWAS region” and “get overlapping SNPs”). A locus was kept for further analysis if 

methylation QTLs or metabolite QTLs (P<5x10-5) were present in the given region and 

excluded if there was no signal for any CpG site or metabolite in that window.  2 out of 22 loci 
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were not tested for colocalization with multiple traits due to the stroke GWAS hit not being 

present at the locus for any CpG sites (i.e., no GWAS-mQTL for any CpGs with P<5x10-5 at 

the specific locus). More details of the data preparation process including harmonisation of 

molecular QTLs with GWAS and moloc analysis Phase I and II can be found in Chapter 2 

(2.2.1). In this Phase, 11 loci with evidence of colocalization with any of the molecular traits 

were prioritized for analyses in Phase II.  

 

4.2.3 Phase II – moloc analysis of methylation, gene expression, metabolite 
and stroke at prioritized loci 

Eleven of the 20 regions were prioritized and tested for colocalization with gene expression. 

At each locus, moloc was applied to detect a potential causal gene(s) and investigate whether 

gene expression, DNA methylation, metabolite and stroke share a single association signal. 

Colocalization analysis of SNPs with eQTLs associated with each gene was performed at each 

locus using summary statistics from all eQTL-gene pairs within a 2Mb window centred on the 

GWAS hit. The number of genes tested for colocalization at each particular locus varied from 

5 to 74 genes.  

 

4.2.4 Sensitivity moloc Phase I and II analyses 

Sensitivity analyses for Phase I and Phase II moloc were conducted to compare the main moloc 

results (using the default prior setting) against sensitivity moloc results where a more stringent 

prior setting was used in Phase I (p1=1x10-5, p2=1x10-7, p3=1x10-8) and Phase II (p1=1x10-5, 

p2=1x10-7, p3=1x10-8, p4=1x10-9). This is explained in more detail in Chapter 3 (3.2.3.1).  
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4.3 Results 

4.3.1 Phase I – results of methylation, metabolite and stroke moloc analysis 

Table 8 presents the results of this analysis. Of the 22 reported loci, 20 loci that overlapped 

with mQTLs and mbQTLs were tested for evidence of colocalization. Eleven of the 20 loci 

were found with evidence of colocalization, including: the GM scenario (stroke-CpG pair) at 

8 loci (10q24, 16q22, 16q24, 1p32, 4q25 (ANK2), 4q25 (PITX2), 4q31 and 6p21), the GMb.M 

scenario (stroke-metabolite pair without CpG site) at 3 loci (9q34, 12q24 and 19p13), and the 

GMMb scenario (stroke-CpG-metabolite combination) at 1 locus (12q24). At most of the 11 

loci multiple combinations of molecular traits were found to be colocalized, which led to a total 

of 127 scenarios; GM=14, GMb.M=111 and GMMb=2 combinations.  At the 12q24 locus, two 

scenarios of interest, GMMb and GMb.M were detected. The rs3184504-cg18714086 mQTL 

showed evidence of a shared genetic influence with cholesterol esters in very large HDL 

(XL_HDL_CE) (PPA.GMMb=90.6%), total cholesterol in very large HDL (XL_HDL_C) 

(PPA.GMMb=85.7%) and stroke. Evidence of colocalization was also found for apolipoprotein 

A-I (APOAI) and very large HDL (XL_HDL) lipoprotein subclasses, and HDL cholesterol 

(HDL_C) (PPA.GMb.M>95%) (Table 8).  Three loci, 4q25 (PITX2) for CES subtype, 6p21 

and 10q24 for stroke, showed evidence of colocalization with multiple DNA methylation sites. 

The T and A alleles of the shared variants (rs13143308 and rs16896398) at the 4q25 and 6p21 

loci affect multiple CpG sites in the same directions in contrast to the A allele of the shared 

stroke variant, rs2295786 which has a negative influence on methylation of two CpG sites and 

a positive effect on methylation of 3 different CpG sites at the 10q24 locus. A complete list of 

metabolites colocalized in this moloc analysis are shown in Table 9. 
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locus 
linked 

vascular 
trait(s) 

risk SNP SNP location scenario CpG site metabolite main 
moloc 

sensitivity 
moloc 

1p36 SBP, DBP rs880315 Intronic GM cg05396182  96.6 82.3 

4q25 AF rs13143308 Intergenic GM cg03587884  94.8 80.0 
cg06126494  85.6 40.2 

4q25  rs34311906 Intergenic GM cg11289139  85.2 45.2 
4q31 VTE rs6825454 Intergenic GM cg22130008  88.2 47.9 

6p21 SBP, DBP rs16896398 Intergenic GM cg13033722  83.8 39.4 
cg00084398  88.3 45.5 

9q34 
CAD, 

VTE, LDL 
levels 

rs635634 Intergenic GMb.M  

APOB 97.6 80.2 
ESTC 94.1 61.4 
FAW6 93.2 57.7 
GLY 89.9 47.2 

IDL_CE 95.0 65.7 
IDL_CE_PC 95.6 68.4 

IDL_C 97.3 80.0 
IDL_FC 96.8 75.5 

IDL_C_PC 95.2 66.6 
IDL_L 97.7 80.9 

IDL_PL 96.5 81.7 
IDL_P 97.8 81.7 

IDL_TG 93.7 60.0 
IDL_TG_PC 92.2 54.3 

LA_FA 91.6 52.3 
LA 93.2 57.8 

LDL_C 97.3 80.3 
L_LDL_CE_PC 95.7 69.1 

L_LDL_C 97.4 77.0 
L_LDL_CE 97.1 77.0 

L_LDL_C_PC 95.3 66.9 
L_LDL_FC 97.5 79.7 
L_LDL_L 97.4 79.1 

L_LDL_PL 97.8 81.3 
L_LDL_P 97.6 80.3 

L_LDL_TG_PC 93.1 57.5 
L_VLDL_CE_PC 84.6 35.5 
L_VLDL_C_PC 94.3 62.4 

L_VLDL_TG_PC 92.2 54.2 
M_LDL_CE 97.1 76.8 

M_LDL_CE_PC 86.4 38.9 
M_LDL_C 97.4 79.1 

M_LDL_C_PC 94.7 63.9 
M_LDL_FC 94.6 63.8 
M_LDL_L 97.2 77.6 

M_LDL_PL 97.4 79.1 

M_LDL_P 97.4 79.2 

Table 8. CpG sites and circulating metabolites identified in the moloc analysis Phase I. 

Linked vascular traits were related by Malik et al67  via lookups in published GWASs from EBI 
GWAS catalog: Systolic blood pressure (SBP), Diastolic blood pressure (DBP), Atrial 
fibrillation (AF), Venous thromboembolism (VTE), Coronary artery disease (CAD), White-
matter hyperintensities on brain MRI (WHB MRI), Low density lipoprotein (LDL), High 
density lipoprotein (HDL). SNP location (the IS risk SNP Location in relation to the nearest 
gene), scenario (combination of traits with evidence of colocalization at the given locus), moloc 
main (posterior probability (PPA) of colocalization between methylation, metabolite and stroke 
phenotype), moloc sensitivity (PPA of colocalization where more stringent priors; p1=1x10-5, 
p2=1x10-7, and p3=1x10-8 was used in the moloc analysis). Each row in the locus column 
represents a single stroke hit locus, with sub-rows representing the different colocalized 
molecular traits. 
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locus 
linked 

vascular 
trait(s) 

risk SNP SNP location scenario CpG site metabolite main 
moloc 

sensitivity 
moloc 

9q34 
CAD, 

VTE, LDL 
levels 

rs635634 Intergenic GMb.M  

M_LDL_TG_PC 91.3 51.4 
M_VLDL_CE_PC 94.5 63.0 
M_VLDL_C_PC 94.9 65.1 

M_VLDL_TG_PC 93.7 59.8 
S_LDL_CE 94.9 65.0 

S_LDL_CE_PC 82.2 31.6 
S_LDL_C 97.3 78.2 

S_LDL_C_PC 95.5 67.8 
S_LDL_L 97.2 77.8 

S_LDL_PL 94.6 63.6 
S_LDL_P 97.2 77.8 

S_LDL_PL_PC 83.2 33.2 
S_VLDL_CE 92.9 56.6 

S_VLDL_CE_PC 95.2 66.3 
S_VLDL_C 95.2 66.5 

S_VLDL_C_PC 94.8 64.8 
S_VLDL_FC 96.7 74.3 
S_VLDL_L 93.8 60.2 

S_VLDL_PL 96.8 75.1 
S_VLDL_TG_PC 94.1 61.6 

VLDL_C 89.7 46.6 
XS_VLDL_CE 91.7 52.4 
XS_VLDL_C 91.9 53.0 

XS_VLDL_C_PC 92.4 55.1 
XS_VLDL_FC 92.1 53.9 
XS_VLDL_L 97.7 80.6 

XS_VLDL_PL 97.8 81.9 
XS_VLDL_P 97.7 80.9 

XS_VLDL_TG_PC 91.1 50.6 
SERUM_C 95.4 67.5 

REMNANT_C 95.6 68.3 

10q24 WHB MRI rs2295786 Intergenic GM 

cg25866173  83.8 35.4 
cg25181684  83.3 34.3 
cg24911198  84.9 37 
cg11819799  84.7 37.9 
cg07671776  84.6 36.8 

12q24 

CAD, 
DBP, SBP, 

HDL 
levels 

rs3184504 Exonic; 
nonsynonymous 

GMMb cg18714086 XL_HDL_CE 90.6 87.9 
XL_HDL_C 85.7 82.1 

GMb.M  

APOA1 97.2 77.7 
HDL_C 95.7 69.1 

XL_HDL_CE 98.7 88.2 
XL_HDL_C 98.8 89.2 

XL_HDL_FC 98.9 90.4 
XL_HDL_L 98.1 83.7 

XL_HDL_PL 83.0 32.9 
XL_HDL_P 97.7 81.0 

16q24  rs12445022 Intergenic GM cg04245248  97.4 94.3 
16q22 AF rs12932445 Intronic GM cg03463523  91.2 53.8 

19p13 CAD, 
LDL levels rs8103309 Intergenic GMb.M  

APOB 98.6 87.6 
IDL_CE 95.2 87.6 
IDL_C 98.6 87.6 

IDL_FC 98.6 87.6 
IDL_L 98.6 87.6 

IDL_PL 98.6 87.6 
IDL_P 98.6 87.6 

IDL_TG 98.6 87.4 
LDL_C 98.6 87.6 

L_LDL_CE 98.6 87.6 
L_LDL_C 98.6 87.6 
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locus 
linked 

vascular 
trait(s) 

risk SNP SNP location scenario CpG site metabolite main 
moloc 

sensitivity 
moloc 

L_LDL_FC 98.6 87.6 
L_LDL_L 98.6 87.6 

L_LDL_PL 98.6 87.5 
L_LDL_P 98.6 87.6 

19p13 CAD, 
LDL levels rs8103309 Intergenic GMb.M  

M_LDL_CE 98.6 87.6 
M_LDL_C 98.6 87.6 
M_LDL_L 98.6 87.6 

M_LDL_PL 98.6 87.5 
M_LDL_P 98.6 87.6 

REMNANT_C 87.6 41.4 
SERUM_C 98.6 87.6 
S_LDL_C 98.6 87.6 
S_LDL_L 98.6 87.6 
S_LDL_P 98.6 87.6 

S_VLDL_C 98.6 87.6 
S_VLDL_FC 98.6 87.4 
S_VLDL_L 97.6 80.5 

S_VLDL_PL 85.0 36.2 
S_VLDL_P 94.0 61.2 

XS_VLDL_C 84.4 35.2 
XS_VLDL_L 98.6 87.6 

XS_VLDL_PL 98.6 87.6 
XS_VLDL_P 98.6 87.6 

XS_VLDL_TG 98.1 83.8 
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category metabolite name/subclass 
Apolipoproteins APOB Apolipoprotein B  

APOA1 Apolipoprotein A-I 
IDL IDL_CE Cholesterol esters   

IDL_CE_PC Cholesterol esters to total lipids ratio   
IDL_C Total cholesterol   
IDL_C_PC Total cholesterol to total lipids ratio   
IDL_FC Free cholesterol   
IDL_L Total lipids   
IDL_PL Phospholipids   
IDL_P Particles  
IDL_TG Triglycerides   
IDL_TG_PC Triglycerides to total lipids ratio  

Very large HDL XL_HDL_CE Cholesterol esters   
XL_HDL_C Total cholesterol  
XL_HDL_FC Free cholesterol  
XL_HDL_L Total lipids   
XL_HDL_PL Phospholipids   
XL_HDL_P Particles  

Large LDL  L_LDL_CE Cholesterol esters   
L_LDL_CE_PC Cholesterol esters to total lipids ratio   
L_LDL_C Total cholesterol   
L_LDL_C_PC Total cholesterol to total lipids ratio   
L_LDL_FC Free cholesterol   
L_LDL_L Total lipids   
L_LDL_PL Phospholipids   
L_LDL_P Particles   
L_LDL_TG_PC Triglycerides to total lipids ratio  

Medium LDL M_LDL_CE Cholesterol esters   
M_LDL_CE_PC Cholesterol esters to total lipids ratio   
M_LDL_C Total cholesterol   
M_LDL_C_PC Total cholesterol to total lipids ratio   
M_LDL_FC Free cholesterol   
M_LDL_L Total lipids   
M_LDL_PL Phospholipids   
M_LDL_P Particles   
M_LDL_TG_PC Triglycerides to total lipids ratio   
M_VLDL_CE_PC Cholesterol esters to total lipids ratio   
M_VLDL_C_PC Total cholesterol to total lipids ratio  
M_VLDL_TG_PC Triglycerides to total lipids ratio  

Table 9. Metabolites categories and names identified in the moloc analyses. 
Intermediate density lipoprotein (IDL), High density lipoprotein (HDL), Low density lipoprotein 
(LDL), Very low-density lipoprotein (VLDL).  
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category metabolite name/subclass 
Small LDL S_LDL_CE Cholesterol esters  

S_LDL_CE_PC Cholesterol esters to total lipids ratio  
S_LDL_C Total cholesterol 
S_LDL_C_PC Total cholesterol to total lipids ratio  
S_LDL_L Total lipids   
S_LDL_PL Phospholipids  
S_LDL_P Particles  
S_LDL_PL_PC Phospholipids to total lipids ratio  

Large VLDL L_VLDL_CE_PC Cholesterol esters to total lipids ratio  
L_VLDL_C_PC Total cholesterol to total lipids ratio  
L_VLDL_TG_PC Triglycerides to total lipids ratio  

Small VLDL S_VLDL_CE Cholesterol esters  
S_VLDL_CE_PC Cholesterol esters to total lipids ratio  
S_VLDL_C Total cholesterol 
S_VLDL_C_PC Total cholesterol to total lipids ratio  
S_VLDL_FC Free cholesterol  
S_VLDL_L Total lipids  
S_VLDL_PL Phospholipids  
S_VLDL_P Particles  
S_VLDL_TG_PC Triglycerides to total lipids ratio  

Very small VLDL XS_VLDL_CE Cholesterol esters  
XS_VLDL_C Total cholesterol  
XS_VLDL_C_PC Total cholesterol to total lipids ratio  
XS_VLDL_FC Free cholesterol  
XS_VLDL_L Total lipids  
XS_VLDL_PL Phospholipids  
XS_VLDL_P Particles  
XS_VLDL_TG Triglycerides  
XS_VLDL_TG_PC Triglycerides to total lipids ratio  

Cholesterol  LDL_C LDL cholesterol  
HDL_C HDL cholesterol  
VLDL_C VLDL cholesterol 
ESTC Esterified cholesterol  
SERUM_C Serum total cholesterol 
REMNANT_C Remnant cholesterol (non-HDL, -LDL -cholesterol)  

Fatty acids & saturation FAW6 Omega-6 fatty acids 
LA Linoleic acid  
LA_FA Linoleic acid to total fatty acids ratio 

Amino acids GLY Glycine 
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4.3.2 Phase II – Mapping Phase I findings to the potential causal gene(s) for 
stroke 

To identify the potential causal gene at loci from Phase I that have evidence of shared genetic 

effects between stroke, CpG site and/or metabolite, moloc Phase II was conducted as 

previously described (2.2.1.2). Of the 11 colocalized loci detected in Phase I, five (6p21 

(stroke), 9q34 (IS), 12q24 (IS), 16q22 (CES), 19p13 (stroke)) were found with evidence of 

colocalization (PPA ≥ 80%) with gene expression (Table 10). In total, 215 scenarios suggesting 

a single shared association signal for a combination of traits at a locus were identified. These 

colocalizations correspond to the following combinations: 5 unique SNP-CpG-gene (GME) 

colocalizations at the 6p21 and 16q22 loci, 204 unique SNP-gene-metabolite (without CpG 

site) (GEMb.M) colocalizations at 9q34, 12q24 and 19p13 loci, 6 unique SNP-CpG-gene-

metabolite (GMEMb) colocalizations at 12q24 locus (Table 10).  

 

The greatest number of colocalized phenotypes was detected at the 9q34 locus (GEMb.M 

scenario (n=122 phenotypes)), suggesting broad pleiotropic effects (marked by SNP rs635634) 

on many molecular traits. Of the 36 genes tested for colocalization at the 9q34 locus, ABO, 

CACFD1 and GBGT1 genes showed evidence of colocalization with multiple clusters of 

circulating metabolites and stroke in blood tissue. ABO and CACFD1 genes had the highest 

posterior probability (PPA>95%) for colocalization with stroke and multiple circulating 

lipoprotein lipids and apolipoprotein B (APOB) compared to GBGT1 gene with PPA ≥ 80%. 

The stroke risk variant rs635634, also an eQTL signal associated with expression of ABO (the 

closest gene), was found to be colocalized with fatty acids and saturation (e.g., omega-6 fatty 

acids (FAW6), linoleic acid to total fatty acids ratio (LAFA)), triglycerides in IDL lipoprotein, 

VLDL cholesterol, Medium/small LDL lipoprotein subclasses, small VLDL lipoprotein 

subclasses. GBGT1 an important paralog of the ABO gene was also detected to colocalize with 
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apolipoprotein B (APOB), LDL cholesterol, IDL lipoprotein subclasses, large to small LDL 

lipoprotein subclasses, small and very small VLDL, non-HDL, non-LDL -cholesterol (remnant 

cholesterol), serum total cholesterol and stroke. CACFD1 was also identified to share a single 

variant with apolipoprotein B (APOB), IDL lipoprotein subclasses, large to small LDL 

lipoprotein subclasses, LDL cholesterol, VLDL cholesterol, fatty acids and saturation (e.g., 

omega-6 fatty acids (FAW6) and linoleic acid (LA), small to very small VLDL lipoprotein 

subclasses, large VLDL lipoprotein subclasses ratios, non-HDL, non-LDL -cholesterol 

(remnant cholesterol), serum total cholesterol and stroke (Table 10).  

 

Colocalization of stroke, methylation and expression (GME scenario) were identified at two 

loci, 6p21 and 16q22. At the 6p21 locus, evidence of colocalization was found between 

multiple genes, including two protein coding genes (SRF and ABCC10), 1 pseudogene 

(RPL34P14), cg13033722 CpG site and stroke. At the CES-associated locus, 16q22, the T 

allele of rs12932445 (ß=-0.054, P=4.99x10-6) has an opposite direction of effect on methylation 

of cg03463523 CpG site (ß=0.149, P=6.95x10-35) in GoDMC and expression of HP gene (ß=-

0.084, P=3.20x10-8) in eQTLGen whole blood.  At the 12q24 locus, colocalization evidence 

was identified for multiple combinations of traits. Six GMEMb scenarios indicating a shared 

association signal, rs3184504 between one single CpG site (cg18714086), three protein coding 

gene (TCTN1, HVCN1, and GPN3), and two subclasses of very large HDL (XL HDL) 

lipoprotein (total cholesterol and cholesterol esters) was detected. TCTN1 showed the strongest 

probability of colocalization with both XL HDL lipoprotein subtypes (PPA.GMEMb=99.9%). 

Evidence of colocalization was also found for a protein coding gene, TRAFD1 and a long 

intergenic non-coding RNA (lincRNA) transcript, RP3-473L9.4 and various XL HDL 

lipoprotein subclasses with PPA.GEMb.M of 99.7% and 88% respectively.  At the 19p13 risk 
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locus, of the 74 genes tested for colocalization with APOB, different circulating 

IDL/LDL/VLDL lipoprotein subclasses, LDL cholesterol, remnant cholesterol and total 

cholesterol, only two neighbouring genes, SMARCA4 and C19orf52 (also named TIMM29) 

were colocalized (PPA.GEMb.M>99%) (Table 10). The T allele of rs8103309 risk variant at 

this locus is strongly associated with increased expression of SMARCA4 (ß=0.202, P=1.48x10-

58) and C19orf52 gene (ß=0.092, P=2.64x10-13). In addition, the T allele of this variant is 

associated with increased circulating concentrations of all highly correlated metabolites 

colocalized in this region (ß=0.052). 
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locus risk SNP scenario CpG site metabolite gene main moloc sensitivity 
moloc 

6p21 
(Stroke) rs16896398 GME cg13033722 

 SRF 98.5 98.4 
 ABCC10 97.6 96.6 
 RPL34P14 91.2 84.1 

cg00084398  AL035587.1 89.0 78.6 

9q34 
(IS) rs635634 GEMb.M  

APOB 

GBGT1 

83.1 80.4 
IDL_CE_PC 80.1 75.9 

IDL_C 83.9 81.0 
IDL_FC 85.1 81.9 
IDL_L 83.8 81.3 

IDL_PL 84.3 80.8 
IDL_P 83.8 81.3 

IDL_TG 82.7 76.1 
LDL_C 83.6 80.7 

L_LDL_CE_PC 80.1 77.3 
L_LDL_CE 83.6 80.5 
L_LDL_FC 83.8 81.1 
L_LDL_L 83.6 80.8 

L_LDL_PL 83.6 81.1 
L_LDL_P 83.6 81.0 

M_LDL_CE 83.4 80.3 
M_LDL_C 83.6 80.8 
M_LDL_L 83.4 80.4 

M_LDL_PL 83.4 80.6 
M_LDL_P 83.4 80.6 

M_VLDL_CE_PC 80.2 69.4 
REMNANT_C 80.0 80.2 

SERUM_C 84.4 77.2 
S_LDL_C_PC 80.2 77.2 

S_LDL_C 83.5 80.5 
S_LDL_L 83.2 80.2 
S_LDL_P 83.2 80.2 

S_VLDL_C 84.2 79.8 
S_VLDL_FC 83.4 80.0 
S_VLDL_L 82.1 75.9 

S_VLDL_PL 83.3 80.0 
XS_VLDL_L 83.9 81.3 

XS_VLDL_PL 83.9 81.5 
XS_VLDL_P 83.8 81.3 

9q34 
(IS) rs635634 GEMb.M  

APOB 

CACFD1 

99.0 98.9 
FAW6 98.1 97.9 

IDL_CE_PC 98.7 98.5 
IDL_CE 98.5 98.3 

IDL_C_PC 98.5 98.4 
IDL_C 99.0 98.9 

IDL_FC 98.9 98.8 
IDL_L 99.1 99.0 

IDL_PL 98.8 98.7 

Table 10. Genes, CpG sites and metabolites identified in the phase II of moloc analysis of 
stroke. 

Locus (locus found with evidence of colocalization (stroke phenotype involved in each 
colocalization)), Scenario (combination of traits with evidence of colocalization/a shared signal at 
the given locus), main moloc (posterior probability (PPA) of colocalization), sensitivity moloc (PPA 
of colocalization where more stringent priors; p1=1x10-5, p2=1x10-7, p3=1x10-8, and p4=1x10-9 was 
used in the moloc analysis). Each row in the locus column represents a single stroke hit locus, with 
sub-rows representing the different colocalized molecular traits. 
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locus risk SNP scenario CpG site metabolite gene main moloc sensitivity 
moloc 

9q34 
(IS) rs635634 GEMb.M  

IDL_P 

CACFD1 

99.1 99.0 
IDL_TG_PC 98.2 97.9 

IDL_TG 98.6 98.4 
LA_FA 98.1 97.8 

LA 98.1 97.8 
LDL_C 99.0 98.9 

L_LDL_CE_PC 98.7 98.5 
L_LDL_CE 98.9 98.8 

L_LDL_C_PC 98.6 98.4 
L_LDL_FC 99.0 98.9 
L_LDL_L 99.0 98.9 

L_LDL_PL 99.1 99.0 
L_LDL_P 99.0 98.9 

L_LDL_TG_PC 98.4 98.1 
L_VLDL_CE_PC 97.2 96.5 
L_VLDL_C_PC 98.4 98.2 

L_VLDL_TG_PC 98.2 97.9 
M_LDL_CE_PC 97.6 97.0 

M_LDL_CE 98.9 98.8 
M_LDL_C_PC 98.6 98.3 

M_LDL_C 99.0 98.9 
M_LDL_FC 98.4 98.2 
M_LDL_L 98.9 98.8 

M_LDL_PL 99.0 98.9 
M_LDL_P 99.0 98.9 

M_LDL_TG_PC 98.2 97.8 
M_VLDL_CE_PC 98.4 98.2 
M_VLDL_C_PC 98.5 98.3 

M_VLDL_TG_PC 98.2 98.0 
REMNANT_C 98.6 98.4 

SERUM_C 98.5 98.3 
S_LDL_CE_PC 97.1 96.3 

S_LDL_CE 98.6 98.4 
S_LDL_C_PC 98.6 98.5 

S_LDL_C 99.0 98.9 
S_LDL_L 98.9 98.8 

S_LDL_PL_PC 97.2 96.4 
S_LDL_PL 98.5 98.3 
S_LDL_P 98.9 98.8 

S_VLDL_CE_PC 98.5 98.3 
S_VLDL_CE 98.0 97.7 

S_VLDL_C_PC 98.5 98.2 
S_VLDL_C 98.5 98.3 

S_VLDL_FC 98.8 98.7 
S_VLDL_L 98.6 98.3 

S_VLDL_PL 98.9 98.8 
S_VLDL_TG_PC 98.3 98.1 

VLDL_C 98.0 97.5 
XS_VLDL_CE 97.8 97.4 

XS_VLDL_C_PC 98.1 97.8 
XS_VLDL_C 97.8 97.4 

XS_VLDL_FC 97.9 97.5 
XS_VLDL_L 99.1 99.0 

XS_VLDL_PL 99.1 99.0 
XS_VLDL_P 99.1 99.0 

XS_VLDL_TG_PC 98.0 97.7 
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locus risk SNP scenario CpG site metabolite gene main moloc sensitivity 
moloc 

9q34 
(IS) rs635634 GEMb.M  

FAW6 

ABO 

97.7 97 
IDL_CE_PC 97.7 97.2 
IDL_TG_PC 97.4 96.4 

IDL_TG 98.8 98.6 
LA_FA 97.5 96.5 

L_LDL_TG_PC 97.5 96.5 
L_VLDL_CE_PC 98.4 98.1 
L_VLDL_C_PC 97.8 97.3 

L_VLDL_TG_PC 97.5 96.6 
M_LDL_CE_PC 97.9 97.4 
M_LDL_C_PC 97.6 97 

M_LDL_TG_PC 98.8 98.6 
S_LDL_CE_PC 97.6 96.9 

S_LDL_CE 97.7 97.2 
S_LDL_C_PC 97.7 97.2 
S_LDL_PL_PC 97.7 97.1 

S_LDL_PL 97.7 97.1 
S_VLDL_FC 93.6 88.5 
S_VLDL_L 98.8 98.6 

S_VLDL_PL 94.8 90.8 
VLDL_C 98.6 98.3 

XS_VLDL_C_PC 97.6 96.8 
XS_VLDL_TG_PC 97.4 96.2 

12q24 
(IS) rs3184504 

GMEMb cg18714086 

XL_HDL_CE 
TCTN1 99.9 99.9 
GPN3 81.6 81.9 

HVCN1 89.8 90.5 

XL_HDL_C 
TCTN1 99.9 99.9 
GPN3 85.9 86.3 

HVCN1 84.4 84.7 

GEMb.M  

XL_HDL_CE TRAFD1 99.7 99.7 
RP3-473L9.4 88.2 89.9 

XL_HDL_C 
TRAFD1 99.7 99.7 

RP3-473L9.4 88.2 90.0 

XL_HDL_FC TRAFD1 99.7 99.7 
RP3-473L9.4 88.2 90.1 

XL_HDL_L TRAFD1 99.7 99.7 
RP3-473L9.4 88.2 89.4 

XL_HDL_PL 
TRAFD1 97.8 97.6 

RP3-473L9.4 84.9 75.9 

XL_HDL_P TRAFD1 99.7 99.7 
RP3-473L9.4 88.2 89.0 

16q22 
(CES) rs12932445 GME cg03463523  HP 81.1 60.1 

19p13 
(Stroke) rs8103309 GEMb.M  

APOB 

SMARCA4 

99.7 99.6 
IDL_CE 99.4 99.4 
IDL_C 99.7 99.6 

IDL_FC 99.7 99.6 
IDL_L 99.7 99.6 

IDL_PL 99.7 99.6 
IDL_P 99.7 99.6 

IDL_TG 99.7 99.6 
LDL_C 99.7 99.6 

L_LDL_CE 99.7 99.6 
L_LDL_C 99.7 99.6 

L_LDL_FC 99.7 99.6 
L_LDL_L 99.7 99.6 

L_LDL_PL 99.7 99.6 
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locus risk SNP scenario CpG site metabolite gene main moloc sensitivity 
moloc 

19p13 
(Stroke) rs8103309 GEMb.M 

L_LDL_P 

SMARCA4 

99.7 99.6 
M_LDL_CE 99.7 99.6 
M_LDL_C 99.7 99.6 
M_LDL_L 99.7 99.6 

M_LDL_PL 99.7 99.6 
M_LDL_P 99.7 99.6 

REMNANT_C 98.8 98.6 
SERUM_C 99.7 99.6 
S_LDL_C 99.7 99.6 
S_LDL_L 99.7 99.6 
S_LDL_P 99.7 99.6 

S_VLDL_C 99.7 99.6 
S_VLDL_FC 99.7 99.6 
S_VLDL_L 99.6 99.6 

S_VLDL_PL 98.5 98.4 
S_VLDL_P 99.3 99.3 

XS_VLDL_C 98.5 98.3 
XS_VLDL_L 99.7 99.6 

XS_VLDL_PL 99.7 99.6 
XS_VLDL_P 99.7 99.6 

XS_VLDL_TG 99.6 99.6 

19p13 
(Stroke) rs8103309 GEMb.M  

APOB 

 
C19orf52 

99.7 99.6 
IDL_CE 99.4 99.4 
IDL_C 99.7 99.6 

IDL_FC 99.7 99.6 
IDL_L 99.7 99.6 

IDL_PL 99.7 99.6 
IDL_P 99.7 99.6 

IDL_TG 99.7 99.6 
LDL_C 99.7 99.6 

L_LDL_CE 99.7 99.6 
L_LDL_C 99.7 99.6 

L_LDL_FC 99.7 99.6 
L_LDL_L 99.7 99.6 

L_LDL_PL 99.7 99.6 
L_LDL_P 99.7 99.6 

M_LDL_CE 99.7 99.6 
M_LDL_C 99.7 99.6 
M_LDL_L 99.7 99.6 

M_LDL_PL 99.7 99.6 
M_LDL_P 99.7 99.6 

REMNANT_C 98.8 98.6 
SERUM_C 99.7 99.6 
S_LDL_C 99.7 99.6 
S_LDL_L 99.7 99.6 
S_LDL_P 99.7 99.6 

S_VLDL_C 99.7 99.6 
S_VLDL_FC 99.7 99.6 
S_VLDL_L 99.6 99.6 

S_VLDL_PL 98.5 98.4 
S_VLDL_P 99.3 99.3 

XS_VLDL_C 98.5 98.3 
XS_VLDL_L 99.7 99.6 

XS_VLDL_PL 99.7 99.6 
XS_VLDL_P 99.7 99.6 

XS_VLDL_TG 99.6 99.6 
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4.3.3 Sensitivity moloc analyses 

To investigate whether the main moloc findings at Phase I and Phase II would be sensitive to 

more stringent setting of Bayesian priors, sensitivity moloc analyses were performed for both 

phases. Detailed information, including prior selection, can be found in Chapter 3 (3.2.3.1). 

Sensitivity moloc analysis showed that evidence of colocalization (PPA ≥ 80%) remained for 

52 (41%) of 127 scenarios (i.e., GM, GMb.M, GMMb) which were identified in the main moloc 

analysis Phase I (Table 8). Among 75 scenarios which showed attenuated colocalization 

probability and failed to pass the threshold of 0.8, 16 had moderate colocalization evidence 

(PPA ≥ 70%). These results suggest that moloc findings at some loci are sensitive to the priors 

specified and should therefore be treated with caution. In the sensitivity analysis for phase II, 

204 (95%) of 215 scenarios (i.e., GEMb.M, GME, GMEMb) found in Phase II of the main 

moloc analysis showed evidence of colocalization at or greater than 80% PPA (Table 10). 

These results suggest that moloc findings where a third, or at some loci a fourth, trait with high 

statistical power (such as gene expression from eQTLGen data) was colocalized, were not 

sensitive to the stringent priors and were robust to different priors. Comparison of the results 

of the main moloc analysis with sensitivity moloc analysis for Phase I and II is shown in Figure 

15. Large differences between PPA of these results occurred for GM (4q25, 4q31, 6p21, and 

10q24 loci), with attenuation of PPA (50-79%) for GMb.M (9q34) and GM (16q22) scenarios 

(Figure 15a). Apolipoprotein B and LDL cholesterol retained a robust colocalization evidence 

(GMb.M.PPA>80%) at 9q34 locus (Table 8). 

 

 

 

 



	

	

117	

 

 

 

Figure 15. Main Moloc results compared to sensitivity moloc results (imposing more 
stringent priors) in phase I and II. 

(a) Comparison including all results from moloc phase I. (b) Same plot as (a) but restricted to all 
results from moloc phase II. Main moloc analysis used p1=1x10-4, p2=1x10-6 and p3=1x10-7 (in 
phase I) and p4=1x10-8 (in phase II when additional trait was added) for prior values. Sensitivity 
moloc analysis used p1=1x10-5, p2=1x10-7 and p3=1x10-8 (in phase I) and p4=1x10-9 (in phase II 
when additional trait was added) for prior values. Size of coloured points reflect number of 
SNPs in a region for different scenarios (i.e., trait combinations). 

a) 

b) 
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4.3.4 Colocalized genes inform drug discovery  

Genes colocalized with stroke were assessed to evaluate potential drug targets. Each of the 11 

protein coding genes were assessed for functional evidence for involvement in stroke pathology 

by reviewing the existing literature and performing lookups in two open resources described in 

3.2.2.1. All 11 genes were found with no evidence for being the biological target of any 

pharmaceutical drugs and no evidence for protein coding variants that cause Mendelian 

disorders of CVDs. Of the 11 genes, five (SRF, CACFD1, HVCN1, TRAFD1 and SMARCA4) 

showed evidence for related vascular phenotypes in mouse models caused by knockdown or 

knockout of the genes (Table 11).  

 

SRF (located at the stroke-associated locus, 6p21) encodes a ubiquitous nuclear protein which 

is involved in regulation of both cell population proliferation and differentiation including 

regulation of vascular smooth muscle cell differentiation and their contraction332. It is also 

involved in related vascular biological process including platelet activation, angiogenesis and 

response to cytokines (such as immune response IL-6 signaling pathway)333,334,335. Expression 

of the SRF gene was detected to be greatly limited to skeletal and cardiac muscle tissues during 

development of mouse embryos336. Niu et al revealed that mouse embryonic stem cells lacking 

the SRF gene showed failure in expression of myocardin and cardiac myogenic alpha-actins 

and failed to form beating cardiac myocytes337. In mutant mouse embryos, deletion of 

endothelial cell-specific SRF resulted in haemorrhages, reduced density of capillaries, defects 

in migration of endothelial cells of small vessels and subsequently embryonic lethality was 

observed335.  

 

Mouse lines carrying homozygous mutations in CACFD1 (located at the IS-associated locus, 
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9q34), exhibited disruption of homeostasis and metabolism such as elevated levels of 

circulating cholesterol and triglycerides (Open Targets, Mouse Phenotypes annotations). 

Furthermore, downregulation of CACFD1 gene in Drosophila was shown to result in impaired 

Ca(2+) handling338.  

 

HVCN1 (located at the IS-associated locus, 12q24), encodes a voltage-gated protein channel 

protein which is primarily expressed in specific cells of the immune system339. The biological 

processes linked to this gene include voltage-gated proton transmembrane transport340 and 

regulation of ion transmembrane transport. HVCN1 functions in immune related pathways 

including NOX/ROS and RNS production in phagocytes341. HVCN1 has been revealed to 

exacerbate brain damage through the modulation of NOX-dependent ROS production and 

activity in the mouse model of IS342. Furthermore, excessive expression of HVCN1 along with 

other oxidative stress genes were reported to have higher expression levels in the ischemic 

hemisphere of old mice relative to young mice using Illumina cDNA microarrays343.  In a 

mouse model of photothrombotic stroke, smaller infarction of brain with little motor deficiency 

was observed in Hvcn1 knockout mice compared to the wild-type group due to increase in 

polarization of microglia from anti-inflammatory state (M2)344. Thus, developing a drug as an 

inhibitor to target HVCN1 could be promising for providing neuroprotection in CNS injuries 

like stroke.  

 

TRAFD1 (located at the IS-associated locus, 12q24), has been shown to play a role in negative 

control of intemperate innate immune response by its involvement in the Toll-like Receptor 

(TLR) signaling pathway as a negative regulator345. Sanada et al identified that TRAFD1 

mutant mice displayed elevated Il-6 secretion and circulating Il-6 levels compared to the wild-
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type group (Open Targets, Mouse Phenotypes annotations)346. Study of TLR4 in ischemia 

models of TLR4 knockout mice have demonstrated that suppression of IL-6 as a pro-

inflammatory cytokine results in decreased tissue injury347. Furthermore, TLR4 deficiency in 

mice has been reported to show inhibition of IL-6 and TNFα cytokines as well as reduced 

cerebral ischemia-reperfusion injury348,349. Mice deficient in TLR2 displayed smaller size of 

cerebral infarction relative to wild-type mice in response to cerebral artery occlusion 

(ischemia)350,351. These findings suggest that developing a drug for promotion of TRAFD1 gene 

as a negative regulator of TLR signalling may attenuate stroke risk or its pathophysiology.  

 

SMARCA4 (located at the stroke-associated locus, 19p13), encodes a protein which is part of 

the large ATP-dependent SNF/SWI chromatin remodeling complex and is involved in 

positively regulation of Wnt signaling pathway352. Mice lacking SMARCA4 expression in 

smooth muscle (SMARCA4 (BRG1) knockout mice) exhibited cardiopulmonary defects such 

as patent ductus arteriosus and complete atrioventricular septal defect specifying a key role of 

SMARCA4 gene in controlling the development of smooth muscle353. Moreover, SMARCA4 

deficiency in the endocardial lineage of the mouse embryos resulted in disorganized and 

thickened semilunar valve (SLV) cusps and ventricular septal defect (Open Targets, Mouse 

Phenotypes annotations)353,354.  
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Colocalized 
gene gene name 

gene direction for 
increased stroke risk 

(my study) 

cardio 
human 

phenotype 
(OMIM)  

Related-vascular 
animal model 

SRF Serum Response Factor reduced expression no 

yes (PMID: 
15929941, 
15647354, 
18804439) 

ABCC10 ATP Binding Cassette Subfamily C 
Member 10 reduced expression no no 

ABO 
Alpha 1-3-N-

Acetylgalactosaminyltransferase And 
Alpha 1-3-Galactosyltransferase 

reduced expression no no 

GBGT1 
Globoside Alpha-1,3-N-

Acetylgalactosaminyltransferase 1 
(FORS Blood Group) 

reduced expression no no 

CACFD1  Calcium Channel Flower Domain 
Containing 1 reduced expression no 

yes (Open Target, 
Mouse Phenotypes 

annotations) 

TCTN1 Tectonic Family Member 1 reduced expression no no 

HVCN1 Hydrogen Voltage Gated Channel 1 reduced expression no 

yes (PMID: 
22388960, 
27470181, 
28774948) 

GPN3 GPN-Loop GTPase 3 increased expression no no 

TRAFD1 TRAF-Type Zinc Finger Domain 
Containing 1 increased expression no 

yes (PMID: 

18849341) 
 

HP Haptoglobin increased expression no no 

SMARCA4  

SWI/SNF Related, Matrix 
Associated, Actin Dependent 

Regulator Of Chromatin, Subfamily 
A, Member 4 

increased expression no 
yes (PMID: 
21518954, 
26100917) 

C19orf52  Chromosome 19 Open Reading 
Frame 52 increased expression no no 

 

Table 11. Known functional evidence for genes prioritized in moloc analysis of stroke. 

GeneCards (http://www.genecards.org/) was used to look-up the gene name. The Open Targets 
Genetics database (https://genetics.opentargets.org)	was used to look-up information linking the 
gene to the CVD related phenotype based on experimental work in animal model. The Online 
Mendelian Inheritance in Man (OMIM) platform (https://www.omim.org/)  was used for 
evidence on CVD caused by defects in the gene and knock down/out in animal model. The 
publication reporting the evidence for the candidate gene (PMID). 
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4.4 Discussion 

4.4.1 Main findings 

In this study, summary statistics from DNA methylation, gene expression, circulating 

metabolite and stroke datasets were integrated by conducting multiple trait colocalization in 

two phases to identify statistical evidence of shared genetic effects at stroke risk loci and 

pinpoint prioritized candidate intermediate phenotypes likely to be involved in development of 

stroke. Here, Phase I moloc analyses at 20 stroke-associated loci identified 11 loci with 

evidence of colocalization with methylation CpG sites and multiple clusters of lipoprotein 

lipids. In Phase II, integration with eQTL data pinpointed 12 candidate genes (protein coding) 

in which changes in gene expression may contribute to the risk of stroke.  Moreover, 3 loci 

(9q34 (IS), 12q24 (IS), 19p13 (stroke)) showed evidence of shared regulatory effects between 

multiple genes, multiple metabolites and stroke in these moloc analyses, suggesting a 

functional role for these genes and lipoprotein lipids in the pathogenesis of stroke.  

 

At the 9q34 locus, moloc identified a shared common association signal between 3 likely causal 

genes (ABO, GBGT1, CACFD1), a cluster of lipoprotein lipids and stroke. The T allele of the 

shared SNP, rs635634 shows evidence of effect on expression of ABO (ß=-0.510, P=5.22x10-

279), GBGT1 (ß=-0.153, P=8.93x10-25), and CACFD1 (ß=-0.153, P=1.16x10-9) genes in 

eQTLGen data146, suggesting that these genes might be influencing stroke through regulation 

of lipoprotein lipids metabolisms. The intergenic risk variant (rs635634) at this locus is located 

upstream of the nearest gene, ABO which determines blood group and has previously been 

reported to be linked to ischemic heart disease (IHD)355,356 and IS357. The shared causal variant, 

rs635634 was strongly associated with expression of ABO gene (P=5.22x10-279) in eQTLGen 
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whole blood and the eQTL showed strong evidence of colocalization (PPA.GEMb.M=97%) 

with a cluster of circulating medium/small dense LDL/VLDL (a large triglyceride-rich 

lipoprotein) lipoprotein subclasses, VLDL cholesterol, triglycerides in IDL and stroke. At this 

locus, no evidence of colocalization was found for rs8176719 SNP, which is the most common 

genetic variant linked to blood group O through a frameshift mutation that results in ABO gene 

inactivation358. This suggests that rs635634 has a primary prominent role in regulation of 

expression of the ABO gene and circulating lipoprotein metabolites rather than just tagging the 

SNP associated with the O blood group type. Moreover, the rs507666-GMP140 pQTL has 

previously been found to overlap with the CHD-associated SNP at this this locus330, which is 

in high LD with the IS shared variant, rs635634 (r2=0.99). GMP140 protein has been found to 

play a role as a mediator between leukocytes and endothelial cells or platelets involved in 

inflammatory pathways. A MR study performed by Yao et al330 also identified the causal effect 

of ABO gene on circulating levels of GMP140 protein in heart atrial appendage.  

Glycosyltransferase protein encoded by ABO gene (along with its paralog, GBGT1) is involved 

in the metabolism of lipids and lipoproteins and the glycosphingolipid biosynthetic pathway. 

ABO blood group has been previously reported to be linked to IS359,360 and CVD in the 

Framingham Heart Study (FHS) cohort361. In addition, studies revealed the correlation of ABO 

blood type with CVD through effects on coagulation pathway and mechanisms362,363. Taken 

together, these findings suggest that the association is likely to be driven by the IS causal 

variant in high LD with the CHD-associated SNP and likely to be mediated via ABO gene 

expression and concentrations of APOB and multiple LDL/VLDL lipoprotein subclasses. 

However, the possibility of horizontal pleiotropy cannot be ruled out at this locus using moloc. 
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This lead SNP, rs635634 is also in LD with the rs495828 SNP associated with venous 

thromboembolism (VTE)364 (P=3x10-16) (r2=0.84 in the 1000 Genomes EUR population). This 

VTE-associated SNP is also strongly associated with blood metabolite ratios175 (P=6x10-34). 

Furthermore, rs635634 is in moderate LD with another VTE variant, rs9411377 (P=1x10-224) 

in a study published by Klarin et al365 (r2=0.43). There are two other VTE-associated SNPs at 

this locus, rs8176719 (P=6x10-12) (r2=0.34 with the IS variant) and rs2519093 (P=8x10-16) 

(r2=0.98 with the IS variant). Notably, the rs2519093 variant is also associated with triglyceride 

levels366  and CAD (P=1x10-11) at this locus367. Richardson et al327 performed a multivariable 

MR between circulating lipoprotein lipids, apolipoproteins and CHD using 440 triglyceride-

associated variants and provided further evidence for a potential causal effect of triglyceride 

levels on high risk of CHD at this locus. Hence, the rs635634 signal is likely to be a shared 

causal regulatory effect behind VTE, CHD and IS phenotypes. 

 

IS variant (rs635634) is in moderate LD with the intronic HF-associated SNP, rs9411378 

(r2=0.53). PheWAS studies of rs9411378 SNP on traits in UK Biobank and GWAS traits from 

the GWAS Atlas368 have reported on its association with VTE, metabolic and hematologic 

traits (e.g., blood cell counts and hemoglobin levels)369. However, this study revealed that the 

ABO locus is associated with HF independent of any of these traits after conditioning on their 

effects369. This study along with colocalization results, suggests that the effect of the IS 

colocalized variant on regulation of circulating lipoprotein metabolites and IS might be 

independent of the HF variant and its pathway, however it needs further analysis to confirm 

that its regulatory role is not owing to LD with the HF variant. 
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In this chapter the 12q24 locus with exonic variant rs3184504 was identified with evidence of 

colocalization between methylation cg18714086, expression of 3 genes (TCTN1, HVCN1, 

GPN3) and very large HDL lipoprotein subclasses with stroke. A previous study has shown 

rs3184504 association with CAD367,370.	HVCN1 (HV1) encodes for a voltage-gated proton 

channel which controls NOX enzymes activity and is expressed in various cell types such as 

leukocytes371 and microglial cells342. HVCN1 hyperactivity has previously been shown to 

increase brain damage in IS in a mouse model342,344.	MR analyses by Yuan et al provide 

evidence for decreased levels of HDL cholesterol causally linked to enhanced risk of IS326. 

Richardson et al327 performed MR between circulating lipoprotein lipids/apolipoproteins and 

CHD using 534 HDL cholesterol-associated variants and found that individual MR analyses 

showed a 1-standard-deviation-higher HDL cholesterol (OR 0.80; 95% CI: 0.75–0.86; P < 

0.001) and apolipoprotein A-I (OR 0.83; 95% CI: 0.77–0.89; P < 0.001) to lower the risk of 

CHD (i.e., increased HDL levels potentially causing lower CHD risk) however, the HDL effect 

attenuated in multivariable MR327. These findings support the hypothesis for an influence of a 

shared variant on stroke via regulation of HDL lipoprotein levels and HVCN1 expression. 

However, the possibility of a “reverse” mechanism between intermediate molecular 

phenotypes (e.g., that the alteration in levels of HDL lipoprotein could cause changes in 

expression levels) cannot be excluded. 

	

At the 19p13 locus, evidence of colocalization with shared genetic effects was found between 

two genes (SMARCA4 and C19orf52) and circulating metabolites including apolipoprotein B, 

multiple IDL/LDL/VLDL lipoprotein subclasses, LDL cholesterol, remnant cholesterol, total 

cholesterol levels and stroke. The shared intergenic variant, rs8103309 is located upstream of 

SMARCA4 (or BRG1), a gene that encodes for a protein member of SWI/SNF complex which 

regulates chromatin configuration around certain genes. rs8103309 is associated with 
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expression of the SMARCA4 gene in heart-atrial appendage tissue in GTEx (P=6.30x10-5, ß=-

0.12). The stroke variant in LD with an intronic SNP, rs1122608 (r2=0.569), has been reported 

as a shared genetic factor for CAD and IS331 and LDL cholesterol levels 372. A case control 

study in the Chinese population showed that the rs1122608 variant is associated with 

upregulation of total cholesterol levels and downregulation of the SFRS3 gene in relation to 

stroke373. rs1122608 was found not to be associated with SMARCA4 gene expression in this 

region373, which suggests that association signals for CAD and stroke may be acting 

independently in regulating different genes. Of note, differentially expressed exons of 

SMARCA4 gene have been reported in blood of patients with small vessel disease (cause of 

SVS) compared to controls using whole transcriptome microarrays374. MR studies have shown 

that increased levels of apolipoprotein B, triglycerides, and LDL cholesterol are causally linked 

to higher risk of CHD327 and IS326. Multivariable MR analyses in these studies provided 

evidence for a predominant role of APOB in controlling the effect of LDL cholesterol and 

triglycerides on CHD and IS developments. These results are consistent with the moloc 

findings of colocalization of APOB, multiple lipoprotein subclasses and LDL cholesterol at 

different stroke loci. Wang et al performed multivariate metaCCA analysis on 7 related risk 

factors for ischemic stroke and identified association of pleiotropic genes such as the 

SMARCA4 gene with CAD and levels of total cholesterol which may influence IS via these 

phenotypes375. These results are in agreement with moloc findings of evidence for 

colocalization between SMARCA4 and total cholesterol levels at this locus in this chapter and 

support the hypothesis that the shared genetic variant rs8103309 exerts its effect on stroke 

through regulation of multiple downstream intermediate phenotypes and or risk factors for 

stroke. 
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The GME scenario of colocalization indicating a shared genetic aetiology between cg03463523 

CpG site, HP gene and CES, was identified at the 16q22 locus. This is in agreement with GME 

colocalization evidence found in the previous chapter for AF (3.3.2.1) at this locus, thus 

suggesting a shared causal mechanism influences both of these medical conditions at this locus. 

This locus is investigated in more detail in Chapter 5.  

 

4.4.2 Strengths and limitations 

A major challenge for colocalization of multiple traits is to obtain association datasets with 

large enough sample sizes to be powered for detecting colocalized combinations of traits. In 

this moloc analysis, a large-scale GWAS of metabolites was employed which increased power 

for detection of potential candidate metabolites due to the large sample size and strength of 

mbQTL associations. 

 

Regions with less than 50 SNPs in common between 3 phenotypes were not tested for 

colocalization (i.e., combination of traits with <50 overlapped SNPs were removed from 

analysis). This issue arose due to the lack of full summary statistics from the GoDMC 

consortium124, because association signals with P value >1x10-5 are not included in the 

published GoDMC mQTL dataset or incomplete SNP coverage of a region. Therefore, 

availability of full summary level statistics from association studies is a necessity to enable us 

to effectively detect molecular phenotypes sharing a signal with a disease trait. Also, this study 

was limited to whole blood (a mixture of different cell types), which is available in large sample 

sizes. Other tissues might be informative too, although might be limited by the sample size and 

availability post-mortem.    
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Chapter 5 Follow-up analyses of the 16q22 locus 
 

5.1 Introduction 

One of the key results found in moloc analysis of AF (Chapter 3) and stroke (Chapter 4) was 

the 16q22 locus. In this chapter, I describe detailed follow-up analyses of this locus to 

investigate whether AF and stroke share the same genetic aetiology at this locus. 

5.1.1 HP gene 

Haptoglobin (HP) protein is encoded by the HP gene on chromosome 16q22 locus. HP protein 

is a main plasma acute-phase glycoprotein which binds free hemoglobin (HB) to form an 

irreversible HP-HB complex facilitating its removal from circulation376 while preventing the 

loss of iron and kidney damage resulting from the accumulation of hemoglobin following 

hemolysis377,378,379. The HP protein also binds to a variety of lipid molecules380,381,382. The HP 

gene contains internal copy number variation of a pair of exons which produce two co-

dominant alleles (HP1 and HP2). Based on the genomic architecture for these alleles of the 

two-exon segments, the copy number of a multimerization domain is encoded. A dimer is 

formed by single-copy HP1 allele encoding two subunits α1 and ß, but multimers form as a 

result of α2 and a portion of the ß subunit encoded by two-copies of the HP2 allele383. A 

common copy number variation (CNV) within this gene influences the structure of haptoglobin 

molecular phenotypes: HP1-1, HP2-1, HP2-2383. The binding affinities of each HP phenotype 

for free hemoglobin varies384 with each phenotypic functional variation contributing differently 

to biological processes385. These HP phenotypes have been linked to cardiovascular diseases 

such as myocardial infarction386,387 and infections388 with HP2 genotype more susceptible to 
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the risk of diseases. In addition to this major functional variant several other mutations have 

been described in the HP gene. A missense mutation (I24T) in HP2 associated with 

downregulated serum haptoglobin protein has been linked to anhaptoglobinemia389. A rare 

splice donor mutation in HP1 genotype has been found to be associated with higher levels of 

non-HDL cholesterol and risk of coronary artery disease390. However, the contribution of each 

of these functional variations to human phenotype is not yet clear. 

 

The relationship of the HP CNV with GWAS association signals close to the HP gene has not 

been clear391 due to not being included in imputation panels as it is a copy number variation, 

and while it can possibly be imputed, it is not routinely392. A GWAS of plasma cholesterol 

levels identified an association signal at markers close to HP393, however, the causal signal 

explaining this association at most GWAS risk loci are not easily pinpointed. Kazmi et al 

showed that the rs2000999 SNP located downstream of the HP gene is associated with levels 

of circulating HP protein independently of the HP CNV effect on HP levels and HP structure394. 

The genetic variant rs2000999 has also been linked to LDL cholesterol levels and total 

cholesterol levels393. The existence of two distinct mechanisms for the CNV (influencing both 

protein levels and structure) mean that disease associations observed only for the CNV are 

likely to represent protein structure effects, whilst those also observed for rs2000999 are likely 

to represent effects of protein quantity.  
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5.1.2 Previous colocalization studies between HP, AF and stroke 

There has been limited formal colocalization studies conducted between the 16q22 risk locus 

and stroke and no colocalization studies between 16q22 locus and AF to map the causal genes 

involved. However, previous literature has linked the ZFHX3 gene, which belongs to the same 

genomic region as HP gene, with AF. The HP gene was identified to be colocalized with both 

AF and stroke in Chapters 3 and 4 respectively. ZFHX3 has been previously prioritized as a 

candidate gene at this AF-associated locus only based on its closest proximity to the index AF 

SNP. No evidence of colocalization of ZFHX3 expression level with AF was found in 

Genotype-Tissue Expression (GTEx) consortium eQTL data with 54 tissues148,147. This is 

consistent with my finding of no colocalization evidence for ZFHX3 in blood with any of the 

traits tested in moloc studies in this thesis using eQTLGen data (PPA.GM.E=93.2%, (3.3.2.1)). 

The ZFHX3 (Zinc Finger Homeobox 3) gene encodes a transcription factor (TF) (DNA-binding 

protein) containing multiple zinc finger motifs and multiple homeodomains which play 

fundamental roles in adult tissues and development395,396. A knockdown of the ZFHX3 gene 

was found to disrupt regulation of Ca2+ homeostasis and to be associated with high risk of AF 

in a mouse model397. A study in mouse atrial cardiomyocytes with ZFHX3 knockdown showed 

changes in expression of miRNAs and promoted susceptibility to arrythmia110. Van ouwerkerk 

et al398 constructed a mutant mouse with a deletion in the regulatory region of the ZFHX3 first 

intron where AF risk variants are mostly located and found no in vivo changes in expression 

levels of any genes in atria and ventricles including ZFHX3, suggesting that AF risk variants 

might not be acting through regulation of ZFHX3 expression to affect AF.   

 

Furthermore, Data-driven Expression Prioritized Integration for Complex Traits (DEPICT)399 

enrichment analysis by Nielsen et al41 identified the HP gene to be listed in a gene set (P-
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value<0.05) involved in molecular mechanisms which might be related to pathogenesis of AF, 

including increased sensitivity to induced mortality and morbidity, hemoperitoneum, heparin 

binding, reactome platelet degranulation. These findings are consistent with recent reports from 

a MR study in UK Biobank176 that detected direct causal effects of hemoglobin concentration 

on cardiac arrythmia as well as platelet structure involving platelet count and blood volume 

occupied by platelets in the blood (plateletcrit)400. In addition, one recent population-based 

study has linked hemoglobin concentration with AF401. GWASs have not associated any SNPs 

in the 16q22 with blood cell counts or hemoglobin levels. 

 

 The AF top hit (rs2359171) in Nielsen et al is located in an intronic region of the ZFHX3 gene 

and is approximately 950 kb upstream of the HP gene (see Figure 10). The 16q22 risk locus 

harboring genetic predisposition to CES has been reported to act through regulation of 

mechanisms underlying AF. Chauhan et al postulated in a 2016 review of the genetics of 

ischemic stroke, that genetic risk factors influencing both CES and AF may be linked through 

molecular processes involved in cardioembolism85. 

5.1.3 Questions to be addressed in this chapter 

Identification of whether or not a common association signal is causal for both a disease trait 

and an intermediate molecular trait is challenging due to the uncertainty instigated by the 

genome correlation structure known as linkage disequilibrium (LD)402 and the presence of 

multiple causal variants in some genomic regions. However, in Chapters 3 and 4, where the 

moloc approach was applied to multi-omics data, I assumed that a single causal variant within 

the region was underlying the AF association signal. However, this assumption does not hold 

for the 16q22 locus as two independent SNPs are associated with AF at this locus. The focus 

of this chapter is the colocalized 16q22 locus. This locus was found to be colocalized with both 
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AF and stroke in the moloc analyses performed for each trait separately (i.e., for each trait the 

GME scenario at this locus passed the PPA of 80% and the HP gene was identified as the 

colocalized gene (the potential candidate gene)). The 16q22 locus (with two AF independent 

association signals) was found to be colocalized with AF, methylation at the cg03463523 CpG 

site and expression of the HP gene in the moloc analysis in Chapter 3 and with stroke, 

methylation at the cg03463523 CpG site and expression of the HP gene in Chapter 4.  The 

main objectives for the analyses in this chapter were to explore the relationship between the 

HP gene, AF and stroke disease. First, a set of pairwise coloc analyses of AF and stroke were 

conducted to examine whether a single common genetic effect (i.e., AF primary variant) is 

shared between AF and stroke at this locus. Second, a newly developed colocalization method, 

PWCoCo was then applied to conduct conditional coloc analysis in order to account for 

colocalization of more than one causal variant in the region. 

 

5.2 Methods 

5.2.1 Conditional analysis to find the independent mQTLs  

Conditional analysis was undertaken using COJO (conditional and joint association analysis) 

in GCTA227,228 (version 1.91.1beta) (https://cnsgenomics.com/software/gcta/#Overview) at the 

16q22 locus harbouring two independent AF signals identified with the colocalization evidence 

in Phase I (Table 5) (3.3.1.1). COJO uses summary data from GWAS and linkage 

disequilibrium (LD) estimated from the genotype data of a reference panel. COJO was used 

with summary statistics to estimate single-SNP association conditional on the AF lead SNP at 

the 16q22 locus to identify whether there is a peak for mQTL that might be colocalized with 

the secondary AF variant and influence methylation independently (i.e., also represents an 
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independent cis-mQTL). Individual-level HRC-imputed genotype data was used from 

ALSPAC with a sample size of 8890 as a reference sample to match the mQTL meta-analysis 

results to the genotype data and estimate the LD structure of the region. 

 

5.2.2 Association between the 16q22 region and haptoglobin protein 
abundance in ALSPAC 

To test whether the shared primary AF variant, rs2359171 (3.3.2.1) is associated with 

haptoglobin protein levels in ALSPAC, protein QTL (pQTL) analysis was conducted. pQTL 

analysis was performed to estimate the effect of genetic variants at the 16q22 locus on 

circulating haptoglobin levels in ALSPAC. Detailed information of all data is provided in the 

ALSPAC study website (http://www.bristol.ac.uk/alspac/researchers/our-data/) through a 

completely searchable data dictionary and variable search tool. Haptoglobin measurements 

(individual level data) from ALSPAC at the teen focus 4 clinic (variable: Hapt_TF4) was 

extracted using ALSPAC package version 0.6.1 (https://github.com/explodecomputer/alspac/). 

Plasma haptoglobin levels from blood samples of approximately 3,250 children at one time 

point (age 17 years), were previously assayed using high-throughput proton NMR spectroscopy 

(following a detailed experimental protocol403,404). Participants who had withdrawn consent 

were removed from this analysis. In this analysis, extreme outliers (3SD of the mean) were 

filtered out and normalization of circulating haptoglobin concentration values was performed 

across samples by an inverse rank-based transform to the standard normal distribution. Using 

HRC-imputed genotype data, SNPs within 1Mb on either side of AF top variant (rs2359171) 

were extracted at the 16q22 locus. Only variants (n=4,715) with MAF >0.01 (common genetic 

variants) were included in the analysis. A total of 2,707 unrelated individuals (1404 females 

and 1303 males) were used in pQTL analysis. The genetic variants were tested for association 

with plasma HP levels using linear regression, including sex and the top 20 genetic principal 
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components (PCs) of ancestry as covariates using the software PLINK405 version 1.9. Sex was 

previously reported to have an effect on circulating haptoglobin levels379 so, it was included as 

a covariate in this analysis. 

 

5.2.3 Conditional analysis to find independent pQTLs within the 16q22 region  

To identify independent variants for haptoglobin levels, conditional analysis was undertaken 

using a stepwise regression approach. Conditional association analysis was performed using 

an additive genetic model with PLINK405 (version 1.9) 

(http://pngu.mgh.harvard.edu/purcell/plink/), adjusting for sex and 20 genetic PCs. This 

analysis conditioned on the haptoglobin lead SNP (top pQTL signal that had the highest 

strength of the association) to identify a secondary signal associated with levels of circulating 

HP at the 16q22 locus. This procedure was repeated (i.e., conditioning on the next most 

significant SNP; finding a new conditional top SNP; and then conditioning on this new top 

SNP) until the p-value showed little evidence of association (P>0.05). R2 between the top 

haptoglobin pQTLs and the AF lead variant was looked up in the European (EUR) population 

from the 1000 Genomes (1000G) Project using the LDpair tool from LDlink 

(https://analysistools.nci.nih.gov/LDlink/).  

 

5.2.4 Pairwise colocalization analyses between AF and stroke at 16q22 locus 

Pairwise colocalization was tested between AF and stroke GWAS results from meta-analysis 

conducted by Nielsen et al41 and Malik et al67 respectively. GWAS summary statistics of SNPs 

within a 2Mb window around the AF top hit (rs2359171) at the 16q22 locus were used for this 

analysis. Summary statistics of each trait within this region were mapped to the variant call 

format (VCF) with harmonisation to the 1000G reference FASTA GRCH37/hg19 using 
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gwas2vcf harmonisation tool406 (version 1.2.1), implemented in Python (version 3.8.0). The 

gwas2vcf software was downloaded from https://github.com/mrcieu/gwas2vcf. Harmonisation 

was performed to align the non-effect allele and alleles coded on the forward strand to the 

human genome reference sequence build 37 to ensure consistency of the data. Any SNPs in the 

dataset which did not map to the reference genome were removed and the sign of the regression 

coefficient (beta, the effect size estimate) was switched if the effect allele needed to be 

switched. The rsID field of AF and stroke harmonized summary statistics within the 16q22 

region was updated to the latest version of dbSNP identifier (v153) build 37. Pairwise 

colocalization analysis between AF and stroke traits was conducted using harmonised VCF 

datasets (nSNPs=4923) using coloc implemented in the gwasglue R package (version 

0.0.0.9000)10 available at Github (https://github.com/MRCIEU/gwasglue). Analyses were 

carried out in R (version 3.6.2).  The analysis was repeated using a smaller window size (1Mb 

rather than 2Mb around the lead SNP).  

 

5.2.5 Pairwise colocalization analysis between AF and stroke on SNPs in the 
AF top hit LD block  

To compare the colocalization results of previous analyses with the results where the SNPs in 

the region are limited to the LD block, a pairwise colocalization analysis was performed on 

SNPs with r2>0.1 within the LD block for the AF top SNP using gwasglue10. The LD threshold 

of r2=0.1 was used to filter on all SNPs present in the 1000 Genomes EUR population with 

correlation coefficient greater than 0.1 within a 500 kilobases (kb) window of the AF top hit in 

order to exclude secondary AF SNP in this block. The AF lead SNP was not in LD (r2=0.064) 

with the secondary SNP in the 1000G EUR population (i.e., truly independent SNP). Ensembl 

version 87 and human Genome reference assembly GRCh37 were selected for genome 

annotations. Correlation coefficients between the AF top hit and proxies was looked up using 
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the proxy_search function in the SNiPA407 (v3.3) (data accessed: 12 October 2020) online 

platform (https://snipa.helmholtz-muenchen.de/snipa3/). A LD block is defined as a genomic 

region where the target variant is not in significant LD with the other variants located outside 

this region408. Therefore, based on this definition, in this analysis, the LD block was constructed 

for each AF independent SNP using --ld-wind option provided by the GCTA-LDF408, GCTA 

software227 (version 1.91.1beta) where correlation coefficient (r2) of SNPs in LD with each AF 

SNP within a 1Mb window (i.e., 500Kb either direction) of the AF hit were estimated by 

regression test. 

 

5.2.6 Pairwise Conditional and Colocalization (PWCoCo) analysis of AF and 
stroke  

Loci harbouring multiple independent association signals make it challenging to identify the 

shared causal variant between GWASs as this violates the standard assumptions of the coloc 

tool and affects the performance of the method. Recently a Pairwise Conditional and 

Colocalization analysis (PWCoCo) pipeline implemented in C++ has been developed within 

the MRC-IEU by Jamie Robinson (https://ieugit-scmv-d0.epi.bris.ac.uk/jr18055/pwcoco) 

which integrates conditional and colocalisation methods from GCTA-COJO software tool227 

(https://cnsgenomics.com/software/gcta/#Overview) and the coloc220,221 

(https://chr1swallace.github.io/coloc/index.html)  R package for regions with more than one 

independent variant.  

 

PWCoCo analyses were performed between two conditionally independent AF hits and 

conditionally independent signals for stroke in the 16q22 region. This stepwise conditional 

colocalisation analysis conditioned out the SNP effect of the AF primary top hit, rs2359171 

and the secondary hit, rs876727 one at a time before conducting pairwise colocalization 
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analysis between AF and stroke traits. In the presence of only one peak in the region, PWCoCo 

output results for unconditioned coloc. The conditional analysis was carried out using the 

GCTA-COJO package (version gcc-9.1.0) using HRC imputed genotype data from mothers in 

ALSPAC as the LD reference panel244,409. ALSPAC data is described in Chapter 2 (2.1.4). 

SNPs with MAF > 0.01 were filtered and included in this analysis. AF-stroke association 

signals with posterior probability (PP4) greater than 80% were considered as evidence of 

colocalization.  

 

5.3 Results 

5.3.1 Conditional analysis to find the independent mQTLs in the 16q22 region 

In Chapter 3 phase I (3.3.1.1), evidence of colocalization was identified for the 16q22 locus 

(PPA.GM=0.92) encompassing two independent association signals for AF, rs2359171 

(P=4.65x10-91) and rs876727 (P=1.97x10-23). These two variants are not in LD with each other 

(1000 Genomes European population; r2=0.06). Both primary, (rs2359171) and secondary 

(rs876727) SNPs located within the intronic region of the ZFHX3 gene are significant mQTLs 

with genetic effects on methylation at the same CpG site, cg03463523 (ß=0.143, P=1.87x10-36 

and ß=0.086, P=1.50x10-12) in GoDMC data. Here, in this chapter, conditional analysis at this 

locus confirmed that the two mQTLs (found in the colocalized 16q22 region) influence 

methylation at the same CpG site independently of each other (Table 12). Therefore, it is likely 

that cg03463523 and AF share two causal variants in this genomic region (i.e., the primary AF 

SNP colocalizes with primary mQTL and secondary AF SNP colocalizes with secondary 

mQTL). In fact, multiple independent mQTLs associated with cg03463523 (rs739414 

(secondary), rs56311231 (tertiary)) were detected in this region (Table 12). Of note, rs739414 
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mQTL is not an AF variant. The secondary AF signal, rs876727 did not have the lowest P value 

after removing the effect of the top mQTLs, (rs2359171 and rs739414) and ranking the 

association results by P value.  However, rs56311231 mQTL was in high LD with rs876727 

mQTL (r2=0.77) (in 1000G EUR population). Taken together, there might be two independent 

shared association signals between cg03463523 and AF. However, in Chapter 3 Phase II, 

moloc showed only the AF lead variant which was significantly associated with expression of 

HP gene (rs2359171-HP cis-eQTL), also colocalized with cg03463523, HP gene and AF 

(PPA.GME=96.7%) (3.3.2.1) in this region. Of note, the rs879324 variant, previously found to 

be associated with cardioembolic stroke98, was also identified as a significant mQTL in high 

LD with the primary AF variant (r2=0.93) at this locus.   

 
 

 

Top mQTL Beta SE P  conditional on the given 
SNP(s) 

r2 with secondary 
AF/mQTL SNP 

rs2359171 0.127 0.011 4.01x10-29 rs876727 0.064 
rs739414 0.087 0.011 6.15x10-15 rs2359171 0.023 

rs56311231 -0.077 0.012 5.75x10-11 rs2359171, rs739414 0.766 
 

 

5.3.2 Identification of independent SNPs associated with haptoglobin plasma 
levels in ALSPAC 

pQTL analysis was performed to investigated whether the shared AF causal variant, rs2359171 

identified at the 16q22 locus could potentially influence haptoglobin (HP) plasma levels. The 

association testing of 4,715 variants in this region against levels of plasma haptoglobin in 2,707 

Table 12. Genetic variants detected as independent mQTLs for cg03463523 by GCTA-COJO.  
Single-SNP association analysis results, correlation coefficient (Beta), SE and P-value of mQTL 
effect conditioned on the set of SNPs (conditional on the given SNP(s)). LD (r2) between Top 
conditionally independent mQTL and secondary AF/mQTL SNP, rs876727 in 1000G EUR 
population.  
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ALSPAC individuals was performed. Strong evidence of association (P<5x10-8) was found 

between circulating haptoglobin plasma levels and 353 variants at this locus (Figure 16). The 

strongest association with haptoglobin was detected for SNP rs217184 (ß=0.639, P=2.57x10-

77), located on chromosome 16, which was in high LD (r2 >0.95 in the 1000 Genomes European 

population) with rs77303550 and rs217181 variants in this region. There were multiple 

independent pQTLs (mostly intronic variants) strongly associated with haptoglobin protein 

levels in this region. Using stepwise conditional analysis, evidence of four conditionally 

independent associations with haptoglobin plasma levels was found (Table 13). 

 

 

Top SNP Beta SE P  covariates primary 
AF SNP P  

r2 with 
primary 
AF SNP 

r2 with 
secondary 
AF SNP 

rs217184 0.636 0.033 2.57x10-77 sex, top 20 PCs 0.698 0.002 0.009 

rs9302635 0.679 0.033 2.61x10-86 sex, top 20 PCs, rs217184 0.277 0.001 0.001 

rs9941087 -0.366 0.031 5.07x10-32 sex, top 20 PCs, 
rs217184, rs9302635 0.208 0.002 0.002 

rs2336601 -0.203 0.054 2.02x10-4 
sex, top 20 PCs, 

rs217184, rs9302635, 
rs9941087 

0.586 0.006 0.006 

 

 

5.3.3 No relationship between AF risk variants and haptoglobin plasma levels  

The shared AF risk variant, rs2359171 is not in LD with the primary cis-pQTLs that influence 

haptoglobin concentrations (r2 <0.002). This AF variant (located 947Kb upstream of the top 

cis-pQTL, rs217184) showed little evidence of association with haptoglobin protein levels in 

Table 13. Conditionally independent pQTLs identified in the 16q22 region by conditional 
analysis.  
Top conditionally independent pQTL identified after adjusting for a set of covariates: (genetic 
principal components (PCs) and conditioning on variant(s) (Top SNP), P-value of the AF primary 
SNP, rs2359171 on haptoglobin level after conditional analysis, LD (r2) between Top pQTL and 
primary, rs2359171 and secondary, rs876727 AF SNP in 1000G EUR population. 
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ALSPAC (i.e., not a significant pQTL; ß=0.015, P=0.698). (Figure 16). The secondary AF 

independent signal, rs876727 (located approximately 962Kb upstream of the top cis-pQTL) 

showed modest evidence of association with haptoglobin levels in this region (ß=-0.105, 

P=4.24x10-3). Conditioning on the top HP-associated SNPs did not find AF risk variants 

(rs2359171 and rs876727) as significant pQTLs at this region (Table 13). In addition, none of 

the four independent pQTLs was in LD with the AF shared variant, rs2359171 (r2<0.007) 

suggesting that changes in plasma haptoglobin levels might not be on the causal pathway to 

AF.  The lead AF SNP at this locus affects methylation at cg03463523 CpG site and HP gene 

transcript levels but not plasma protein levels of haptoglobin. Sex showed strong evidence of 

association with haptoglobin levels in this analysis (ß=0.318, P=5.25x10-17). In addition, none 

of the four independent pQTLs was in LD with the primary AF shared variant, rs2359171 

(r2<0.007) suggesting that changes in plasma haptoglobin levels does not colocalize with AF 

in this region, therefore SNP regulation is only affecting methylation and HP gene transcript 

levels, but not protein expression. 
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Figure 16. Regional association plots displaying the pQTL association peaks for two 
independent AF signals in the 16q22 cis region.  

a) The primary SNP (rs2359171) and b) the secondary SNP (rs876727) for AF are not 
associated with circulating HP protein in this region. SNPs tested for association are plotted on 
the x-axis by their regional position in megabases. The -log10 P values of pQTL associations 
are plotted on the y-axis. The second y-axis shows recombination rate from 1000 Genomes. LD 
(r2) is displayed based on the 1000 Genomes EUR population reference panel. 
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5.3.4 Pairwise coloc between AF and stroke at the 16q22 locus 

To identify whether the genetic associations with both AF and stroke at this locus shared a 

common causal variant, pairwise coloc was conducted using harmonised VCF summary 

statistics of SNPs (n=4923) for AF and stroke at the 16q22 locus. Moderate evidence of 

colocalization (posterior probability (PP4) =74.6%) was detected between the AF- and stroke-

associated signals. This analysis was repeated using SNPs (n=2520) within a 1Mb window 

around the AF top hit (rs2359171) to test the effect of the number of SNPs in the region on the 

probability of a shared variant (PP4) between AF and stroke. Evidence of colocalization slightly 

improved from PP4 =74.6% to 74.8%. Of note, the AF secondary variant, rs876727 (located 

14,739 bp upstream of the primary variant) shows very little evidence of association with stroke 

at this locus (Beta=-0.002, P=0.891).  

 

5.3.5 Pairwise coloc between AF and stroke on SNPs in the AF top hit LD 
block  

To avoid unreliable colocalization findings of a shared causal variant due to the presence of 

two independent AF signals in the region, pairwise coloc was performed on SNPs within the 

LD block of the top AF hit with the AF secondary SNP excluded from the region. Genetic 

variants (n=96) in LD (r2>0.1) with the AF top hit within a 500Kb region in either direction 

(i.e., LD block for AF lead SNP, rs2359171 with length of 106,248 bp in chr16:72,995,996-

73,102,243 genomic region) were extracted from the VCF file summary statistics of AF and 

stroke. After integrating AF and stroke summary statistics at the 16q22 locus to map SNPs in 

common between both datasets, 88 SNPs were left in the region for pairwise coloc analysis. 

Strong evidence of sharing a causal variant (PP4>80%) (Table 14; Figure 17) behind both 

traits were identified by gwasglue, suggesting that reducing the noise of additional signals 
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increased the specificity of colocalization to provide more reliable inference for a shared causal 

variant. 

 
window size nSNPs PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 

1Mb 4923 0.00% 10.90% 0.00% 14.50% 74.6% 

500Kb 2520 0.00% 11.00% 0.00% 14.20% 74.8% 

500Kb LD 
block 88 0.00% 12.00% 0.00% 4.90% 83.1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. Pairwise colocalization evidence for AF and stroke in the 16q22 region. 

Colocalization evidence identified in different sized windows around the AF top hit, rs2359171, 
each containing a different number of SNPs (nSNPs). In the first two colocalization analyses 
(5.3.4) (first two rows), both AF primary and secondary signals (rs2359171 and rs876727) were 
present in the 16q22 region. In the last analysis on SNPs (r2 >0.1 with the lead SNP) within +/- 
500Kb LD block for the independent AF top hit, only rs2359171 variant was present and the 
rs876727 SNP was filtered out. Posterior probability of colocalization between AF and stroke 
(PP.H4.abf), probability of other coloc scenarios evaluated (PP.H0 – H3). 
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Figure 17. Regional association plot depicting a shared single association peak for AF 
and Stroke in the 16q22 region. 

a) The top hit for AF (rs2359171) colocalized with b) the hit for stroke. 88 SNPs (r2 >0.1) 
common between two traits within +/- 500Kb LD block for rs2359171 variant.   

b) 

a) 
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5.3.6 PWCoCo analysis to confirm that AF colocalizes with stroke at the 
16q22 locus 

In the previous chapters (3.3.2.1 and 4.3.2), the moloc results at the 16q22 locus showed that 

expression of the HP gene was colocalized with AF and stroke. However, colocalization 

analysis assumes a single causal variant within the region. As the 16q22 region had two weakly 

independent SNPs, rs2359171 and rs876727 in pairwise LD of r2=0.064, (Figure 18) the 

assumptions of standard coloc have been violated. Here, I conducted PWCoCo analysis to 

assess whether there is evidence of a colocalization signal remain after conditioning on each of 

the independently associated SNPs (see methods for more detailed description (5.2.6)). 

Application of PWCoCo confirmed that the AF and stroke traits colocalized at the single 

primary signal for AF, rs2359171 in this region (nSNPs=4907; PP4=81.4% unconditioned 

coloc). The second association signal for AF did not colocalize between AF and stroke after 

PWCoCo analysis. 
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Figure 18. Regional association plots displaying the association peaks for AF and stroke 
GWASs in the 16q22 region. 

a-d, Regional plots of the 16q22 locus. Regional plots of AF showing (a) the primary variant 
rs2359171 and (b) the secondary variant rs876727 without conditional analysis. Regional plots 
of stroke showing (c) AF variant, rs2359171 (r2=0.92 with the top stroke hit rs12932445 in the 
1000 Genomes EUR population) and (d) the second AF variant rs876727 for stroke without 
conditional analysis. LD (r2) is displayed based on the 1000 Genomes EUR population reference 
panel. 

a) b) 

c) d) 
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5.4 Discussion 

5.4.1 Main findings 

In this study, statistical analyses were used to explore genetic mechanisms underlying the 

potential relationship between AF and stroke at the 16q22 locus. In chapters 3 and 4 

methylation of cg03463523 and expression of HP gene was identified to colocalize with 

association signals for both AF and stroke at the 16q22 locus. The risk allele of the shared 

genetic risk for AF, rs2359171-T (ß=-0.175, P=4.65x10-91) was positively correlated with DNA 

methylation of the cg03463523 CpG site (ß=0.143, P=1.87x10-36) in the GoDMC study. 

Additionally, expression of the HP gene (encoding haptoglobin, a plasma glycoprotein) was 

downregulated (ß=-0.095, P=7.45x10-10) in eQTLGen data. This gene showed a positive 

direction of effect in relation to AF and CES (Table 7 and Table 11), suggesting a relationship 

between upregulated expression of HP gene and increased risk of AF and CES. 

 

Here, in this chapter no evidence of the effect being through plasma HP levels was found and 

no effect of the AF lead SNP, rs2359171 on plasma HP protein levels persisted when 

conditioning on the top haptoglobin pQTLs and rs2000999. The AF risk variant and the 

identified independent pQTLs of circulating haptoglobin levels (including rs2000999 reported 

by Kazmi et al394 and SNP haplotypes found by Boettger et al392 for tagging the different HP 

structural features) were independent of each other and were not in LD (r2<0.01 in 1000G EUR 

population). Previous studies between eQTLs and pQTLs performed by Sun et al showed that 

not all eQTLs colocalized with pQTLs410, which suggests that there might be other plausible 

ways through which the genetic variants could affect the risk or development of atrial 

fibrillation. An explanation for this might be that many circulating proteins originate in other 
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tissues such as haptoglobin which is expressed primarily in the liver before entering the 

circulatory system, and therefore blood eQTLs might not be that relevant to circulating protein 

levels. Moreover, there are many other biological mechanisms between transcription and 

circulating protein levels (post-transcriptional mechanisms: such as protein clearance from the 

bloodstream, degradation, secretion and binding) and technological reasons that can alter both 

measured quantity of transcript and measured quantity of protein411,412. This is consistent with 

the findings by Sun et al where based on the high LD (r2≥0.8) between cis pQTLs and eQTLs, 

40% of the pQTLs were reported to be overlapped with eQTLs for the same gene in at least 

one tissue or cell type. Colocalization test conducted on these overlapping eQTLs-pQTLs by 

this group showed enrichment of approximately 78% pQTLs with eQTLs (P<1x10-4) for the 

same gene in at least one tissue or cell type. However, only 12.2% retained significant 

(PP>80%) after filtering cis eQTLs for the most significant ones in a well-powered eQTL study 

in whole blood410.  

 

PWCoCo was used to identify if AF and stroke share two independent causal signals at the 

16q22 locus (i.e., if the two genetic variants for both traits colocalize). The AF secondary 

signal, rs876727 showed little evidence of association with stroke in GWAS67, however, 

conditioning on the primary variant using PWCoCo may help identification of an additional 

independent peak for colocalization which also substantiates findings from GWAS. In addition, 

PWCoCo was performed to ensure that the colocalization evidence between AF and stroke at 

this locus was not due to alternative causal variants in LD. PWCoCo provided strong evidence 

of a shared genetic effect of rs2359171 (colocalized cis-eQTL-mQTL) with both AF and 

stroke, suggesting a potential functional role of the HP gene (but not the circulating protein) in 

pathogenesis of AF and stroke, with gene expression controlled by the shared variant. Taken 
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together, these findings highlight the evidence of potentially a single shared causal variant 

between AF and stroke in the 16q22 region supported by PWCoCo and the elimination of the 

rs2359171 peak from being confounded by the LD.  

 

The AF primary lead SNP (located in the ZFHX3 gene) was not associated with ZFHX3 

expression in eQTLGen data241 and Martin et al did not identify any association between any 

of the AF-associated variants and ZFHX3 expression in both atrial tissue and peripheral 

blood413. Animal models have previously shown that the ZFHX3 gene might be involved in 

AF110. No evidence of colocalization of the ZFHX3 gene with AF or stroke was found in the 

analyses performed in Chapter 3 and 4, respectively. This suggests that AF variant might act 

through ZFHX3 expression and protein levels in another tissue, which needs further 

investigation. In contrast, colocalization analyses at this locus revealed evidence of sharing 

genetic effects on methylation at cg03463523 CpG site, expression of the HP gene and risk of 

AF and stroke, indicating that the HP gene could be a functionally relevant or link to these 

diseases. However, the finding that there is no evidence from this analyses that circulating 

haptoglobin levels (through which gene expression would presumably act) colocalize with AF 

risk support that it is possible for gene expression to functionally affect disease risk without 

detecting evidence in circulating HP levels. It is also very plausible that there might be 

pleiotropy at the genetic variant level. Another possible hypothesis might be timing of the 

measurement of plasma haptoglobin level, which may result in different pQTL effects across 

time. However, when I compared the HP pQTLs measured in this study (ALSPAC 17 year 

olds) to the HP blood plasma pQTLs in Sun et al in adults410  I found consistency between the 

effect sizes so timing of pQTL effect is unlikely to be explaining the lack of overlap between 

HP eQTL and pQTL. A system under stress (age or disease) will behave differently than one 
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that is not.  

Studies in patients with AF revealed that inflammation is associated with perpetuation of AF414. 

Plasma haptoglobin is one of the inflammation-sensitive proteins which have been linked to 

stroke and it is a well-established biomarker for stroke415. A population-based study showed 

that its increased levels is a risk factor for IS416. A previous study has also reported that high 

cholesterol is linked to increased levels of inflammation-sensitive plasma proteins (ISP) 

(including haptoglobin) associated with higher risk of IS417. 

 

The findings in this chapter suggested that AF might mediate the genetic effect exerted by a 

single causal variant at the 16q22 locus on CES subtype through changes in methylation at 

cg03463523 CpG site and expression of the HP gene. However, the lack of evidence for 

colocalization of HP protein levels and AF suggest that the mechanism may be complex, or 

that these results may reflect pleiotropy at some level. 

 

5.4.2 Strengths and limitations 

The major strength of this chapter is the detailed information presented in regard to the AF-

CES shared locus. 

 

This study has a number of key limitations. One of the limitations of this study is the smaller 

sample size (n=2,707) (compared to eQTLGen study sample size n=31,684) was used for 

haptoglobin pQTL analysis in whole blood. In addition, different technological platform used 

to measure protein levels relative to corresponding gene expression levels. Another limitation 

is the fact that no data on ZFHX3 protein levels was available in whole blood to compare the 

output of HP pQTL with that of ZFHX3 pQTL. Furthermore, a lack of well-powered tissue-
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specific data for both genes limited the interpretation of biological mechanisms in terms of 

uncovering potentially tissue-specific function of these genes in AF and CES pathogenesis.  

 

5.4.3 Future directions 

Further studies based on HP protein levels measured in CVD patients could clarify the 

functional consequences of the AF-CES-related gene expression (HP). Considering the tissue-

specific nature of some molQTL effects, further studies in AF and stroke -relevant tissues and 

cell types with big sample sizes should be conducted to confirm or add on to these findings. 



Chapter 6 Mendelian Randomization analysis between 
atrial fibrillation and stroke  

6.1 Introduction 

Previous studies have shown links between AF and stroke. In my previous chapters I have 

explored the shared molecular aetiology of these two diseases. In this chapter, I use Mendelian 

randomization to explore the potential causal relationships between AF and stroke to better 

understand the basis for this shared aetiology. 

 

6.1.1 Current knowledge of AF and stroke relationship 

AF remains a leading contributor to mortality and morbidity of cardiovascular diseases such as 

stroke and heart failure418,419. Population studies such as Framingham heart study (FHS) have 

shown that AF is associated with an increased risk of stroke with its attributable risk 

significantly increasing with age105. Furthermore, contemporary studies reported that 20-30% 

of IS cases are attributed to pre-existing AF70. Stroke patients that have undergone 72 hours 

prolonged electrocardiogram (ECG) monitoring have enhanced detection of AF71. 

Observational studies have shown that genetic risk factors for AF are highly associated with 

the CES subtype of stroke111. Pulit et al reported that 23.1% heritability in risk of CES is 

explained by genetic risk factors for AF. AF PRS comprising 934 SNPs have also been found 

to associate with cardioembolic stroke after adjusting for the clinical risk factors of AF111. 

However, although observational studies can provide evidence regarding etiology of the 

disease, they are prone to reverse causation, confounding factors and measurement error which 

may bias the results and limit ability to appraise causality420. Nielsen et al41 constructed a 

polygenic risk score (PRS) for AF (111 AF risk variants and 31 conditionally additional 

independent risk variants), and tested for association with a range of multiple disease groups 
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in UK biobank participants176. This study identified associations with further cardiovascular 

complications in addition to strong associations with AF, including stroke, ischemic heart 

disease and heart failure. Their AF PRS was very specific for AF (i.e., finding no associations 

with any CVDs after exclusion of participants with any type of cardiac arrythmia), suggesting 

that AF might be acting as a mediator linking genetic variants to other related vascular diseases 

such as stroke41.  

 

MR attempts to overcome the limitations of observational studies to find evidence of causality 

by removing unmeasured confounding through instrumenting on genetic variants that proxy 

for the risk factor or exposure of interest.  Three MR studies have been performed between AF 

and stroke to date, on different datasets which came to conflicting conclusions. Wang et al72 

and Fill et al found MR evidence for a causal effect of AF on stroke. Fill et al421  performed 

two sample MR between AF, stroke, IS and subtypes of IS using GWAS data from AFGen 

consortium (n=133,073) and Nielsen et al for AF and MEGASTROKE consortium 

(n=521,612) for stroke and its subtypes and found that genetic predisposition to AF is causally 

linked to a higher risk of all stroke, IS and CES but not the other two IS subtypes (LAS and 

SVS). Wang et al72 conducted MR on a larger phenome-wide scale and identified independent 

potential causal roles of AF risk factors including height, adiposity, SBP and CAD on AF and 

causal effects for several proteins (including decreased levels of interleukin 6 receptor (IL-6R)) 

with roles in inflammation on increasing risk of AF. In addition, they also found that genetic 

predisposition to AF associated with higher risk of stroke, IS and only the CES subtype in both 

univariable and MVMR model. In contradiction with these findings, Hou et al422 conducted a 

network MR analysis using IS summary data from ISGC consortium (n=29,633) and AF 

statistics from AFGen consortium (n=588,190) and found evidence for the reverse direction of 
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causal effect, from IS to AF422. 

 

6.1.2 Motivation for a two-sample MR 

The primary motivation for this chapter is to further assess the relationship between AF and 

stroke which will lead to a better understanding of how these two diseases may be linked.  In 

Chapters 3 (3.3.2.1) and 4 (4.3.2), the moloc results at the 16q22 locus showed that the HP 

gene was colocalized with both these traits. Furthermore, Chapter 5 (5.3.6) pairwise 

colocalization analyses demonstrated that AF and stroke share a single causal variant at this 

locus. Therefore, it is possible that the HP gene may be a shared risk factor for AF and stroke. 

To assess the strength of evidence for a causal relationship between AF and stroke a two-

sample Mendelian Randomization (MR) analysis was conducted using the genome-wide 

summary statistics from the Nielsen et al study for AF41 and Malik et al study for stroke67. MR 

is a statistical technique called instrumental variable analysis, which makes use of the random 

allocation of SNP genotypes at birth as genetic instruments217,219 in order to infer causality 

between traits.  MR methods and assumptions are explained in more detail in section 1.5. 

 

6.1.3 Aims 

The aim of this result chapter was to conduct two-sample MR analysis between AF and stroke 

to assess evidence for AF causing stroke. A set of sensitivity analyses were then performed to 

assess validity of MR findings including heterogeneity analysis231 on the genetic instruments 

to investigate horizontal pleiotropy, reverse MR219,423 and Steiger filtering424,425 to determine 

if the causal hypothesis is orientated in the correct direction (i.e., from AF to stroke and not 

stroke to AF), and leave-one-out (LOO) analysis234 to determine robustness of MR estimate to 

outliers. Validation analyses were undertaken to determine if the MR findings are replicated in 
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an independent cohort with little overlap between AF and stroke cohorts. 

 

6.2 Methods 

6.2.1 Instrument selection and preparation 

The publicly available GWAS summary statistics curated by MRC Integrative Epidemiology 

Unit (IEU) OpenGWAS database10 (https://gwas.mrcieu.ac.uk) was used to access the GWAS 

summary data. The genetic instruments (i.e., genetic variants associated with the exposure) 

were acquired from the AF meta-analysis conducted by Nielsen et al41 on European cohorts 

from six studies (UK Biobank, deCODE, HUNT, DiscovEHR, MGI, and the AFGen 

Consortium) (2.1.1). This summary dataset comprises a total of 33,519,037 SNP associations 

measured in 1,030,836 participants (OpenGWAS ID: ebi-a-GCST006414). I filtered results 

based on P<5x10-8 and P<5x10-5 as P value significance thresholds and then performed linkage 

disequilibrium (LD) clumping on the GWAS SNPs to obtain the top independent instruments 

for AF (i.e., the strongest AF-associated variants).  To conduct the LD clumping the default 

settings were used from the tophits function provided by the ieugwasr R package (version 

0.1.5)10 (https://mrcieu.github.io/ieugwasr/) (maintained by IEU OpenGWAS database) which 

used a 10,000kb window and r2 cutoff of 0.001 to select out the independent SNPs (r2<0.001 

based on 1000 Genomes EUR population LD reference panel). This very strict LD clumping 

procedure was used to ensure the independent instrument assumption of MR was satisfied. This 

procedure selected 111 independent AF top hit SNPs (between SNP LD r2<0.001) identified in 

the Nielsen et al41 paper as the genetic instrument set but did not select out the additional 31 

conditionally independent SNPs that were reported in this paper (between SNP LD r2>0.001).  
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6.2.2 Outcome lookup and harmonisation of data  

To look up instruments in outcome GWAS the associations function provided by the ieugwasr 

R package (version 0.1.5)10 was used. Instrument coverage was checked, and non-proxy search 

was used only as not many SNPs were missing. (i.e., the LD proxies parameter was set to 0 to 

search for the exact rsid present in the specific outcome GWAS summary dataset). The 

summary statistics for the selected instruments were extracted from the outcome GWAS, and 

then the instrument-exposure and instrument-outcome associations were harmonised to reflect 

the same effect allele using the TwoSampleMR R package (version 0.5.5)234. After 

harmonisation, instrument strength and validation tests were performed on the remaining 

instruments. Two-sample MR analyses (see section 6.2.4 describing 2SMR in more detail) 

were then conducted on the harmonised summary statistics to estimate the genetically predicted 

causal effect of AF disease as the exposure (or the risk factor) on the stroke disease as the 

outcome using multiple SNP instruments.   

 

6.2.3 Instrument strength 

In MR studies, weak instrumental variables can cause bias if the proportion of the variation in 

the exposure or the risk factor explained by those variants is small (exacerbated by a small 

sample size)426,427. To assess instrument strength and to ensure unbiased causal estimates the 

F-statistic for each instrument was calculated using the Cragg-Donald statistics428,429: 

𝑃𝑉𝐸 = 𝛽C/(𝛽C + 𝑠𝑒C ∗ 𝑛)  

where PVE is the proportion of variance explained by the exposure instrumental variable, β 

and se are the effect estimate/size and standard error for the instrument, n is the sample size for 

the instrument.  The PVE can then be used to calculate the F statistic:  
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𝐹	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝑃𝑉𝐸 ∗ (𝑛 − 1 − 𝑘)/(1 − 𝑃𝑉𝐸) ∗ 𝑘 

where k is the number of instruments used in the 2SMR estimate (for single variant MR k = 1) 

and n is the sample size for the instrument when k = 1. If k > 1 an average of sample size for k 

selected instruments is used.  F statistics were calculated for the individual SNP instruments as 

well as the pooled MR estimates.  

 

6.2.4 Two-sample MR 

Two-sample MR analyses were performed to investigate the causal relationship between AF 

(OpenGWAS ID: ebi-a-GCST006414) and stroke (OpenGWAS ID: ebi-a-GCST006906). MR 

methods which pooled effect estimates across multiple SNP instruments were used. These 

consisted of the five default methods available in the mr function in the TwoSampleMR R 

package234 (i.e., IVW, Weighted mode, Weighted median, Simple mode, MR-Egger). For a full 

description of these methods see Chapter 2 (2.2.2). These steps were implemented using the 

TwoSampleMR R package (version 0.5.5) maintained by MR-Base234 

(https://www.mrbase.org/). The MR results were plotted as forest and scatter plots using the 

ggplot2 R package (v3.3.2) (https://ggplot2.tidyverse.org/authors.html) in R (version 4.0.3).	

The following sections describe the sensitivity analyses conducted to explore possible 

violations of the assumptions of MR. 

 

6.2.5 Reverse MR and Steiger analysis to evaluate the directionality of MR 
effect 

A potential concern with the MR analysis could be reverse causality (i.e., preclinical 

phenotypes of the disease affect the risk factor or changes in risk factor is a consequence of the 

genetic liability to disease rather than a cause of the disease). In order to determine whether the 



	

	

158	

AF to stroke MR relationship was orientated in the correct direction reverse MR analysis was 

performed, instrumenting on the outcome GWAS (stroke) instead of the exposure (AF) using 

P<5x10-8 and P<5x10-5 thresholds. The stroke instruments were then looked up in the AF 

GWAS and the effect estimates for both traits harmonised.  The same MR methods as detailed 

previously were then used to conduct the MR. Evidence of an MR effect in both the forward 

and reverse directions would indicate ambiguity in direction of causation.  

 

Steiger filtering424,425 of instruments also helps to reduce the likelihood of directional mis-

inference. The Steiger filtering approach tests if the variance explained by the instruments is 

greater in the exposure than the outcome (r2 exposure > r2 outcome).  If this is not true, then 

the MR effect could be orientated in the wrong direction (i.e., from outcome to exposure rather 

than exposure to outcome). A Steiger directionality test was performed on all the instruments 

to check whether the overall IVW effect was orientated in the correct direction. Steiger filtering 

was also conducted on the individual SNP instruments to identify outliers that were driving the 

reverse orientation of MR effect. Instruments which failed the Steiger test were removed, and 

MR analysis re-performed to determine if the MR estimates were altered. Steiger filtering on 

the individual SNP instruments and MR Steiger test of directionality were conducted using the 

steiger_filtering function and the directionality_test function on harmonised data respectively, 

provided by TwoSampleMR R package (version 0.5.5). 

 

6.2.6 Validation analyses to replicate AF and stroke MR effect in another 
cohort 

To replicate MR estimates in another cohort (i.e., with less sample overlap between cohorts 

used in both AF exposure and stroke outcome GWAS studies) validation analyses were 

conducted. The AF GWAS published by Nielsen et al41 was performed across six studies 
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including the deCODE study which introduces sample overlap with stroke in Malik et al, who 

performed stroke GWAS using European ancestry studies with the deCODE cohort included 

(n=5,520 cases, n=255,213 controls, total n=260,733). In order to evaluate whether sample 

overlap between the two GWAS studies used in the main MR analyses biased the causal 

estimate, validation analyses were conducted using a recently published AF GWAS by Roselli 

et al52  (GWAS ID: ebi-a-GCST006061) which has little sample overlap with the stroke 

GWAS. The European ancestry sample used in this AF GWAS (total n = 537,409) consisted 

of 55,114 AF cases and 482,295 controls with the majority from two consortia: the Atrial 

Fibrillation Genetics (AFGen) and the Broad AF study (Broad AF) consortia. Samples from 

the Heart and Vascular Health (HVH) study (n=681 cases, n=1,331 controls) and the NINDS 

Stroke Genetics Network (SIGN) study90 (n=7,743 cases, n=17,970 controls) part of the 

AFGen consortium were used in the MEGASTROKE stroke GWAS analysis.  

 

6.2.7 Statistical tests for the evidence of instrument heterogeneity and 
directional pleiotropy 

In MR analyses the presence of horizontal pleiotropy can violate the IV2 assumption (1.5.1) 

which is one of the fundamental assumptions for MR. IV2 assumes that all instruments are 

valid IVs and their effect on the outcome of interest is not through any pathway other than the 

instrumented exposure251,252. However, it is possible that the SNPs in question might not meet 

this assumption due to the large number of instruments incorporated in MR analysis and 

inadequate knowledge regarding the functional role of these genetic variants (i.e., they might 

be pleiotropic variants)231. Use of pleiotropic SNPs as an IV can invalidate their use in MR 

analysis and bias the MR estimate231. To explore whether there was statistical evidence for 

pleiotropic instruments included in the MR analyses, a heterogeneity test was performed by 

calculating Cochran’s Q statistic430, which follows a chi-squared distribution with the number 
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of instruments minus 1 degree of freedom231. Heterogeneity was calculated for the MR-Egger 

and IVW regression estimates. 

 

Directional pleiotropy happens in the case where the mean of the pleiotropy distribution, 

referred to as α is deviated from zero251. In other words, all pleiotropic instruments have biased 

effects in one direction (i.e., either increasing or decreasing their apparent effect on the 

outcome). The MR-Egger intercept test for directional pleiotropy was conducted to detect 

evidence of directional pleiotropy influencing MR results. The MR-Egger test provides an 

estimate for the intercept of the MR-Egger regression, where a non-null intercept would 

indicate evidence of directional pleiotropy231. As a note, it is possible to have balanced 

pleiotropy (i.e., no evidence of directional pleiotropy) but with high heterogeneity indicating 

the potential presence of horizontal pleiotropy.     

 

Statistical tests for heterogeneity across multiple instruments and MR-Egger intercept were 

conducted using the mr_heterogeneity function on harmonised data and the mr_pleiotropy_test 

function respectively, provided by TwoSampleMR R package (version 0.5.5). 

 

6.2.8 Leave-one-out sensitivity analysis  

The leave-one-out (LOO) analysis is used as a tool to identify outliers. If more than one of the 

SNPs were identified as outliers (i.e., having a large influence on the MR estimate) in the LOO 

analysis, the MR analysis was repeated, dropping all the outlier SNPs together. LOO analysis 

was carried out to assess if a single SNP which might have a large horizontal pleiotropic effect 

is biasing the MR estimate or driving the association (between stroke instruments and AF 

outcome in main and validation reverse MR). Using this tool on the default setting where the 



	

	

161	

method applied is the IVW method, the effect was re-estimated by dropping an individual SNP 

at a time in sequence.  

 

6.2.9 Phenome-wide association studies (PheWAS) of outliers 

Horizontal pleiotropy can sometimes be detected by carrying out phenome-wide association 

studies (PheWAS) on potential pleiotropic variants. Inspection of the scatter and forest plots 

(from the main reverse MR analysis – stroke=>AF at 5x10-8 and 5x10-5 (Figure 20a and c), 

and main and validation reverse LOO analyses (Figure 24a and b), highlighted two outlier 

SNPs (rs2634074 and rs6838973) as being possibly pleiotropic. To identify if these outliers 

affect multiple phenotypes or have pleiotropic effects on the AF outcome, PheWAS of these 

SNP outliers was performed against all available trait GWAS summary association datasets 

(n=39,603) in the MRC-IEU OpenGWAS database (v.3.5.1) (https://gwas.mrcieu.ac.uk/)10 

with a P value threshold of 1x10-5 using the ieugwasr R package (version 0.1.5). 

 

6.3 Results 

6.3.1 Instrument selection and outcome lookup 

To select the AF instruments two different p-value thresholds (P<5x10-8 and P<5x10-5) were 

used, and the SNPs were LD clumped (r2<0.001) to obtain independent SNPs. The effect 

estimates for all AF instruments were extracted from the stroke outcome GWAS using a direct 

lookup of the original rsid (i.e., no proxy search was used), harmonised to ensure that the 

instrument-outcome associations reflected the same effect allele before conducting MR 

analyses.  Instrument strength for all the MR analyses was sufficient to avoid weak instrument 

bias (F>10) (Table 15). For the main MR analysis (AF=>stroke), 111 SNPs at the P<5x10-8 
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threshold and 354 SNPs at the P<5x10-5 threshold were present after LD clumping. After 

harmonisation, 111 (100%) instruments at the P<5x10-8 threshold and 337 of the 354 (95.2%) 

instruments at the P<5x10-5 threshold remained for the MR analyses. F statistic for each 

individual SNP weight was greater than 10 (F>10). 

 

    after outcome lookup after harmonisation  

Study MR analysis instrument 
threshold 

n 
instrument n % n % F 

statistic 

Main 

AF to stroke 5x10-8 111 111 100.0 111 100.0 90.6 
stroke to AF (reverse) 5x10-8 8 8 100.0 8 100.0 41.8 

AF to stroke 5x10-5 354 344 97.2 337 95.2 44.2 
stroke to AF (reverse) 5x10-5 164 163 99.4 162 98.8 18.1 

Validation 

AF to stroke 5x10-8 103 103 100.0 90 87.4 77.1 
stroke to AF (reverse) 5x10-8 8 8 100.0 7 87.5 40.0 

AF to stroke 5x10-5 298 296 99.3 248 83.2 41.7 
stroke to AF (reverse) 5x10-5 164 152 92.7 135 82.3 20.9 

 

 

6.3.2 MR relationship between AF exposure and stroke outcome 

Two-sample MR between AF and stroke was conducted based on instruments selected 

genome-wide at P<5x10-8 (n=111 IVs) and P<5x10-5 (n=337 IVs) thresholds. The MR analysis 

provided evidence of a causal relationship between genetic predisposition to AF and increased 

risk of stroke at both instrument cut-offs. The IVW direction of effect (ß=0.200, P=1.16x10-27, 

at P<5x10-8 instrument cut-off; ß=0.186, P=3.87x10-44 at the P<5x10-5 instrument cut-off) was 

consistent with the other MR estimates derived across different MR methods (Table 16a; 

Figure 19a and b). This suggests that the IVW estimates are robust to violation of different 

Table 15. Counts of instruments at each step of the instrument selection process at two 
instrument thresholds in the main and validation MR analyses. 

Number of instruments available after LD clumping (n instrument), number of instruments found 
in the outcome GWAS (after outcome lookup) percentage looked up (%), number of instruments 
available after harmonisation step for the MR analysis (after harmonisation) percentage 
harmonised (%), overall F statistic for all the SNP instruments for the MR analysis (F statistic). 
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modelling assumptions regarding pleiotropy. MR was also conducted on the IS subtype to 

check the MR results were similar to any stroke which was used as the outcome in this study. 

As expected, due to the close agreement in the instrumenting SNP effects between the two 

measures similar MR effects were also observed (Appendix B). To validate these results, MR 

using an independent AF GWAS dataset (Roselli et al) which only has a small sample overlap 

with the stroke GWAS (Malik et al) was performed (Figure 19c and d). MR results between 

the main and this validation dataset were concordant (Table 16b) (Figure 22a), therefore the 

MR effect of AF on stroke is robust to bias caused by sample overlap between AF and stroke. 
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exposure outcome cut-off nSNP MR method Beta SE P 

AF Stroke 

5x10-8 111 

MR Egger 0.188 0.036 6.81x10-7 

Weighted median 0.225 0.024 2.04x10-20 

IVW 0.200 0.018 1.16x10-27 

Simple mode 0.237 0.052 1.45x10-5 

Weighted mode 0.218 0.024 4.12x10-15 

5x10-5 337 

MR Egger 0.201 0.026 1.34x10-13 

Weighted median 0.206 0.023 3.44x10-19 

IVW 0.186 0.013 3.87x10-44 

Simple mode 0.184 0.055 8.81x10-4 

Weighted mode 0.211 0.025 3.13x10-16 

 

exposure outcome cut-off nSNP MR method Beta SE P 

AF Stroke 

5x10-8 90 

MR Egger 0.087 0.050 8.32x10-2 

Weighted median 0.156 0.024 4.11x10-11 

IVW 0.180 0.020 1.86x10-19 

Simple mode 0.137 0.052 1.03x10-2 

Weighted mode 0.151 0.037 9.85x10-5 

5x10-5 248 

MR Egger 0.126 0.035 4.56x10-4 

Weighted median 0.156 0.021 2.85x10-13 

IVW 0.181 0.016 8.24x10-31 

Simple mode 0.151 0.050 2.75x10-3 

Weighted mode 0.151 0.029 2.52x10-7 

 

Table 16. MR estimates for five different methods at two instrument cut-offs in the main 
and validation study. 
The number of instruments used in MR analysis (nSNP), Inverse Variance Weighted (IVW), 
MR estimates with effect size (Beta), standard error (SE) and p-value (P). 

a) main MR 

b) validation MR 
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Figure 19. Scatterplot showing the MR slopes for the AF versus stroke relationship in the 
main and validation study.  

(a-d) Scatterplots representing the MR relationships between instrument-AF associations and the 
instrument-stroke associations. (a (main) and c (validation)) all AF IVs at p<5x10-8 cut-off (b 
(main) and d (validation)) all AF IVs at p<5x10-5 cut-off.  On the x-axis is the SNP effects for the 
AF associations and on the y-axis is the SNP effects for the outcome associations (on the log odds 
scale). Each point represents the individual SNP weights with the 95 CIs intervals plotted. The 
different coloured lines correspond to the slopes through these points calculated using each of the 
five MR approaches.   

a) b) 

c) d) 
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6.3.3 Reverse MR relationship using stroke as exposure and AF as outcome 

To determine whether the MR effect was orientated in the correct direction reverse MR analysis 

was conducted, where stroke was instrumented and the causal effect of genetic liability to 

stroke on risk of AF was estimated. Two-sample MR between stroke and AF was conducted 

based on instruments selected genome-wide at P<5x10-8 (n=8 IVs) and P<5x10-5 (n=162 IVs) 

thresholds. There was some evidence for a causal effect of genetic liability to stroke on AF 

using reverse MR (Table 17) (Figure 20a and b), with the IVW analysis showing clear 

evidence of reverse effect between stroke and AF at 5x10-5 instrument cut-off for the validation 

analysis (ß=0.182,P=3.70x10-7), which was also observed to a lesser extent for the Weighted 

median method (ß=0.123; P=2.64x10-8) (Table 18). The other three methods did not show 

statistical evidence at P<0.05 of a reverse MR effect (Table 18) (Figure 21a and b). MR results 

from the Nielsen et al study (AF GWAS used in the main reverse MR analysis) were in 

concordance with MR results from the Roselli et al study (AF GWAS used in the validation 

reverse MR analysis) (Figure 22b), therefore this estimate of the effect of stroke on AF is 

robust to bias caused by sample overlap between AF and stroke. Steiger analysis showed a lack 

of evidence for MR in the reverse direction from stroke to AF (Table 19). All MR analysis 

results before and after removing instruments which failed the Steiger test are shown in the 

Appendix D.  MR estimates remained similar indicating the outlier SNPs had little influence 

on the slopes for both the forward and reverse directions. 
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exposure outcome cut-off nSNP MR method Beta SE P 

Stroke AF 

5x10-8 8 

MR Egger 6.425 3.812 0.143 

Weighted median 0.101 0.064 0.111 

IVW 0.854 0.586 0.145 

Simple mode 0.120 0.080 0.177 

Weighted mode 0.089 0.070 0.244 

5x10-5 162 

MR Egger 0.081 0.126 0.519 

Weighted median 0.060 0.019 1.98x10-3 

IVW 0.212 0.049 1.83x10-5 

Simple mode 0.062 0.051 0.223 

Weighted mode 0.053 0.044 0.239 

 

 

  

 

Table 17. Reverse MR estimates for different methods at two instrument cut-offs in the 
main study.  

The number of instruments used in MR analysis (nSNP), Inverse Variance Weighted (IVW), MR 
estimates with effect size (Beta), standard error (SE) and p-value (P). 

Figure 20. Main MR study of the effect of stroke on AF.  

(a and b) Scatter plots representing the MR relationships between instrument-stroke associations 
and the instrument-AF associations. (a) all stroke IVs at p<5x10-8 and (b) at p<5x10-5 cut-offs. 
On the x-axis is the SNP effects for the stroke associations and on the y-axis is the SNP effects 
for the outcome associations (on the log odds scale). Each point represents the individual SNP 
weights with the 95 CIs intervals plotted. The different coloured lines correspond to the slopes 
through these points calculated using each of the five MR approaches.   

a) b) 
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exposure outcome cut-off nSNP MR method Beta SE P 

Stroke AF 

5x10-8 7 

MR Egger -0.192 0.585 0.756 

Weighted median 0.129 0.063 0.040 

IVW 0.175 0.070 0.012 

Simple mode 0.142 0.077 0.117 

Weighted mode 0.140 0.076 0.116 

5x10-5 135 

MR Egger 0.020 0.089 0.824 

Weighted median 0.123 0.022 2.64x10-8 

IVW 0.182 0.036 3.70x10-7 

Simple mode 0.065 0.060 0.280 

Weighted mode 0.065 0.058 0.264 

  

 

 

 

Table 18. Reverse MR estimates for different methods at two instrument cut-offs in the 
validation study. 

The number of instruments used in the MR analysis (nSNP), Inverse Variance Weighted (IVW), 
MR estimates with effect size (Beta), standard error (SE) and p-value (P). 

(a and b) Scatter plots representing the MR relationships between instrument-stroke associations 
and the instrument-AF associations. (a) all stroke IVs at p<5x10-8 and (b) at p<5x10-5 cut-offs. 
On the x-axis is the SNP effects for the stroke associations and on the y-axis is the SNP effects 
for the outcome associations (on the log odds scale). Each point represents the individual SNP 
weights with the 95 CIs intervals plotted. The different coloured lines correspond to the slopes 
through these points calculated using each of the five MR approaches.   

Figure 21. Validation MR study of the effect of stroke on AF. 

a) b) 
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Figure 22. Error plots of results from two-sample MR studies. 

(a) Error plot depicting two-sample MR estimates derived from different methods for the 
relationship between genetic predisposition for AF and stroke. (b) Error plot depicting reverse 
MR estimates for the relationship between genetic predisposition for stroke and AF. Green line 
represents main MR study (where AF GWAS from Nielsen et al was used) and orange line 
shows validation MR study (where AF GWAS from Roselli et al was used). 

a) 

b) 
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Study MR analysis instrument 
threshold 

SNP r2 
exposure 

SNP r2 
outcome 

correct causal 
direction steiger P outlier 

removed 

Main 

AF to stroke 

5x10-8 

9.10x10-3 9.36x10-4 TRUE 4.20x10-289 FALSE 
AF to stroke 9.07x10-3 8.83x10-4 TRUE 2.52x10-295 TRUE 

stroke to AF (reverse) 7.48x10-4 9.14x10-4 FALSE 0.108 FALSE 
stroke to AF (reverse) 6.22x10-4 2.80x10-5 TRUE 5.14x10-28 TRUE 

AF to stroke 

5x10-5 

1.40x10-2 1.65x10-3 TRUE 0 FALSE 
AF to stroke 1.39x10-2 1.55x10-3 TRUE 0 TRUE 

stroke to AF (reverse) 7.64x10-3 1.83x10-3 TRUE 2.15x10-138 FALSE 
stroke to AF (reverse) 7.42x10-3 4.01x10-4 TRUE 4.71x10-300 TRUE 

Validation 

AF to stroke 

5x10-8 

1.67x10-2 8.39x10-4 TRUE 0 FALSE 
AF to stroke 1.66x10-2 7.74x10-4 TRUE 0 TRUE 

stroke to AF (reverse) 7.48x10-4 1.75x10-3 FALSE 8.48x10-13 FALSE 
stroke to AF (reverse) 6.22x10-4 5.08x10-5 TRUE 1.36x10-18 TRUE 

AF to stroke 

5x10-5 

2.43x10-2 1.52x10-3 TRUE 0 FALSE 
AF to stroke 2.41x10-2 1.39x10-3 TRUE 0 TRUE 

stroke to AF (reverse) 7.17x10-3 3.66x10-3 TRUE 3.23x10-33 FALSE 
stroke to AF (reverse) 6.95x10-3 6.83x10-4 TRUE 9.23x10-177 TRUE 

 

 

 

 

 

 

 

 

 

Table 19. MR Steiger results from steiger directionality test. 

MR steiger estimates using two instrument cut-offs, P<5x10-8 and P<5x10-5. Estimated r-squared 
for the exposure (i.e., the proportion of the variance in the exposure explained by the instruments) 
(SNP r2 exposure) and the outcome (i.e., the proportion of the variance in the outcome explained by 
the instruments) (SNP r2 outcome); MR analysis failed (FALSE) and passed (TRUE) the 
directionality test (correct causal direction) with p-value and outlier SNPs removed (TRUE) or not 
removed (FALSE). Steiger P represents the strength of evidence for a non-zero difference between 
the r2 in the exposure and outcome. 
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6.3.4 Assessment of instrument heterogeneity and pleiotropy 

A heterogeneity test was conducted on instruments to evaluate the potential pleiotropy of 

instruments used in MR analyses in this chapter. Instruments (n=8 and 162 at P<5x10-8 and 

P<5x10-5 thresholds, respectively) used in the main reverse MR analyses (stroke=>AF) 

exhibited strong evidence for heterogeneity in SNP effects (n=8 IVs, Cochran ‘s Q=1.115.98, 

P=7.28x10-238; n=162 IVs, Cochran ‘s Q=2.609.84, P=1.00x10-200), (Table 20) (Figure 20a 

and b), indicating that one or more of the instruments for stroke exposure might not be a valid 

IV, due to horizontal pleiotropy. There was also evidence of high heterogeneity amongst 

instruments in the main and validation MR analyses (AF=>stroke) (Table 20), suggesting that 

pleiotropy might be present, which could be an issue due to potential violation of MR 

assumption 2 and 3. 

 

The MR-Egger intercept test was performed to identify directional pleiotropy. There was no 

evidence of directional pleiotropy in the main MR analyses (AF=>stroke) using the MR-Egger 

intercept test (α=0.002 [SE=0.003], P=0.549). The MR-Egger intercept did not differ from zero 

and the P value was very high, indicating little evidence for a non-zero intercept and therefore 

little evidence of directional pleiotropic effects of the SNPs on stroke. The MR-Egger intercept 

showed some weak evidence for a non-zero intercept (α=0.008 [SE=0.004], P=0.045) at IV 

threshold P<5x10-8 and (α=0.004 [SE=0.002], P=0.084) IV threshold P<5x10-5 in the 

validation MR analyses (AF=>stroke) (Table 20), indicating that the MR estimates may partly 

be biased by directional horizontal pleiotropy. 
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      MR-Egger 

Study MR analysis instrument 
threshold 

Egger 
intercept SE P Q Q P 

Main 

AF to stroke 5x10-8 0.002 0.003 0.549 201.24 1.86x10-7 

stroke to AF (reverse) 5x10-8 -0.382 0.259 0.190 1,115.98 7.28x10-238 

AF to stroke 5x10-5 -0.001 0.001 0.463 460.69 5.95x10-6 

stroke to AF (reverse) 5x10-5 0.009 0.008 0.261 2,609.84 <1.00x10-200 

Validation 

AF to stroke 5x10-8 0.008 0.004 0.045 145.00 1.26x10-4 

stroke to AF (reverse) 5x10-8 0.024 0.039 0.556 12.34 0.030 

AF to stroke 5x10-5 0.004 0.002 0.084 363.42 2.40x10-6 

stroke to AF (reverse) 5x10-5 0.011 0.006 0.049 823.43 5.02x10-100 

 

 

6.3.5 Outlier exclusion and leave-one-out sensitivity analyses for the reverse 
MR 

Two outliers (rs2634074 and rs6838973) which might be exhibiting horizontal pleiotropy were 

initially identified by manually inspecting the MR scatterplot from performing genome-wide 

reverse MR selecting stroke IVs at a p<5x10-8 (Figure 23a) and p<5x10-5 threshold (Figure 

23c). These SNPs were then removed manually, and the main reverse MR (stroke=>AF) was 

repeated with the remaining stroke instruments across all the methods (Figure 23b and d). 

Outlier exclusion analysis was not performed in the forward direction from AF to stroke. Both 

SNPs when removed showed little evidence of changing the MR estimates other than for the 

IVW (Table 21). For the IVW when both SNPs were removed, the causal effect evidence 

attenuated in magnitude but was more precise (IVW beta=0.212, SE=0.049, P=1.83x10-5 to 

IVW beta=0.126, SE=0.019, P=1.79x10-11). In Appendix E, MR estimates for all the methods 

with the outliers removed are provided.  In addition, LOO analysis was performed on the IVW 

Table 20. MR-Egger intercept results and Q statistics from heterogeneity test on 
instruments. 

MR-Egger intercept with standard error (SE) and p-value (P). Cochran’s Q test statistics with Q 
value and P value for the MR-Egger analyses.  
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method across all SNPs. On visual inspection of the LOO plot (Figure 24a and b), the MR 

estimate with the rs2634074 and rs6838973 SNPs removed showed the clearest deviation from 

the overall IVW estimate, with no other additional outliers being highlighted.    

 

PheWAS analyses were then conducted on rs2634074 and rs6838973 against all traits in the 

IEU OpenGWAS database10 (using P=1x10-5 as a p-value threshold) to find if they are 

associated with any traits which could explain horizontal pleiotropy.  The stroke-increasing 

alleles of these variants, rs2634074 (effect allele (T)) and rs6838973 (effect allele (C)) (located 

on chromosome 4) were strongly associated with increased risk of AF. PheWAS confirmed 

that these two SNPs are associated with cardiovascular traits (such as Arrhythmia, AF, stroke 

and its subtypes). No evidence of horizontal pleiotropy was detected. Results from PheWAS 

on outlier SNPs are shown in Appendix F. These SNPs were also identified as outliers in the 

Steiger analysis between stroke and AF (Appendix C), confirming the strong AF effect for 

these SNPs relative to stroke.  
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(a-d) Plots showing the relationship between the effect magnitude of the instrument-stroke 
associations (on the x-axis, Beta coefficient) and the instrument-AF associations (on the y-axis, 
Beta coefficient) with standard error bars. The lines with slopes correspond to estimates of the 
causal effects calculated using each of the five MR approaches using stroke IVs at P<5x10-8 (a 
and b) and at P<5x10-5 (c and d). Reverse MR plots with outlier represented (a) and with outlier 
removed (b). Plots with 2 outliers shown (c) and exclusion of both outliers from reverse MR 
analysis (d). 

Figure 23. Main MR study and outlier exclusion analysis of the effect of stroke on AF. 

a) b) 

c) d) 
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  MR estimate 
MR analysis statistic Beta SE P 

stroke to AF (main reverse MR) 

IVW (all SNPs) 0.212 0.049 1.83x10-5 

rs6838973 WR 3.596 0.159 1.03x10-111 

leave out rs6838973 IVW 0.192 0.045 2.26x10-5 

rs2634074 WR 4.315 0.098 1.00x10-200 

leave out rs2634074 IVW 0.146 0.028 2.04x10-7 

leave both out IVW 0.126 0.019 1.79x10-11 

stroke to AF (validation reverse MR) 

IVW (all SNPs) 0.182 0.036 3.70x10-7 

rs6838973 WR 4.375 0.171 1.35x10-142 

leave out rs6838973 IVW 0.153 0.019 2.44x10-15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 21. MR estimates for SNPs excluded in the leave-one-out sensitivity analysis.   

Two outlier SNPs with influence on the IVW estimate detected in the main reverse MR analysis 
(rs2634074 and rs6838973). rs6838973 outlier detected only in the validation reverse analysis 
(rs2634074 outlier SNP was not present in this MR analysis due to being excluded in the 
harmonisation step). Inverse Variance Weighted (IVW) and Wald ratio (WR) (statistic) with MR 
estimate: effect size (Beta), standard error (SE) and p-value (P). IVW represents overall effect of 
stroke on AF. WR represents the ratio effect estimate of the specific outlier SNP on AF. 
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Figure 24. Leave-one-out sensitivity analysis of the effect of stroke on AF.  

Each black point in the forest plots depicts the IVW estimate for the causal effect of stroke on 
AF excluding the specific SNP from the analysis (at IVs threshold of P=5x10-5). The red point 
represents the IVW estimate combining all variants. The removal of the specific SNPs, 
rs2634074 and rs6838973 from main reverse MR analysis (a) and rs6838973 from validation 
reverse MR (b) resulted in attenuation of the overall IVW estimated causal effect depicted as the 
black point further from the centre). 

a) b) 
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6.4 Discussion 

6.4.1 Main findings  

In this chapter two-sample MR analysis was conducted to identify if there is evidence of a 

causal relationship between AF and stroke. MR was utilized to infer causality by mitigating 

confounders of the exposure-outcome association. A range of sensitivity analyses were 

conducted to determine the robustness and validity of this conclusion. A rigorous outlier 

analysis was performed which included visual inspection of scatter and LOO plots, Steiger 

filtering, and PheWAS of the outliers. These analyses confirmed that removal of the outliers 

was justified (i.e., they are highly likely to be true outliers) and when the outliers were removed 

it had little influence on overall MR inference. Therefore, the MR analysis will be relatively 

robust to horizontal pleiotropy strongly acting through specific SNP instruments.  The MR 

findings suggested that increased genetic predisposition to AF was associated with an increased 

risk of stroke. MR analyses of AF and IS (which account for approximately 85% of all cases 

of stroke64) also showed a similar pattern to AF and stroke results. This result is consistent with 

previous findings that genetic susceptibility to AF is linked to increased risk of stroke, IS and 

CES subtype showed by two-sample MR and phenome-wide multi-directional MR studies of 

AF421,72. The two-sample MR study by Fill et al has identified genetically determined AF as 

causally linked to higher risk of stroke, IS and CES subtype but not the other two IS subtypes 

(LAS and SVS)421. 

 

This result was in agreement with the findings that revealed causal role of AF in stroke and IS 

by Wang et al in the univariable and MVMR72. Furthermore, they have performed univariable 

and MVMR to assess independent causal role of not only AF but also AF risk factors such as 
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CAD and SBP on risk of three IS subtypes and found that genetic predisposition to AF is 

strongly associated with higher risk of CES in both models. This group also found MR evidence 

for an independent causal effect of AF on CES in MVMR adjusted out for these risk factors. 

No evidence of genetic predisposition to AF association with LAS and SVS subtypes was 

found in any of the MR models72. Hou et al conducted a network MR analysis and found a 

bidirectional causal relationship between AF and IS422. In agreement with the other two studies, 

Hou et al also identified a CES-specific effect of AF after performing MR on all three subtypes 

of IS. This study also reported on a potential presence of the causal role of IS on AF mediated 

through blood pressure (BP) (i.e., IS=>BP=>AF)422. 

 

The results of the sensitivity analyses did not identify any major issue which would 

substantially affect the causal inference. The directionality of MR effects was assessed by 

bidirectional MR219  and Steiger filtering425,424 conducted for all MR findings. MR estimates 

for both the forward and reverse direction remained similar after removing the SNP outliers 

identified through Steiger analysis. MR findings in the main analysis were consistent with the 

validation MR conducted on the Roselli et al AF GWAS52 and Malik et al stroke GWAS67 

(which had small sample overlap), confirming that this AF relationship is robust to 

confounding from sample overlap between AF and stroke. 

 

Reverse MR results at 5x10-8 did not show any evidence of effect but this might be due to the 

small number of SNPs, however at P=5x10-5 with more data points there was evidence for IVW 

and Weighted median.  This result is in line with Hou et al two-sample MR study, which found 

a bidirectional causal relationship between AF and IS422.  Therefore, there is some ambiguity 

regarding the direction of causal effect.  However, the more relaxed P=5x10-5 analysis does 
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come with the drawback of potentially being less directionally robust (as you relax the p-value 

threshold more AF hits passing will pass the threshold for stroke).  Moreover, after Steiger 

filtering was conducted in this thesis, which removed the stroke instruments driving the reverse 

effect, the AF to stroke relationship persisted, which does indicate more strength of evidence 

for the AF=>stroke direction. 

 

The two variants, rs2634074 and rs6838973 identified in the LOO analyses (stroke=>AF) are 

AF SNPs that have such a large effect that they appeared in the stroke GWAS37,431. The 

rs2634074 SNP located in the 4q25 region upstream of the PITX2 gene is in high LD with 

rs67249485 (r2=0.98 in the 1000G EUR population), the strongest AF-associated risk variant 

(P=7.32x10-443) identified by Nielsen et al41. The rs2634074 SNP have been previously 

reported by Pulit SL et al111 as a risk variant associated with IS (P=3.00x10-14) and its subtypes 

in a IS GWAS conducted in SiGN cohort90 (a multi-ancestry cohort). This SNP is also in high 

LD with rs13143308, the stroke-associated variant (P=1.61x10-13)67 at this locus (r2=0.93). The 

rs6838973 variant is an independent AF variant identified by Lubitz et al after a conditional 

analysis conducted on the 4q25 locus37. This SNP is in moderate LD with an independent AF 

risk variant, rs3853445 (r2=0.40) reported in the AF GWAS by Nielsen et al41 (P=3.73x10-52) 

and by Roselli et al52 (P=6.00x10-113). The effect alleles, T and C for rs2634074 and rs6838973 

SNPs were identified to be associated with an increased risk of AF by PheWAS conducted in 

this Chapter. This is consistent with the previous findings by Lubitz et al37 and Kiliszek et al431, 

confirming the protective role of these variants. In addition to these two SNPs, the rs4151702 

variant also failed the Steiger directionality test.  The rs4151702 variant is in high LD with the 

AF SNP, rs3176326 (intronic to CDKN1A) (r2=0.97) identified by Nielsen et al (P=1.42x10-13) 

in the 6p21 region. rs4151702 is in perfect LD (r2=1) with the rs730506 variant highly 
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associated with the electrocardiographic PR interval correlated with AF432,433.  

 

6.4.2 Strengths and limitations  

The selected instruments for AF exposure (n=111) explained 4.6 % of the variation in atrial 

fibrillation (Nielesen et al), corresponding to a F statistic of 90.6 in the main MR analysis. The 

instrument strength for all the MR analyses was determined with F statistic >10, indicating that 

instruments are well enough powered and unlikely to be vulnerable to weak instrument bias or 

bias due to overlap of samples434. In addition, validation analysis in the less overlapping 

datasets was performed to avoid induction of bias due to sample overlapping between AF and 

stroke GWAS233. To ensure the robustness and validity of the findings to avoid violation of 

MR estimate and influence of pleiotropy on MR estimates, a range of sensitivity analyses were 

performed to reduce heterogeneity. Moreover, findings were compared with validation results 

and across five different MR methods using two instrument cut-offs to check their consistency 

with each other.  

 

6.4.3 Future directions 

Further analyses would be beneficial in the availability of larger scale GWASs with non-

overlapping datasets or participants. 

 

6.4.4 Conclusions 

In conclusion, the two-sample MR results in this chapter demonstrate a relationship between 

genetic susceptibility to AF and stroke risk. This result is consistent with the three other MRs 

conducted between AF and stroke in the literature, which indicates that AF is a risk factor for 
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stroke. In Chapter 3 and 4 5 HP gene expression colocalized with both AF and stroke, and in 

Chapter 5, AF and stroke colocalized at one single causal variant at the 16q22 locus, therefore 

MR supports the possibility that HP acts downstream to influence the AF=>stroke pathway. 
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Chapter 7 Discussion 
 

This doctoral thesis aimed to explore the shared molecular aetiology of two cardiovascular 

diseases, AF and stroke, using a multi-omics approach and a range of existing datasets. The 

approach taken here is generalizable, so could be applied to a range of other disease areas and 

is likely to yield more informative results as new large-scale molecular datasets become 

available. 

7.1 Main findings 

7.1.1 Multiple trait colocalization on AF 

In Chapter 3, a multi-trait colocalization analysis pipeline was developed and applied to 

multiple molecular QTL and AF summary statistics.  23 loci with evidence of colocalization 

between AF and one or more molecular traits (CpG sites, genes and metabolites) were 

identified. Of these, 3 loci were found to share genetic effects across all three traits 

(PPA.GMMb ≥ 80%). In phase II, ten of these 23 loci were further prioritized by showing 

colocalization evidence with gene expression, including 23 GME scenarios at 9 loci, 3 GMEMb 

scenarios at 2 loci, and 4 GEMb.M scenarios at 1 locus. The multi-trait colocalization analysis 

on AF demonstrated shared genetic regulatory effects between multiple CpG sites, genes and 

circulating metabolites implying a complex relationship of changes in DNA methylation, gene 

expression and metabolite levels underlying AF susceptibility. This is consistent with a 2SMR 

study which revealed that genetic effects on 47 of the 139 tested complex traits (including 

CVDs) may be mediated through changes in DNA methylation188. A follow-up study showed 

that 306 of the 348 DNA methylation-trait associations were shared with eQTLs. MR mitigates 

reverse causation and this study did not find any evidence of a direction of effect from complex 
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traits to methylation levels of a CpG188. This suggests that levels of methylation at CpG sites 

are unlikely to be influenced by complex traits. However, this conclusion could not really be 

evaluated comprehensively by Richardson et al188 due to the small sample sizes207 and hence 

low statistical power when using the mQTL data as an outcome in their reverse MR. 

Colocalized intermediate phenotypes may have coordinated regulatory roles in the pathway 

from genetic variant to AF. In coordinated regulation (a causal model), methylation at CpG 

sites influences gene expression which consequently affects metabolite levels and disease risk. 

Of note, colocalization does not establish the direction of molecular effects and is unable to 

examine the potential impact of horizontal pleiotropy. Some of these prioritized genes were 

enriched for biological processes/pathways relevant to CVDs and AF which makes them 

promising candidates for follow-up experimental analysis and drug development. Biological 

relevance of these genes to AF are discussed in section 7.3. 

 

My moloc analysis also indicated that the prioritized genes are not necessarily the ones in 

closest physical proximity to the AF lead variant in the associated regions, consistent with 

previously published studies22,23, and highlighting the importance of this type of integrative 

multi-omics analysis.  

 

7.1.2 Multiple trait colocalization on Stroke 

Having established an effective multi-trait colocalization pipeline, this was then applied to 

stroke in Chapter 4, as evidence from the literature suggests that this disease is related to AF 

and may therefore share molecular pathways. Evidence for sharing of regulatory effects 

between methylation CpG sites and multiple clusters of lipoprotein lipids was detected at 

eleven of the 20 loci in phase I. In Phase II, of the 11 loci, five (6p21 (stroke), 9q34 (IS), 12q24 
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(IS), 16q22 (CES), 19p13 (stroke)) also showed evidence of colocalization with gene 

expression, suggesting that these intermediate phenotypes are likely to be involved in risk of 

stroke.  

 

7.1.3 Follow-up analyses of the 16q22 locus 

Multi-trait colocalization analysis on AF and stroke in Chapter 3 and Chapter 4 showed that 

DNA methylation at the cg03463523 CpG site and HP gene expression colocalized with both 

AF and stroke in the 16q22 region. In Chapter 5, pairwise coloc analyses of AF and stroke at 

the 16q22 locus detected that AF and stroke showed moderate evidence of colocalization in 

this region (PP4=75%). Interestingly, PWCoCo (which accounts for multiple independent 

causal variants) confirmed strong evidence of sharing the same causal variant (rs2359171, 

PP4=81.4%) for AF and stroke at this locus. The secondary genetic variant for AF (rs876727) 

at this locus was not associated with stroke and was only weakly associated with expression of 

the HP gene (P=0.0016) and was not identified to be colocalized between AF and stroke. In 

contrast, the rs876727 variant was associated with ZFHX3 expression (P=2.57x10-7) in the 

eQTLGen data, however no colocalization evidence was detected for this gene and AF or stroke 

suggesting that the link to ZFHX3 is likely to be due to linkage disequilibrium rather than a 

causal role in AF. Furthermore, the pQTL mapping of haptoglobin revealed no association 

between the top AF colocalizing SNP (rs2359171) and plasma haptoglobin levels in ALSPAC, 

which indicates uncertainty that the circulating levels of the HP protein contribute to the risk 

of AF and highlights the complexity of biological mechanisms underlying 16q22 

colocalizations. This is consistent with findings revealed by Sun et al and Assum et al that 

blood eQTLs and pQTLs for plasma proteins do not always overlap410,257. In addition, a recent 

study have found about 50% overlap between protein and expression effects435. 
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7.1.4 Two-sample MR between AF and stroke 

In Chapter 6, MR analysis suggested that the genetic predisposition to AF was linked to 

increased risk of stroke. These MR results were largely in agreement across all 5 MR methods 

indicating findings are robust to bias via potential horizontal pleiotropic mechanisms. 

However, there was some evidence for a bi-directional MR effect, demonstrating that the AF 

effect is partly driven by stroke variants making orientation of the causal direction difficult to 

discern. Validation analyses showed consistent results with the main analyses. These results 

are in line with previous findings, where genetic liability to AF causes stroke, IS and CES, but 

not SVS and LAS421,72. Wang et al72 found that genetic predisposition to risk factors of AF 

(such as CAD and SBP) and AF associated with risk of stroke, IS and CES in univariable 

analyses, and with risk of stroke and IS in a multi-variable MR model. However, only the 

genetic predisposition to AF retained an independent causal effect for CES in the MVMR 

adjusted for the AF risk factors. These findings may indicate a potential mediatory role of AF 

in the causal pathway for the CES subtype (i.e., SBP/CAD=>AF=>CES). In contradiction with 

these results is a bidirectional causal relationship between AF and IS that has been reported by 

Hou et al422. 

 

7.2 Using a multi-omics approach to identify causal genes in AF and 

stroke  

Previous studies have shown that colocalization can be informative in identifying potential 

mechanisms of disease436,150,437. In this thesis, I show that this approach could pinpoint potential 

mechanisms but that it also indicates complex relationships between gene expression and DNA 

methylation due to co-expression or co-methylation of multiple genes or DNA methylation 
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sites. 

 

In Chapter 3, mQTLs and eQTLs were integrated with the aim to identify potential causal 

gene(s) at a genomic locus. Of the 41 CpG sites associated with AF risk, 12 also colocalized 

with at least one gene. Of the 10 AF loci, two (7q32 and 16q22) had a single gene connected 

to disease risk. When multiple genes colocalize with a single CpG site it is difficult to determine 

which gene might be influenced by DNA methylation of that CpG site. For example, in the 

1q21 region, 4 genes (DAP3, SYT11, YY1AP1 and MSTO2P) were colocalized with one single 

CpG site (cg19233405), which may be due to co-expression of genes in the same pathway. 

This was the case for 6 out of the 12 CpG sites.  Similarly, multiple CpG sites colocalized with 

a single gene which might be due to co-methylation of blocks of correlated CpG sites which 

might be under genetic control268. For example, the RBM28 gene at the 7q32 locus colocalized 

with two correlated CpGs (cg18693656 and cg13951589) which are both negatively associated 

with mQTL. These findings are consistent with expression quantitative trait methylation 

(eQTM) analysis in other studies185,128. These studies showed that DNA methylation at multiple 

CpG sites correlated with gene expression levels of a single gene and that DNA methylation 

and gene expression were both negatively and positively correlated128. However, it has also 

been shown that not all variation at CpG sites affects gene expression185,128.   

 

Furthermore, most CpG site(s) colocalized in this thesis were found to be located distal from 

the gene body of the colocalized gene(s) (i.e., they are not CpG-annotated genes (Appendix 

A)), which is in disagreement with the findings previously reported by Richardson et al and 

Taylor et al where CpGs were enriched in promoter regions and histone mark peaks in their 

colocalization analysis188,255. However, these studies used tissue-specific DNA methylation 
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and gene expression data. Taken together, although most CpG sites which colocalize with gene 

expression are likely to be located within the gene body or promoter regions and enhancers, 

there are many biological mechanisms and relationships between intermediate phenotypes 

which might explain colocalization in this thesis and challenge the use of genomic annotations 

based on physical proximity. 

 

Molecular pleiotropy is often an issue with QTL studies, which is when cis-eQTLs for different 

genes within the same genomic region can be mapped to the same disease endpoint, challenging 

attribution of the causal gene. For example, at the 10q22 locus, four genes (CAMK2G, P4HA1, 

MRPS16 and BMS1P4-AGAP5) and at the 6p21 locus, four genes (SRF, ABCC10, RPL34P14, 

AL035587.1) colocalized with AF. In my study, this was an issue for 7 of the 10 AF loci and 4 

of the 5 stroke loci which had multiple genes connected to AF and stroke risk respectively. 

This demonstrates that combining mQTL and eQTL information does not completely help to 

resolve the gene at a locus.   

 

In addition, the QTL findings were also combined with metabolite data, to triangulate the genes 

with the metabolic processes which are important to stroke and AF. In fact, combining mbQTL 

with eQTL data helped to narrow down the likely causal gene at the locus. For instance, of the 

8 AF loci found with multiple genes colocalized (3.3.2), two (10q22 and 17q12) also showed 

GMEMb scenario where a single gene linked to a single metabolite and AF risk. A limitation 

of this analysis is that the ALSPAC metabolite QTLs had a relatively small sample size, which 

limited the ability for the AF moloc analyses to detect colocalized metabolic measures that are 

likely to contribute to the risk of AF.   
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In contrast, using UCLEB mbQTL data facilitated moloc analyses with substantial power to 

detect potential candidate metabolites including lipids and lipoprotein subclasses likely to 

contribute to the risk of stroke through influencing metabolism. Of the 11 colocalized loci, 

three (9q34, 12q24 and 19p13) colocalized with various cluster of lipoproteins with likely roles 

in stroke susceptibility. These three loci also colocalized with potentially causal genes likely 

to play a functional role and be involved in pathways relevant to stroke pathogenesis (see 

section 7.3). For example, in the 9q34 region, multiple genes (GBGT1, CACFD1, ABO) 

colocalized with multiple metabolites (APOB, LDL cholesterol, different lipoprotein 

subclasses) which support findings of correlated metabolites detected by previous studies327. 

Furthermore, metabolites can be difficult to interpret as many are strongly correlated with each 

other making it harder to resolve the causal metabolite. For example, MVMR has been applied 

to determine the independent causal effect of each lipid component on CVDs, and found that 

the adverse LDL-C effect is explained through APOB levels327.  

 

7.3 Biological function of the prioritized genes 

14 of the 29 genes highlighted by moloc were implicated in biological pathways related to 

cardiovascular phenotypes which consists of 9 genes with a potential role in AF (GATAD1, 

PSEN1, YY1AP1, ERBB2, CHI3L1, KRIT1, CAMK2G, IGFBP4 and JMJD1C) and 5 genes in 

stroke (SRF, CACFD1, HVCN1, TRAFD1 and SMARCA4), where there is published data of 

being a drug target (for any indication) or evidence for having a monogenic mutation in humans 

or mouse knockdown/knockout with a cardiovascular phenotype. For AF, the ERBB2438,439 and 

PSEN1 genes were identified as drug targets and GATAD1282 and YY1AP1286,285  have 

monogenic mutations. ERBB2 is an anti-cancer drug target and PSEN1 is a dementia and 
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Alzheimer’s disease drug target. For stroke, none of the 5 genes were identified as drug targets 

or with monogenic mutations.   

 

For AF, genes with such evidence include: GATAD1 and PSEN1, linked to dilated 

cardiomyopathy284,282,277,280 and implicated in biological process linked to cardiac development 

and in the regulation of intracellular trafficking of angiotensin receptor and subsequent heart 

function440,441;  YYA1P1, associated with early onset hypertension and/or haemorrhagic stroke 

with Grange syndrome289; ERBB2, likely to be involved in cardiac development (e.g., 

trabeculation), regeneration and its electrical activity442,443,444,274; CHI3L1, linked to 

atherosclerotic plaques buildup in arteries and carotid artery disease445, and with altered protein 

expression levels found in blood plasma of patients with CAD446,447,448;  KRIT1, likely to be 

involved in cardiac morphology or morphologic features of the heart; CAMK2G, likely to be 

involved in heart’s intracellular calcium (Ca2+) handling449,450,451; IGFBP4, which is involved 

in the process of cardiomyogenesis452 and angiogenesis453; and JMJD1C, which may regulate 

cellular metabolism454 is involved in angiogenesis303 and development of megakaryocyte and 

platelet production455. JMJD1C interacts with AR (androgen receptor) gene which is targeted 

by an approved drug (as an agonist) for heart failure (Open Targets annotations).   

 

Interestingly, Folkerson et al also prioritized the CH13L1 gene in a protein QTL GWAS456.  

Consistent with findings in this thesis, Folkersen et al conducted colocalization of Olink CVD-

I pQTLs using PrediXcan214 and MR analysis and not only identified association of CHI3L1 

protein levels with its corresponding mRNA expression in GTEx tissues but also showed causal 

evidence for contribution of CHI3L1 protein in AF with no evidence of inverse direction of 

causality456, confirming CHI3L1 as a promising target for drug discovery. In addition, 
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differentially expressed proteins levels of CHI3L1 have been found in patients diagnosed with 

advanced atherosclerotic plaques or CHD compared with healthy individuals446  and its 

elevated levels as inflammatory biomarker have been revealed to be associated with CAD457. 

Interestingly, population-based study showed association between increased levels of plasma 

CHI3L (YKL-40) and high risk of AF458.  

 

For stroke, genes with published evidence of a role in cardiovascular disease include: SRF, 

involved in angiogenesis, integrity of small vessels and cardiogenesis335,459;  CACFD1 (Open 

Targets annotations), HVCN1 and TRAFD1 genes are involved in immune pathways and 

inflammation and have been linked to vascular phenotypes such as stroke or cerebral infarction, 

and also likely to have a role in homeostasis and metabolism (Open Targets, Mouse Phenotypes 

annotations)339,341,342,345,346,349;  SMARCA4 which is likely to be involved in structural 

development of the heart354,353 and differentially expressed exons of SMARCA4 gene have been 

reported in blood of patients with small vessel disease (cause of SVS) compared to controls 

using whole transcriptome microarrays374. 

  

ABO gene, which colocalized with LDL levels subclasses and stroke in this thesis, also 

emerged as a potentially interesting candidate due to its well-known role in lipid metabolism.  

ABO gene is located in the 9q34, encodes blood group, and plays a role in pathways related to 

lipid metabolism including globo sphingolipid metabolism and glycosphingolipid 

biosynthesis460. Consistent with my findings, Chong et al conducted MR between circulating 

proteome and three subtypes of IS and found biomarkers including histo-blood group ABO 

system transferase to have a causal mediatory role along the pathway to CES461. They also 

identified causal effects of apolipoprotein A on LAS subtype. Moreover, the mediatory role of 
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total cholesterol has been previously shown along the pathway from the ABO blood group to 

CAD by mediation analysis adjusted for CVD risk factors462.  

 

7.4 Shared genetic pathway between the HP gene and AF and stroke  

Colocalization can be used to inform us about shared genetic architectures463. This thesis found 

colocalization evidence connecting HP expression to both AF and stroke risk, thus a possible 

hypothesis is that AF might be an intermediate step before stroke and this pathway is partly 

mediated by the HP gene (HP=>AF=>CES). Haptoglobin is involved in preventing iron loss 

while allowing degradation of hemoglobin via binding to free hemoglobin in blood plasma. 

Elevated serum levels of haptoglobin were reported in patients with acute and chronic 

inflammatory diseases with potential anti-inflammatory function464,465,466. Haptoglobin protein 

has been suggested to be involved in cardiovascular disease development and arterial 

restructuring467,468,386. Moreover, prohaptoglobin (proHp) has also been shown to be involved 

in the angiogenic process in endothelial cells469,470. The causal role of haptoglobin in lipid 

metabolism and macroangiopathy has also been revealed through MR analysis in patients 

suffering from metabolic traits471,472. A previous study has reported that high cholesterol is 

linked to increased levels of inflammation-sensitive plasma proteins (ISP) (including 

haptoglobin) associated with higher risk of IS in men417. Circulating HP as an inflammatory 

biomarker has been linked to metabolic and cardiovascular traits including carotid arterial 

functions and stroke473,474,475,476,415. Indeed, HP is an established risk factor for stroke and its 

circulating concentrations have also been shown to be predictive for stroke and IS415. Studies 

in patients with AF revealed that inflammation linked to perpetuation of AF414. Taken together, 

these findings indicate the importance of HP gene as an inflammatory biomarker for metabolic-
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associated cardiovascular diseases such as AF and stroke.   

 

In addition to the HP gene, the zinc finger homeobox 3, ZFHX3 has also been investigated as 

a potential causative gene for AF at the 16q22 locus87,431,41,67. ZFHX3 encodes a transcription 

factor (TF) which is expressed abundantly in atrial tissue and involved in development395,396,477.  

ZFHX3 was shown to be involved in inflammatory signaling pathways in a porcine model of 

AF induced by pacing478. The ZFHX3 TF has also been reported to contribute to regulation of 

nuclear protein SUMOylation in epithelial cells479,480,481. A study integrating epigenetic data, 

chromatin states, eQTL data along with GWAS of AF in left atrial tissue found a gene 

interaction network regulated by ZFHX3 expression and chromatin elements underpinning 

AF482. However, as ZFHX3 gene expression did not colocalize with AF risk at this locus, the 

findings in this thesis support HP as being the potential causal gene for AF susceptibility 

instead.  However, it is possible that ZFHX3 could have a causative role in pathways involved 

in AF progression which was not investigated in this thesis.  

 

For this locus it was also evaluated whether the HP gene expression signal overlapped with HP 

protein abundance (pQTL). In the primary analysis, mQTL-cg03463523 and eQTL-HP gene 

colocalized with AF and stroke risk but secondary analysis showed little evidence for AF 

variant association with haptoglobin protein level (i.e., rs2359171-HP cis-eQTL is not a cis-

pQTL), inconsistent with the simple model that gene expression influences protein levels.  As 

it is relatively common for eQTLs and pQTLs to not overlap410, , this does not preclude HP as 

the candidate causal gene, but does suggest that complex transcriptional control could be 

happening at this locus, which would need further studies to resolve. Furthermore, the effect 

on protein levels (and AF) might only occur in older people as AF begins to develop. 



	

	

193	

Interestingly, in a phenome-wide MR study of the proteome, Zheng et al240 found a shared 

effect between plasma haptoglobin pQTLs and LDL cholesterol. However, in the moloc 

analyses conducted in this thesis, no colocalization was detected between HP expression, AF 

and circulating LDL cholesterol. Therefore, a possible explanation for the different effects 

observed between gene expression and protein abundance, could be that HP expression is not 

mediated through lipid metabolism pathway, whereas the HP protein abundance is, which again 

would need further studies for clarification.   

 

In addition to the HP/ZFHX3 genes in the 16q22, the other gene which has been postulated in 

the literature97,87 as being involved in the AF to stroke pathway is PITX2 which is located in 

the 4q25 genomic region97,107. The PITX2 region has the strongest GWAS association signal 

with AF41.  However, no evidence of colocalization between PITX2 expression and AF or 

stroke was detected in this thesis either.   

 

MR was used to evaluate whether AF is a causative risk factor for stroke.  Although MR did 

confirm a positive relationship between genetically predicted AF and stroke liability, the 

direction of effect was ambiguous, therefore it remains uncertain whether AF increases the 

liability to stroke or vice versa. Therefore, it is reasonable to conclude that HP could be 

involved in a shared molecular pathway for AF and stroke, but there is a lack of clear evidence 

to be able to attribute a causal direction to this (i.e., that AF is an intermediate phenotype 

whereby HP influences AF risk which consequently influences stroke which was the original 

hypothesis).     
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7.5 Context-specificity of molQTLs 

Tissue and cell type specific effects of QTLs are important to consider. In this thesis, I used 

molQTL profiled in whole blood tissue as this had the largest sample size and best statistical 

power to detect effects, but this tissue is not necessarily the most disease relevant one (such as 

heart and atrial tissues) for some of the underlying biological pathways due to the fact that 

specific CpG sites and genes might be differentially regulated between whole blood and 

different tissues or cell types255,237.  

 

Overall, for 88 out of the 111 AF loci and 11 out of the 22 stroke loci we did not find evidence 

of colocalization with either methylation or metabolite and therefore could not map to a gene.  

These loci were not taken forward for further moloc analysis in this thesis (i.e., I excluded 

genes which did not have mQTL or mbQTL evidence). In a previous study, Malik et al67 

performed lookups of stroke-associated variants in public and nonpublic databases of genetic 

associations in different stroke-relevant tissues (including blood and immune cells) and found 

overlap of stroke risk variants with QTLs associated with expression of different genes (or 

protein levels or methylation) either nearest to the lead SNP or more distant from the lead SNP, 

supporting the plausibility of detecting different pleiotropic mechanisms across cell types and 

tissues. This suggests that the lack of colocalization in this study may be due to tissue-specific 

effects, for example colocalization analysis of QTLs in heart, atrial, brain, aortic endothelial 

cells and immune cells may be more informative in identifying the potential link between 

different molecular phenotypes and in prioritizing candidate CpG sites and causal genes. 

Furthermore, blood has a variety of cell types and cell type specific effects are missed due to 

the measurement of bulk tissue. 
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7.6 Strengths 

This research work has several strengths. One of the key strengths is the sample size and 

statistical power from combining some of the largest molecular QTL datasets published along 

with large-scale summary statistics of AF and stroke. The scale of these data ensured that the 

moloc analyses were well powered to identify evidence of colocalization between 

combinations of traits at AF and stroke GWAS loci. Another strength of this research is the 

integration of multiple molecular traits in a multi-trait colocalization framework to establish 

shared aetiology, which provides more mechanistic insights than a pairwise colocalization with 

a single molecular trait. 

 

7.7 Limitations and future directions 

The current analysis pipeline could be extended by investigating the role of different types of 

QTLs as well as looking at a broader range of phenotypes. For example, a potential future work 

would be to additionally integrate pQTL effects across the proteome, which could be done via 

incorporating the UK Biobank O-link proteomics data, which are currently in progress but not 

yet available. Other QTLs which would be useful to consider when datasets of a sufficient 

sample size become available, are splicing QTLs (sQTLs) and cell type-specific QTLs. 

Extending the colocalization to look at more traits (for example by using HyperColoc230) would 

allow for a fuller understanding of the phenotypic landscape and potential shared pathways 

involved with other cardiovascular related risk factors and disease endpoints. This could be 

extended to investigate association with a variety of traits phenome-wide, which would be 

valuable in an early drug discovery context, enabling both drug repurposing opportunities and 

adverse side effects to be assessed for nominated causal genes. To complement this analysis, a 
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potential future avenue for methodological improvement would be to develop a colocalization 

method which can automatically evaluate both multiple independent variants and multiple traits 

(for example fine-mapping combined with moloc) to streamline the analysis required for genes 

in more LD complex regions. Finally, tissue and cell type specific effects of QTLs are 

important to consider. In this thesis, I used molQTL profiled in whole blood tissue as this had 

the largest sample size and best statistical power to detect effects, but as described in section 

7.5 molQTLs are context specific. Therefore, the availability of QTL catalogs from a wider 

range of cell types and tissues as well as functional features will be useful.  Furthermore, the 

450K methylation array covers only 2% of the methylome and newer arrays or methylome 

sequencing may improve coverage of the methylome. Statistical follow-up with MR and 

functional follow-up analyses e.g., gene editing might be needed to confirm a true causal 

gene(s). 

 

7.8 Main conclusions 

In the work presented here, multi-omics approaches were systematically applied using large 

datasets that represent intermediate molecular layers to explore the evidence of molecular 

mechanisms underlying AF and stroke associations. My findings provide informative evidence 

of potential biological links and a shared genetic architecture between different intermediate 

molecular phenotypes and pathogenesis of AF and stroke. My multi-trait colocalization results 

suggest complex relationships between gene expression, DNA methylation and metabolite 

levels. 

 

Whilst this approach does not distinguish horizontal from vertical pleiotropy, I showed that 
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integrating genetic studies of molecular phenotypes with results from GWAS of AF and stroke 

can provide more insights into the pathways which are influenced by genetic liability to AF 

and stroke and facilitate the prioritization of promising genes. Importantly, my findings could 

be of value in drug target prioritization or in identifying biomarkers for early detection of AF 

or stroke. For example, this study was able to prioritize the HP gene as a potential causal factor 

for AF and CES subtype. However, the 16q22 locus also illustrated the complexity of 

integrated analysis on molQTLs as HP colocalized with gene expression, but not protein 

expression so regulation through this gene may not follow a simple transcriptional model. 

 

The approach taken here could be applied to a range of other disease areas and is likely to yield 

more informative results as new large-scale molecular datasets become available in relevant 

tissues. 
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Appendix 

 

 
locus colocalized CpG site CpG pos (hg19, b37) CpG gene annotation Beta P 

1p36 cg16583536 22282684 NA -0.437 2.64E-292 
1q21 cg19233405 154988721 ZBTB7B 0.180 3.07E-76 
1q24 cg22693806 170631847 PRRX1 0.208 2.83E-133 
1q32 cg03900565 203031815 PPFIA4 -0.226 9.15E-153 

cg11656175 203040823 PPFIA4 -0.129 4.96E-51 
cg23098069 203055507 MYOG 0.162 1.74E-70 

3p25 cg24848339 12840334 CAND2 0.325 3.64E-298 
3p14 cg15724417 66433521 LRIG1 0.099 1.30E-25 
4q34 cg24950233 174457944 NBLA00301 -0.520 0 

cg18575740 174457224 NBLA00301 -0.238 2.11E-139 
cg13935962 174451443 HAND2;NBLA00301 0.186 5.84E-86 

5q35 cg13004182 172665707 NA -0.214 3.44E-91 
cg12825773 172662463 NKX2-5 0.362 4.27E-267 
cg18839504 172665119 NA 0.254 2.93E-129 
cg06889108 173317342 CPEB4 0.322 1.68E-296 

7q21 cg10481072 92459517 CDK6 -0.098 7.692e-25  
7q32 cg18693656 128482739 FLNC -0.498 3.59E-103 

cg13951589 128482287 FLNC -0.679 1.69E-242 
cg10826733 128482561 FLNC -0.751 1.15E-277 

8q24 cg26291848 141608316 EIF2C2 0.404 0 
cg14396066 142010253 PTK2  0.316 6.15E-295 
cg10996527 141994633 PTK2 -0.324 9.88E-324 

9q34 cg04455058 139085579 NA 0.433 4.03E-195 
10q21 cg01631684 65280961 REEP3 -0.314 5.99E-304 
10q22 cg16228286 75407372 SYNPO2L -0.129 4.21E-25 

cg24637261 75410817 SYNPO2L 0.117 7.40E-21 
10q24 cg17426192 105344747 NEURL 0.388 3.25E-228 
12p12 cg22232504 26349469 SSPN 0.293 1.48E-216 

cg11332519 26348093 SSPN 0.199 5.55E-88 
cg07725355 26348333 SSPN -0.252 0 
cg02593205 26348343 SSPN 0.219 2.96E-119 

14q24 cg25949241 73264662 DPF3 -0.101 0 

Appendix A. The CpG sites lookups 

The CpG sites colocalized with AF in the association region in Phase I moloc were looked up 
for the annotated gene and physical position across the locus using the meffil R package. p-value 
(P)=0 represents P<10-325 
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locus colocalized CpG site CpG pos (hg19, b37) CpG gene annotation Beta P 

15q24 cg10576051 73661652 HCN4 0.203 4.50E-64 
cg06071033 73662258 HCN4 -0.240 2.64E-88 
cg01796676 73680284 NA -0.411 4.73E-265 

15q25 cg12292492 80992262 FAM108C1 -0.055 8.01E-11 
cg13148921 80853140 ARNT2  -0.319 0 

16q22 cg03463523 73099917 NA 0.143 1.87E-36 
17p13 cg01557754 7342661 FGF11 -0.373 4.94e-324 
17q12 cg22833065 38095691 NA 0.124 1.25E-44 
17q25 cg23834688 76798392 USP36 -0.558 0 
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exposure outcome MR method Beta SE P 

AF 

IS 
IVW 

0.213 0.019 4.80x10-29 
stroke 0.200 0.018 1.16x10-27 

IS 
MR Egger 

0.212 0.037 8.62x10-8 
stroke 0.188 0.036 6.81x10-7 

IS 
Simple mode 

0.272 0.062 2.89x10-5 
stroke 0.237 0.056 4.20x10-5 

IS 
Weighted median 

0.252 0.026 4.78x10-22 
stroke 0.225 0.024 4.59x10-21 

IS 
Weighted mode 

0.248 0.031 1.61x10-12 
stroke 0.218 0.025 2.26x10-14 

 
 

exposure outcome MR method nSNP Beta SE P 
IS 

AF 

IVW 
9 0.768 0.504 0.128 

Stroke 8 0.854 0.586 0.145 
IS 

MR Egger 
9 6.821 3.139 0.066 

Stroke 8 6.425 3.812 0.143 
IS 

Simple mode 
9 0.073 0.069 0.323 

Stroke 8 0.120 0.089 0.218 
IS 

Weighted median 
9 0.048 0.057 0.396 

Stroke 8 0.101 0.064 0.115 
IS 

Weighted mode 
9 0.046 0.061 0.470 

Stroke 8 0.089 0.070 0.245 
 

 

 

 

 

 

Appendix B. MR analyses results tables 

MR estimates for five different methods at 5x10-8 instrument threshold in (a) the AF=>IS 
(IVs=111) and AF=>stroke (IVs=111) MR studies and in (b) IS=>AF (IVs=9) and stroke=>AF 
(IVs=8) MR studies. 

a)  

b)  
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Study instrument 
threshold MR analysis SNP effect 

allele 
other 
allele 

r2 
exposure 

r2 
outcome Steiger P LOO SNP 

Main 

5x10-8 
AF to stroke rs284277 A C 3.58E-05 5.37E-05 0.452 not tested 

stroke to AF (reverse) rs2634074 A T 1.26E-04 8.86E-04 3.89E-25 TRUE 

5x10-5 

AF to stroke 

rs2149515 G T 1.64E-05 2.04E-05 0.792 not tested 

rs284277 A C 3.58E-05 5.37E-05 0.452 not tested 

rs4980386 A C 2.22E-05 2.40E-05 0.917 not tested 

stroke to AF (reverse) 

rs2634074 A T 1.26E-04 8.86E-04 3.89E-25 TRUE 

rs4151702 C G 4.94E-05 5.17E-05 0.927 FALSE 

rs6838973 T C 4.55E-05 4.89E-04 9.41E-18 TRUE 

Validation 

5x10-8 
AF to stroke rs880315 C T 6.36E-05 6.53E-05 0.957 not tested 

stroke to AF (reverse) rs2634074 A T 1.26E-04 1.70E-03 1.08E-49 TRUE 

5x10-5 

AF to stroke 
rs7333028 C T 4.56E-05 6.50E-05 0.518 not tested 

rs880315 C T 6.36E-05 6.53E-05 0.957 not tested 

stroke to AF (reverse) 

rs2634074 A T 1.26E-04 1.70E-03 1.08E-49 TRUE 

rs4151702 C G 4.94E-05 7.47E-05 0.425 FALSE 

rs6838973 T C 4.55E-05 1.20E-03 2.81E-43 TRUE 

 
 

 

 

 

 

 

 

 

 

 

Appendix C. SNPs failed the Steiger directionality analysis. 
SNPs failed the Steiger directionality analysis after performing the Steiger test for each SNP. 
Leave-one-out (LOO), SNP found as an outlier in the LOO analysis (TRUE), SNP was not 
found as an outlier in the LOO analysis (FALSE). 
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Study exposure outcome instrument 
threshold MR method nSNP Beta SE P MR analysis 

Main 

AF Stroke 

5x10-8 

IVW 111 0.200 0.018 1.16E-27 all SNPs 

IVW 110 0.197 0.018 1.03E-28 steiger filtered 

MR Egger 111 0.188 0.036 6.81E-07 all SNPs 

MR Egger 110 0.195 0.034 1.21E-07 steiger filtered 

Simple mode 111 0.237 0.052 1.45E-05 all SNPs 

Simple mode 110 0.239 0.056 3.82E-05 steiger filtered 

Weighted median 111 0.225 0.024 2.04E-20 all SNPs 

Weighted median 110 0.225 0.023 7.62E-22 steiger filtered 

Weighted mode 111 0.218 0.024 4.12E-15 all SNPs 

Weighted mode 110 0.222 0.026 1.05E-13 steiger filtered 

5x10-5 

IVW 337 0.186 0.013 3.87E-44 all SNPs 

IVW 334 0.181 0.013 2.32E-44 steiger filtered 

MR Egger 337 0.201 0.026 1.34E-13 all SNPs 

MR Egger 334 0.207 0.025 5.41E-15 steiger filtered 

Simple mode 337 0.184 0.055 8.81E-04 all SNPs 

Simple mode 334 0.185 0.054 7.00E-04 steiger filtered 

Weighted median 337 0.206 0.023 3.44E-19 all SNPs 

Weighted median 334 0.205 0.021 3.51E-23 steiger filtered 

Weighted mode 337 0.211 0.025 3.13E-16 all SNPs 

Weighted mode 334 0.213 0.026 7.47E-15 steiger filtered 

Stroke AF 

5x10-8 

IVW 8 0.854 0.586 0.145 all SNPs 

IVW 7 0.166 0.067 0.013 steiger filtered 

MR Egger 8 6.425 3.812 0.143 all SNPs 

MR Egger 7 -0.621 0.475 0.248 steiger filtered 

Simple mode 8 0.120 0.087 0.210 all SNPs 

Simple mode 7 0.060 0.103 0.580 steiger filtered 

Weighted median 8 0.101 0.064 0.114 all SNPs 

Weighted median 7 0.100 0.063 0.113 steiger filtered 

Weighted mode 8 0.089 0.068 0.233 all SNPs 

Weighted mode 7 0.063 0.090 0.513 steiger filtered 

5x10-5 

IVW 162 0.212 0.049 1.83E-05 all SNPs 

IVW 159 0.119 0.018 1.62E-11 steiger filtered 

MR Egger 162 0.081 0.126 0.519 all SNPs 

MR Egger 159 -0.005 0.044 0.910 steiger filtered 

Appendix D. MR analyses results table 

Results from MR analyses before and after removing instruments which failed the Steiger test to 
determine if the MR estimates were altered. 
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Study exposure outcome instrument 
threshold MR method nSNP Beta SE P MR analysis 

Simple mode 162 0.062 0.052 0.229 all SNPs 

Simple mode 159 0.065 0.048 0.185 steiger filtered 

Weighted median 162 0.060 0.019 0.002 all SNPs 

Weighted median 159 0.060 0.020 0.003 steiger filtered 

Weighted mode 162 0.053 0.047 0.270 all SNPs 

Weighted mode 159 0.056 0.047 0.238 steiger filtered 

Validation 

AF Stroke 

5x10-8 

IVW 90 0.191 0.020 6.88E-22 all SNPs 

IVW 89 0.187 0.019 1.22E-23 steiger filtered 

MR Egger 90 0.133 0.049 7.99E-03 all SNPs 

MR Egger 89 0.150 0.046 1.66E-03 steiger filtered 

Simple mode 90 0.161 0.051 2.07E-03 all SNPs 

Simple mode 89 0.162 0.052 2.62E-03 steiger filtered 

Weighted median 90 0.164 0.024 1.72E-11 all SNPs 

Weighted median 89 0.164 0.025 6.48E-11 steiger filtered 

Weighted mode 90 0.179 0.036 3.96E-06 all SNPs 

Weighted mode 89 0.177 0.036 3.11E-06 steiger filtered 

5x10-5 

IVW 250 0.187 0.014 2.47E-38 all SNPs 

IVW 248 0.182 0.014 3.26E-40 steiger filtered 

MR Egger 250 0.166 0.028 7.46E-09 all SNPs 

MR Egger 248 0.171 0.026 4.14E-10 steiger filtered 

Simple mode 250 0.156 0.049 1.53E-03 all SNPs 

Simple mode 248 0.154 0.047 1.21E-03 steiger filtered 

Weighted median 250 0.193 0.021 3.11E-19 all SNPs 

Weighted median 248 0.193 0.023 2.50E-16 steiger filtered 

Weighted mode 250 0.184 0.021 3.84E-16 all SNPs 

Weighted mode 248 0.185 0.023 1.09E-14 steiger filtered 

Stroke AF 

5x10-8 

IVW 7 0.175 0.070 0.012 all SNPs 

IVW 7 0.175 0.070 0.012 steiger filtered 

MR Egger 7 -0.192 0.585 0.756 all SNPs 

MR Egger 7 -0.192 0.585 0.756 steiger filtered 

Simple mode 7 0.142 0.079 0.124 all SNPs 

Simple mode 7 0.142 0.083 0.139 steiger filtered 

Weighted median 7 0.129 0.061 0.036 all SNPs 

Weighted median 7 0.129 0.061 0.033 steiger filtered 

Weighted mode 7 0.140 0.074 0.107 all SNPs 

Weighted mode 7 0.140 0.075 0.112 steiger filtered 

5x10-5 
IVW 135 0.182 0.036 3.70E-07 all SNPs 

IVW 134 0.153 0.019 2.44E-15 steiger filtered 
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Study exposure outcome instrument 
threshold MR method nSNP Beta SE P MR analysis 

MR Egger 135 0.020 0.089 0.824 all SNPs 

MR Egger 134 0.087 0.048 0.075 steiger filtered 

Simple mode 135 0.065 0.063 0.305 all SNPs 

Simple mode 134 0.067 0.061 0.278 steiger filtered 

Weighted median 135 0.123 0.022 2.95E-08 all SNPs 

Weighted median 134 0.123 0.022 1.30E-08 steiger filtered 

Weighted mode 135 0.065 0.058 0.266 all SNPs 

Weighted mode 134 0.060 0.060 0.316 steiger filtered 

 

 

 

 

exposure outcome cut-off Outlier exclusion 
analysis MR method nSNP Beta SE P 

Stroke AF 

5x10-8 exclude rs2634074 
outlier SNP 

MR Egger 

7 

-0.621 0.475 0.248 

Weighted median 0.100 0.066 0.127 

IVW 0.166 0.067 0.013 

Simple mode 0.060 0.108 0.597 

Weighted mode 0.063 0.085 0.489 

5x10-5 

exclude rs2634074 
outlier SNP 

MR Egger 

161 

-0.054 0.070 0.439 

Weighted median 0.060 0.020 0.002 

IVW 0.146 0.028 2.04x10-7 

Simple mode 0.062 0.052 0.231 

Weighted mode 0.054 0.046 0.244 

exclude rs2634074 
and rs6838973 
outlier SNPs 

MR Egger 

160 

-0.007 0.046 0.885 

Weighted median 0.060 0.019 0.002 

IVW 0.126 0.019 1.79x10-11 

Simple mode 0.063 0.050 0.210 

Weighted mode 0.056 0.047 0.232 

 

 

 

 

Appendix E. Table of outlier exclusion analysis in the main MR analysis. 
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SNP SE Beta P Trait 

rs2634074 

0.012 -0.327 2.69E-154 Arrhythmia 

0.015 -0.374 4.54E-145 Atrial fibrillation 

0.025 -0.593 8.81E-121 Atrial Fibrillation 

0.000 -0.007 1.80E-112 Diagnoses - secondary ICD10: I48 Atrial fibrillation and flutter 

0.000 -0.006 7.69E-111 Diagnoses - main ICD10: I48 Atrial fibrillation and flutter 

0.000 -0.005 1.30E-106 Non-cancer illness code, self-reported: atrial fibrillation 

0.000 -0.009 2.11E-84 Cardiac arrythmias, COPD co-morbidities 

0.000 -0.006 4.74E-78 Diagnoses - main ICD10: I48 Atrial fibrillation and flutter 

0.000 -0.003 2.90E-60 Operative procedures - main OPCS: X50.1 Direct current 
cardioversion 

0.000 -0.004 5.70E-50 Treatment/medication code: warfarin 

0.000 -0.004 2.00E-44 Diagnoses - secondary ICD10: Z92.1 Personal history of long-term 
(current) use of anticoagulants 

0.022 -0.298 6.82E-41 Ischemic stroke (cardioembolic) 

0.000 -0.004 1.09E-34 Treatment/medication code: warfarin 

0.010 -0.077 8.54E-16 Ischemic stroke 

0.001 -0.009 3.16E-15 Diseases of the circulatory system 

0.009 -0.072 3.35E-15 Stroke 

0.012 -0.094 5.90E-15 Ischemic stroke 

0.039 -0.301 1.28E-14 Cardioembolic stroke 

0.011 -0.084 6.56E-14 Stroke 

0.000 -0.001 8.13E-14 Treatment/medication code: flecainide 

0.001 -0.005 1.80E-13 Treatment speciality of consultant (recoded): Cardiology 

0.001 -0.004 2.00E-12 Main speciality of consultant (recoded): Cardiology 

0.000 -0.002 3.10E-09 Treatment/medication code: bisoprolol 

0.000 -0.002 3.66E-09 Treatment/medication code: bisoprolol 

0.000 -0.002 4.37E-08 STROKE 

0.000 -0.002 1.17E-07 Ischaemic Stroke, excluding all haemorrhages 

0.000 -0.001 1.50E-07 Operative procedures - main OPCS: H01.2 Emergency excision of 
abnormal appendix NEC 

0.000 -0.002 2.15E-07 Stroke, excluding SAH 

0.000 -0.001 2.96E-07 Diagnoses - main ICD10: I63 Cerebral infarction 

0.000 -0.001 4.08E-07 Diagnoses - main ICD10: K35 Acute appendicitis 

0.020 -0.103 4.20E-07 Ischemic stroke 

0.000 -0.001 5.10E-07 Non-cancer illness code, self-reported: heart arrhythmia 

0.001 -0.006 7.60E-07 Operative procedures - main OPCS: X99.8 No procedure performed 

0.000 -0.002 2.06E-06 Stroke, including SAH 

Appendix F. Phenome-wide association (PheWAS) analyses results. 
Results from PheWAS analyses conducted on rs2634074 (effete allele=A and other allele=T ) 
and rs6838973 (effete allele=T and other allele=C) outliers against all GWAS traits available in 
the IEU OpenGWAS database10.  
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SNP SE Beta P Trait 

0.016 -0.076 3.23E-06 Congestive heart failure 

0.001 -0.004 7.50E-06 Main speciality of consultant (recoded): General medicine 

rs6838973 

0.007 -0.184 1.35E-142 Atrial fibrillation 

0.007 -0.151 1.03E-111 Atrial fibrillation 

0.011 -0.199 7.25E-69 Arrhythmia 

0.021 -0.304 1.72E-45 Atrial Fibrillation 

0.000 -0.003 7.40E-34 Diagnoses - main ICD10: I48 Atrial fibrillation and flutter 

0.013 -0.156 1.69E-33 Atrial fibrillation 

0.000 -0.004 2.46E-30 Cardiac arrhythmias, COPD co-morbidities 

0.000 -0.003 4.30E-27 Diagnoses - secondary ICD10: I48 Atrial fibrillation and flutter 

0.000 -0.002 9.70E-27 Non-cancer illness code, self-reported: atrial fibrillation 

0.000 -0.003 7.21E-25 Diagnoses - main ICD10: I48 Atrial fibrillation and flutter 

0.000 -0.002 1.30E-14 Treatment/medication code: warfarin 

0.023 -0.171 3.71E-14 Atrial fibrillation and flutter 

0.000 -0.002 1.27E-12 Treatment/medication code: warfarin 

0.000 -0.001 3.80E-12 Operative procedures - main OPCS: X50.1 Direct current 
cardioversion 

0.001 -0.006 1.75E-11 Diseases of the circulatory system 

0.000 -0.001 1.30E-10 Diagnoses - secondary ICD10: Z92.1 Personal history of long-term 
(current) use of anticoagulants 

0.016 -0.104 2.62E-10 Cardiac arrythmias, COPD co-morbidities 

0.000 -0.001 1.13E-08 Treatment/medication code: flecainide 

0.000 -0.001 2.80E-08 Treatment/medication code: digoxin 

0.020 -0.108 3.58E-08 Ischemic stroke (cardioembolic) 

0.010 -0.050 8.31E-07 Ischemic stroke 

0.009 -0.042 6.48E-06 Stroke 

 

 

 

 

 

 

 

 


