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Abstract

We study the dynamics of a slender rigid rod slipping with unilateral constraint on a rough
surface, able to move and rotate in 3D, an extension of the classical (planar) Painlevé problem.
We demonstrate that the potential nonexistence and nonuniqueness of forward-time solutions,
due to the conflict between the rigid-body assumptions and the the resulting dynamics, seen in
the 2D problem, persist in this 3D problem. We are the first to identify crucial aspects of the
geometry of the problem and the importance of the azimuthal angular velocity to the dynamics.
We show that the planar problem is a singular subset of the full 3D problem, and that crucial
results that apply to the 2D problem lose significance in the 3D extension. Like Champneys
and Várkonyi, we also study a particular type of orbit, not present in the planar problem, that
reaches inconsistency from slipping, and we give a geometric justification for their results. We
prove that, unlike in the planar problem, these orbits are typical.

We then proceed to resolve the “paradox”, generalising results obtained by Hogan and
Kristiansen through regularising the 2D problem with compliance to the 3D problem. This
compliance introduces a small parameter and we use geometric singular perturbation theory
(GSPT) to study the resulting singularly perturbed problem. With the incorporation of this
compliance, we recover impact without collision (IWC). We follow certain significant orbits from
the rigid-body problem and find that they also undergo IWC. To facilitate studying this system,
instead of viewing spatial Coulomb friction as a piecewise-smooth (PWS) system, we take it to
be the limit of a smooth system, using blowup in the analysis.

The de-facto approach to PWS dynamical systems, with codimension–1 discontinuity sets,
relies on the Filippov framework. But this framework does not generalise to systems with higher
codimension discontinuities, such as those with spatial Coulomb friction. We study a general
system with an isolated codimension–2 discontinuity set, regularising the nonsmooth system
and viewing it as the limit of a smooth one, using blowup to study the dynamics. We present a
framework for studying these problems, giving the local dynamics, and generalising Filippov
sliding, crossing, and sliding vector fields. Whilst motivated by Coulomb friction, the approach is
sufficiently general as to apply to any nonsmooth dynamical system with finite-time approach to
a codimension-2 discontinuity. We also present a particular class of codimension-2 discontinuity
problem, for which we give a more complete classification. This work, with a mathematically
rigorous foundation, expands upon the formal work of Antali and Stépán.

Generally, we present a framework for the study of mechanical systems with Painlevé
paradoxes, nonsmoothness, or other causes of nonexistence or nonuniqueness of solutions. This
approach is to regularise the problem (through smoothing or an incorporation of compliance or
other physics) and to use the framework of smooth dynamical systems to study the resulting
problem (particularly GSPT and geometric blowup).
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Chapter 1

Introductions

In the following sections we introduce the problems and methods that shall be covered within
the thesis. First, in section 1.11, we introduce the key example studied within this thesis, the
Painlevé paradox. This simple mechanical problem is one of the simplest to demonstrate a lack
of existence or uniqueness of solutions under rigid body assumptions. Whilst a great deal of
progress has been made in the study of the planar Painlevé problem, the full problem, the 3D
Painlevé problem, is not as well-understood. In section 1.1, we introduce this full 3D problem
and link it to the 2D one.

Secondly, in section 1.2, we will introduce the theory and techniques used within the thesis.
These methods from the field of nonlinear dynamics are primarily fundamentals, such as phase
plane analysis taught in differential equations or dynamical systems courses [100, 101]. However,
whilst some of these methods, drawn from slow-fast theory and geometric singular perturbation
theory, have proven useful, they are perhaps not as widely adopted as alternatives (matched
asymptotic expansions etc.). Hence, a particular attention is given to these lesser-known theories
and techniques.

1.1 Introduction to the Painlevé paradox

The Painlevé paradox is perhaps the simplest and most-well known example from a class
of problems in mechanics where rigid-body assumptions can result in the lack of a unique
forward solution in time. Instead, there are inconsistencies (a lack of existence of solutions)
and indeterminacies (a lack of uniqueness of solutions). The standard case of this “paradox”
consists of a rod slipping along a rough surface, where the forces and motions lie within a
plane (shown in Figure 1.2) . As in [16], we will refer to this problem as the classical Painlevé
problem. Related problems in statics had already been found in 1872 by Jellet [51], but the
discovery by Painlevé led to celebrated discussion about the limits of rigid body theory [4, 5, 22–
24, 41, 58, 71, 72, 79, 93]. The inconsistent mode in the classical Painlevé problem corresponds

1Some of this section appears in [17]. See Acknowledgements for contributions.
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(a) Applied pulling force (b) Small applied pushing force (c) Large applied pushing force

Figure 1.1: Figure reproduced. First published in [16] from an unpublished work
[40]. “Three traces left by chalk moved by hand across a blackboard. In all figures the
direction of motion is downwards. In (a), there is an acute angle between the chalk’s
axis and the velocity vector, whereas in (b) and (c) the angle is obtuse. The difference
between (b) and (c) is that an increased normal force is applied in (c).”[16]

Figure 1.2: Figure reproduced from [42]. This shows the configuration of the classical
Painlevé problem

2



1.1. INTRODUCTION TO THE PAINLEVÉ PARADOX

to conditions where both the free body acceleration and the acceleration from contact forces
(friction and the normal reaction force) act to drive the rod tip into the surface, violating
rigid body assumptions. The indeterminate mode in this system corresponds to the free body
acceleration acting to lift up the rod tip away from the surface, whilst the contact forces “pull”
it downwards. This results in ambiguity in whether the rod lifts off or remains slipping. Where
these inconsistencies and indeterminacies are present in the rigid body model, in reality we see
behaviour like jumps and juddering. Physically, the phenomenon can be seen in the behaviour
of a piece of chalk when pushed along a chalkboard, where the juddering or squeal is related to
this paradox (Figure 1.1). Whilst these paradoxes were viewed as curiosities of physics, they
were initially not a cause for concern, as it was thought that the required coefficient of friction
was unrealistically high. Nonetheless, interest in Painlevé paradoxes has been revived more
recently, where they have been shown to occur in many important engineering systems, where
the requisite coefficient of friction, which is a function of system parameters, can be considerably
lower [1, 44, 77, 80, 98, 107, 108].

The theoretical study of Painlevé paradoxes in 2D received a great boost with the work by
Génot and Brogliato [38]. They proved that the rod cannot reach an inconsistent state when
slipping, unless the free acceleration at the rod tip vanishes at the same critical point in phase
space. This work led to further research [15, 34, 45, 73, 76, 82–84, 95, 104, 105]. Experimental
evidence of a Painlevé paradox has been found in a robotic system [112].

There have been many different approaches to “resolve” the paradox, that is to provide a
mechanism whereby one can regain uniqueness of solutions. Not long after the problem was
posed [85–87], Lecornu proposed that a jump in the vertical velocity could take the system
out of the inconsistent state [71, 72]. This corresponds to the judder seen in the pushed chalk.
This jump has come to be known as impact without collision (IWC) [38], although there have
been other synonymous terms: tangential impact [44] and dynamic jamming [84]. Darboux [21]
and Keller [57] both used the concept of this vertical velocity jump to resolve the paradox,
considering the equations of motion with respect to a vertical impulse rather than time. However,
this method can result in energy gains.

Another approach to resolving the paradox is to regularise the physical rigidity of the system
[78], relaxing the rigid-body assumption. The method here is usually based on adding compliance
at the interaction between the rod tip and the surface. This can be thought of as modelling
the surface as being supported with a very stiff spring and sometimes a damper, allowing small
compressions of the surface. It was not until recently that significant analytical developments
have been made into the regularised planar Painlevé problem. Nordmark, Dankowicz and
Champneys provided insight into the Painlevé paradox, regularised with stiffness and damping,
identifying key phenomena such as reverse chatter [81]. Hogan and Kristiansen [42] gave the
first rigorous proofs in the analysis of the 2D system with stiffness and damping, finding that
IWC is found in the inconsistent and indeterminate cases. This IWC is shown to have three

3
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distinct phases [42]:

1. slipping compression — the rod begins to compress the surface whilst the tip remains
slipping

2. sticking compression — the rod tip sticks, and whilst the surface initially continues to
compress, the surface then starts to force rod tip upwards

3. lift-off — at some time the rod tip is moving upwards more quickly than the compressed
surface can and the rod lifts off.

The study of Painlevé paradoxes in 3D, where a rigid body moves and rotates whilst in
contact with a rough surface (Figure 1.3), has received far less attention. The first paper to
explicitly consider such a case appears to be that of Zhao et al. [110]. These authors derived the
governing equations using energy methods and confirmed that Painlevé paradoxes could occur.
Shen [94] considered a 3D elastic rod in rectilinear motion. This version of the problem allows
for elastic waves in the rod, whilst still keeping the surface rigid. Champneys and Várkonyi [16]
carried out numerical computations of the equations derived by [110] and showed that it was
possible to enter the inconsistent region from slipping, unlike the 2D case [38]. However, the
compliant system with spring and damping has not been previously covered for the 3D problem.
This thesis aims to extend the analysis from [42] to investigate the 3D problem.

1.1.1 3D Painlevé Problem

We consider a slender, rigid rod AB of mass m slipping on a planar rough horizontal surface, as
shown in Figure 1.3.

A global inertial frame fixed to the surface has Cartesian axes (iG, jG,kG), whilst a body
frame fixed to the rod has axes (iB, jB,kB). Note that iB · kG = 0, that is iB is tangent to the
plane spanned by iG and jG, and the jB axis coincides with the slender rod. The centre of mass
of the rod S, which is at a distance l from the tip A in contact with the surface, has coordinates
XiG +Y jG +ZkG in the inertial frame. Point A has coordinates xiG + yjG in the inertial frame.

The rod is inclined at an angle θ to the horizontal, the polar angle between the kB axis and
the kG axis. The azimuthal angle between the vertical plane containing the rod and the jG axis
is denoted by ψ. Note that we only need two angles to describe fully this rotation because of
the assumption that the rod is slender.

The rod moves on the rough surface with a variable speed η and at an angle β to the iG axis
- an angle ϕ = β − ψ to the iB axis. We refer to β as the slip angle (or heading) and ϕ as the
relative slip angle (or relative heading). We exclude the cases of the vertical rod and horizontal
rod. So we take θ ∈ (0, π/2), ψ ∈ [−π, π), β ∈ [−π, π) and ϕ ∈ (−π, 0].

We derive the equations of motion of the slender rod as it moves in contact with the rough
surface, using force and torque balances, in contrast to the energy method used in [110].
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iG jG

kG

iB

jB

kB

β
ϕ

ψψ

θ

θ

η

A : (x, y, 0)

S : (X,Y, Z)

B

Figure 1.3: Diagram of the Painlevé problem in 3D. A slender rod AB (shown in
green) of mass m moving on a planar rough surface with speed η ≥ 0. The global
frame of reference (iG, jG,kG) is fixed to the surface and (iB, jB,kB) is fixed to the
body. The distance between the point of contact A and the centre of mass S is given
by l. [110]. When ϕ = ±π/2 the velocity of the rod tip lies in the plane spanned by jB

and kB.

The moment of inertia tensor I of the rod about its centre with respect to its principal axes
is given by

(1.1) I =

I0 0 0

0 0 0

0 0 I0

 ,

where I0 = 1
3ml

2 for a uniform rod. The matrix I is singular due to the assumed slenderness of
the rod.

The angular velocity Ω of the rod is given by

Ω = θ̇ iB + ψ̇ kG,(1.2)

or in the body frame

Ω = θ̇ iB + ψ̇ sin θ jB + ψ̇ cos θ kB.(1.3)

The angular momentum in the rod frame is given by H = IΩ, and the rate of change is
given by Ḣ = I Ω̇ + Ω× (I Ω). Using (1.1) and (1.3), we find

(1.4) Ḣ = I0(θ̈ + ψ̇2 sin θ cos θ)iB + I0(ψ̈ cos θ − 2θ̇ψ̇ sin θ)kB,

which has no component in the jB direction due to the assumed slenderness.
Euler’s rotation equations state that this rate of change of angular momentum Ḣ is equal to

the applied torque G of the forces acting on the rod. The force on the rod in the inertial frame
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is denoted by F = FxiG + FyjG + FzkG. Then G = r× (T F), where r = −ljB is the position
vector of the contact point A relative to S in the body frame, and T is the rotation matrix from
the inertial frame to the body frame given by

T =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


1 0 0

0 cos θ − sin θ

0 sin θ cos θ



ᵀ

,(1.5)

T =

 cosψ sinψ 0

− sinψ cos θ cosψ cos θ sin θ

sinψ sin θ − cosψ sin θ cos θ

 .(1.6)

So we find

(1.7) G = r× (T F) = −l(sinψ sin θFx − cosψ sin θFy + cos θFz)iB + l(cosψFx + sinψFy)kB,

which again is zero in the jB component due to the slenderness of the rod.

Equating (1.4) and (1.7), we find

θ̈ = − l

I0
(sinψ sin θFx − cosψ sin θFy + cos θFz)− ψ̇2 sin θ cos θ,

ψ̈ =
l

I0 cos θ
(cosψFx + sinψFy) + 2ψ̇θ̇ tan θ.

(1.8)

For the case of a uniform rod, (1.8) are identical to [110, eq. (12)], which were derived directly
from the energy equations.

The translational dynamics are determined as follows. Using Newton’s second law in the
inertial frame, we have for the centre of mass S of the rod

(1.9) mẌ = Fx, mŸ = Fy, mZ̈ = Fz −mg.

We are, however, more interested in the dynamics of the rod tip and change coordinates
accordingly (from point S to point A in Figure 1.3). The position of the rod tip relative to the
centre is given by T−1r and so the three equations that give the position of the rod tip can be
given as

x = X + l cos θ sinψ,

y = Y − l cos θ cosψ,

z = Z − l sin θ.

(1.10)

Differentiating (1.10) twice with respect to time and substituting the results from (1.8) and
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(1.9) gives the following ODEs

ẍ =
ml2

I0

[(
− sin2 ψ cos2 θ +

I0

ml2
+ 1

)
Fx
m

+
(
cos2 θ sinψ cosψ

)Fy
m

+(sin θ cos θ sinψ)
Fz
m

+
I0

ml

(
− ψ̇2 cos3 θ sinψ − θ̇2 cos θ sinψ

)]
,

ÿ =
ml2

I0

[(
sinψ cosψ cos2 θ

)Fx
m

+

(
− cos2 ψ cos2 θ +

I0

ml2
+ 1

)
Fy
m

−(sin θ cos θ cosψ)
Fz
m

+
I0

ml

(
ψ̇2 cos3 θ cosψ + θ̇2 cos θ cosψ

)]
,

z̈ =
ml2

I0

[
(sinψ sin θ cos θ)

Fx
m
− (cos θ cosψ sin θ)

Fy
m

+

(
cos2 θ +

I0

ml2

)
Fz
m

+
I0

ml

(
ψ̇2 cos2 θ sin θ + θ̇2 sin θ − I0

ml2
g

)]
.

(1.11)

We now adopt the scalings (x, y, z) = l( x̃, ỹ, z̃), (Fx, Fy, Fz) = mg(F̃x, F̃y, F̃z), α = ml2/I0

and t = t̃/ω, where ω2 = g/l. Then, by dropping the tildes for the sake of legibility, we are left
with the set of nondimensionalised second order ODEs

ẍ =
(
−α sin2 ψ cos2 θ + α+ 1

)
Fx +

(
α cos2 θ sinψ cosψ

)
Fy + (α sin θ cos θ sinψ)Fz

+
(
− ψ̇2 cos3 θ sinψ − θ̇2 cos θ sinψ

)
,

ÿ =
(
α sinψ cosψ cos2 θ

)
Fx +

(
−α cos2 ψ cos2 θ + α+ 1

)
Fy − (α sin θ cos θ cosψ)Fz

+
(
ψ̇2 cos3 θ cosψ + θ̇2 cos θ cosψ

)
,

z̈ =(α sinψ sin θ cos θ)Fx − (α cos θ cosψ sin θ)Fy +
(
α cos2 θ + 1

)
Fz

+
(
ψ̇2 cos2 θ sin θ + θ̇2 sin θ − 1

)
,

ψ̈ =

(
α cosψ

cos θ

)
Fx +

(
α sinψ

cos θ

)
Fy +

(
2ψ̇θ̇

sin θ

cos θ

)
,

θ̈ =− (α sinψ sin θ)Fx + (α cosψ sin θ)Fy − (α cos θ)Fz −
(
ψ̇2 sin θ cos θ

)
,

(1.12)
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or equivalently a set of 10 first-order ODEs

(1.13)

ẋ = u, u̇ =
(
−α sin2 ψ cos2 θ + α+ 1

)
Fx +

(
α cos2 θ sinψ cosψ

)
Fy

+(α sin θ cos θ sinψ)Fz +
(
−
(
Ψ2 cos2 θ + Θ2

)
cos θ sinψ

)
,

ẏ = v, v̇ =
(
α sinψ cosψ cos2 θ

)
Fx +

(
−α cos2 ψ cos2 θ + α+ 1

)
Fy

−(α sin θ cos θ cosψ)Fz +
(
+
(
Ψ2 cos2 θ + Θ2

)
cos θ cosψ

)
,

ż = w, ẇ = (α sinψ sin θ cos θ)Fx − (α cos θ cosψ sin θ)Fy

+
(
α cos2 θ + 1

)
Fz +

((
Ψ2 cos2 θ + Θ2

)
sin θ − 1

)
,

ψ̇ = Ψ, Ψ̇ =
(
α cosψ
cos θ

)
Fx +

(
α sinψ
cos θ

)
Fy +

(
2ΨΘ sin θ

cos θ

)
,

θ̇ = Θ, Θ̇ = (−α sinψ sin θ)Fx + (α cosψ sin θ)Fy + (−α cos θ)Fz

+
(
−Ψ2 sin θ cos θ

)
.

Note that there are only 5 second-order ODEs. A generic 3D rigid body moving in 3D would
require 6 second-order ODEs. However, from the assumption that the rod is slender, we need
not consider rotations about the axis coincident with the rod.

In order to proceed, we must specify Fx, Fy and Fz. Let us, for now, assume Coulomb
friction, and hence when slipping

(1.14) Fx = −µ cosβFz, Fy = −µ sinβFz,

where µ is the coefficient of friction between the rod and the surface, and the angle of slip, β, is
defined by

(1.15) cosβ =
u√

u2 + v2
, sinβ =

v√
u2 + v2

.

This slip angle can be considered conceptually as the "heading" of the rod tip relative to the
surface when slipping.

In this work, we will consider two forms of the vertical component of the contact force Fz. In
Chapter 2, we assume that when the tip is in contact with the surface, the (nondimensionalised)
force Fz acts to keep the rod tip on the surface, and Fz can be found by solving z̈ = 0. In
Chapter 3, we assume that there is compliance, and the force Fz has stiffness and damping
terms.
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First, let us substitute (1.14) into our set of nondimensionalised equations (1.12) and write
as a set of ten first order differential equations

(1.16)

ẋ = u, u̇ = q1(ψ, θ, u, v)Fz + a1(Ψ,Θ, ψ, θ) = fu,

ẏ = v, v̇ = q2(ψ, θ, u, v)Fz + a2(Ψ,Θ, ψ, θ) = fv,

ż = w, ẇ = p(ψ, θ, u, v)Fz + b(Ψ,Θ, ψ, θ) = fw,

ψ̇ = Ψ, Ψ̇ = d1(ψ, θ, u, v)Fz + c1(Ψ,Θ, ψ, θ) = fΨ,

θ̇ = Θ, Θ̇ = d2(ψ, θ, u, v)Fz + c2(Ψ, ψ, θ) = fΘ,

where

q1(ψ, θ, u, v;µ, α) := −α sinψ cos θ (µ cos θ sin (β(u, v)− ψ)− sin θ)− µ(1 + α) cosβ(u, v),

q2(ψ, θ, u, v;µ, α) := +α cosψ cos θ (µ cos θ sin (β(u, v)− ψ)− sin θ)− µ(1 + α) sinβ(u, v),

p(ψ, θ, u, v;µ, α) := +α sin θ (µ cos θ sin (β(u, v)− ψ)− sin θ) + α+ 1,

a1(Ψ,Θ, ψ, θ) := −
(
Ψ2 cos2 θ + Θ2

)
cos θ sinψ,

a2(Ψ,Θ, ψ, θ) := +
(
Ψ2 cos2 θ + Θ2

)
cos θ cosψ,

b(Ψ,Θ, θ) := +
(
Ψ2 cos2 θ + Θ2

)
sin θ − 1,

d1(ψ, θ, u, v;µ) := −αµ cosψ sec θ cosβ(u, v)− αµ sinψ cos θ sinβ(u, v),

d2(ψ, θ, u, v;µ, α) := +αµ sinψ sin θ cosβ(u, v)− αµ cosψ sin θ sinβ(u, v)− α cos θ,

c1(Ψ,Θ, θ) := 2ψ̇θ̇ sin θ sec θ,

c2(Ψ, θ) := −ψ̇2 sin θ cos θ,

β(u, v) := arctan(v/u).

(1.17)

Instead of considering global velocities u, v , it may be more useful to consider a speed η
and a global bearing β, the slip direction. These are related to u and v by

η =
√
u2 + v2(1.18)

and

β = arctan(v/u)(1.19)

(or equivalently u = η cosβ and v = η sinβ).
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Taking the time derivative of (η, β)ᵀ

(
η̇

β̇

)
=

(
∂η
∂u

∂η
∂v

∂β
∂u

∂β
∂v

)(
u̇

v̇

)
,

=

(
cosβ sinβ

− 1
η sinβ 1

η cosβ

)((
q1

q2

)
Fz +

(
a1

a2

))
,

=

(
Q1

1
ηQ2

)
Fz +

(
A1

1
ηA2

)
,(1.20)

where

(
Q1 A1

Q2 A2

)
:=

(
cosβ sinβ

− sinβ cosβ

)(
q1

q2

)
.(1.21)

Thus, our equations of motion become

(1.22)

ẋ = η cosβ, η̇ = Q1(ψ, θ, β)Fz +A1,

ẏ = η sinβ, ηβ̇ = Q2(ψ, θ, β)Fz +A2,

ż = w, ẇ = p(ψ, θ, β)Fz + b(Ψ,Θ, ψ, θ),

ψ̇ = Ψ, Ψ̇ = d1(ψ, θ, β)Fz + c1(Ψ,Θ, ψ, θ),

θ̇ = Θ, Θ̇ = d2(ψ, θ, β)Fz + c2(Ψ, ψ, θ).

As in [110], we introduce the variable ϕ = β − ψ. This is the relative slip angle: the relative
angle between the orientation of the rod and the direction of slipping (see Figure 1.3). Re-writing
(1.22) in terms of ϕ,

(1.23)

ẋ = η cos(ψ + ϕ), η̇ = Q1Fz +A1,

ẏ = η sin(ψ + ϕ), ηϕ̇ = Q2Fz +A2 − ηΨ,

ż = w, ẇ = pFz + b,

ψ̇ = Ψ, Ψ̇ = d1Fz + c1,

θ̇ = Θ, Θ̇ = d2Fz + c2,

10
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where

(1.24)

Q1 = Q1(θ, ϕ;µ, α) := α cos θ sinϕ (µ cos θ sinϕ− sin θ)− (1 + α)µ,

Q2 = Q2(θ, ϕ;µ, α) := α cos θ cosϕ (µ cos θ sinϕ− sin θ) ,

p = p(θ, ϕ;µ, α) := 1 + α+ α sin θ (µ cos θ sinϕ− sin θ) ,

A1 = A1(Ψ,Θ, θ, ϕ) :=
(
Ψ2 cos2 θ + Θ2

)
cos θ sinϕ,

A2 = A2(Ψ,Θ, ψ, θ) :=
(
Ψ2 cos2 θ + Θ2

)
cos θ cosϕ,

b = b(Ψ,Θ, θ) :=
(
Ψ2 cos2 θ + Θ2

)
sin θ − 1,

d1 = d1(θ, ϕ;µ, α) := −αµ cosϕ
cos θ ,

d2 = d2(θ, ϕ;µ, α) := −αµ sin θ sinϕ− α cos θ,

c1 = c1(Ψ,Θ, θ) := 2ΨΘ sin θ
cos θ .

c2 = c2(Ψ, θ) := −Ψ2 sin θ cos θ.

Of particular importance in the sequel are

b(Ψ,Θ, θ) :=
(
Ψ2 cos2 θ + Θ2

)
sin θ − 1(1.25)

and

p(θ, ϕ;µ, α) := 1 + α+ α sin θ (µ cos θ sinϕ− sin θ) .(1.26)

Proposition 1.1. From (1.23) and (1.24), {Ψ = 0} ∩ {ϕ = ±π/2} (the planar Painlevé
problem) is an invariant manifold.

Proof. Substituting Ψ = 0 and ϕ = ±π/2 into (1.23), we find

ẋ = η ∓ cosψ, η̇ = Q1(θ,±π/2;µ, α)Fz +A1(0,Θ, θ,±π/2),

ẏ = η ± sinψ, ηϕ̇ = 0,

ż = w, ẇ = p(θ,±π/2;µ, α)Fz + b(0,Θ, θ),

ψ̇ = 0, Ψ̇ = 0,

θ̇ = Θ, Θ̇ = d2(θ,±π/2;µ, α)Fz,

11
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where

Q1(θ,±π/2;µ, α) = α cos θ ± (±µ cos θ − sin θ)− (1 + α)µ

p(θ,±π/2;µ, α) = 1 + α+ α sin θ (±µ cos θ − sin θ)

A1(0,Θ, θ,±π/2) = ±Θ2 cos θ

b(0,Θ, θ) = Θ2 sin θ − 1

d2(θ,±π/2;µ, α) = ∓αµ sin θ − α cos θ.

Since ϕ̇ = Ψ̇ = 0 in , {Ψ = 0} ∩ {ϕ = ±π/2} is an invariant manifold of (1.23). �

These slipping equations are not well-defined when the rod sticks, u = v = 0 (η = 0). It will
be convenient for discussion later to regularise these equations, viewing them as the limit of a
smoother system. This regularisation takes the form of smoothing the step function involved
in Coulomb friction. In this work we will only consider the nonsmooth limit of this smooth
function, as our small smoothing parameter tends to zero.

Practically speaking, whilst we had previously modelled friction as taking the form

Fx = −µ u√
u2 + v2

Fz, Fy = −µ v√
u2 + v2

Fz,

or in polar form

Fx = −µη cosβ

|η|
Fz, Fy = −µη sinβ

|η|
Fz,

we will at times consider instead the non smooth limit (ξ → 0) of

Fx = −µ u√
u2 + v2 + ξ2

Fz, Fy = −µ v√
u2 + v2 + ξ2

Fz,

or

Fx = −µ η cosβ√
η2 + ξ2

Fz, Fy = −µ η sinβ√
η2 + ξ2

Fz

in polar form, where ξ is the small smoothing parameter 0 < ξ � 1. Using these models the

12
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equations of motion are then given as is (1.23) except that now

(1.27)

Q1 = Qξ1(θ, ϕ,R(η, ξ);µ, α) := Q1θ, ϕ;µR(η, ξ), α),

= α cos θ sinϕ (µR(η, ξ) cos θ sinϕ− sin θ)− (1 + α)µR(η, ξ),

Q2 = Qξ2(θ, ϕ,R(η, ξ);µ, α) := Q2θ, ϕ;µR(η, ξ), α),

= α cos θ cosϕ (µR(η, ξ) cos θ sinϕ− sin θ) ,

p = pξ(θ, ϕ,R(η, ξ);µ, α) := pθ, ϕ;µR(η, ξ), α),

= 1 + α+ α sin θ (µR(η, ξ) cos θ sinϕ− sin θ) ,

d1 = dξ1(θ, ϕ,R(η, ξ);µ, α) := d1θ, ϕ;µR(η, ξ), α),

= −αµR(η, ξ) cosϕ
cos θ ,

d2 = dξ2(θ, ϕ,R(η, ξ);µ, α) := d2θ, ϕ;µR(η, ξ), α),

= −αµR(η, ξ) sin θ sinϕ− α cos θ,

R(η, ξ) := η√
η2+ξ2

.

2 This method of smoothing Coulomb friction will be used to obtain results in Chapter 3.
However, the discussion of the theory behind this approach is left until Chapter 4.

In section 2.1, we will show that under rigid-body assumptions, the equations (1.23) exhibit
nonuniqueness and nonexistence of solutions. In Chapter 3, our approach to resolving this
problem is through the incorporation of compliance. This compliance (the inverse of stiffness)
is very small, however, and so we introduce a small parameter ε. We have also mentioned the
introduction of a separate small smoothing parameter ξ to aid with the study of friction.

Implicitly, in the following chapters we shall take that 1� ε� ξ > 0; effectively assuming
that the surface is more compliant than the friction law is smoothed. This may physically
realistic as for certain surfaces their compliances may be noticeable, whilst the friction law will
be effectively nonsmooth. In Chapter 3 we focus more on the dynamics corresponding to the
compliance ε (compression and lift-off), whilst in subsection 3.3.2 and Chapter 4, we study the
dynamics corresponding to ξ (slipping and sticking).

Whilst these small parameters result in dynamics that occur at drastically different scales,
introducing complex behaviours into the system, they also provide an opportunity. In the

2Note that, as with Qξi and dξi , p
ξ(θ, ϕ,R(η, 0)) ≡ p(θ, ϕ;µR(η, 0), α) ≡ p(θ, ϕ;µ, α) for η > 0, since

R(η, 0) ≡ 1 for η > 0.

13
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following section, we introduce the methods used within this thesis which exploit these small
parameters to gain understanding of the dynamics.

1.2 Introduction to slow-fast theory, geometric singular
perturbation theory, blowup and regularisation

In many dynamical systems it is common to find that variables evolve on different time scales.
Differences in the orders of magnitude of parameters or variables can lead to systems where
different aspects of the dynamics occur on different time scales. Slow-fast theory essentially uses
this separation of time scales to reduce a potentially difficult multi-dimensional problem into
simpler lower-dimensional problems for each of the time scales.

Remark 1.1. Slow-fast systems can also be called fast-slow systems; this is perhaps more
logical as it corresponds to the standard chronology of the dynamics (the fast behaviour happens
first) and the way in which one studies these systems (tending to analyse the fast dynamics
first). Moreover, both of these terms have their limitations as they do not generalise well to
systems where there are more than two time scales (multiple time scale dynamical systems)[70].
Nevertheless we will use the term slow-fast herein.

Geometric singular perturbation theory (GSPT), perhaps unsurprisingly given its name,
gives a more geometric approach to singular perturbation problems, like those that that arise in
the study of slow-fast systems. GSPT is an alternative to singular perturbation methods such
as matched asymptotic expansions. One of the key components of GSPT is Fenichel’s Theorem
which effectively states that, under certain conditions, the dynamics of a slow-fast system are
close to the solution made by piecing together the limiting cases of simpler lower-dimensional
problems (fast and slow). Nevertheless, it is where these conditions are not met that we require
another mathematical tool, the blowup method. The blowup method helps to resolve some of
the problems with the limitations of Fenichel’s Theorem by extending and manipulating the
geometry of the original slow-fast problem.

There are some good texts discussing slow-fast theory, GSPT and blowup. Christian Kuehn’s
“Multiple Time Scale Dyanmics” [70] gives a invaluable introduction to all three of those topics.
Christopher Jones’ lecture series “Geometric Singular Perturbation Theory” [54] provides a great
“exposition” of the area, collecting (and making more accessible) some of the crucial building
blocks of GSPT (including Fenichel’s Theorem [35] and The Exchange Lemma [53]) as well as
giving examples. The initial developments in blowup were made by Dumortier and Roussarie
in [30, 31] and then continued by Krupa and Szymolyan in [67–69]. We shall give a short and
informal introduction into useful methods and terminology from this theory for the sake of
completeness. We shall tend to follow [67, 70] especially closely, including sufficient information
such that the reader should only need to be familiar with the more standard parts of the study

14
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of nonlinear dynamics and ODEs [100, 101] in order to follow the methods used in following
chapters. In this work, we tend to use blowup in a slightly different way to some other authors.
Whilst the rigour of the blowup method is powerful when constructing proofs, we shall instead
use the method as a way to gain geometric insights about difficult dynamical problems, and
also as a means of matching across local regimes in which the dynamics are more tractable.

1.2.0.1 Slow-fast theory and GSPT

Let us start by introducing slow-fast theory. A slow-fast system of ordinary differential equations
(ODEs) in standard form can be written as

dx

dt
= f (x,y; ε) ,

dy

dt
= εg (x,y; ε) .

(1.28)

where x ∈ Rm and y ∈ Rn, the functions f : Rm × Rn → Rm and g : Rm × Rn → Rn, and the
parameter ε is small (0 < ε� 1).

Simply from inspecting the form of these equations, we can see that the x variables will
typically evolve faster than the y variables. If f ,g ≈ O (1) then dx/dt ≈ O (1) whilst dy/dt ≈
O (ε). Hence, we will call x the fast variables and y the slow variables.

Writing (1.28) in a rescaled time τ = t/ε gives equations in the form

ε
dx

dτ
= f (x,y, ε) ,

dy

dτ
= g (x,y, ε) .

(1.29)

In this timescale, we can still see that x will evolve more quickly than y, but now both variables
are faster moving: dx/dτ ≈ O

(
ε−1
)
and dy/dτ ≈ O (1). Hence, the equation (1.28) is said to

be in fast time (with respect to the fast time scale t) whilst (1.29) is said to be in slow time
(with respect to the slow time scale τ).

So far, we have not yet simplified our problem at all; we have only written our equations in
two time scales, and trajectories of (1.28) and (1.29) are equivalent. The simplification comes
when we look at the limiting case ε→ 0 of both (1.28) and (1.29), given by

dx

dt
= f (x,y, 0) ,

dy

dt
= 0,

(1.30)

and

0 = f (x,y, 0) ,

dy

dτ
= g (x,y, 0) .

(1.31)

15
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Now, (1.31) and (1.30) are not equivalent; for example in (1.30), y is stationary, whilst in (1.31),
y can evolve. We refer to (1.31) as the reduced problem, whilst we refer to (1.30) as the layer
problem. These are also known as the slow (1.31) and fast (1.30) subsystems.

The layer problem gives an m-dimensional differential equation

dx

dt
= f (x,y∗, 0) ,(1.32)

effectively parameterised by

dy

dt
= 0 =⇒ y = y∗,(1.33)

where y∗ is a n-dimensional vector of constants.
The reduced problem gives an differential-algebraic equation: an n-dimensional differential

equation

dy

dτ
= g (x,y, 0) ,(1.34)

subject to the algebraic constraint

0 = f (x,y, 0) .(1.35)

The dynamics prescribed by (1.34) occur on this n-dimensional (codimension-m) set (1.35).
Here we see that the algebraic constraint of the reduced problem (1.35) gives the set of

equilibria of the layer problem (1.32) (for a given y = y∗). This set C0 = {(x,y)|x ∈ Rm,y ∈
Rn, f(x,y, 0) = 0} is called the critical set. If C0 is also a submanifold of Rm+n, then C0 is
called the critical manifold.

Suppose S0 is a compact submanifold of the critical manifold C0 and that is normally
hyperbolic with respect to (1.32) (the real parts of eigenvalues of the Jacobian of (1.32)
evaluated at all points on S0 are non-zero). Fenichel’s theorem states that, for sufficiently small
ε > 0, S0 perturbs to a slow manifold Sε. This slow manifold Sε is

1. locally invariant

2. diffeomorphic to S0,

3. Hausdorff distance O(ε) close to S0
3,4,

4. has the same stability as the critical manifold with respect the fast variables,

5. and the flow along Sε converges to the slow flow (1.34), as ε→ 0.

3For a definition of the Hausdorff distance see Figure 1.4.
4The slow manifold is not, in fact, unique, and is actually a “band” of slow manifolds. However, slow manifolds

in this band are “beyond all orders” (O
(
e−K/ε

)
) close, so for all purposes covered in the following chapters, this

band shall be treated as being a unique slow manifold.
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Σ1 d21

d12

Σ2

Figure 1.4: The Hausdorff distance gives a measure of how far two subsets of a
metric space are from each other. If one of these sets is Σ1 and the other Σ2, then the
Hausdorff distance between the two is given by

dH(Σ1,Σ2) = max

{
sup
σ1∈Σ1

(
inf

σ2∈Σ2

d(σ1, σ2)

)
, sup
σ2∈Σ2

(
inf

σ1∈Σ1

d(σ1, σ2)

)}
.

Informally, it is the maximum of d12 (the maximum of all the minimum distances from
Σ1 to Σ2) and d21 (the maximum of all the minimum distances from Σ2 to Σ1).

Speaking very informally, Fenichel’s Theorem effectively states that under certain conditions,
the “error” in approximating the overall slow-fast flow by combing the layer and reduced problems
is ε small. One of the conditions is that the submanifold in question of the critical set is compact:
essentially it contains its boundary and points in the set are all finite distances from each other.
The other is that points along the submanifold are all normally hyperbolic with respect to the
layer problem. A point on critical set is said to be normally hyperbolic with respect to the layer
problem when the real parts of the eigenvalues of the Jacobian of the linearisation at point are
strictly nonzero. However, Fenichel’s Theorem no longer applies when the critical set is not
normally hyperbolic with respect to the layer problem (at least one eigenvalue of the Jacobian
evaluated at a point on the set lies on the imaginary axis). In this case, we can gain the normal
hyperbolicity required in order to use Fenichel’s Theorem through the use of geometric blowup.
Informally, this method regains hyperbolicity at the expense of increasing the dimension of
the problematic set where the hyperbolicity breaks-down. Through this method, once again,
we separate a difficult problem into multiple (simpler) problems where existing theorems and
methods can be applied. Furthermore, this blowup method can also be applied to problems
where there is no lack of normal hyperbolicity, as a means to match across regimes.

In order to explain the essence of the method, we will use the example of a planar fold (as
in [70] but here more informally) first solved with blowup in [67].
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1.2.1 Blowup of the planar fold

We will consider the following system,

dx

dt
= −y + x2,

dy

dt
= −ε.

(1.36)

We see that this is a slow-fast system in standard form written in the fast time scale, with one
fast variable x and one slow variable y. As such, we can can find the layer problem through
taking the limit ε→ 0 of (1.36),

dx

dt
= −y + x2,

dy

dt
= 0 =⇒ y = y∗.

(1.37)

This is a one dimensional ODE

dx

dt
= −y∗ + x2(1.38)

parameterised by y∗. The critical set here is y = x2. This ODE (1.38) gives a prototypical saddle
node (or fold) bifurcation as y∗ passes through 0 creating a stable branch x = x− := −

√
y∗, y∗ > 0

and an unstable branch x = x+ :=
√
y∗, y∗ > 0. The stability of each branch can be found by

linearising (1.38) about each

x̃ = x− x−,
dx̃

dt
= −2

√
y∗x̃+O

(
x̃2
)
,(1.39)

and

x̂ = x− x+,
dx̂

dt
= +2

√
y∗x̂+O

(
x̂2
)
.(1.40)

When y∗ ≡ 0 there is a single nonhyperbolic equilibrium at the origin

x̆ = x,
dx̆

dt
= x̆2,(1.41)

evident from the lack of a linear term.
As previously discussed, the layer problem (or fast subsystem) does not do a good job of

approximating the dynamics of the overall system (1.36), as in (1.37) y never evolves. When we
took the limit ε→ 0 of (1.36) we lost information about the slow dynamics. Rescaling time by
ε in (1.36), we find

ε
dx

dτ
= −y + x2,

dy

dτ
= −1,

(1.42)
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in slow time τ where dτ/dt = ε. Taking the singular limit ε→ 0 of (1.42), we obtain the reduced
problem

0 = −y + x2,

dy

dτ
= −1,

(1.43)

a differential-algebraic system of equations with a one dimensional ODE

dy

dτ
= −1,(1.44)

subject to the algebraic constraint y = x2.

From both the layer problem (1.37) and the reduced problem (1.43) we can begin to piece
together an approximation to the overall system (1.36) in Figure 1.5b. However, we see that we
encounter a problem. The reduced problem (1.43) drives the bifurcation parameter of the layer
problem y to the bifurcation; the critical set is hyperbolic for y > 0 and so a slow manifolds
exist for y > δ > 0, along which the slow flow leads to the origin. At the origin the critical set
is not normally-hyperbolic and so Fenichel’s theorem does not apply here. Since trajectories
that reach the stable part of the critical set generically pass to the nonhyperbolic origin in the
singular limit, we cannot describe their behaviour with Fenichel’s theorems. It is here that we
use the method of geometric blowup to “inject” normal hyperbolicity at this troublesome point.

x

y∗

(a) Fold bifurcation

y

x

(b) Slow fast fold

Figure 1.5: Slow fast fold. (a) A prototypical fold bifurcation, parameterised by y∗.
(b) Slow-fast fold, with fast flow onto the parabola and slow flow towards the origin.
The attracting branch is show in blue and the repelling branch in red. Note the switch
of axes; y∗ is the bifurcation parameter of the fold bifurcation and is shown as the
horizontal axis in (a) (so to agree with standard depictions of the fold bifurcation),
but y is shown on the vertical axes in full system in (b).
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As we have discussed, the penalty of the use of blowup is the extension of the dimension of
where it is needed. Firstly, we consider the extended system

dx

dt
= −y + x2,(1.45a)

dy

dt
= −ε,(1.45b)

dε

dt
= 0,(1.45c)

treating the small parameter ε as a variable. In this extended system, each plane of constant ε
is an invariant manifold, and the family of solutions to (1.36) for each ε exist on these planes.
In (1.45), the origin is a nonhyperbolic point with all eigenvalues of the linearisation equalling
zero. To tackle this lack of hyperbolicity, we then proceed to blow up the point x = y = ε = 0

to a (hemi)sphere. In particular, the blowup used is given by the transformation

(1.46) Φ : (r, (x̄, ȳ, ε̄)) 7→ (x, y, ε),

defined by

(1.47) x = rx̄, y = r2ȳ, ε = r3ε̄, (r, (x̄, ȳ, ε̄)) ∈ [0,∞)× S2
+,

where S2
+ is the hemisphere

(1.48) S2
+ = {(x̄, ȳ, ε̄)|x̄2 + ȳ2 + ε̄2 = 1, ε̄ ≥ 0}.

This blowup is shown in Figure 1.6. The weights, the exponents of r in (1.47), are chosen
carefully to “desingularise” the fold point; after re-writing in local coordinates, we will be able
to gain normal hyperbolicity through “dividing-out” a shared factor on the right hand side of
the equations. The specific choice of the weights will be explained later.

x̄ ȳ

ε̄

Φ

x y

ε

x̄ = 1
k3

- ȳ = 1
k5

�

ε̄ = 1
k1

�
�
�	

Figure 1.6: Blowup of the point at the origin x = y = ε = 0 to the (hemi)sphere S2
+

in (1.48). Geometric interpretations of the charts found by setting r = 0 and x̄ = 1,
ȳ = 1 and ε̄ = 1 are also given.
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Whilst the blowup can be used to desingularise the point, it is usually impractical to study
the whole system at once as the equations can become intractable. Instead, it is advantageous
to study multiple local problems and piece them together. The local coordinate systems, called
directional charts, are found by fixing specific variables in the blowup (1.47), see Figure 1.6.
Here, these directional charts, which we shall denote ki, are found by setting ε̄ = 1, x̄ = ∓1,
and ȳ = ∓1 respectively in the blowup transformation (1.47)

k1 : x = r1x1, y = r2
1y1, ε = r3

1,(1.49a)

k2 : x = −r2, y = r2
2y2, ε = r3

2ε2,(1.49b)

k3 : x = r3, y = r2
3y3, ε = r3

3ε3,(1.49c)

k4 : x = r4x4, y = −r2
4, ε = r3

4ε4,(1.49d)

k5 : x = r5x5, y = r2
5, ε = r3

5ε5.(1.49e)

Each of these charts covers a different part of the phase space, and ri = 0 for each
i ∈ {1, 2, 3, 4, 5} covers a different hemisphere of the sphere in the blowup. The scaling chart
k1 covers the neighbourhood of northern hemisphere, k2 and k3 cover the eastern and western
hemispheres, k3 and k5 the “back” and “front” (see Figures 1.7 and 1.10).

k2

k3

k4

k5

x̄

ȳ

(a)

k2

k3

k4

k5
k1

@
@
@
@
@
@R

x̄

ȳ

(b)

Figure 1.7: Diagram of the region covered by each directional in the blowup of the
fold: ki, i ∈ {2, 3, 4, 5}. In (a), we show the directional charts covering the “equator”
of the blowup for ε̄ = 0: charts ki, i ∈ {2, 3, 4, 5}. In (b), we show a schematic
diagram of all charts covering the northern hemisphere projected onto ε̄ = 0: charts
ki, i ∈ {1, 2, 3, 4, 5}. For example, the chart k2 covers the left half of the equator. The
diagram also depicts the regions of overlap between each charts. For example, charts k3

and k5 overlap, but the positive x̄-axis is only visible in the k3 chart, and the positive
ȳ-axis is only visible in the k5 chart. Charts k2 and k3, however, do not overlap.
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To map between these charts, we use coordinate transforms kij , which transform coordinates
from chart ki to chart kj . Some transforms that will be of use are

k12 : x1 = −ε−
1
3

2 , y1 = ε
− 2

3
2 y2, r1 = ε

1
3
2 r2,(1.50a)

k13 : x1 = ε
− 1

3
3 , y1 = ε

− 2
3

3 y3, r1 = ε
1
3
3 r3,(1.50b)

k15 : x1 = ε
− 1

3
5 x5, y1 = ε

− 2
3

5 , r1 = ε
1
3
5 r5,(1.50c)

k25 : r2 = −r5x5, y2 = x−2
5 , ε2 = −ε5x

−3
5 ,(1.50d)

k53 : x5 = y
− 1

2
3 , y5 = r3y

− 1
2

3 , ε5 = ε3y
− 3

2
3 .(1.50e)

Note that these changes of coordinates only exist for charts that overlap (see Figures 1.6 and 1.7).

1.2.1.1 Scaling chart

The crucial directional chart is found by setting ε̄ = 1 in (1.47), the chart k1 (1.49a). Re-writing
(1.45) in terms of the local coordinates (x1, y1, r1), we find

dx1

dt
= r1

(
−y1 + x2

1

)
,

dy1

dt
= −r1,

dr1

dt
= 0,

(1.51)

or equivalently

dx1

dt
= ε

1
3
(
−y1 + x2

1

)
,

dy1

dt
= −ε

1
3 .

(1.52)

In this chart, the variables have been scaled to balance certain terms, here the right hand sides
of (1.52) are now both of equal order (O(ε

1
3 )), and accordingly this particular directional chart

is called the scaling chart ; x and y are rescaled by ε
1
3 and ε

2
3 , respectively.

However, how did we find weightings of the powers of ε in (1.49a)? If we take some arbitrary
scalings x = εax1, y = εby1, and substitute into (1.36) we find

dx1

dt
= −εb−ay1 + εax2

1,

dy1

dt
= −ε1−b.

(1.53)

To bring each of these terms on “equal footing”, we desire that the powers of ε are all equal,
that is

(1.54) b− a ≡ a ≡ 1− b.
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Solving, we find that a = 1
3 and b = 2

3 , as in (1.49a).
In most applications it is not this simple; it may not be possible to, or we may not want to,

balance all the terms on the right-hand side of the ODEs. Choosing which terms to balance is
an important task, and an understanding of which terms are most significant is necessary.

→ (∞, 0, 0)

x1

r1

(x1, 0, 0)(0, 0, 0)

(x̄, 0, ε̄, 0)

x̄

ε̄

(0, 0, 1, 0)

→ (1, 0, 0, 0)

Figure 1.8: Compactification: demonstration of how the surface of the hemisphere is
a compactification of the surface r1 = 0 in the scaling chart, shown for ȳ = 0. The
points (x1, y1, r1) = (∞, 0, 0), (x1, 0, 0) and (0, 0, 0) project onto the sphere r = 0 at
(x̄, ȳ, ε̄, r) = (1, 0, 0, 0), (x̄, 0, ε̄, 0) and (0, 0, 1, 0) respectively. To study the dynamics
at occurring infinity in the scaling chart k1, the other charts must be used.

Remark 1.2. The surface of the hemisphere of the sphere in the blowup is a Poincaré compact-
ification of the infinite plane of (x1, y1). The equator of the hemisphere appears at infinity in the
scaling chart [37, Figure 1]. This compactification is shown in Figure 1.8.

Rescaling time in (1.52) to τ̃ = r1t, where r1 = ε
1
3 is a constant, we find

dx1

dτ̃
= −y1 + x2

1,(1.55a)

dy1

dτ̃
= −1.(1.55b)

Integrating (1.55b) directly and substituting into (1.55a) we are left with a Riccati equation

(1.56)
dx1

dτ̃
= − (y1(0)− τ̃) + x2

1.

This particular Riccati equation, can be transformed into the Airy equation

(1.57)
d2X

(
t̂
)

dt̂2
= t̂X

(
t̂
)
,

using the transformation

(1.58) t̂ = −τ̃ + y1(0), x1 =
1

X

dX

dt̂
.

The Airy equation does not have solutions in terms of elementary functions, instead its solutions
can be expressed in terms of special functions (i.e. Airy functions or Bessel functions).

The qualitative behaviour of solutions to (1.55) can be summarised as follows [67]:
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1. Every orbit has its own horizontal asymptote y1 = y1,+, such that y1 → y1,+ from above
as x1 →∞.

2. There exists an Ω0 > 0, such that there is a unique orbit γ1 (which can be parameterised
as (x1, s(x1)) for x1 ∈ R) that is asymptotic to the left hand branch of the parabola
y1 = x2

1 for x1 → −∞ and asymptotic y1 → −Ω0 from above as x1 →∞.

3. The function s(x) is asymptotic to

s(x) = x2 +
1

2x
+O

(
1

x4

)
, as x→ −∞,(1.59)

and

s(x) = −Ω0 +
1

x
+O

(
1

x3

)
, as x→∞.(1.60)

4. All orbits above γ1 are asymptotic to the right branch of the parabola in backwards time.

5. Every orbit below γ1 has its own horizontal asymptote y1 = y1,− > y1,+, such that
y → y1,− from below as x1 → −∞.

This qualitative behaviour is shown in Figure 1.9.
These dynamics in the scaling chart for r1 = 0 capture the essential dynamics.

Remark 1.3. The appearance of special equations in the scaling chart of a blowup is common
and expected. The exercise of geometric blowup involves balancing a few of the lower-order
nonlinear terms in an ODE. This often leads to systems that are sufficiently nonlinear as not to
have solutions in terms of elementary functions, but also sufficiently common as to have been
previously studied.

Remark 1.4. Special unique solutions (like γ1) are also to be expected in scaling charts of
blowups. We anticipate these special orbits as they often correspond to unique connections between
equilibria along the equator of the blowup.

Regular perturbation theory only works on compact domains in k1, and we must compactify
using the other charts. Whilst we have described the dynamics in the scaling chart k1, we have
yet to describe how orbits reach or leave the scaling chart. To do this, we study the dynamics in
the so-called entry/exit charts: ki, i ∈ {2, 3, 4, 5}.
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y1 = −Ω0

γ1

y1 = x2
1

x1

y1

Figure 1.9: Qualitative behaviour of solutions to the Ricatti equations in (1.55). The
special solution γ1 is backwards asymptotic to the left branch of the parabola y1 = x2

1

and forwards asymptotic to y1 = −Ω0.

1.2.1.2 Entry chart k2

Let us first study the dynamics in the entry chart k2 given in (1.49b) and depicted in Figures 1.10a
and 1.10c. Substituting (1.49b) into (1.45) and re-arranging, we find

dr2

dt
= r2

2(y2 − 1),(1.61a)

dy2

dt
= r2

(
−2y2

2 + 2y2 + ε2

)
,(1.61b)

dε2

dt
= −3ε2r2 (y2 − 1) .(1.61c)

We notice that r2 = 0 (the surface of the hemisphere) is a set of equilibria of (1.61). Linearising
around this set we find

(1.62)
d

dt

r2

y2

ε2

 =

 0 0 0

−2y2
2 + 2y2 + ε2 0 0

−3ε2(y2 − 1) 0 0


r2

y2

ε2

 ,

and the corresponding Jacobian has 3 eigenvalues, all of which are zero. This set therefore lacks
any normally hyperbolicity in the time scale in (1.61). Nonetheless, we can gain some normal
hyperbolicity by considering (1.61) with respect to a new timescale t2, where dt2 = r2dt. This
transformation, which effectively acts to divide the right hand side of (1.61) by r2, preserves
orbits, but acts to change the speed along them; the transformation speeds up orbits nearby
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r2 = 0, and slows down orbits far from r2 = 0. Re-writing (1.61) in this new time t2 we find

dr2

dt2
= r2(y2 − 1),(1.63a)

dy2

dt2
= −2y2

2 + 2y2 + ε2,(1.63b)

dε2

dt2
= −3ε2 (y2 − 1) .(1.63c)

The planes r2 = 0 and ε2 = 0 are invariant manifolds of (1.63), and the dynamics along their
intersection is given by dy2/dt2 = 2y2 (1− y2). Hence, this system has two equilibria, one at

(1.64) C2,1 = {(r2, y2, ε2)|(r2, y2, ε2) = (0, 0, 0)},

and the other at

(1.65) C2,2 = {(r2, y2, ε2)|(r2, y2, ε2) = (0, 1, 0)}.

Linearising around C2,1, we find

(1.66)
d

dt2

r2

y2

ε2

 =

−1 0 0

0 2 1

0 0 3


r2

y2

ε2

 ,

and the corresponding Jacobian has three nonzero eigenvalues -1, 2, and 3. From the stable
manifold theorem [89], there is a unstable manifold of C2,1 tangent to the eigenvectors associated
with the positive eigenvalues, and a stable manifold of C2,1 tangent to the eigenvector associated
with the negative eigenvalues. With the other equilibrium, C2,2, we find

(1.67)
d

dt2

r2

y2

ε2

 =

0 0 0

0 −2 1

0 0 0


 r2

y2 − 1

ε2

 ,

and the corresponding eigenvalues are 0 (with multiplicity 2) and -2 (with multiplicity 1). From
the centre manifold theorem [89], we find that there is a centre manifold of C2,2, tangent to the
eigenvectors associated with the zero eigenvalues. Hence we can see that we have increased our
understanding of the structure and gained (some) normal hyperbolicity. This structure can be
seen in Figure 1.10c.
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x̄

ȳ

x̄ = 1
HH x̄ = −1

�
�ȳ = 1

B
B

(a)

y3

r3

ε3

C3,1

C3,2

(b)

y2

r2

ε2

C2,1

C2,2

(c)

x5

r5

ε5

C5,1

C5,2

(d)

Figure 1.10: Diagram demonstrating the geometry and the dynamics of 3 key
entry/exit charts of the blowup in (1.47). (a) Geometry of charts k2, k3 and k5.
(b)-(d) Dynamics in charts k2, k3 and k5 respectively, showing the equilibria and their
eigenvectors. Hyperbolic directions are shown using double and triple arrowheads (triple
arrowheads denote the stronger direction), single arrowheads denote nonhyperbolic
directions (and the directions are deduced using higher order terms).

1.2.1.3 Entry chart k3

Similarly, we can study the entry/exit chart k3 (1.49c), found by setting x̄ = −1 in (1.47).
Writing (1.45), in coordinates (r3, y3, ε3), we find

dr3

dt
= r2

3(1− y3),(1.68a)

dy3

dt
= r3

(
2y2

3 − 2y3 + ε3

)
,(1.68b)

dε3

dt
= −3ε3r3 (1− y3) .(1.68c)
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Transforming time as to divide the right hand side of (1.68) by r3, we find

dr3

dt3
= r3(1− y3),(1.69a)

dy3

dt3
= 2y2

3 − 2y3 + ε3,(1.69b)

dε3

dt3
= −3ε3 (1− y3) ,(1.69c)

where dt3 = r3dt. There are two equilibria of (1.69),

(1.70) C3,1 = {(r3, y3, ε3)|(r3, y3, ε3) = (0, 1, 0)},

and the other at

(1.71) C3,2 = {(r3, y3, ε3)|(r3, y3, ε3) = (0, 0, 0)}.

Linearising around (1.69) around C3,1,

(1.72)
d

dt3

r3

y3

ε3

 =

1 0 0

0 −2 1

0 0 −3


r3

y3

ε3

 ,

We find that the corresponding Jacobian has three nonzero eigenvalues 1, -2, and -3. Linearising
around C3,2, we find

(1.73)
d

dt2

r3

y3

ε3

 =

0 0 0

0 2 1

0 0 0


 r3

y3 − 1

ε3

 ,

and the corresponding eigenvalues are 0 (twice) and 2 (once). Hence, the dynamics in chart k3

are described by Figure 1.10b.

1.2.1.4 Entry chart k5

Furthermore, we can study the dynamics of the side of the sphere where y > 0 using the chart
k5 (1.49e). Writing (1.45) in k5,

dx5

dt
=

1

2
r5

(
2x2

5 − ε5x5 − 2
)
,(1.74a)

dr5

dt
= −1

2
r2

5ε5,(1.74b)

dε5

dt
= −3

2
r5ε

2
5.(1.74c)
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Transforming time, attempting to desingularise r5 = 0,

dx5

dt5
=

1

2

(
2x2

5 − ε5x5 − 2
)
,(1.75a)

dr5

dt5
= −1

2
r5ε5,(1.75b)

dε5

dt5
= −3

2
ε2

5.(1.75c)

There are two sets of equilibria

C5,1 = {(x5, r5, ε5)|(x5, ε3) = (1, 0), r5 > 0},(1.76)

and

C5,2 = {(x5, r5, ε5)|(x5, ε3) = (−1, 0), r5 > 0}.(1.77)

The only nonzero eigenvalues of the Jacobian of the linearisation of (1.75) around C5,1 and C5,2

are 2 and −2 respectively. However, since y is always decreasing (1.45b), we can determine the
direction of dynamics along the centre manifolds extending from C5,1 and C5,2 (see Figure 1.10d).

1.2.1.5 Matching across charts

Since we have now analysed the dynamics in each of the coordinate charts, we now hope to
match across them, to piece together complete orbits.

Firstly, we find that C5,2 7→ C3,2 using k53 (1.50e), and C2,2 7→ C5,1 using k25 (1.50d). This
occurs due to the overlaps of the charts k2 and k5, and k5 and k3. Secondly we find that the
two branches the parabola y1 = x2

1 reach the equator of the blowup at {C5,1|r5 = 0} and
{C5,2|r5 = 0} in the chart k5 using the transformation k13 (1.50b). Hence the orbit γ1 in the
scaling chart is backwards asymptotic to C5,2. Finally, we find that the orbit γ1 is forwards
asymptotic to the equilibrium C3,1 in the chart k3 using the transformation k1,3.

In conclusion, we can piece together the dynamics of (1.45) in the limit ε → 0 from the
dynamics in the separate charts (see Figure 1.11). Whilst studying the perturbed problem (for
0 < ε � 1 involves more detail, here, like in the sequel, we use this blowup simply as a way
to gain better insight about the possible dynamics for the perturbed problem. Nonetheless,
standard tools of dynamical systems are applicable to study dynamics away from r = 0 and
ε̄ = 0.
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x̄

ȳ

γ1

(a)

x̄

ȳ

γ1

(b)

Figure 1.11: Representative solutions on the surface of the sphere r = 0 and in the
plane ε̄ = 0 in the blowup of the fold. Orbits on the sphere correspond to the significant
orbits in the scaling chart shown in Figure 1.9. Perturbed solutions for 1� ε > 0 are
perturbations away from these solutions.

1.3 Outline

We have now introduced most of the necessary background, methods and theory for the following
chapters. Over the course of the sequel we shall study both the Painlevé paradox in 3D and
other mechanical problems that arise (those relating to to the study of spatial Coulomb friction..

In Chapter 2, we shall study the Painlevé problem using a constraint-based approach. We
make rigid body assumptions about the interaction between the rod and the surface. With this
unilateral constraint, we assume the normal reaction force compensates for other forces and
keeps the rod in contact with the rigid surface when slipping. We show that the resulting ODEs
demonstrate a lack of unique forward-time solutions. We then describe the geometry of the
problem and describe key features of the slipping dynamics. We also describe the importance of
the angular velocity Ψ in the 3D problem. Furthermore, we give a geometric justification for
the existence of physically significant orbits, ones which reach inconsistency from slipping, a
phenomenon that does not exist in the planar Painlevé problem.

In Chapter 3, we aim to “resolve the paradox” through the incorporation of compliance.
In this regularised system, we recover IWC where previously there had been a lack of unique
solutions. We use blowup to study important regimes and then match across them. We also
discover that the significant orbits in the rigid problem also undergo IWC in the compliant
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problem. In order to study the transition from slipping to sticking that occurs as part of IWC,
we regularise Coulomb friction by treating it as a nonsmooth limit of a smooth system.

In Chapter 4, we investigate this regularisation of Coulomb friction and generalise to a
broader class of systems of ODEs with isolated codimension-2 discontinuities. We present a
general framework for these codimension-2 problems, and give specific results for the local
dynamics in a class of problems, finding analogues for Filippov crossing, sliding and the Filippov
convention for the sliding vector field.

Finally, in Chapter 5, we discuss the broader implications of the thesis. In particular,
we propose that the approaches demonstrated in the thesis can be applied to other related
mechanical problems.
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Chapter 2

Constraint-based approach

In this chapter5, we analyse the rigid body equations (1.23). In particular, we highlight where
they break down, compare them with the 2D problem, and demonstrate the role of the azimuthal
angular velocity Ψ. Our focus is on the vertical acceleration ẇ = pFz + b.

2.1 Breakdown of rigid body equations

The Painlevé problem can be thought of [38, 77] as the linear complementarity problem (LCP)

(2.1) 0 ≤ Fz ⊥ z ≥ 0.

that is,

(2.2) z ≥ 0, Fz ≥ 0, z · Fz = 0.

When the rod slips along the surface z = 0, its tip must be in vertical equilibrium, that is,
w = ẇ = 0. In this case, solving ẇ = 0 in (1.23), we have 6

Fz = − b(Ψ,Θ, θ)

p(θ, ϕ;µ, α)

= −
(
Ψ2 cos2 θ + Θ2

)
sin θ − 1

1 + α+ α sin θ (µ cos θ sinϕ− sin θ)
.

(2.3)

So the LCP (2.1) with (2.3) has four modes, dependent on the signs of b and p 7.

b < 0, p > 0: From (2.3), we have Fz > 0 and the rod is slipping along the rough surface.

5This chapter is adapted from [17]. See Acknowledgements for contributions.
6During the review process for [17], a reviewer pointed out that that (2.3) stems from the contact problem

which is constructed from (2.1) assuming z = ż = 0 (see for instance chapter 5 in the third edition of the book
[14]), to get 0 ≤ Fz ⊥ z̈ ≥ 0.

7During the review process for [17], a reviewer pointed out that the fundamental theorem of complementarity
theory [33, 74] could be invoked when p > 0.
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b > 0, p > 0: Both components of the vertical acceleration ẇ acting on the rod tip are directed
away from the surface and lift-off occurs.

b < 0, p < 0: Both the free acceleration b and the vertical acceleration from contact forces pFz
act vertically downwards. This is inconsistent with our assumption of a rigid
surface and we have nonexistence of solutions to (1.23).

b > 0, p < 0: From (2.3), we have Fz > 0. But because the free acceleration b is upwards,
lift-off is still possible. So the motion of the rod is indeterminate and we have
nonuniqueness of solutions to (1.23).

Hence we need p < 0 to have a paradox. From (1.26), it is straightforward to show that
p < 0 when

(2.4) µ > µ∗P(ϕ;α) :=
2
√

1 + α

α| sinϕ|

for θ ∈ (θ−, θ+) where

(2.5) θ±(ϕ;µ, α) = arctan

(
−1

2
µα sinϕ± 1

2

√
µ2α2 sin2 ϕ− 4(α+ 1)

)
.

Similarly, solving p = 0 for ϕ, we find ϕ = ϕ± where

(2.6) ϕ∓(θ;µ, α) := −π
2
∓ arccos

(
1 + α cos2 θ

αµ sin θ cos θ

)
.

Remark 2.1. When ϕ = −π/2, (2.4) and (2.5) reduce to

(2.7) µP(α) := µ∗P(−π/2;α) =
2

α

√
α+ 1

and

θ1(µ, α) := θ−

(
−π

2
;µ, α

)
= arctan

(
1

2
µα− 1

2

√
µ2α2 − 4(α+ 1)

)
,

θ2(µ, α) := θ+

(
−π

2
;µ, α

)
= arctan

(
1

2
µα+

1

2

√
µ2α2 − 4(α+ 1)

)
.

(2.8)

corresponding to [42, eq. (2.13), (2.14)] respectively for the 2D Painlevé problem (Proposition 1.1).
The geometry of p(θ,−π/2;µ, α) is depicted in Figure 2.1.

Figure 2.2 shows an example of regions in which p < 0 for the 3D Painlevé problem. In
Figure 2.2a, p < 0 inside the blue cone where the state of the rod is either inconsistent or
indeterminate. In Figure 2.2b, we show where p < 0 in the (θ, ϕ)-plane. The bounds of the blue
region in the (θ, ϕ)-plane are important in the sequel. They can be determined as follows. From
(1.26), it can be shown by differentiation that when p = 0,

(2.9)
dϕ

dθ
=

2(µ cos 2θ sinϕ− sin 2θ)

µ sin 2θ cosϕ
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Figure 2.1: Geometry of p(θ,−π/2;µ, α) for different values of the coefficient of
friction: µ > µP(α), µ = µP(α), and µ < µP(α).
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Figure 2.2: Region, shown in blue, inside which p < 0 for α = 3, µ = 1.4 where
we have either inconsistency or indeterminacy. Here θ1 = 0.9702, θ2 = 1.2209 from
(2.8) and ϕ1 = −1.8807, ϕ2 = −1.2610 when θ = θP = 1.1071 from (2.11) and (2.10)
respectively: (a) in physical space, (b) in (θ, ϕ) space.
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The blue region in Figure 2.2b is bounded in θ when dϕ
dθ is infinite, that is, when cosϕ = 0,

ϕ = −π
2 where θ = θ1,2(µ, α) are given in (2.8). It is bounded in ϕ when dϕ

dθ = 0. This happens
when sinϕ = 1

µ tan 2θ, that is, when θ = θP(α) where

(2.10) θP :=
√

1 + α.

Hence ϕ ∈ (ϕ1, ϕ2) in Figure 2.2b where

(2.11) ϕ1,2(µ, α) := ϕ∓(θP(α);µ, α) = −π
2
∓ arccos

(
2
√

1 + α

αµ

)
and p(θP, ϕ1,2) = 0.

Therefore, the region where p < 0 can be written as{
(θ, ϕ)|ϕ ∈ (ϕ−(θ), ϕ+(θ)), θ ∈ (θ1, θ2)

}
,(2.12)

or equivalently {
(θ, ϕ)|θ ∈ (θ−(ϕ), θ+(ϕ)), ϕ ∈ (ϕ1, ϕ2)

}
,(2.13)

for µ > µP(α) (see Figure 2.3).
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Figure 2.3: Figure showing (a) θ±(ϕ;α, µ) given in (2.5) and (b) ϕ±(θ;α, µ) (2.6)
for α = 3 and µ = 1.4. Figures demonstrate the equivalence of (2.12) and (2.13).

2.2 Comparison with 2D problem

We compare the 2D and 3D problems, taking [38] α = 3, corresponding to a uniform slender
rod and µ = 1.4 > µP(3) = 4

3 from (2.7). Figure 2.4 shows, for Θ ≡ θ̇ > 0, the codimension-1

36



2.2. COMPARISON WITH 2D PROBLEM

0 π
4 θ1 θ2

π
2

θ

Θ

0

1

2

P+

Q+

• •

b = 0
\

p = 0
\/

Slipping

Lift-off

In
co
ns
is
te
nt

In
de

te
rm

in
at
e

(a) 2D motion, from [42]

0 π
4

π
2

θ

Θ

1

2

ϕ

−π
2 −π

0

b = 0
/

p = 0

/

(b) 3D motion, for Ψ = 0

Figure 2.4: Kinematics for Θ ≡ θ̇ > 0: (a) 2D motion, reproduced from [42]: the
curves b = 0 and p = 0 intersect at P+ and Q+. They separate phase space into four
regions, with different rigid body dynamics: slipping (b < 0, p > 0, in yellow), lift-off
(b > 0, p > 0, in orange), inconsistent (b < 0, p < 0, in lime) and indeterminate (b > 0,
p < 0, in purple). (b) 3D motion with Ψ ≡ ψ̇ = 0: the sets b = 0 and p = 0 intersect in
the Génot-Brogliato (or GB) manifold [106]. A paradox occurs inside the blue cylinder:
indeterminate above the surface b = 0 (in red), inconsistent below. Outside the blue
cylinder, we have lift-off above the surface b = 0 (in red), slipping below. The cross
section at ϕ = −π/2 gives (a). In both figures, we set α = 3, µ = 1.4.

surfaces where b = 0 (in red) and p = 0 (in blue). For the 2D problem (Figure 2.4a), these
surfaces are projected into (θ,Θ)-space, where they intersect at points P+ and Q+ (labelled
P+
c1, P

+
c2 respectively in [38, fig. 2]). For the 3D problem, these surfaces are shown for fixed Ψ = 0

and projected into (θ, ϕ,Θ)-space (Figure 2.4b), where they intersect at a closed curve. This
is the Ψ = 0 section of the Génot-Brogliato manifold (or GB manifold) [106]. In Figure 2.21,
we will see how this section varies for Ψ 6= 0. The 2D section at ϕ = −π

2 in Figure 2.4b gives
Figure 2.4a.

The surfaces b = 0 and p = 0, symmetric about Θ = 0 and ϕ = −π
2 , segment phase space

into four different regions corresponding to the four modes (slipping, lift-off, inconsistent and
indeterminate) of the LCP (2.1). In Figure 2.4a, these regions are labelled and a paradox (p < 0)
occurs between the blue lines p = 0. It is not possible to avoid a paradox whilst increasing θ. In
Figure 2.4b, a paradox occurs inside the blue cylinder p = 0: indeterminate above the surface
b = 0 and inconsistent below. Outside the blue cylinder p = 0, we have lift-off above the surface
b = 0 and slipping below. From (1.26), the shape of p = 0 is independent of Ψ and hence in 3D
it is always possible to avoid a paradox, if it occurs, by choosing the relative slip angle ϕ such
that either ϕ ∈ (−π, ϕ1) or ϕ ∈ (ϕ2, 0), see also Figure 2.2b.
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A figure similar to Figure 2.4 can be drawn for Θ < 0 where, for the 2D problem, the lines
p = 0 and b = 0 intersect at P− and Q− (labelled P−c1, P

−
c2 respectively in [38]) . But since there

is no effect on the kinematics, it is not shown here. However as we shall see in section 2.10, the
geometry of the dynamics in Θ > 0 is very different from that in Θ < 0.

2.3 Projections of the surfaces b = 0 and p = 0

In order to further understand the geometry of the Painlevé paradox in 3D we project the
surfaces b(θ,Ψ,Θ) = 0 and p(θ, ϕ) = 0 into (ϕ,Ψ,Θ) space for fixed θ (Figure 2.5), and into
(θ,Ψ,Θ) space for fixed ϕ (Figure 2.6).
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Figure 2.5: Figures (a)-(f) show the surfaces b(θ,Ψ,Θ) = 0 (in red) and p(θ, ϕ) = 0
(in blue) for significant values of fixed θ, projected into (ϕ,Ψ,Θ) space. All figures use
µ = 1.4, α = 3.
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Figure 2.6: Figures (a)-(f) show the surfaces b(θ,Ψ,Θ) = 0 (in red) and p(θ, ϕ) = 0
(in blue) for significant values of fixed ϕ, projected into (θ,Ψ,Θ) space. All figures use
µ = 1.4, α = 3.
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2.4 Physics of the paradox

Physically, this paradox occurs due to the moment induced by the friction at the contact. If the
rod is slipping along the rough surface and able to rotate, the force at the contact point can
cause the rod to accelerate angularly. If this angular acceleration is great enough, the resultant
vertical acceleration of the contact tip downwards can be greater than the acceleration of the rod
tip upwards due to the contact forces. This results in acceleration downwards into the surface,
contradicting the rigid body assumptions (see Figure 2.7).

slipping

rotating

(a)

cot θµ ≡ µ

FC FN

FT θµ

(b)

θµ

FC/m

(c)

θµ

θ̈l

FC/m

(d)

Figure 2.7: These figures demonstrate the physics of the “paradox”. We begin with
the rod slipping on a rough surface and able to rotate (a). While this is happening, the
surface is exerting both normal and tangential forces, denoted FN and FT respectively
(b). We can view these two forces as a single force contact force FC which will make
an angle θµ ≡ arctan (1/µ) with the surface. If this angle θµ is greater than θ, and
the line of action of the force is above the rod, then this will cause an anticlockwise
moment which could make the rod fall (c). However, if θµ < θ then this will cause a
clockwise moment on the rod (d). If this angular acceleration is great enough, then
the component of the acceleration of the rod tip downwards from this moment may
be greater than the component of the contact force upwards. This would result in an
acceleration downwards which violates our assumption of the rigidity of the surface:
the “paradox”.
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2.5 Physical implications of parameter values

0 3 5 10 15 α′ 20
0

1
2

1

4
3

2

3

α

µP

Figure 2.8: Interpretation of the critical value of the coefficient µP(α).

We can draw conclusions about the implications of the condition (2.4). For example, in the
case of a uniform rod, the inertial ratio is given by α = 3 [16, 38, 42, 64]. The coefficient of
friction required for the paradox is therefore

(2.14) µ > µP(3) =
4

3
.

Whilst potentially achievable (perhaps for copper-copper, silver-silver or aluminium-aluminium
contact), the overwhelming majority of estimates for the coefficients of friction between materials
is below 1 [13, 25]. Therefore, for almost all combinations of materials for the rod and the
surface, the Painlevé paradox would not be achievable for a uniform rod.

Nevertheless, we see that the coefficient of friction required for the paradox is dependent
on the value of our initial ratio α. In the limit as α→∞, the necessary coefficient of friction
for p < 0 tends to 0. In this way, rods with very high values of α will not require such large
values for the coefficient of friction before the rigid body equations of motion exhibit the lack
of existence or uniqueness of solutions. But this raises further questions. How large does the
value of α have to be before the coefficient of friction becomes more physically realistic? How
physically realistic is that value of α?

Let us perform some “back of the envelope” calculations to answer some of these questions.
Let us suppose that the body is made up of a uniform rod bR of mass m and half-length l, and
a point mass bM of mass M fixed to the centre of the rod. Using this body, we can find

(2.15) αB =
(m+M)l2

ml2/3
=

3(m+M)

m
= 3

(
1 +

M

m

)
.
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Furthermore, instead of making our condition on µ in terms of α, we can find the necessary
value of α given µ,

(2.16) α ≥ αP(µ) :=
2(1 +

√
1 + µ2)

µ2
.

Suppose we consider a more physically common value of the coefficient of friction, say
µ = µ′ := 0.5. This would mean that the minimum required inertial ratio α = αP(1/2) ≈ 17,
which in turn means that the necessary ratio of the masses M/m ≈ 14/3. The point mass would
have to have more than four times the mass of the rod bR. This seems like a very unusual
composite body, should engineers be at all worried about Painlevé paradoxes?

Whilst in the case of this classical Painlevé problem the paradox may seem nonphysical, it
may well be that for other bodies, or when external forcing is added, that the parameter values
necessary for the paradox to occur may be more attainable. Furthermore, experimental evidence
exists that demonstrates that physical systems, such as double pendula interacting with moving
rail [112], do exhibit the "tangential impact" that are associated with these Painlevé paradoxes.

2.6 The role of Ψ

Now we investigate the role of the azimuthal angular velocity Ψ ≡ ψ̇. We shall see that when |Ψ|
is large enough, lift-off can occur, independently of a paradox (for p > 0), even when Θ = θ̇ = 0.
At even larger values of Ψ, indeterminacy can occur when Θ = 0 and the inconsistent region
can even disappear.

In numerical plots for α = 3 and µ = 1.4, between Ψ = ±1.56 (Figure 2.9a) and Ψ = ±1.7

(Figure 2.9b), we see that the area of lift-off (above b = 0, outside the cylinder p = 0) has
deformed so much that it is possible for the rod to lift off the rough surface even when Θ = 0.
The rotation about the vertical K axis in the inertial frame (see Figure 1.3) is sufficient to
generate an overall upwards acceleration of the rod tip. This can be thought of as resulting from
“centrifugal forces”; the rod tip accelerates upwards in similar way to the weights on a centrifugal
governor. A further increase to Ψ = ±2.2 (Figure 2.9c) sees the possibility of indeterminacy
(above b = 0, inside the cylinder p = 0) when Θ = 0. Then between Figure 2.9c and Figure 2.9d,
the inconsistent region (below b = 0, inside the cylinder p = 0) ceases to exist.

We now find expressions for these critical values of Ψ. The smallest value of Ψ where lift-off
can be obtained when Θ = θ̇ = 0 occurs when ∂b

∂θ = ∂b
∂Θ = 0 on b = 0. From (1.25), it can be

shown that this occurs when (θ,Ψ) = (θL,±ΨL), where

(2.17) sin θL :=
1√
3
,

so that

(2.18) θL := arcsin

(
1√
3

)
≈ 0.6155 ≈ 35.3◦,
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Figure 2.9: Surfaces b = 0 (in red) and p = 0 (in blue) as Ψ varies. In all figures we
set α = 3, µ = 1.4.
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and

(2.19) ΨL :=

(
3
√

3

2

) 1
2

≈ 1.6119.

We show this case as a 2D section with ϕ = −π
2 in Figure 2.10a and in 3D for ϕ ∈ (−π, 0]

in Figure 2.10b. Note that this potential for lift-off when Θ = θ̇ = 0 for Ψ > ΨL can occur even
when there is no paradox.
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(b) Ψ = ±ΨL, for ϕ ∈ (−π, 0].

Figure 2.10: Areas of different dynamics for 3D motion when Ψ = ±ΨL, from (2.19).
Lift-off can occur for |Ψ| ≥ ΨL even when Θ = θ̇ = 0: (a) ϕ = −π

2 , (b) ϕ ∈ (−π, 0].
In both figures we set α = 3, µ = 1.4.

The next critical value of Ψ occurs when the surface b = 0 is tangential to the cylinder p = 0

at θ = θ1, where θ1 is given in (2.8). A straightforward calculation shows that this happens
when Ψ = ±Ψ1, where

(2.20) Ψ1(µ, α) :=
(1 + tan2 θ1)

3
4

(tan θ1)
1
2

.

When α = 3, µ = 1.4, this corresponds to Ψ1 = 1.9480 with θ1 = 0.9702. We show this case in
Figure 2.11; as a 2D section with ϕ = −π

2 in Figure 2.11a and for ϕ ∈ (−π, 0] in Figure 2.11b.
When θL < θ1, this is the smallest value of Ψ for which indeterminacy can occur for Θ = 0. It
will be important to note that Ψ1 ≥ ΨL, with equality occurring when θ1 = θL ≈ 0.6155 from
(2.18), when

(2.21) µ = µL(α) :=
2α+ 3

α
√

2
.

For a uniform slender rod with α = 3, µL(3) = 3√
2
≈ 2.1213.
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(a) Ψ = ±Ψ1, for ϕ = −π
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Figure 2.11: Areas of different dynamics for 3D motion when Ψ = ±Ψ1, from (2.20).
The surface b = 0 is tangential to the cylinder p = 0 at θ = θ1: (a) ϕ = −π

2 , (b)
ϕ ∈ (−π, 0]). Both figures use α = 3, µ = 1.4.

The final critical value of Ψ occurs when the surface b = 0 is tangential to the cylinder p = 0

at θ = θ2, where θ2 is given in (2.8). This happens when Ψ = ±Ψ2, where

(2.22) Ψ2(µ, α) :=
(1 + tan2 θ2)

3
4

(tan θ2)
1
2

.

When α = 3, µ = 1.4, this corresponds to Ψ2 = 3.0097 with θ2 = 1.2209. We show this case in
Figure 2.12; as a 2D section with ϕ = −π

2 in Figure 2.12a and for ϕ ∈ (−π, 0] in Figure 2.12b.
When |Ψ| ≥ Ψ2, there is no inconsistent paradox.

46



2.6. THE ROLE OF Ψ

0 π
4

π
2

θ

Θ

0

1

2

Sl
ip
pi
ng

Lift-off

In
de

te
rm

in
at
e

(a) Ψ = ±Ψ2, for ϕ = −π
2 .

0 π
4

π
2

θ

Θ

1

2

ϕ

−π
2 −π

0

(b) Ψ = ±Ψ2, for ϕ ∈ (−π, 0].

Figure 2.12: Areas of different dynamics for 3D motion when Ψ = ±Ψ2, from (2.22).
The inconsistent paradox disappears for |Ψ| ≥ Ψ2: (a) ϕ = −π

2 , (b) ϕ ∈ (−π, 0]. Both
figures use α = 3, µ = 1.4.
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Figure 2.13: As Figure 2.4 but for α = 0.2 and µ = 25; areas of different dynamics
for 3D motion when Ψ = 0.
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Figure 2.14: As Figure 2.10 but for α = 0.2 and µ = 25: areas of different dynamics
for 3D motion when Ψ = ΨL. However, here lift-off is not possible along Θ = 0.
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Figure 2.15: As Figure 2.11 but for α = 0.2 and µ = 25: areas of different dynamics
for 3D motion when Ψ = Ψ1, from (2.20). The surface b = 0 is tangential to the
cylinder p = 0 at θ = θ1: (a) ϕ = −π

2 , (b) ϕ ∈ (−π, 0).
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Figure 2.16: As Figure 2.12 but for α = 0.2 and µ = 25: areas of different dynamics
for 3D motion when Ψ = Ψ2, from (2.22). The surface b = 0 is tangential to the
cylinder p = 0 at θ = θ2: (a) ϕ = −π

2 , (b) ϕ ∈ (−π, 0).

2.7 Generic behaviour

As we have seen, variation in Ψ causes changes to the shape of the surface b = 0 projected into
(θ, ϕ, θ) and hence to the topology of the GB manifold b = p = 0 in this view. In fact there are
three different mechanisms I-III by which the GB manifold deforms, for fixed α and µ, as Ψ

increases. They are illustrated in Figure 2.17, as follows:

I (µ < µP): there is no paradox and the rod can either slip or lift-off.

– For |Ψ| < ΨL, we have case 1 .

– For |Ψ| > ΨL, we have case 2 .

II (µP < µ < µL): p < 0 for θ ∈ (θ−, θ+) and so a Painlevé paradox can occur.

– For Ψ < |ΨL|, we have case 3 and all four modes (slipping, lift-off, inconsistent and
indeterminate) are possible.

– For ΨL < |Ψ| < Ψ1, lift-off is possible for Θ = 0; case 4 .

– For Ψ1 < |Ψ| < Ψ2, both lift-off and indeterminate modes as possible for Θ = 0;
case 6 .

– For |Ψ| > Ψ2, the inconsistent mode ceases to exist; case 7 .
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III (µ > µL): p < 0 for θ ∈ (θ−, θ+) and so a Painlevé paradox can occur. Mechanism III is
the same as mechanism II except when ΨL < |Ψ| < Ψ1, where the indeterminate mode
(rather than lift-off) is possible for Θ = 0; case 5 .

III
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Figure 2.17: Mechanisms I–III for the 3D Painlevé problem, for increasing Ψ. Proto-
typical cases are adapted from numerical examples for the sake of clarity.

The different types of behaviour labelled 1 – 7 occur for different values of Ψ as a function
of µ, as shown in Figure 2.18a. Mechanisms I–III occur at different values of µ as a function of
α, as shown in Figure 2.18b.

In Figure 2.18a, we show ΨL, Ψ1 and Ψ2 as functions of µ for α = 3 when Ψ > 0. At
µ = µP(α), we have

(2.23) Ψ1(µP(α), α) ≡ Ψ2(µP(α), α) = ΨP(α) :=

(
(2 + α)3

(1 + α)

) 1
4

.

So ΨP ≈ 2.3644 when α = 3. Recall that Ψ1 ≥ ΨL, with equality occurring when θ1 = θL ≈
0.6155 from (2.18), when µ = µL(α) (2.21).

In Figure 2.18b, we show µP(α) from (2.7) and µL(α) from (2.21). In Figure 2.19, we show
the critical polar angles θL, θ1, θ2 as functions of µ for α = 3. At µ = µP(α), θ1 = θ2 = θP(α),
see (2.10). It is straightforward to show that θ2 > θL ∀α, µ.

In Figure 2.17, we show only the generic cases of the geometry of the surfaces p = 0 and
b = 0 for fixed Ψ. In Figure A.1 in Appendix A, we show all the bifurcations between these
cases with changes in the variable Ψ and the parameter µ.
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Figure 2.18: (a) Regions where the seven types of kinematic behaviour occur in the
3D Painlevé problem for α = 3. (b) Regions where mechanisms I–III occur in the 3D
Painlevé problem. Note that µP(α) is given in (2.7), µL(α) in (2.21), ΨL in (2.19), ΨP
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2.8 GB manifolds

The GB manifold is the intersection of the codimension-1 sets b = 0 and p = 0, and hence is
codimension-2. For the 2D problem (ϕ = ±π/2, Ψ = 0) this intersection corresponds to 4 points
(P±, Q±) when projected into the plane (θ,Θ) if µ > µP , see Figure 2.4 and [38, fig. 2]. In 3D,
this set is a more complicated and higher dimensional object. In Figure 2.20, we show the sets
b(θ1(ϕ),Ψ,Θ) = 0 and b(θ2(ϕ),Ψ,Θ) = 0, a projection of the GB manifold into (ϕ,Ψ,Θ) space.

In 3D, for fixed Ψ, this set can take on a number of different forms, or it may not exist.
In Figure 2.21, we show the GB manifold in Θ ≷ 0 for representative values of Ψ when α = 3

with µ = 1.4 and µ = 6. There is no GB manifold in the 3D problem when |Ψ| > Ψ2. In
Figure 2.21a µ = 1.4 ∈ (µP, µL) corresponds to mechanism II. Since ΨL = 1.6118, Ψ1 = 1.9480

and Ψ2 = 3.0097 then Ψ = 0 (�) corresponds to type 3 behaviour, Ψ = 1.7800 (�) to type
4 and Ψ = 2.4789 (�) to type 6 . In Figure 2.21b µ = 6 > µL corresponds to mechanism III.
Since ΨL = 1.6118, Ψ1 = 2.1876 and Ψ2 = 17.8171 then Ψ = 0 (�) corresponds to type 3
behaviour, Ψ = 1.8997 (�) to type 5 and Ψ = 10.0024 (�) to type 6 .
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Figure 2.20: (a): projections of the GB manifold (b(Ψ,Θ, θ+(ϕ;α, µ)) = 0 and
b(Ψ,Θ, θ−(ϕ;α, µ)) = 0) into (ϕ,Ψ,Θ) space. (b): a slice of (a) for ϕ = −π/2, giving
(b(Ψ,Θ, θ2(α, µ)) = 0 and b(Ψ,Θ, θ1(α, µ),Ψ) = 0). Figure uses α = 3 µ = 1.4.
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Figure 2.21: GB manifolds for α = 3. (a) mechanism II: µ = 1.4 and Ψ = 0 (�),
1.7800 (�), 2.4789 (�). (b) mechanism III: µ = 6 and Ψ = 0 (�), 1.8997 (�), 10.0024
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2.9 Phase portraits

In [38], phase portraits in (θ,Θ)-space were a powerful tool in describing the qualitative behaviour
of the system. Now with the introduction of further dimensions in the 3D Painlevé problem,
phase portraits in state variables are far less intelligible, due to the need to take planar sections
of higher-dimensional space.

In Figure 2.22, we present phase portraits in (ϕ,Θ) space at varying sections of θ for fixed
values of the other variables and parameters. Clearly, this approach is limited; we may need to
find a useful projection in order to describe the dynamics (see section 2.10). Nonetheless, we
include further phase portraits for varying values of parameters and variables in Appendix B
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Figure 2.22: Phase portraits in (ϕ,Θ) for fixed Ψ = 0 and sections of θ. (a) θ = 0,
(b) θ = 0.48508, (c) θ = 0.97016, (d) θ = 1.0955, (e) θ = 1.2209, (f) θ = 1.3958 , (g)
θ = 1.5708. ϕ̇ = 0�, θ̇ = 0�, Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.4.

55



CHAPTER 2. CONSTRAINT-BASED APPROACH

2.10 Slipping dynamics near the GB manifold

In the previous section, we have seen how the surfaces b = 0 and p = 0 divide phase space.
But this kinematic analysis does not tell us how the rod, when slipping, can move into another
region (or mode). In this section, we consider the rod dynamics close to b = p = 0, in order to
see which transitions from slipping8 are allowed.

In the classical 2D Painlevé problem, for µ > µP, Génot and Brogliato [38] showed that
slipping trajectories starting with θ ∈ (0, θ1) cannot pass through the boundary p = 0 of the
Painlevé region without also passing through the lift-off boundary b = 0. In that case, the rod
must pass through the point P+ of Figure 2.4a (the rod can also stick, of course)9.

Génot and Brogliato [38] also found a new critical value µC(α) of the coefficient of friction
given, for general α [84], by

µC(α) :=
2√
3
µP(α) =

4

α

√
α+ 1

3
.(2.24)

The importance of µ > µC in the 2D problem is summarised in [84, Theorem 1]. For µ ∈ (µP, µC],
all slipping solutions undergo lift-off before reaching inconsistency; the point P+ cannot be
reached. For µ > µC, there is a region of initial conditions where P+ is reached, where the
normal reaction force becomes unbounded.

In this section, we investigate the slipping dynamics close to the GB manifold b = p = 0

in the 3D problem. In [16, section 7.2], it was shown that system trajectories can cross p = 0

transversely away from the GB manifold because p(θ, ϕ) tends to zero faster than b(Ψ,Θ, θ)
(see also numerical evidence in [16, Fig. 17]).

In fact we can show that crossing of p = 0 away from b = 0 is the norm in 3D and that the
2D problem is highly singular. From (1.23) and (1.26), we have that

ṗ|p=0 =

(
∂p

∂θ
θ̇ +

∂p

∂ϕ
ϕ̇

)
p=0

=
1

η
(1 + α)αµ cos2 θ cos2 ϕ b.

(2.25)

So, away from θ = π/2 and ϕ = −π/2, we find that sign(ṗ)|p=0 = sign(b). When slipping, we
have b < 0, so in this mode we have sign(ṗ)|p=0 = sign(b) < 0. Hence we move from p = 0 into
p < 0. But since b < 0, the rod moves into the inconsistent region.

There are two cases where sign(ṗ)|p=0 = 0 ∀Ψ. When θ = π/2, the rod is vertical and we
have excluded this case. The other exception is when ϕ = −π/2. When Ψ = 0, this is the
classical 2D Painlevé problem. In other words, the 2D problem is the exception in requiring that
p = 0 can be crossed only when b = 0.

8We do not consider movements from the other modes for obvious reasons.
9Trajectories starting with θ ∈ (θ2,

π
2

) are all directed away from the point Q+ in Figure 2.4a, so the line
p = 0 can not be crossed there at all. The line p = 0 can not be crossed from slipping anywhere in Θ < 0 [38].
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But the result in (2.25) implicitly assumes the existence of an inconsistent region for fixed
values of the parameters, which is not the case if |Ψ| > Ψ2. So we need to understand in more
detail the dynamics of the 3D problem (1.23) near b = p = 0.

To proceed, we disregard equations for x and y in (1.23), as they are cyclic. We shall not
consider them again.

Now when the rod is slipping, z = w = 0, and so Fz = −b/p from (1.23). If we substitute this
result into the remaining six equations in (1.23), we are left with a system with singularities at
η = 0 and p = 0 due to the appearance of b and p on the denominators. To facilitate studying this
system, we multiply the right-hand sides of the equations by ηp using the so-called multiplication
trick [20]; this is equivalent to a transformation of time t→ s given by ηpds = dt10. Whilst this
step preserves orbits, it reverses time for ηp < 0. Nonetheless, this does not concern us since we
are studying the rod when slipping where η, p > 0.

After this multiplication step, we find

(2.26) x′ = f(x)

where

(2.27) x = (η, ϕ, ψ,Ψ, θ,Θ)ᵀ,

differentiation with respect to the new time is denoted by a dash and

f(x) = (fη, fϕ, fψ, fΨ, fθ, fΘ)ᵀ(2.28)

=



η (−Q1b+A1p)

−Q2b+ (A2 − ηΨ)p

ηpΨ

η (−d1b+ c1p)

ηpΘ

η (−d2b+ c2p)).


(2.29)

The GB manifold ({p(θ, ϕ) = 0} ∩ {b(Ψ,Θ, θ) = 0}) is a set of equilibria of the rescaled
problem in (2.28). Let us then consider a point on the GB manifold, where θ = θGB, ϕ = ϕGB,
Ψ = ΨGB, Θ = ΘGB (such that b(ΨGB,ΘGB, θGB) = 0 and p(θGB, ϕGB) = 0). We linearise (2.26)
about this point to find



δη

δϕ

δψ

δΨ

δθ

δΘ



′

=



0 ηA1p,ϕ 0 −ηQ1b,Ψ η(A1p,θ −Q1b,θ) −ηQ1b,Θ

0 (A2 − ηΨ)p,ϕ 0 −Q2b,Ψ (A2 − ηΨ)p,θ −Q2b,θ −Q2b,Θ

0 ηΨp,ϕ 0 0 ηΨp,θ 0

0 ηc1p,ϕ 0 −ηd1b,Ψ η(c1p,θ − d1b,θ) −ηd1b,Θ

0 ηΘp,ϕ 0 0 ηΘp,θ 0

0 ηc2p,ϕ 0 −ηd2b,Ψ η(c2p,θ − d2b,θ) −ηd2b,Θ





δη

δϕ

δψ

δΨ

δθ

δΘ



(2.30)

10This multiplication trick shall be used frequently in what follows.
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where (p,q, b,q) =
(
∂p
∂q ,

∂b
∂q

)
, the square matrix is evaluated on b = p = 0, (that is, at θ = θGB,

ϕ = ϕGB, Ψ = ΨGB, Θ = ΘGB) and δη, δϕ, δψ, δΨ, δθ, and δΘ denote perturbations from a
point on the GB manifold.

Then (2.30) can be written in the form

(2.31) δx′ = Jx = A B δx =

(
∂

∂(p, b)
f

)(
∂

∂xᵀ
(p, b)ᵀ

)
δx

where J is the Jacobian of f(x) about δx = 0 and the matrices A and B are given by

A :=



fη,p fη,b

fϕ,p fϕ,b

fψ,p fψ,b

fΨ,p fΨ,b

fθ,p fθ,b

fΘ,p fΘ,b


=



ηA1 −ηQ1

A2 − ηΨ −Q2

ηΨ 0

ηc1 −ηd1

ηΘ 0

ηc2 −ηd2


(2.32)

and

B :=

(
p,η p,ϕ p,ψ p,Ψ p,θ p,Θ

b,η b,ϕ b,ψ b,Ψ b,θ b,Θ

)
(2.33)

=

(
0 p,ϕ 0 0 p,θ 0

0 0 0 b,Ψ b,θ b,Θ

)
.(2.34)

In order to understand the dynamics near b = p = 0, we must calculate the eigenvalues and
eigenvectors of the Jacobian J = A B. To do this we use the following result [9, Proposition
4.4.10].

Lemma 2.1. If an m×m matrix J can be expressed as the matrix product of J = A B (where
A is an m× n matrix, B is an n×m matrix and m ≥ n), then the eigenvalues of J are the n
eigenvalues of K = B A and m− n zero eigenvalues. If λ is an eigenvalue of K, then it is also
an eigenvalue of the J.

So in (2.31), since m = 6, the eigenvalues of J = A B are given by n = 2 eigenvalues of
K = B A, plus m− n = 4 zero eigenvalues. A straightforward calculation shows that K is given
by

K =

(
ηΘp,θ + (A2 − ηΨ)p,ϕ −Q2p,ϕ

η(Θb,θ + c1b,Ψ + c2b,Θ) −η(d1b,Ψ + d2b,Θ)

)
(2.35)

evaluated on b = p = 0. This is important as it shows that the local dynamics are dominated by
the dynamics corresponding to this Jacobian11.

11This useful structure results from the form of the dependence of (2.28) on terms b and p.
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We shall now show that K governs the rod dynamics in the (p, b)-plane near b = p = 0, the
GB manifold, since for y = (p, b)ᵀ,

(2.36) y′ = K y

to leading order.
Let y = (p, b)ᵀ be the variations in (p, b)ᵀ. Since B = ∂

∂x(p, b)
∣∣
δx=0

, we have y = Bδx to
leading order. Therefore

(2.37) y′ = Bδx′ = BABδx = Ky.

Hence K is the Jacobian of the rod dynamics in the (p, b)-plane about a point on the GB
manifold.

Remark 2.2. This finding that the matrix BA = K is equivalent to the Jacobian of (p, b), and
the ability to decompose (2.30) into matrices A and B, is not a coincidence. This results from
the from of the dependence of (1.23) on the contact forces, and hence the form of the dependence
of the desingularised equations (2.28), on p and b.

Using expressions in (1.24) for the coefficients Qi,Ai, di, ci, for (i = 1, 2), we find that

K ≡

(
K11 K12

K21 K22

)

=

αµ cos2 θ cos2 ϕ+ η[Θ(tan θ − (1 + α) cot θ) (1 + α)αµ cos2 θ cos2 ϕ

−Ψαµ sin θ cos θ cosϕ]

ηΘ cot θ η(2Ψαµ sin θ cos θ cosϕ− 2Θ tan θ)


(2.38)

and hence

det K = ηα cos2 θ cos2 ϕ
[
Θ
(
− 2 tan θ − (1 + α) cot θ

)
+ 2Ψαµ sin θ cos θ cosϕ

]
+ η2

[
Θ2
(
2(1 + α)− 2 tan2 θ

)
+ ΘΨαµ sin θ cos θ cosϕ

(
4 tan θ − 2(1 + α) cot θ

)
− 2Ψ2(αµ sin θ cos θ cosϕ)2

]
.

(2.39)

We note the following group symmetry:

K|ϕ=ϕ̄,Ψ=Ψ̄ ≡ K|ϕ=−π−ϕ̄,Ψ=−Ψ̄(2.40)

and the absence of any symmetry in Θ when θ ∈ [0, π/2] .
Locally to the GB manifold, y = (p, b)ᵀ = 0, the dynamics of the rod are approximately

governed by (2.36) and hence described by the eigenvalues λ± and eigenvectors e± of K.
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Let us briefly recap the properties of K for the planar (2D) problem, where the GB manifold
reduces to the four points P±, Q±, see Figure 2.4 and [38, fig.2]. From (2.38) with ϕ = −π

2 we
have

Kϕ=−π
2
≡ K2D = ηΘ

(
tan θ − (1 + α) cot θ 0

cot θ −2 tan θ

)
,(2.41)

evaluated at θ = θ1,2 from (2.8). The eigenvalues λ1,2 = λ±|ϕ=−π
2
and associated eigenvectors

e1,2 = e±|ϕ=−π
2
of K2D are

{λ1, λ2} = {ηΘ(tan θ − (1 + α) cot θ),−2ηΘ tan θ}(2.42)

and

{e1, e2} =

{(
3 tan2 θ − (1 + α)

1

)
,

(
0

1

)}
.(2.43)

It can be shown that λ1 = ηΘ(tan θ − (1 + α) cot θ) = 0 when µ = µP and that e1,1 =

3 tan2 θ − (1 + α) = 0 when µ = µC. In summary, for the 2D problem, with respect to the new
time introduced in (2.26),

• For µ ∈ [0, µP), there is no paradox.

• For µ ∈ (µP, µC):

– P+ is a stable node and P− is an unstable node; e1 lies in the first and third
quadrants of the (p, b) plane and e2 lies on the b-axis.

– Q± are both saddles.

• For µ > µC:

– P+ is a stable node and P− is an unstable node; e1 in the second and fourth quadrants
of the (p, b) plane and e2 lies on the b-axis.

– Q± are both saddles.

Mathematically we see that µ = µC corresponds to a change in the orientation of e1 relative to
e2.

The 2D problem is the ϕ = −π
2 section of the 3D problem with Ψ = 0 (Figure 2.4), so as we

move around the GB manifold, as in Figure 2.21, nodes at P± must undergo a bifurcation to
become saddles at Q±, for any value of µ > µP.

To fully understand the dynamics of the 3D problem, we will need a combination of analysis
and numerical methods. We show one numerical example in Figure 2.23, where we set η = 1,
Ψ = 0, α = 3 and µ = 1.4. Each figure shows the eigenvectors12 in the (p, b)-plane at selected

12The eigenvectors are shown in the new time introduced in (2.26). Orbits in the first, second and third
quadrants of Figures 2.23 to 2.26 are artefacts.
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points around the GB manifold with Θ > 0 (shown in Figure 2.4b). The shading corresponds to
that of Figure 2.4a. Figure 2.23b shows a stable node (the point P+ in Figure 2.4a). The strong
direction (in blue) is aligned with the b-axis and the weak direction (in red) lies in the first and
third quadrants. Figure 2.23f shows a saddle (the point Q+ in Figure 2.4a).

As we move through Figure 2.23, we move around the GB manifold from θ = θ1 to θ = θ2.
At a certain point, shown in Figure 2.23d, the eigenvalue λ+ passes through zero, as the stable
node becomes a saddle. At this point, the system is nonhyperbolic.

In each of Figures 2.23c to 2.23e, the orbit that approaches the GB manifold along the
(strong) stable manifold at that point acts as a separatrix13 between orbits that reach the
inconsistent region and those that lift off.

We can now see how the 2D picture (Figure 2.4a) fits into these results. Moving around the
GB manifold from Figure 2.23b, the eigenvector frame distorts away from the b-axis, allowing
movement from the slipping region (in yellow) to the inconsistent region (in lime). After the
bifurcation (Figure 2.23d), the eigenvector frame distorts back towards the b-axis, eventually
giving Figure 2.23f, the point Q+ in Figure 2.4a, where crossing p = 0 is no longer possible.

We show another numerical example in Figure 2.24, where η = 1, Ψ = 0, α = 3 and now
µ = 1.7 > µC = 8

3
√

3
≈ 1.5396. Figures 2.24b and 2.24f correspond to the 2D problem. In

Figure 2.24b, the strong direction (in blue) now lies in the first and third quadrants, with
the weak direction (in red) aligned with the b-axis. Moving around the GB manifold from
Figure 2.24b, the eigenvector frame distorts, with the weak (red) eigenvector moving off the
b-axis, into the first and third quadrants, allowing movement from the slipping region (in yellow)
to the inconsistent region (in lime). After the bifurcation (Figure 2.24d), the eigenvector frame
distorts even more, with the strong (blue) eigenvector eventually aligning itself with the b-axis,
where crossing the line p = 0 is no longer possible. The weak (red) eigenvector remains in the
first and third quadrants. In each of Figures 2.24c to 2.24e, the orbits that approach along the
(strong) stable manifold of points along the GB manifold act as a separatrix between orbits
that reach the inconsistent region and those that lift off.

Note that Figures 2.23b and 2.24b are the one qualitatively different pair between Figures 2.23
and 2.24, which suggests that the critical value µC maybe be less significant in the 3D problem.

Figures 2.23d and 2.24d show bifurcations on the GB manifold. In the following section
we embark on a general study of such bifurcations. However, we shall first give some general
statements about the generic dynamics local to the GB manifold.

Theorem 2.1. Local to the GB manifold but for ϕ 6= −π
2 :

1. For Θ > 0, there is a separatrix between orbits that reach the inconsistent paradox and
those that lift off, and there are three generic phase portraits in (p, b) space (shown in
Figure 2.26).

13We use the term separatrix to mean an orbit, or set thereof, which locally separates orbits that result in
different behaviours.
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Figure 2.23: Dynamics in the (p, b)-plane for the 3D Painlevé paradox for η = 1,
Ψ = 0, α = 3 and µ = 1.4 close to the GB manifold b = p = 0 when Ψ = 0.
The shading of each region corresponds to that of Figure 2.4a: slipping (yellow),
lift-off (orange), indeterminate (purple), inconsistent (lime). Each subfigure shows
eigenvectors at selected points around the GB manifold (see Figure 2.4b), with co-
ordinates (θ, ϕ,Ψ,Θ) = (θGB, ϕGB, 0,ΘGB), where ΘGB =

√
csc θGB from (1.25):

(θGB, ϕGB) are given by (b) (θ1,−π
2 ) = (0.9702,−1.5708) corresponding to P+ in

Figure 2.4a, (c) (1.0094,−1.7832), (d) (1.0953,−1.8793), (e) (1.1872,−1.7978) and
(f) (θ2,−π

2 ) = (1.2209,−1.5708), corresponding to Q+ in Figure 2.4a. The eigenvectors
are shown in the new time introduced in (2.26) which reverses t in p < 0. They are
not drawn to scale.
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Figure 2.24: As Figure 2.23, for µ = 1.7. Here (θGB, ϕGB) are given by (b) (θ1,−π
2 ) =

(0.7692,−1.5708), (c) (0.8517,−1.9969), (d) (1.0227,−2.2143), (e) (1.2562, 2.1107)
and (f) (θ2,−π

2 ) = (1.3333,−1.5708).

2. For Θ < 0, there are 5 generic phase portraits in (p, b) space (shown in Figure 2.26), and
depending on the local phase portrait either the rod remains slipping or reaches inconsistency
locally. Lift-off is not possible and the GB manifold is unstable.

Proof. Consider the Jacobian K from (2.38), with eigenvectors λ± and eigenvectors e± given
by

(2.44) e± :=

(
K12

λ± −K11
, 1

)ᵀ
.
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Figure 2.25: Possible dynamics in (p, b) space local to the GB manifold for Θ > 0. In
(a), the point on the GB manifold is a stable node where the strong eigenvector is in
the fourth quadrant and the corresponding strong stable manifold acts as a separatrix
between orbits that reach the inconsistent region and those that lift off. In (b), the
point on the GB manifold is a saddle where stable eigenvector is in the fourth quadrant
and the corresponding stable manifold acts as a separatrix between orbits that reach
the inconsistent region and those that lift off. In (c), the point on the GB manifold is
an unstable node where the weakly unstable eigenvector is in the fourth quadrant and
the corresponding weakly unstable manifold acts as a separatrix between orbits that
reach the inconsistent region and those that lift off.
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Figure 2.26: Possible dynamics in (p, b) space local to the GB manifold for Θ < 0. In
(a) and (b), orbits either remain slipping, following the (strongly) unstable manifold
of the GB manifold in the fourth quadrant, or reach the inconsistent region, tending
to the (strongly) unstable manifold of the GB manifold in the second quadrant. In
(c)-(e) all local orbits tend to reach inconsistency.

The product of the first component of the eigenvectors is(
K12

λ+ −K11

)(
K12

λ− −K11

)
=

K2
12

λ+λ− −K11 (λ1 + λ2) +K2
11

=
K2

12

(K11K22 −K12K21)−K11 (K11 +K22) +K2
11

≡ −K12

K21
.(2.45)

1. For Θ > 0, the product (2.45) is negative, from (2.38) and hence the eigenvectors are in
different quadrants. Furthermore, from the signs of the off-diagonal elements of K, we can
infer that a point on the GB manifold is either a stable node with the strong eigenvector in
the fourth quadrant (see Figure 2.25a), a saddle with the stable eigenvector in the fourth
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quadrant (see Figure 2.25b), or an unstable node with the weakly unstable eigenvector in
the fourth quadrant (see Figure 2.25c). Each of the cases in Figures 2.25a to 2.25c can be
realised.

2. For Θ < 0, the product (2.45) is positive, and hence the eigenvectors (if real) are in the
same quadrant. Furthermore, eliminating Ψ from K, we find

K11 = +2αµ cos2 θ cos2 ϕ− 2(1 + α)ηΘ cot θ − tr(K),(2.46)

K22 = −2αµ cos2 θ cos2 ϕ+ 2(1 + α)ηΘ cot θ + 2tr(K).(2.47)

where tr(K) is the trace of K. Hence, the determinant of K (2.39) can be written as the
following polynomial in tr(K):

det(K) = K11K22 −K12K21

= C2tr(K)2 + C1tr(K) + C0(2.48)

where

C2 := −2,

C1 := 6
(
αµ cos2 θ cos2 ϕ− (1 + α)ηΘ cot θ

)
,

C0 :=
(
−4η2Θ2(1 + α)2 cot2 θ + 7ηΘ(1 + α)αµ cot θ cos2 θ − 4α2µ2 cos4 θ cos4 ϕ

)
.

We can show that there are no negative roots of this polynomial in tr(K) when Θ < 0,
using Descartes’ rule of signs and so stable nodes and foci are not possible. From the signs
of the off-diagonal entries of K, we can deduce that only the phase portraits in Figure 2.26
are possible. Hence lift-off is not possible locally. Each case in Figures 2.26a to 2.26e can
be realised.

�

Corollary 2.1. For µ > µP, there exists an open set of initial conditions that reach the
inconsistent region from slipping in finite time.

Proof. Follows from Theorem 2.1. �

In Figures 2.26a and 2.26b, orbits either follow the (strongly) unstable manifold of the GB
manifold in the fourth quadrant, and remain slipping, or tend to the (strongly) unstable manifold
of the GB manifold in the second quadrant, reaching the inconsistent region. In Figures 2.26c
to 2.26e, all orbits reach the inconsistent region, whether tending to a (strongly) unstable
manifold in the third quadrant (Figures 2.26c and 2.26d) or rotating round the GB manifold
(locally a set of unstable foci Figure 2.26e).

In Figures 2.25a, 2.25b and 2.26a, there exist unique orbits which reach the GB manifold.
These types of orbit have been shown to be of interest [64].

65



CHAPTER 2. CONSTRAINT-BASED APPROACH

2.10.1 Zero eigenvalue

Figures 2.23 and 2.24 show that the dynamics of the 3D problem is governed, not only by
changes in the topology of the GB manifold b = p = 0, but also by changes in the sign of the
eigenvalues.

At least one of the eigenvalues vanishes when det K = λ+λ− = K11K22 − K12K21 = 0.
Hence, from (2.39), det K = 0 when

AΨ2 +BΨΘ + ΓΨ = ∆Θ2 + EΘ(2.49)

where

A := −2ηα2µ2 tan3 θ cos2 ϕ,

B := 2ηαµ cosϕ tan θ(1 + tan2 θ)[2 tan2 θ − (1 + α)],

Γ := 2α2µ2 cos3 ϕ tan2 θ,

∆ := 2η tan θ(1 + tan2 θ)2[tan2 θ − (1 + α)],

E := αµ cos2 ϕ(1 + tan2 θ)[2 tan2 θ + (1 + α)].

(2.50)

Equations (2.49) and (2.50) must be evaluated on the GB manifold b = p = 0. The term p(θ, ϕ)

is independent of Ψ and Θ (1.26), and b(Ψ,Θ, θ) = 0 can be written as

MΨ2 + Θ2 = N(2.51)

where

M :=
1

1 + tan2 θ
,

N :=
(1 + tan2 θ)

1
2

tan θ

(2.52)

(1.25). In (Ψ,Θ)-space, (2.49) is a conic, depending on the sign of the discriminant B2 + 4A∆,
and (2.51) is an ellipse. So in general, we can expect 0, 2 or 4 solutions of these equations,
corresponding to intersections of the two conics. Eliminating Θ from (2.49) and (2.51) gives a
quartic in Ψ:

4∑
i=0

CiΨ
i = 0,(2.53)

where

C4 := (A+M∆)2 +MB2,

C3 := 2[AΓ +M(Γ∆− EB)],

C2 := Γ2 − 2∆N(A+M∆)−NB2 +ME2,

C1 := 2N(EB − Γ∆),

C0 := N(N∆2 − E2).

(2.54)
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Since the Ci are all real, we do indeed have either 0, 2 or 4 real roots for Ψ, which will depend
on η in general.

A theoretical analysis of (2.53) becomes unwieldy very quickly. In order to progress, we
focus on the case Ψ = 0 and on the behaviour near µ = µP for Ψ 6= 0.

2.10.2 The case Ψ = 0

When Ψ = 0, we show that unstable foci can exist on the GB manifold, as well as nodes and
saddles, but only in Θ < 0. From (2.38), a focus occurs when (K11 −K22)2 + 4K12K21 < 0.
Setting Ψ = 0 in (2.38), we see that

(K11 −K22)2 + 4K12K21 = R2Θ2 +R1Θ +R0(2.55)

where

R2 := η2[3 tan θ − (1 + α) cot θ)]2,

R1 := 2ηαµ cos2 θ cos2 ϕ[3 tan θ + (1 + α) cot θ],

R0 := α2µ2 cos4 θ cos4 ϕ.

(2.56)

The quadratic (2.55) is always positive when Θ > 0, and so foci do not occur on the GB manifold
in this case.

But it is possible for (K11 −K22)2 + 4K12K21 < 0 for µ > µC when Θ ∈ (Θ−,Θ+) where

Θ± := − αµ cos2 θ cos2 ϕ

η[
√

3 tan θ ±
√

(1 + α) cot θ]2
< 0.(2.57)

In this case the real part of the corresponding eigenvalue is given by 1
2(K11 + K22) which is

always positive from (2.38) for Θ < 0. So any focus that exists for Ψ = 0 is always unstable.

Numerical results show that unstable foci can also occur in Θ < 0 when Ψ 6= 0, see
section 2.11.

When Ψ = 0, (2.53) reduces to

C0 = 0 ⇐⇒ N∆2 − E2 = 0,(2.58)

since N 6= 0 in general14. After a lengthy calculation, (2.58) reduces to

αµ cos2 ϕ = ±2η tan
1
2 θ(1 + tan2 θ)

5
4

[(1 + α)− tan2 θ]

[(1 + α) + 2 tan2 θ]
(2.59)

where ± corresponds to Θ ≷ 0. We use (2.59) as a check on our numerical results in section 2.11.

14N = 0 corresponds to θ = π
2
, the case of the vertical rod, which we have excluded from our analysis.
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2.10.3 Behaviour near µ = µP

We consider (2.53) near µ = µP = 2
α

√
1 + α. From Figure 2.18a, we can see that any perturbation

analysis will tell us about bifurcations in the dynamics on the GB manifold for Ψ . ΨP, where
ΨP is given in (2.23).

At µ = µP we have ϕ = −π
2 and tan θP =

√
1 + α. Let us take

µ = µP(1 + ε2µ̂) =
2

α

√
1 + α(1 + ε2µ̂),

ϕ = −π
2

+ εϕ̂,

θ± = θP + εθ̂±,

(2.60)

where ε� 1 and µ̂ ≥ 0 since there is no paradox for µ < µP. Then

tan θ± ≈ tan θP + εθ̂±(1 + tan2 θP) =
√

1 + α+ (2 + α)εθ̂±(2.61)

and hence from (2.5) we have

θ̂± = ±
√

1 + α

2 + α

√
2µ̂− ϕ̂2.(2.62)

In addition, we note that cosϕ = cos(−π
2 + εϕ̂) ≈ εϕ̂.

So now we can obtain the leading order terms in the coefficients A,B,Γ,∆, E of (2.50) and
hence in the coefficients Ci of (2.53). After a lengthy calculation we find, to leading order, that
(2.53) becomes

4∑
i=0

Cεi Ψi = 0,(2.63)

where

Cε4 := (1 + α)2[2(2 + α)µ̂− ϕ̂2],

Cε3 ; = 0,

Cε2 := −(1 + α)
3
2 (2 + α)

3
2 [4(2 + α)µ̂− (3 + α)ϕ̂2],

Cε1 := 0,

Cε0 := (1 + α)(2 + α)4[2µ̂− ϕ̂2].

(2.64)

In Figure 2.27, we show agreement between (2.53) and (2.63) for ε2µ̂ = 0.01 when α = 3,
corresponding to mechanism II, Figure 2.17. There are several points to note. From the group
symmetry property (2.40), we plot results for cosϕ > 0 only. For |Ψ| < ΨL = 1.6119, the
perturbation analysis (2.63) in blue is in good agreement with the exact results (2.53) in red
and yellow, for this type 3 behaviour15.

15From (2.63), when Ψ = 0, we have simply Cε0 = 0 =⇒ µ̂ = 1
2
ϕ̂2 and so εϕ̂ ≈ ±0.1414 ≈ cosϕ, giving

symmetrically placed bifurcations around ϕ = −π
2
.
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Since here µ = 1.01µP ≈ 1.3467, we have that Ψ1 = 2.1526, Ψ2 = 2.6220. In Figure 2.27,
for ΨL < |Ψ| < Ψ1, we have type 4 behaviour. The positions of the bifurcations get closer to
ϕ = −π

2 , as the topology of the GB manifold is about to change. Here the agreement between
(2.63) and (2.53) is not so good. For Ψ1 < |Ψ| < Ψ2, agreement is poor, as the topology of the
GB manifold has completely changed.

0 0.05 0.1 0.15 0.2

−2

−1

0

1

2

cosϕ

Ψ

∑4
i=0C

ε
i Ψi = 0 (2.63)∑4

i=0CiΨ
i
∣∣∣
θ=θ+

= 0 (2.53)∑4
i=0CiΨ

i
∣∣∣
θ=θ−

= 0 (2.53)

Ψ = ±ΨL

Ψ = ±Ψ1

Ψ = ±ΨP

Ψ = ±Ψ2

Figure 2.27: Comparison of (2.53) and (2.63) for ε2µ̂ = 0.02, η = 1, and α = 3.
This figure demonstrates that the approximation breaks down for larger Ψ, when the
topology changes.

2.11 Putting it all together

In section 2.6, we saw the importance of Ψ in the topology of the GB manifold (to the extent
that it does not exist for |Ψ| > Ψ2). In section 2.10 we saw how the dynamics can vary on the
GB manifold. Here, we put both these effects together to provide a full picture of the geometry
of the 3D Painlevé paradox.

In Figure 2.28, we see the effect the increase in Ψ has on the dynamics when α = 3 for two
values of µ. The position of the zeros of det K around the GB manifold is a strong function
of Ψ. We demonstrate this asymmetry in another way in Figure 2.30, for α = 3, µ = 1.7 and
η = 10, where ΨP = 2.3644 and ΨL = 1.6119.

In Figure 2.31 we show the eigenvectors around the GB manifold when α = 3, µ = 1.7

and η = 10 for the case Ψ = 1.0620 from Figure 2.30. There are four critical points, labelled
(d), (h), (j) and (l). Since Ψ 6= 0, there is no symmetry about ϕ = −π/2 and hence we show
eigenvectors for ϕ ≷ −π/2. In every case, except (b) and (f) where ϕ = −π

2 , trajectories in the
slipping region (in yellow) can enter the inconsistent region (in lime).

Using numerical methods, Champneys and Várkonyi [106] found that trajectories are able
to reach p = 0 away from b = 0 in for the 3D problem. From their results [106, Figure 17], it is
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Figure 2.28: Topology and stability of the GB manifold(s) for varying Ψ when α = 3.
Stable node �, saddle �, unstable node �, and unstable focus �. GB manifolds are
shown for Ψ = 0, Ψ = (ΨL + Ψ1)/2, and Ψ = (Ψ1 + Ψ2)/2.
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Figure 2.29: Projections of the GB manifold (b(θ1(ϕ;α, µ),Ψ) = 0 and
b(θ2(ϕ;α, µ),Ψ) = 0) into (ϕ,Ψ,Θ) space, as in Figure 2.20 . Coloured by the stability,
as in Figure 2.28. At the extrema of the surface with respect to ϕ, both eigenvalues of
K reach zero. Figure uses α = 3 µ = 1.4.
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-0.5 0 0
0

1

2

3

4

cosϕ

Ψ

det K|θ+,Θ>0 = 0

det K|θ−,Θ>0 = 0

Ψ = Ψ1

Ψ = Ψ2

Ψ = 1.0620

Figure 2.30: Positions of the zeros of det K on the GB manifold, for α = 3, µ = 1.7
and η = 10. The section Ψ = 1.0620 is shown in Figure 2.31. Here Ψ1 = 1.6689 and
Ψ2 = 4.3121

evident that a separatrix exists between slipping trajectories that reach p = 0 and those that do
not. In Figure 2.32, we see that this separatrix corresponds to the eigenvector associated with
the leading eigenvalue of the linearisation of the system about the GB manifold16.

16Várkonyi, P. 2021 Personal Communication has pointed out that it was difficult to obtain the numerical
results in [106, Figure 17]. We can now see that this is because the small eigenframe rotation around the GB
manifold makes it difficult to find initial conditions between the eigenvector and p = 0.
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Figure 2.31: Eigenvectors along the GB manifold when α = 3, µ = 1.7 and η = 10
for Ψ = 1.062, with four critical points: (d), (h), (j) and (l). Since Ψ 6= 0, there is no
symmetry about ϕ = −π/2 and hence we show eigenvectors for ϕ ≷ −π/2.
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Figure 2.32: Numerical integration of the equations (2.26) demonstrates that the
separatrix between orbits that reach inconsistency (p = 0) and those that lift off
(b = 0) is tangent to the eigenvector corresponding to the leading eigenvalue of the
linearisation of the dynamics about each point on the GB manifold. Both solutions
are for α = 3 and µ = 1.4. Initial conditions: � θ(0) = 1.1067, η(0) = 2.1307,
ϕ(0) = −1.8913, Ψ(0) = −0.1027, Θ(0) = 0.9000; � θ(0) = 1.1031, η(0) = 2,
ϕ(0) = −1.9233, Ψ(0) = 0, Θ(0) = 0.9000. (a) Numerical integration shown in (p, b)
space. (b) Numerical integration shown in (θ, ϕ,Θ) space. The surface in green is
tangent to the eigenvector corresponding to the leading eigenvalue at each point along
the GB manifold. Matlab’s stiff solver ode15s was used with default tolerances.

2.12 Conclusion

We have studied the problem of a rigid body slipping along a rough horizontal plane with one
point of contact, subject to Coulomb friction.

In 2D, this is the celebrated Painlevé problem [85–87], which gives rise to paradoxes when
the coefficient of friction µ exceeds a critical value µP(α), which depends on the moment of
inertia of the rigid body.

In 3D, the critical value µ∗P(ϕ;α) is also dependent on the relative slip angle ϕ. We have
shown that it is possible to avoid an existing paradox by a judicious choice of ϕ (see Figure 2.2).

The 3D problem involves motion in the azimuthal direction ψ. We have shown that, in the
absence of motion in the polar direction θ, it is possible for the body to lift off the surface,
whether or not there is a paradox, when the azimuthal angular velocity Ψ = ψ̇ is such that
|Ψ| > ΨL, where ΨL is given in (2.19), see Figure 2.10.

There are two other critical values of Ψ; Ψ1 and Ψ2 . When

(2.65) |Ψ| >

Ψ1, µ ∈ (µP, µL]

ΨL, µ > µL

,
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the rigid body can undergo an indeterminate paradox even when the polar angular velocity
Θ = θ̇ = 0 (see Figure 2.11). When |Ψ| > Ψ2 > Ψ1, the inconsistent paradox vanishes (see
Figure 2.12).

These observations lead to the conclusion that there are three different mechanisms in the
3D Painlevé problem as Ψ increases, dependent on µ (see Figure 2.17).

When not sticking, the rigid body can exist in four modes: slipping, lift-off, inconsistent and
indeterminate. Transitions from slipping are of greatest interest. In the absence of a paradox,
the rigid body can either slip or lift off, depending on the sign of the free acceleration b, given
in (1.25). A paradox occurs whenever the quantity p, given in (1.26), becomes negative.

The surfaces b = 0 and p = 0 intersect in the GB manifold [106]. We analyse the dynamics
close to the GB manifold in section 2.10. In 2D, slipping trajectories cannot pass through p = 0

without also passing through b = 0 [38]. In 3D, slipping trajectories cross p = 0 away from the
GB manifold except when ϕ = −π

2 , and an open set of initial conditions that reach inconsistency
from slipping (Corollary 2.1). Hence the 2D problem is highly singular. For |Ψ| > Ψ2, the GB
manifold does not exist. In this case, slipping trajectories, which only exist in restricted parts of
phase space, may lift off (unless they stick).

We have discovered bifurcations in the dynamics on the GB manifold, which explain behaviour
in the 2D problem (see Figure 2.28), as well as changes in the topology of the GB manifold.
Finally, we have shown that there is a separatrix between orbits that reach inconsistency (p = 0)
and those that undergo lift-off (b = 0) tangent to the eigenvector corresponding to the smallest
eigenvalue of the linearisation of the dynamics about the GB manifold for Θ > 0 (see Theorem 2.1
and Figures 2.25, 2.26 and 2.32).

The discovery of the Painlevé paradoxes caused controversy because it implied that rigid
body theory and Coulomb friction could be incompatible. Lecornu [71] suggested that in order
to escape an inconsistent Painlevé paradox, there should be a jump in velocity (“ l’arcboutement
dynamique"). Subsequently this became known as impact without collision or tangential impact,
which was incorporated into rigid body theory [21, 57].

But real progress was made by taking some elasticity into account (contact regularisation)
[11, 14, 16, 32, 42, 64, 78, 81, 82, 99, 111]. Here the rod is assumed to be rigid, but the rough
surface is taken to be elastic. Now the friction-induced moment at the moving rod tip drives
the surface down until the rod, still in contact with the surface, stops sliding. With the couple
no longer acting, the surface rebounds and the rod lifts off. The analysis using this approach
has previously been carried out for the 2D problem [42]; we carry out its extension to the 3D
problem in the following chapter.
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Chapter 3

Compliance

In this chapter17, we assume that there is compliance at the point where the rod tip meets the
surface, when the two are in contact. We require the normal force to be nonnegative, as we do
not want to consider phenomena such as adhesion. We also require that the normal force is
PWS in (z, w); the surface cannot exert a force upon the rod when the two are not in contact,
and when in contact the normal reaction force is a function of the vertical position and velocity
of the rod tip. Hence, we take the normal reaction force to be given by

(3.1) Fz(z, w) = [fz(z, w)] :=

0 for z > 0

max {fz(z, w), 0} for z ≤ 0
,

noting the piecewise definition of square brackets [·] Assuming linear stiffness and damping, a
suitable function is given by

(3.2) fz(z, w) = ε−1
(
−ε−1z − δw

)
,

where ε is a small coefficient related to the stiffness, and δ is coefficient related to the damping.
In this way, like in [42, 64], we model the surface as being supported by a stiff spring and damper
system, which allows the surface to be compressed so that z < 0 (see Figures 3.1 and 3.2).
The particular scalings in this function (3.2) ensure that the critical damping coefficient is
independent of the small parameter ε [78].

Remark 3.1. It may be important to note that this force Fz(z, w) is nondimensionalised. The
true (dimensional) force has stiffness K = ε−2mg

l and damping ∆ = ε−1δm
√

g
l .

It will also be useful to study the nonsmooth limit of our regularised Coulomb friction as
it facilitates the discussion of “stability” of sticking. We will show that the resulting dynamics
when the rod tip is stuck are equivalent to using Newton’s laws when the lateral movement of

17This chapter is adapted from [18]. See Acknowledgements for contributions.
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η

θ̇ = Θ

η

ż = w

θ̇ = Θ

∆ = ε−1δ K = ε−2

Figure 3.1: Diagram demonstrating the particular form of compliance. The surface
is effectively modelled as being supported by a Hookean spring and linear damper (or
system thereof). The effective (nondimensional) stiffness is given be K = ε−2 and the
damping is given by ∆ = ε−1δ. The dimensional stiffness and damping are given in
Remark 3.1.
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Figure 3.2: As in Figure 1.3, but now with springs and dampers. Note the added
degree of freedom at the rod tip A.
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the rod tip is constrained. Therefore, substituting (3.1) into (1.23), we find

ẋ = η cos(ψ + ϕ), η̇ = Qξ1(θ, ϕ,R(η; ξ))Fz(z, w; ε) +A1(Ψ,Θ, θ, ϕ),

ẏ = η sin(ψ + ϕ), ηϕ̇ = Qξ2(θ, ϕ,R(η; ξ))Fz(z, w; ε) +A2(Ψ,Θ, θ, ϕ)− ηΨ,

ż = w, ẇ = pξ(θ, ϕ,R(η; ξ))Fz(z, w; ε) + b(Ψ,Θ, θ),(3.3)

ψ̇ = Ψ, Ψ̇ = dξ1(θ, ϕ,R(η; ξ))Fz(z, w; ε) + c1(Ψ,Θ, θ),

θ̇ = Θ, Θ̇ = dξ2(θ, ϕ,R(η; ξ))Fz(z, w; ε) + c2(Ψ, θ),

where the coefficients are given in (1.24) and (1.27).

3.1 Slow-fast setting

The equations (3.3) are singularly perturbed with respect to the small parameter ε. Through an
initial scaling (as in [42]) we can bring (3.3) into standard slow-fast form. Specifically, we apply
the scaling

(3.4) z = εζ,

and define

(3.5) f̂z(ζ, w) := εfz(εζ, w) = −ζ − δw

and

(3.6) F̂z(ζ, w) :=
[
f̂z(ζ, w)

]
.

Writing (3.3) in terms of ζ and rescaling time, we find

x′ = εη cos(ψ + ϕ), η′ = εA1(Ψ,Θ, θ, ϕ) +Qξ1(θ, ϕ,R(η, ξ))F̂z(ζ, w),

y′ = εη sin(ψ + ϕ), ηϕ′ = ε (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Qξ2(θ, ϕ,R(η, ξ))F̂z(ζ, w),

ζ ′ = w, w′ = εb(Ψ,Θ, θ) + pξ(θ, ϕ,R(η, ξ))F̂z(ζ, w),(3.7)

ψ′ = εΨ, Ψ′ = εc1(Ψ,Θ, θ) + dξ1(θ, ϕ,R(η, ξ))F̂z(ζ, w),

θ′ = εΘ, Θ′ = εc2(Ψ, θ) + dξ2(θ, ϕ,R(η, ξ))F̂z(ζ, w),

where (·)′ := d
dτ (·) and dτ

dt = ε−1. By inspection, this is a slow-fast system written in fast time,
where x, y, ψ, and θ are slow and the rest of the variables are fast.

Taking the limits ε→ 0 (rigid surface) and ξ → 0 (nonsmooth friction) for η > 0 (slipping),
and now using the smooth extension of (3.7), found by replacing F̂z(ζ, w) with f̂z(ζ, w), we
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obtain the layer problem

x′ = 0, η′ = Q1(θ, ϕ) f̂z(ζ, w),

y′ = 0, ηϕ′ = Q2(θ, ϕ) f̂z(ζ, w),

ζ ′ = w, w′ = p(θ, ϕ) f̂z(ζ, w),(3.8)

ψ′ = 0, Ψ′ = d1(θ, ϕ) f̂z(ζ, w),

θ′ = 0, Θ′ = d2(θ, ϕ) f̂z(ζ, w).

The set

(3.9) C = {(x, y, ζ, ψ, θ, η, ϕ, w,Ψ,Θ)|ζ = 0, w = 0}

contains critical points of (3.8). This set corresponds to the vertical equilibrium of the rod tip.
The linearisation of (3.8) about a point in C,

(3.10) (x, y, ζ, ψ, θ, η, ϕ, w,Ψ,Θ) = (x0, y0, 0, ψ0, θ0, η0, ϕ0, 0,Ψ0,Θ0),

gives a Jacobian with the characteristic polynomial

(3.11) λ8
(
λ2 + p(θ0, ϕ0)(δλ+ 1)

)
= 0

with only two nonzero eigenvalues

(3.12) λ±(θ0, ϕ0) = −δp(θ0, ϕ0)

2
± 1

2

√
δ2p(θ0, ϕ0)2 − 4p(θ0, ϕ0).

The eigenvectors corresponding to λ± are

(3.13) v± =

(
0, 0,

p

λ±
, 0, 0, Q1,

1

η
Q2, p, d1, d2

)ᵀ
.

When in the slipping region from the constrained problem, p > 0 and hence the real parts
of λ± are both negative. Physically, this means that the rod is in stable vertical equilibrium
at the surface. If p ≥ 4δ−2 both eigenvalues are real and negative (each point on C is a stable
node under the flow of (3.8)). If 0 < p < 4δ−2, λ± are a complex conjugate pair of eigenvalues
with negative real part (C is stable but with local spiralling dynamics under the flow of (3.8)).
For p = 0, λ± = 0 and C is not normally hyperbolic.

Within the inconsistent and indeterminate regions where p < 0, λ− < 0 < λ+ and the point
on C is a saddle with stable and unstable manifolds (tangent to v∓ respectively at the point on
C).

Hence, we have identified that whilst in p > 0 the rod can remain in stable vertical equilibrium,
within p < 0 the rod cannot. In section 3.2, we proceed to study the orbits that travel through
p = 0. In section 3.3, we study orbits within p < 0
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3.2 Slipping to inconsistent transition

It has previously been identified [16] that whilst in the classical (2D) Painlevé problem trajectories
do not reach p = 0 without also reaching b = 0. This is no longer the case in the 3D Painlevé
problem. In fact, a considerable range of initial conditions result in trajectories like these
(Figures 2.23, 2.24 and 2.32 and Theorem 2.1).

In the constrained system we cannot follow these solutions as they become inconsistent with
the rigid body assumptions. Instead, let us study these trajectories in the regularised (compliant)
system.

Starting from our equations of motion after our initial scaling (3.7) in the limit ξ → 0 for
η > 0

x′ = εη cos(ϕ+ ψ), η′ = εA1(Ψ,Θ, θ, ϕ) +Q1(θ, ϕ)F̂z(ζ, w),

y′ = εη sin(ϕ+ ψ), ηϕ′ = ε (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Q2(θ, ϕ)F̂z(ζ, w),

ζ ′ = w, w′ = εb(Ψ,Θ, θ) + p(θ, ϕ)F̂z(ζ, w),(3.14)

ψ′ = εΨ, Ψ′ = εc1(Ψ,Θ, θ) + d1(θ, ϕ)F̂z(ζ, w),

θ′ = εΘ, Θ′ = εc2(Ψ, θ) + d2(θ, ϕ)F̂z(ζ, w).

From Theorem 2.1, we find that trajectories reach p = 0 in finite time in the constrained
problem. To find if such orbits in the regularised problem enter p < 0 we shall look locally and
derive an extended system with p as a variable. The derivative of p with respect to the same
time as in (3.14) is

(3.15) p′ = εΠ(Ψ,Θ, θ, ϕ, η, p) + k(η, θ, ϕ, p)F̂z(ζ, w)

where

Π(Ψ,Θ, θ, ϕ, η) :=
∂p(θ, ϕ)

∂θ
Θ +

1

η

∂p(θ, ϕ)

∂ϕ
(A2(Ψ,Θ, θ, ϕ)− ηΨ)

=
1

η
αµ sin θ cos2 θ cos2 ϕ b(Ψ,Θ, θ) + p (Θ(cot θ − tan θ))

+Θ(tan θ − (1 + α) cot θ)−Ψαµ sin θ cos θ cosϕ

(3.16)

and

k(θ, ϕ, η, p) :=
1

η

∂p(θ, ϕ)

∂ϕ
Q2(θ, ϕ),

:= −1

η
((1 + α)− p)αµ cos2 θ cos2 ϕ,

(3.17)
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We can then write an extension of (3.14) as

x′ = εη cos(ϕ+ ψ), η′ = εA1(Ψ,Θ, θ, ϕ) +Q1(θ, ϕ)F̂z(ζ, w),

y′ = εη sin(ϕ+ ψ), ηϕ′ = ε (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Q2(θ, ϕ)F̂z(ζ, w),

ζ ′ = w, w′ = εb(Ψ,Θ, θ) + pF̂z(ζ, w),(3.18)

ψ′ = εΨ, Ψ′ = εc1(Ψ,Θ, θ) + d1(θ, ϕ)F̂z(ζ, w),

θ′ = εΘ, Θ′ = εc2(Ψ, θ) + d2(θ, ϕ)F̂z(ζ, w),

p′ = εΠ(Ψ,Θ, θ, ϕ, η, p) + k(η, θ, ϕ, p)F̂z(ζ, w)

Remark 3.2. Here, we are taking an extended system in (3.18), treating p as a variable. This
will be useful in later calculations due to the fact that neither θ nor ϕ can be written as a function
of the other on p(θ, ϕ) = 0 (see (2.5) and (2.6)).

Taking the layer problem of (3.18), the set C (3.9) is still a critical set, about which the
eigenvalues are

(3.19) λ± = −pδ
2
±
√
p2δ2 − 4p

2
.

Along the critical manifold C, we can see that the reduced problem is given by the set of ODEs

x′ = η cos(ϕ+ ψ), η′ = A1(Ψ,Θ, θ, ϕ),

y′ = η sin(ϕ+ ψ), ηϕ′ = A2(Ψ,Θ, θ, ϕ)− ηΨ,

ψ′ = Ψ, Ψ′ = c1(Ψ,Θ, θ),(3.20)

θ′ = Θ, Θ′ = c2(Ψ, θ),

p′ = Π(Ψ,Θ, θ, ϕ, η, p).

It is possible to show that Π(Ψ,Θ, θ, ϕ, η, p) can be negative near p = 0. Hence p can reach zero
along this slow manifold, at which point the critical manifold loses normal hyperbolicity since
λ±|p=0 ≡ 0.

In order to investigate the dynamics near p = 0 and discover what happens after the loss
of normal hyperbolicity, we will use geometric blowup (shown in Figure 3.3). In particular, we
blow up p = ζ = w = ε = 0 to a hyper-hemisphere, using the transformation

(3.21) p = r2p̄, ζ = r3ζ̄, w = r4w̄, ε = r5ε̄, r ≥ 0,
(
p̄, ζ̄, w̄, ε̄

)
∈ S3

+,

where

(3.22) S3
+ :=

{(
p̄, ζ̄, w̄, ε̄

)
|p̄2 + ζ̄2 + w̄2 + ε̄2 = 1, ε̄ > 0

}
.
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ϕ
θ

Θ

p = 0

(b)

(a)

p

ζ, w

ε

(b)

Figure 3.3: Adapted from [16], (a) depicts the orbits of the rigid body system studied
in Chapter 2 that we aim to track using the blowup in (3.21). (b) gives a geometric
interpretation of the blowup. The rod tip is in vertical equilibrium ζ = w = 0 whilst
p(θ, ϕ)→ 0. (b) sketches the blowup of ζ = w = p = ε = 0 in (3.21), which effectively
replaces each point where ζ = w = p = ε = 0 with the 3-(hemi)sphere (3.22).

ζ, w

p

ε

ζ̄ = −1— — p̄ = 1

/
ε̄ = 1

(a)

ζ, w

p

ε

(b)

Figure 3.4: Blowup of the transition from slipping to inconsistency. (a) Relevant
charts in the blowup (3.21). (b) The special solution along the surface of the hemisphere
of the blowup.

In the blowup, we proceed to study three charts,: the entry chart k1, the scaling chart k2, and
the exit chart k3. These are found by setting p̄ = 1, ε̄ = 1, and ζ̄ = −1 respectively in (3.21),

p̄ = 1 =⇒ k1 : p = r2
1, ζ = r3

1ζ1, w = r4
1w1, ε = r5

1ε1,(3.23)

ε̄ = 1 =⇒ k2 : p = r2
2p2, ζ = r3

2ζ2, w = r4
2w2, ε = r5

2,(3.24)

ζ̄ = −1 =⇒ k3 : p = r2
3p3, ζ = −r3

3, w = r4
3w3, ε = r5

3ε3.(3.25)

These charts are demonstrated in Figure 3.4.
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3.2.1 Entry chart: p̄ = 1

In order study orbits reaching p = 0 from p > 0 we use the p̄ = 1 chart (3.23) where (3.18)
becomes
(3.26)
x′ = r5

1ε1η cos(ϕ+ ψ), η′ = r5
1ε1A1(Ψ,Θ, θ, ϕ) +Q1(θ, ϕ)[−r3

1ζ1 − δr4
1w2],

y′ = r5
1ε1η sin(ϕ+ ψ), ηϕ′ = r5

1ε1 (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Q2(θ, ϕ)[−r3
1ζ1 − δr4

1w1],

ζ ′1 = r1w1 − 3
ζ1

r1
r′1, w′1 = r1ε1b(Ψ,Θ, θ) + [−r1ζ1 − δr2

1w1]− 4
w1

r1
r′1,

ψ′ = r5
1ε1Ψ, Ψ′ = r5

1ε1c1(Ψ,Θ, θ) + d1(θ, ϕ)[−r3
1ζ1 − δr4

1w1],

θ′ = r5
1ε1Θ, Θ′ = r5

1ε1c2(Ψ, θ) + d2(θ, ϕ)[−r3
1ζ1 − δr4

1w1],

ε′1 = −5
ε1

r1
r′1 r′1 =

1

2r1

(
r5

1ε1Π(Ψ,Θ, θ, ϕ, η, r2
1) + k(η, θ, ϕ, r2

1)[−r3
1ζ1 − δr4

1w1]
)
.

From now on, to be concise, we omit the dependence of functions, neglect cyclic variables x, y,
and ψ, and group similar equations. Transforming time in order to “divide out” a factor of r1

from the right-hand side, we find


η′

ηϕ′

Ψ′

Θ′

θ′

 = r2
1

r
2
1ε1


A1

A2

c1

c2

Θ

+


Q1

Q2

d1

d2

0

 [−ζ1 − δr1w2]

 ,


r′1
ε′1
ζ ′1
w′1

 =


1
2r1

−5
2ε1

−3
2ζ1

−2w1

(r2
1ε1Π + k[−ζ1 − δr1w1]

)
+


0

0

w1

ε1b+ [−ζ1 − δr1w1]



(3.27)

If we constrain the dynamics to the surface of the sphere r1 = 0 then (x, y, ψ, θ, η, ϕ,Ψ,Θ, r1)′ =

0, and

ε′1 = −5

2
ε1k[−ζ1],

ζ ′1 = w1 −
3

2
ζ1k[−ζ1],

w′1 = ε1b+ (1− 2w1k) [−ζ1],

(3.28)

Considering the smooth extension of (3.28) and linearising around the equilibrium ζ1 = ε1 =

w1 = 0, we find the Jacobian has a pair of imaginary eigenvalues ±i and a zero eigenvalue. The
eigenvector corresponding to the zero eigenvalue is (1, b, 0)ᵀ. Hence, we can suppose that, similar
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3.2. SLIPPING TO INCONSISTENT TRANSITION

to [64], there is an invariant manifold extending from ζ1 = ε1 = w1 = 0

ζ1 = bε1 − 3b3k2ε3
1 +O

(
ε4

1

)
,

w1 = b2kε2
1 +O

(
ε4

1

)
,

ε1 > 0

(3.29)

along which ε1 is locally increasing, since

ε′1 =
5

2
kbε2

1 +O(ε4
1) > 0,(3.30)

for small ε1 along the invariant manifold (3.29). Due to the imaginary pair of eigenvalues ±i,
we expect that locally there is rotation about this invariant manifold (3.29).

In Figure 3.5, we give a sketch of the first order approximation to the invariant manifold in
(3.29).

In Figure 3.6, we show numerical integration of (3.27) for initial conditions near (ζ1, w1) =

(0, 0). We see that orbits tend to follow the invariant manifold (3.29) up the sphere.

ε1

r1

ζ1

ζ1 = bε1
��
�

Figure 3.5: Sketch of the blowup chart k1 with the first order approximation to the
invariant manifold (3.29) labelled.

83



CHAPTER 3. COMPLIANCE

r1

ζ1

ε1

ζ1 = bε1

0.2
0.40-0.4-0.8

0

1

(a)
r1

0.2 0.3 0.4
0

1
0.5

F̂1

ε1

0

1

(b)

Figure 3.6: Figures demonstrating numerical integration of the equations in the chart
k1. For ε1 > 0 orbits still tend to follow close to the invariant manifold (3.29). In (a),
orbits are shown in (ζ1, r1, ε1) space, whilst in (b) orbits are shown in (F̂1, r1, ε1) space,
where F̂1 = −ζ1 − δr1w1. Initial conditions are given and described in Appendix C.1
and Table C.1.

3.2.2 Scaling chart: ε̄ = 1

To study orbits as they pass through p = 0, we study the ε̄ = 1 chart (3.24), where (3.18)
becomes

(3.31)

x′ = r5
2η cos(ϕ+ ψ), η′ = r5

2A1(Ψ,Θ, θ, ϕ) +Q1(θ, ϕ)[−r3
2ζ2 − δr4

2w2],

y′ = r5
2η sin(ϕ+ ψ), ηϕ′ = r5

2 (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Q2(θ, ϕ)[−r3
2ζ2 − δr4

2w2],

ζ ′2 = r2w2, w′2 = r2b(Ψ,Θ, θ) + p2[−r2ζ2 − δr2
2w2],

ψ′ = r5
2Ψ, Ψ′ = r5

2c1(Ψ,Θ, θ) + d1(θ, ϕ)[−r3
2ζ2 − δr4

2w2],

θ′ = r5
2Θ, Θ′ = r5

2c2(Ψ, θ) + d2(θ, ϕ)[−r3
2ζ2 − δr4

2w2],

p′2 = r3
2Π(Ψ,Θ, θ, ϕ, η, r2

2p2) + k(θ, ϕ, η, r2
2p2)[−r2ζ2 − δr2

2w2].

Rescaling time in order to divide out a factor of ε
1
5 ,

(3.32)

x′ = r4
2η cos(ϕ+ ψ), η′ = r4

2A1(Ψ,Θ, θ, ϕ) +Q1(θ, ϕ)[−r2
2ζ2 − δr3

2w2],

y′ = r3
2η sin(ϕ+ ψ), ηϕ′ = r3

2 (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Q2(θ, ϕ)[−r2
2ζ2 − δr3

2w2],

ζ ′2 = w2, w′2 = b(Ψ,Θ, θ) + p2[−ζ2 − δr2w2],

ψ′ = r4
2Ψ, Ψ′ = r4

2c1(Ψ,Θ, θ) + d1(θ, ϕ)[−r2
2ζ2 − δr3

2w2],

θ′ = r4
2Θ, Θ′ = r4

2c2(Ψ, θ) + d2(θ, ϕ)[−r2
2ζ2 − δr3

2w2],

p′2 = r2
2Π(Ψ,Θ, θ, ϕ, η, r2

2p2) + k(θ, ϕ, η, r2
2p2)[−ζ2 − δr2w2].

This is a sort of slow-fast system with respect to r2, where only ζ2 and w2 are fast.
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−1 0 1
−1

−0.5

0

w2

ζ2

(a)

−1 0 1

0

5
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w2

p2

(b)

−1 −0.5 0

0

5

10

ζ2

p2

(c)

0

-0.5
-1

ζ2
-1

0
1

w2

p̂2

0

5

10

(d)

Figure 3.7: Figures depicting the special solution in the chart k2 from the numerical
integration of (3.33). Cyan � indicates the nullcline ζ ′2 = 0, magenta � indicates the
nullcline w′2 = 0 and yellow � indicates the nullcline p̂′2 = 0 (which is also where
the rod lifts off in this chart ζ2 = 0). Initial conditions are given and described in
Appendix C.2 and Table C.2. ζ2, p2 and w2 all decrease.
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−1 0 1
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−0.5
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w2

ζ2

(a)

−1 0 1

0
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w2

p2

(b)

−1 −0.5 0

0

5
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p2

(c)

0
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-1

0
1

w2

p̂2

0

5

10
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Figure 3.8: Figures depicting an orbit close to the special solution in the chart k2

from the numerical integration of (3.33), as in Figure 3.7. This demonstrates that
orbits nearby the special solution tend to oscillate around the intersection of the
nullclines ζ ′2 = 0 and w′2 = 0, with a sort of contraction. Initial conditions are given
and described in Appendix C.2 and Table C.2. ζ2, p2 and w2 all tend to decrease.
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If we take the layer problem r2 = 0, x′ = ... = 0 and

ζ ′2 = w2,

w′2 = b(Ψ,Θ, θ) + p2[−ζ2],

p′2 = k(θ, ϕ, η, 0)[−ζ2].

(3.33)

From (3.17), we find that the term

(3.34) k(θ, ϕ, η, 0) = −1

η
(1 + α) cos2 ϕ cos2 θ ≤ 0,

and so for clarity, we set K := −k > 0. Similarly, since we are studying the boundary between
the slipping and inconsistent region, where b(Ψ,Θ, θ) < 0, we set B := −b > 0.

Using the smooth extension of (3.33), we can write a single nonlinear nonautonomous second
order ODE in p2

(3.35) p′′2 = −1

2
p2

2 −KBt+ κ,

where κ is an arbitrary integration constant satisfying initial conditions.
Through a transformation of dependent and independent variables given by

t =

(
12

KB

) 1
5

τ +
κ

KB
, p2 = −

(
12

KB

) 3
5

KBf,(3.36)

or conversely

τ =

(
KB

12

) 1
5 (
t− κ

KB

)
, f = −

(
KB

12

) 3
5 1

KB
p2,(3.37)

it is possible to show that (3.35) is equivalent to the type I Painlevé equation

(3.38)
d2f(τ)

dτ2
= 6f(τ)2 + τ

[29].
Whilst it is a satisfying mathematical coincidence that the governing equations of a scaled

version of what is often called the “Painlevé parameter” in a particular chart in the blowup of the
Painlevé paradox are equivalent to the type I Painlevé equation, this finding does somewhat limit
our analysis; we know that we cannot write an analytic solution for p2 in terms of elementary
functions (e.g. polynomial, rational, trigonometric, hyperbolic, and exponential functions and
finite product sums, products and compositions thereof)18.

Nevertheless, like many other special functions, much is known about type I Painlevé
equation[29].

In particular, it is known that [29, 56, 96]:
18This was the case in subsection 1.2.1.1, where the governing equation was the Airy equation, and is to be

expected (see Remarks 1.3 and 1.4).
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γP

γ1

6f(τ)2 + τ = 0

τ

f(τ)

Figure 3.9: Qualitative behaviour of solutions to type I Painlevé equation in (3.38).
The special solution γP is backwards asymptotic to the lower branch of the parabola
6f(τ)2 + τ .

• There is a special monotonically increasing solution of (3.38), γP, which is asymptotic to

(3.39) f(τ) ≈ −
√
−1

6
τ as τ → −∞.

• There are also solutions such that

(3.40) f(τ) = −
√
−1

6
|τ |+ δO|τ |−

1
8 sin (φ(τ)− θO) + o

(
|τ |−

1
8

)
) as τ → −∞,

where

(3.41) φ(τ) = 24
1
4

(
4

5
|x|

5
4 − 5

8
dOln|x|

)
,

and dO and θO are constants. These solutions oscillate around the special solution γP.

• Solutions f(τ) tend to ∞ as τ increases reaching a pole.

This behaviour is shown in Figure 3.9.
In terms of our variables, this special solution γP corresponds to a monotonically decreasing

solution for p2, which is asymptotic to

p2(t) =
√

2
√
−BKt+ κ as t→ −∞.(3.42)

This implies there are monotonically decreasing solutions for ζ2(t) and w2(t) which are asymptotic
to

ζ2(t) = − B√
2

(−BKt+ κ)−
1
2 as t→ −∞(3.43)
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and

w2(t) = −
√

2KB2

4
(−BKt+ κ)−

3
2 as t→ −∞.(3.44)

As we did in subsection 1.2.1, we can write these special solutions (3.42)–(3.44) in the entry/exit
chart k1, using the change of coordinates

(3.45) k1,2 : ζ1 = p2
− 3

2 ζ2, w1 = p2
− 4

2w2, ε1 = p
− 5

2
2 ,

we find

ζ1 = −Bε1,(3.46)

w1 = −KB2ε2
1.(3.47)

This means that the invariant manifold (3.29) observed in the chart k1 connects with this special
solution in chart k2. The special solutions for p2, ζ2, and w2 are monotonic decreasing and tend
to −∞, hence the orbit passes into the inconsistent region p < 0 and the rod begins to compress
the surface. Furthermore, from (3.33), for b < 0 and in the octant {(p2, ζ2, w2)|p2 < 0, ζ2 <

0, w2 < 0}, p′2, ζ ′2, w′2 < 0. Orbits in this octant shall be picked up in the following chart.

3.2.3 Exit chart: ζ̄ = 1

To follow the orbit as it enters p < 0 and ζ is decreasing, we study the chart k3 (3.25), found by
setting ζ̄ = −1 in (3.21)19. In this chart, (3.18) becomes

x′ = r5
3ε3 cos(ϕ+ ψ), η′ = r3

3

(
r2

3ε3A1 +Q1[1− δr3w2]
)
,

y′ = r5
3ε3 sin(ϕ+ ψ), ηϕ′ = r3

3

(
r2

3ε3 (A2 − ηΨ) +Q2[1− δr3w3]
)
,

r′3 = −1

3
r2

3w3, w′3 = r3

(
ε3b+ p3[1− δr3w1] +

4

3
w2

3

)
,(3.48)

ψ′ = r5
3ε3Ψ, Ψ′ = r3

3

(
r2

3ε3c1 + d1[1− δr3w3]
)
,

θ′ = r5
3ε3Θ, Θ′ = r3

3

(
r2

3ε3c2 + d2[1− δr3w3]
)
,

ε′3 =
5

3
r3ε3w3, p′3 = r3

(
r2

3ε3Π + k[1− δr3w3] +
2

3
p3w3

)
,

after temporarily omitting the dependence of functions.

We see that there is a common factor of r3 on the right-hand sides of (3.48). We can
desingularise r3 = 0 by transforming time such that we divide the right-hand sides of (3.48) by

19Whilst we could also use the chart found by setting p̄ = −1 as the exit chart, the resulting system of
differential equations is more tractable in the chart ζ̄ = 1.
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r3

(3.49)

x′ = r4
3ε3 cos(ϕ+ ψ), η′ = r2

3

(
r2

3ε3A1 +Q1[1− δr3w2]
)
,

y′ = r4
3ε3 sin(ϕ+ ψ), ηϕ′ = r2

3

(
r2

3ε3 (A2 − ηΨ) +Q2[1− δr3w3]
)
,

r′3 = −1

3
r3w3, w′3 = ε3b+ p3[1− δr3w1] +

4

3
w2

3,

ψ′ = r4
3ε3Ψ, Ψ′ = r2

3

(
r2

3ε3c1 + d1[1− δr3w3]
)
,

θ′ = r4
3ε3Θ, Θ′ = r2

3

(
r2

3ε3c2 + d2[1− δr3w3]
)
,

ε′3 =
5

3
ε3w3 p′3 = r2

3ε3Π + k[1− δr3w3] +
2

3
p3w3.

If we constrain (3.49) to the surface of the sphere r3 = 0, we find x′ = y′ = r′3 = ψ′ = θ′ =

η′ = ϕ′ = Ψ′ = Θ′ = 0 and are left with

w′3 = ε3b(Ψ,Θ, θ) + p̂3 +
4

3
w2

3,

ε′3 =
5

3
ε3w3,

p̂′3 = k(θ, ϕ, η, 0) +
2

3
p̂3w3.

(3.50)

If we further constrain (3.50) to the equator of the sphere, we find

w′3 = p̂3 +
4

3
w2

3,

p′3 = −K +
2

3
p̂3w3.

(3.51)

where K := −k(θ, ϕ, η, 0) as earlier. We find that there is a unique equilibrium of the system
at the equator r3 = ε3 = 0, where w3 = w∗3 := −1

23
2
3K

1
3 < 0 and p3 = p∗3 := −3

1
3K

2
3 < 0. The

linearisation of the system in (3.49) around this equilibrium gives 4 nonzero eigenvalues: three
negative eigenvalues

(3.52) λ1,− =
4

3
w∗3, λ2,− =

5

3
w∗3, and λ3,− = 2w∗3;

and one positive eigenvalue

(3.53) λ1,+ = −1

3
w∗3.

Due to the equilibrium being both unique and attracting on the sphere, we can be sure that the
special solution in subsection 3.2.2 is attracted to it.

The unstable manifold corresponding to λ1,+ is tangent to

(3.54) Γ1,+ =

{
(x, y, r3, ψ, θ, η, ϕ, w3,Ψ,Θ, ε3, p3)|w3 = w∗3 −

4

7
δw∗3

2r3, p3 = p∗3 −
3

7
Kδr3

}
.

Orbits (including the special solution) then tend to follow Γ1,+.Writing (3.54) in terms of
(ζ, w, p),

(3.55) p = p∗3(−ζ)
2
3 +

3

7
Kδζ, w = w∗3(−ζ)

4
3 − 4

7
δw∗3

2(−ζ)
5
3 .
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Here, p, w and ζ are all negative and decreasing, and we are led to believe that they become
O(1); the surface is beginning to become compressed, its rate of compression is increasing, and
the rod’s configuration is becoming further away from configurations where vertical equilibrium
are possible (p > 0).

In the following section we study orbits that begin when p < 0 and p = O(1) and show that
they undergo impact without collision (IWC).

3.3 Impact without collision

It has previously shown that for the regularised classical Painlevé problem, that when p < 0

and p = O(1), the rod undergoes IWC [81, 82]. This IWC was shown to take the form of three
successive modes of dynamics: slipping compression, sticking compression and lift-off [42]. In
this section we show that this series of modes also occurs in the 3D problem, when p < 0 and
p = O(1), but with additional complications at the transition from slipping to sticking. As a
result, the following sections will be organised as in the phases of IWC:

1. subsection 3.3.1 — Slipping compression

2. subsection 3.3.2 — Slipping-to-sticking and sticking compression

3. subsection 3.3.3 — Lift-off.

The dynamics of these modes occur at different scales; we will use the blowup method to match
the dynamics across these scales (and not to desingularise a nonhyperbolic point). As we are
extending the results of in [42] to 3D, the analysis is very similar.

Firstly, we use the blowup transformation

(3.56) (r, (ζ̄, w̄, ε̄)) 7→ (ζ, w, ε)

given by

(3.57) (ζ, w, ε) = r(ζ̄, w̄, ε̄), (r, (ζ̄, w̄, ε̄)) ∈ [0,∞)× S2
+,

where S2
+ is the unit hemisphere

(3.58) S2
+ :=

{
(ζ̄, w̄, ε̄) | ζ̄2 + w̄2 + ε̄2 = 1, ε̄ ≥ 0

}
.

We will overload the notation used in our previous blowup transformation.
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ε

(a)

w̄ ζ̄
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\
r = 0
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Figure 3.10: Sketch of the blowup of the point ζ = w = ε = 0, in (a), to the
(hemi)sphere ζ̄2 + w̄2 + ε̄2 = 1, ε̄ ≥ 0, in (b).

3.3.1 Slipping compression

In the scaling chart of the blowup (3.57), setting ε̄ = 1 we find the chart

(3.59) κ1 : ζ = r1ζ1, w = r1w1, ε = r1.

This transformation zooms in on ζ = 0 and w = 0. Using this substitution the equations in
(3.14) become

(3.60)

x′ = εη cos(ψ + ϕ), η′ = ε
(
A1(Ψ,Θ, θ, ϕ) +Q1(θ, ϕ)F̂z(ζ1, w)

)
,

y′ = εη sin(ψ + ϕ), ηϕ′ = ε
(

(A2(Ψ,Θ, θ, ϕ)− ηΨ) +Q2(θ, ϕ)F̂z(ζ1, w)
)
,

ζ ′1 = w1, w′1 = b(Ψ,Θ, θ) + p(θ, ϕ)F̂z(ζ1, w),

ψ′ = εΨ, Ψ′ = ε
(
c1(Ψ,Θ, θ) + d1(θ, ϕ)F̂z(ζ1, w)

)
,

θ′ = εΘ, Θ′ = ε
(
c2(Ψ, θ) + d2(θ, ϕ)F̂z(ζ1, w)

)
.

Now (3.60) is a slow-fast system in slow time where only ζ1 and w1 are fast and the rest of the
variables are slow.

In the layer problem of (3.60) (taking the limit ε→ 0), and within the inconsistent region
(where p < 0, b < 0) it is clear that there are no critical points because w′1 < 0 since F̂z ≥ 0.
However, if we take the smooth extension of F̂z to f̂z, there is a critical set

(3.61) C1 = {(x, y, ζ1, ψ, θ, η, ϕ, w1,Ψ,Θ)|ζ1 = b/p, w1 = 0)}.

This set lies within ζ1 > 0 and so is an artefact of the PWS system. In the indeterminate region
(where p < 0 and b > 0) this critical set is within ζ1 < 0 and exists within the PWS system.

The only nonzero eigenvalues of the Jacobian of (3.60) about C1 in the limit ε→ 0 are λ±,
as in (3.19). The unstable and stable manifolds of C1 corresponding to λ± respectively, are
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tangent to

(3.62) γu,s
1 (x0, y0, ψ0, θ0, η0, ϕ0,Ψ0,Θ0) =

{
(x, y, ζ1, ψ, θ, η, ϕ, w1,Ψ,Θ)|

(x, y, ψ, θ, η, ϕ,Ψ,Θ) = (x0, y0, ψ0, θ0, η0, ϕ0,Ψ0,Θ0),

w1 = λ±(ϕ0, θ0)

(
ζ1 −

b (Ψ0, θ0,Θ0)

p (ϕ0, θ0)

)
, F̂z(ζ1, w1) > 0

}
.

Within the inconsistent region, trajectories near to ζ = w = 0 tend to follow the unstable
manifold of C1, with both ζ1 and w1 decreasing . In the indeterminate region, the stable manifold
of C1, γs

1, acts as a separatrix of trajectories that undergo IWC and those that lift-off; either ζ1

and w1 both decrease or increase. Phase portraits of the layer problem of (3.60) are shown in
Figure 3.11.

w1

ζ1
C1

γu
1 HHH

γs
1IWC

(a)

w1

ζ1

C1

γu
1

γs
1IWC

Lift-off

(b)

Figure 3.11: Phase portraits of the layer problem of (3.60), for both the inconsistent
(a) and indeterminate (b) regions. The region where F̂ (ζ1, w1 > 0) is shown in gray.
In (a), the critical set of the smooth extension of the layer problem of (3.60) C1 exists
with in ζ1 > 0 and is an artefact of the PWS system. Its stable and unstable manifolds
(γs

1 and γu
1 ), however, do extend into the PWS system. In (b), this set C1 is within

F̂ (ζ1, w1 > 0) and exists in the PWS system. Its stable manifold γs
1 acts a a separatrix

of solutions that undergo IWC and those that lift off. These figures are effectively
identical to [42, Figures 4 & 5].

To study the dynamics as the surface is compressed further, we use the chart

(3.63) κ2 : ζ = −r2, w = r2w2, ε = r2ε2,

found by setting ζ̄ = −1 in the blowup (3.57). The coordinate transformation between κ2 and
κ1 is given by

(3.64) κ1,2 : ζ1 = −ε−1
2 , w1 = ε−1

2 w2, r1 = ε2r2.
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Writing γu
1 (from (3.62)) in the chart κ2 using (3.64), we find

(3.65) γu
1 (x0, y0, ψ0, θ0, η0, ϕ0,Ψ0,Θ0) =

{
(x0, y0, r2, ψ0, θ0, η0, ϕ0, w2,Ψ0,Θ0, ε2)|

w2 = −λ+ −
λ+b

p
ε2, r2 = 0, ε2 > 0

}
.

Furthermore, in this chart, (3.14) becomes

(3.66)

x′ = εη cos(ψ + ϕ), η′ = r2 (ε2A1(Ψ,Θ, θ, ϕ) +Q1(θ, ϕ) (1− δw2)) ,

y′ = εη sin(ψ + ϕ), ηϕ′ = r2 (ε2 (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Q2(θ, ϕ)) (1− δw2)) ,

r′2 = −r2w2, w′2 = ε2b(Ψ,Θ, θ) + p(θ, ϕ)(1− δw2) + w2
2,

ψ′ = εΨ, Ψ′ = r2 (ε2c1(Ψ,Θ, θ) + d1(θ, ϕ) (1− δw2)) ,

θ′ = εΘ, Θ′ = r2 (ε2c2(Ψ, θ) + d2(θ, ϕ) (1− δw2)) ,

ε′2 = ε2w2.

Along the equator (r2 = 0, ε2 = 0), there are two sets of equilibria of (3.66),

(3.67) M± = {(x, y, r2, ψ, θ, η, ϕ, w2,Ψ,Θ, ε2)|r2 = 0, ε2 = 0, w2 = −λ∓} .

The linearisation of the system around each set equilibria M± gives a Jacobian with three non
zero eigenvalues: Λ±1 = −λ∓, Λ±2 = λ∓, and Λ±3 = δp− 2λ∓ = ±

√
p(pδ2 − 4). Constrained to

the sphere r2 = 0, M+ is a saddle whilst M− is a stable node.
When p < 0, Λ−1 = −λ+ < 0. The stable eigenspace of M− corresponding to the eigenvalue

Λ−1 is given by

(3.68) γ1
2(x0, y0, ψ0, θ0, η0, ϕ0,Ψ0,Θ0) =

{
(x0, y0, r2, ψ0, θ0, η0, ϕ0, w2,Ψ0,Θ0, ε2)|

w2 = −λ+ −
λ+b

p
ε2 +O(ε2), r2 = 0, ε2 > 0

}
.

This coincides with the unstable manifold of C1 written in the chart κ2 (3.65).
When p < 0, exactly one of the eigenvalues of the Jacobian aroundM− is positive (Λ−2 = λ+).

The corresponding unstable manifold of this critical set is given by

(3.69) γu
2 (x0, y0, ψ0, θ0, η0, ϕ0,Ψ0,Θ0) =

{
(x, y, r2, ψ, θ, η, ϕ, w2,Ψ,Θ, ε2)|

(x, y, ψ, θ, ε2) = (x0, y0, ψ0, θ0, 0),

(w2, η, ϕ,Ψ,Θ, θ) = (−λ+, η0, ϕ0,Ψ0,Θ0, θ0, 0)−λ+

p

(
∂p

∂ϕ

Q2

η

λ4
−

2λ2
− − p

,Q1,
Q2

η
, d1, d2

)
r2, r2 > 0

}
.

From (3.69), we can deduce that η decreases from the sign of Q1. Since η is in the denominator
of the w and ϕ terms, we will need to study (3.7) as η approaches 0.
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Figure 3.12: Phase portraits of the layer problem of (3.66), for both the inconsistent
(a) and indeterminate (b) regions. The region where F̂ (ζ1, w1 > 0) is shown in gray.

3.3.2 Slipping-to-sticking and sticking compression

To obtain (3.7), we had made assumptions that the tip was slipping. However, we have now
found that, following (3.69), the rod tip may stick. Here, through the regularisation of Coulomb
friction and blowup, we analyse the transition from slipping to sticking and the resulting sticking
dynamics20.

Starting from the equations after the initial scaling (3.7), we desingularise η = 0, rescaling
time such that we “multiply” the right-hand side by η

(3.70)

x′ = εη2 cos(ϕ+ ψ), η′ = η
(
εA1(Ψ,Θ, θ, ϕ) +Qξ1(θ, ϕ,R(η, ξ))F̂z(ζ, w)

)
,

y′ = εη2 sin(ϕ+ ψ), ϕ′ = ε (A2(Ψ,Θ, θ, ϕ)− ηΨ) +Qξ2(θ, ϕ,R(η, ξ))F̂z(ζ, w),

ζ ′ = ηw, w′ = η
(
εb(Ψ,Θ, θ) + pξ(θ, ϕ,R(η, ξ))F̂z(ζ, w)

)
,

ψ′ = εηΨ, Ψ′ = η
(
εc1(Ψ,Θ, θ) + dξ1(θ, ϕ,R(η, ξ))F̂z(ζ, w)

)
,

θ′ = εηΘ, Θ′ = η
(
εc2(Ψ, θ) + dξ2(θ, ϕ,R(η, ξ))F̂z(ζ, w)

)
.

The set where η = ξ = 0 is singular due to the nonsmoothness of R(η, ξ) there. However
we can gain smoothness through the use of blowup. In particular we blow up η = ξ = 0 to a
section of a torus using the blowup transformation21

η = rη̄, ξ = rξ̄, η̄, ξ̄, r ≥ 0,(3.71a)

(η̄, ξ̄, ϕ) ∈ T2
+ =

{
ϕ |ϕ ∈ S1

}
×
{(
η̄, ξ̄
)
|
(
η̄, ξ̄
)
∈ S1, η̄ ≥ 0, ξ̄ ≥ 0

}
.(3.71b)

20The theory behind this method is given in Chapter 4.
21Whilst we would like to use a spherical blowup, the equations in the scaling chart will be much simpler

using polar coordinates. Hence a toroidal blowup is convenient. Details of this blowup are given in Figure 3.13.
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Figure 3.13: Sketch of the geometry of the blowup of η, ξ = 0. In (a), we show (3.71)
as a toroidal blowup, with scaling chart found by setting ξ̄ = 1 and entry chart found
by setting η̄ = 1 in the blowup. In (b) and (c), we show an alternative representation
of the blowup: as a polar blowup of the set η = ξ = 0, made cylindrical by extending
with ϕ in (c). (c) can be considered as the “unwrapping” of (a). (d) shows the
alternative to the blowup used in (3.71): a spherical blowup of u = v = ξ = 0. Due
to the convenience of the trigonometric terms and a single entry chart, this spherical
blowup is not used.

To investigate how trajectories reach η = 0 we study the entry chart of the blowup (3.71)
found by setting η̄ = 1 (η = r2, ξ = r2ξ2). Here the equations become

(3.72)

x′ = εr2
2 cos(ϕ+ ψ), r′2 = r2

(
εA1(Ψ,Θ, θ, ϕ) +Qξ1(θ, ϕ, R̃(ξ2))F̂z(ζ, w)

)
,

y′ = εr2
2 sin(ϕ+ ψ), ϕ′ = ε (A2(Ψ,Θ, θ, ϕ)− r2Ψ) +Qξ2(θ, ϕ, R̃(ξ2))F̂z(ζ, w),

ζ ′ = r2w, w′ = r2

(
εb(Ψ,Θ, θ) + pξ(θ, ϕ, R̃(ξ2))F̂z(ζ, w)

)
,

ψ′ = r2εΨ, Ψ′ = r2

(
εc1(Ψ,Θ, θ) + dξ1(θ, ϕ, R̃(ξ2))F̂z(ζ, w)

)
,

θ′ = r2εΘ, Θ′ = r2

(
εc2(Ψ, θ) + dξ2(θ, ϕ, R̃(ξ2))F̂z(ζ, w)

)
,

ξ′2 = −ξ2

(
εA1(Ψ,Θ, θ, ϕ) +Qξ1(θ, ϕ, R̃(ξ2))F̂z(ζ, w)

)
.

where

(3.73) R̃(ξ2) ≡ R(r2, r2ξ2) =
1√

1 + ξ2
2
.
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Along the equator of the torus r2 = ξ2 = 0, there are two classes of sets of equilibria of (3.72),

υ±1 =
{

(x, y, ζ, ψ, θ, r2, ϕ, w,Ψ,Θ, ξ2)|ϕ = ±π
2
, r2 = 0, ξ2 = 0

}(3.74)

and

υ±2 =

{
(x, y, ζ, ψ, θ, r2, ϕ, w,Ψ,Θ, ξ2)|ϕ =

π

2
± arccos

(
α sin θF̂z − ε

(
Ψ2 cos2 θ + Θ2

)
αµ cos θF̂z

)
, r2 = 0, ξ2 = 0

}(3.75)

To study the dynamics along η = 0 we use the ξ̄ = 1 chart (η = ξη1). Here we are left with
a slow fast system in fast time with respect to ξ

(3.76)

x′ = εξ2η2
1 cos(ϕ+ ψ), η′1 = η1

(
εA1(Ψ,Θ, θ, ϕ) +Qξ1(θ, ϕ, R̂(η1))F̂z(ζ, w)

)
,

y′ = εξ2η2
1 sin(ϕ+ ψ), ϕ′ = ε (A2(Ψ,Θ, θ, ϕ)− ξη1Ψ) +Qξ2(θ, ϕ, R̂(η1))F̂z(ζ, w),

ζ ′ = ξη1w, w′ = ξη1

(
εb(Ψ,Θ, θ) + pξ(θ, ϕ, R̂(η1))F̂z(ζ, w)

)
,

ψ′ = ξη1εΨ, Ψ′ = ξη1

(
εc1(Ψ,Θ, θ) + dξ1(θ, ϕ, R̂(η1))F̂z(ζ, w)

)
,

θ′ = ξη1εΘ, Θ′ = ξη1

(
εc2(Ψ, θ) + dξ2(θ, ϕ, R̂(η1))F̂z(ζ, w)

)
,

where η1 and ϕ are fast w.r.t. ξ and

(3.77) R̂(η1) ≡ R(ξη1, ξ) =
η1√

1 + η2
1

.

In the layer problem (limξ→0 (3.76)), x′ = ... = Θ′ = 0 and

η′1 = η1

(
εA1(Ψ,Θ, θ, ϕ) +Qξ1(θ, ϕ, R̂(η1))F̂z(ζ, w)

)
,

ϕ′ = εA2(Ψ,Θ, θ, ϕ) +Qξ2(θ, ϕ, R̂(η1))F̂z(ζ, w).
(3.78)

There are two generic classes of critical sets of this layer problem (3.78)

Σ±1 =
{

(η1, ϕ)|η1 = 0, ϕ = ±π
2

}
(3.79)

and

Σ±2 =

(η1, ϕ)|R̂(η1) = R̂±∗ := ∓
cos θ

(
αF̂z sin θ − ε

(
Ψ2 cos2 θ + Θ2

))
(1 + α cos2 θ)µF̂z

, ϕ = ±π
2

 .(3.80)

Firstly, we find that the Jacobians of (3.78) around Σ±1 are
(3.81)

±

(
−αF̂z sin θ cos θ + ε(Ψ2 cos2 θ + Θ2) cos θ 0

0 αF̂z sin θ cos θ − ε(Ψ2 cos2 θ + Θ2) cos θ

)
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respectively. Hence Σ±1 are saddles of (3.78).22

Secondly, for Σ±2 , because we are only considering η ≥ 0 (and hence 0 ≤ R̂ ≤ 1), at most
one of these solutions can exist: Σ+

2 if 0 < R̂+
∗ < 1, Σ−2 if 0 < R̂−∗ < 1. For p < 0 and ε small,

Σ−2 exists. It is possible to show that the Jacobian of (3.78) around Σ−2 is

(3.82)

(
−µ F̂zη∗1

(
1 + α sin2 θ

)
R̂′(η∗1) 0

0 −(1 + α)µR̂(η∗1)

)
,

which corresponds to a stable node under our assumptions.
We can construct the full phase portrait of the limit ε→ 0 of (3.70) in the blowup (3.71)

by piecing together the dynamics in η̄ = 1 and ξ̄ = 1 (Figure 3.14). Where p < 0 we are only
concerned with Figure 3.14d.

We can then find the slow flow of (3.76) along Σ2 is given by x′ = ... = ϕ′ = 0

(3.83)

ζ ′ = w, w′ =
(1 + α)

1 + α sin2 θ
F̂z + ε

(1 + α)b+ α cos2 θ

1 + α sin2 θ
,

ψ′ = εΨ, Ψ′ = εc1(Ψ,Θ, θ),

θ′ = εΘ, Θ′ =

(
ε

(
α sin θ cos θ

(
Ψ2 cos2 θ + Θ2

)
1 + α sin2 θ

+ c2

)
+
−α cos θ

1 + α sin2 θ
F̂z(ζ, w)

)
.

Finding the layer problem of (3.83) w.r.t ε (ε→ 0), x′ = ... = θ′ = 0 and

ζ ′ = w,

w′ =
(1 + α)

1 + α sin2 θ
F̂z(ζ, w) := pS(θ)F̂z(ζ, w),

Θ′ =
−α cos θ

1 + α sin2 θ
F̂z(ζ, w) := dS(θ)F̂z(ζ, w).

(3.84)

Since ψ′ = Ψ′ = 0 and ϕ = −π/2, the dynamics now follow slipping compression as in the 2D
problem [42, (2.9) and (4.28)] and the rod undergoes sticking compression until it lifts off.

22These artificial sets of equilibria are a result of the toroidal blowup in (3.71).
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(b) α = 10, µ = 0.75, θ∗ = 0.75

η
ϕ

\→
“push”

“pull”
/→

(c) α = 3, µ = 1.4, θ∗ = 0.5

η
ϕ

\→
“push”“pull”

/→

(d) α = 3, µ = 1.4, θ∗ = 1

Figure 3.14: Phase portraits of the limit ε → 0 of (3.70) in the blowup (3.71)
projected down onto the plane ξ = 0.

3.3.3 Lift-off

Qualitatively, we can see from (3.84), that w′ > 0 and so w increases. Therefore, w will change
sign from negative to positive. Accordingly ζ ′ will become positive and ζ will increase. At some
point F̂z(ζ, w) = 0 and the rod lifts off.

Solving (3.84), we find

ζ(τ) = Υ+e
υ+τ + Υ−e

υ−τ ,

w(τ) = υ+Υ+e
υ+τ + υ−Υ−e

υ−τ ,

Θ(τ) = Θ0 + dS(θ)

(
Υ+

υ+
(1 + δυ+) (1− eυ+τ ) +

Υ−
υ−

(1 + δυ−) (1− eυ−τ )

)
,

(3.85)
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where

Υ± :=
w0 − ζ0υ∓
υ∓ − υ±

≡ ∓ w0 − ζ0υ∓√
δ2pS(θ)2 − 4pS(θ)

,(3.86)

υ± :=
−δpS(θ)±

√
δ2pS(θ)2 − 4pS(θ)

2
.(3.87)

We can determine the time at which lift-off occurs τLO, by solving F̂z(ζ(τLO), w(τLO)) for
τLO:

F̂z(ζ(τLO), w(τLO)) = −Υ− (1 + δυ−) eυ−τLO −Υ+ (1 + δυ+) eυ+τLO(3.88)

τLO =
1

υ+ − υ−
ln

(
−Υ−

Υ+

(1 + δυ−)

(1 + δυ+)

)
(3.89)

=
1√

δ2p2
S − 4pS

ln

(
(ζ0υ− − w0)2

w2
0 + pζ2

0 + δpζw0

υ2
−
υ2

+

)
.(3.90)

Lift-off therefore occurs when

ζ = ζ(τLO) = −δw(τLO),(3.91)

w = w(τLO),(3.92)

Θ = Θ(τLO).(3.93)

Since the smooth extension of (3.84) is a linear ODE, we can study the qualitative behaviour,
through the eigenvectors and eigenvalues around the equilibrium ζ = w = 0. We find that there
are two eigenvalues with negative real parts υ±. If δ2 < 4/pS, υ± are a complex conjugate
pair and there is anticlockwise rotation Figure 3.15b; we say that the system is underdamped.
If δ2 > 4/pS, υ± are real with corresponding eigenspaces ζ = 1

υ±
w Figure 3.15a; we say that

the system is overdamped. It is straightforward to show that Fz
(

1
υ±
w,w

)
= 0, and so these

eigenspaces are artefacts of the PWS system in (3.84). The two possible phase portraits of (3.84)
are shown in Figure 3.15.

Once the rod has lifted off we should consider (3.83) where F̂z = 0, which give the equations
for the rod in free-fall. Here, the rod will eventually fall back down onto the surface.
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ζ = 1
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(a) Overdamped

ζ

w

F̂z(ζ, w) > 0

(b) Underdamped

Figure 3.15: Phase portraits of the sticking system before lift off in both the over-
damped (a) and underdamped (b) systems. The point of lift-off (w(τLO), ζ(τLO)) is
shown in green •.

3.3.4 Piecing together full IWC orbit

Piecing together the dynamics from subsections 3.3.1 and 3.3.2, we can find the full IWC solution
(Figure 3.16a).

η

w

ζSlipping
compression

γu

Sticking

Lift-off

(a)

ηϕ

γu

“Pull” “Push”

(b)

Figure 3.16: IWC. (a) Dynamics of the scaled vertical position ζ, vertical velocity
w and horizontal speed η of the rod tip; with the phases of IWC. (b) Dynamics of
the speed η and relative slip angle ϕ. Top-down view of the blowup of η = ξ = 0 to a
torus.
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3.4 Conclusions

In section 3.2, we have shown that the significant orbits discussed in Theorems 4.4 and 4.5 and
[16], enter p < 0 in the compliant problem. Once within p < 0, these orbits begin to undergo
the first phase of IWC: slipping compression.

In section 3.3, we have demonstrated that like in the planar problem IWC is possible in
both the indeterminate and inconsistent regions from the rigid-body problem. We have also
found that the saddle structure around the vertical equilibrium of the rod tip found in the
compliant problem also exists in the 3D problem. We find that IWC still follows 3 phases:
slipping compression, sticking compression, and lift-off. However, in the 3D problem, due to
the nonlinearities associated with spatial Coulomb friction, the study of the transition from
slipping to sticking is more complicated. Here, we have dealt with this approach of regularising
and blowing-up the discontinuity in Coulomb friction rather informally. In the following chapter,
we shall discuss the theory of this approach more rigorously.
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Chapter 4

Regularisation of isolated
codimension-2 discontinuity sets

In this chapter23, we study regularisation of isolated codimension-2 discontinuity sets, studying
the theory of the method used in subsection 3.3.2. For example, in the previous chapter we
studied a regularised form of Coulomb friction without ensuring that our choice of regularisation
function would not affect the resulting dynamics. In this chapter, we shall show that for Coulomb
friction, this choice does not affect the dynamics.

4.1 Introduction

Piecewise-smooth (PWS) dynamical systems with discontinuity sets (along which the dynamics
switches) are widely used to model systems with impact, dry friction, juddering, and buckling
and in the study of relay control systems, mechanical systems, etc. [8, 49].

In the study of planar motion of rigid bodies with point contact, Coulomb friction results in
a codimension-1 discontinuity set, where the relative velocity between two bodies is zero (see
Figure 4.1a). But the existing framework for the study of these systems does not generalise
to spatial motion of rigid bodies with point contact. In this case, Coulomb friction results
in a codimension-2 discontinuity set [2, 3], where both components of the relative velocity
between two bodies are simultaneously zero (see Figure 4.1b). Whilst friction is the primary
motivation for this work, isolated codimension-2 discontinuity sets also occur in unit vector
control design. For a brief introduction to unit control see [103, §3.5], and for an example of a
resulting codimension-2 problem see [75].

We define our codimension-2 discontinuity problem as consisting of ODEs

(4.1) ẋ = F(x), x ∈ Rn\Σ,

23This chapter is adapted from [19]. See Acknowledgements for contributions.
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v

FfFf = µN

Ff = −µN

(a)

u

v Ff = −µN v̂

(b)

Figure 4.1: The discontinuity sets for Coulomb friction with (a) one and (b) two
degrees of freedom in the relative velocities (shown in green) between objects, where
µ is the coefficient of friction and N is the normal reaction force. In (a), we have
a planar rigid body with point contact, where Coulomb friction is given by Ff =
−µNsign(v) = −µN v

|v| and there is a codimension-1 discontinuity at v = 0. In (b), we
have a spatial rigid body system with point contact where Coulomb friction is given by
Ff = −µN v̂ = −µN v

|v| where v = (u, v) and there is a codimension-2 discontinuity
at u = v = 0.

where F is a vector field that is sufficiently smooth and well defined everywhere except on a
connected codimension-2 set Σ and ˙(·) = d

dt (·) denotes differentiation with respect to time t.
Furthermore, the vector field F has a well-defined directional limit onto Σ for each angle of
approach (as with spatial Coulomb friction in Figure 4.1b).

This type of nonsmooth system is related to standard PWS dynamical systems [36], which
consist of finitely many ODEs

(4.2) ẋ = Fi(x), x ∈ Qi ∈ Rn,

where each Fi is a sufficiently smooth vector field. Regions Qi are open sets separated by a
codimension-1 discontinuity set Σi,j at the boundary between Qi and Qj . When two of these
codimension-1 discontinuity sets intersect transversally, a codimension-2 discontinuity results
[26–28, 36, 48, 49, 55]. As noted in [2], we must distinguish between these sorts of codimension-2
problems and isolated codimension-2 problems described by (4.1), as demonstrated in Figure 4.2.
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Q1

Q3

Q2
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Σ2,4
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Σ1,3
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Σ1,2

(a)

Σ

�
�
��

(b)

Figure 4.2: The difference between (a) the intersection of two codimension-1 discon-
tinuity sets and (b) an isolated codimension-2 discontinuity set. In (a) trajectories
reach the intersection of the two discontinuities along the codimension-1 discontinuities
Σi,j . In (b) trajectories reach the codimension-2 discontinuity set Σ from a variety of
different directions that do not correspond to codimension-1 discontinuity sets. The
directional limit of F onto Σ is also shown (inset).

4.1.1 Deficiencies of the existing framework

Standard PWS systems with codimension-1 discontinuity sets display two generic types of
behaviour: crossing and sliding [36]. Crossing happens when trajectories pass through the
discontinuity set without remaining on it for any period of time. Sliding occurs when trajectories
reach the discontinuity set and continue along it. In many applications, it is then necessary
to define a sliding vector field (the flow along this discontinuity set), often using the Filippov
convention. These behaviours are shown in Figure 4.3a. If both vector fields are pointing into
(or out from) the switching surface, we have sliding. If one vector field points in whilst the other
points out, we have crossing.

With codimension-2 discontinuity sets, however, these definitions do not generalise intuitively.
In Figure 4.2b it is not clear whether trajectories that reach Σ should “slide” along it or “cross”
and leave it. Even if we can determine that there is sliding, how do we prescribe the sliding
flow?

Motivated by Coulomb friction, Antali and Stépán gave a generalisation of the framework
for standard (codimension-1) PWS systems to (codimension-2) extended Filippov systems [2].
They used the Filippov convention to construct the sliding vector field: a convex combination
of the vectors incident to the discontinuity set, that is tangent to the discontinuity set. They
noted that this convention does not generically give a unique sliding vector in the case of a
codimension-2 problem.
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Figure 4.3: Demonstration of the generic nonuniqueness of the Filippov sliding vector
field for codimension-2 discontinuity sets. In (a) the convex combination of the incident
vectors is one-dimensional and its intersection with the codimension-1 discontinuity
set Σ (where it exists) is generically unique. In (b) we see that, the convex hull of the
incident vectors is typically n-dimensional and its intersection with the codimension-2
discontinuity set Σ is (n− 2)-dimensional. Hence, there are uncountably many possible
vectors that are both a convex combination of the incident vectors vi and tangential
to Σ. By way of illustration, we show two candidate sliding vectors: v1,3 and v2,4. In
(c) we see the projection of (b) onto the (x, z) plane. The convex combination of v1

and v3 that is tangent to Σ (the z-axis), is the candidate sliding vector v1,3. In (d)
we see the projection of (b) onto the (y, z) plane. Applying the Filippov convention
to v2 and v4 gives the candidate sliding vector v2,4 6= v1,3.

Let us first consider a standard PWS system (Figure 4.3a). The Filippov convention provides
a unique sliding vector; the convex combination of two incident vectors spans a one-dimensional
line section and its intersection with the plane tangent to the discontinuity set Σ is therefore a
point (or the empty set in the case of crossing). Let us now consider the same definition when
applied to a codimension-2 problem (Figure 4.3b). Here the codimension-2 discontinuity set Σ

coincides with the z-axis and we show incident vectors: vi i ∈ {1 . . . 4}. The convex combination
of v1 and v3 gives one candidate v1,3 for the sliding vector (Figure 4.3c). But, the convex
combination of v2 and v4 gives another candidate sliding vector v2,4 6= v1,3 (Figure 4.3d). In
fact, there are uncountably many candidates for the sliding vector field that satisfy the Filippov
convention, given here by {λv1,3 +(1−λ)v2,4|λ ∈ [0, 1]}. This nonuniqueness should be expected
unless all the incident vectors are coplanar. The set defined by the convex combination of
incident vectors will generically be the same dimension as the space; the intersection of that set
with the discontinuity set will therefore be codimension-2.
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In this work, we use slow-fast theory, geometric singular perturbation theory (GSPT) and
blowup to study extended Filippov systems. This approach not only addresses the generic
nonuniqueness (Figure 4.3b) and the ambiguity about the definitions of sliding and crossing
(Figure 4.2b), but also allows the use of the powerful and well-understood methods from smooth
dynamical systems. We will study smooth but sharp systems as perturbations away from the
nonsmooth limit. An understanding of the relationship between a PWS system and a (stiff)
smooth system that approximates it is important, since it can reveal the robustness (or otherwise)
of the PWS system to smoothing perturbations, see [63].

We regularise the nonsmooth system (4.1), viewing it as the (suitably defined) limit of a
smooth system [102]. The resulting singularly perturbed smooth system has a hidden slow fast
structure in the smoothing parameter ε and GSPT can be applied. Fenichel’s theorems [35],
and blowup [31, 67] can be used to study this singularly perturbed problem: connecting the
dynamics approaching the discontinuity with the dynamics along it. This approach has proven
useful in the study of regularisations of both codimension-1 discontinuity sets [61, 63, 65, 102],
and their intersections [55] (Figure 4.2a). In fact, here we follow a very similar procedure to
[55], but now for isolated codimension-2 discontinuity sets.

4.1.2 Outline

In section 4.2, we introduce our notation and formalise what we mean by an isolated codimension-
2 discontinuity. In particular, we define a vector field V which depends upon a discontinuous
term e.

Then in section 4.3, we apply our GSPT approach to this general form of codimension-2
problem, which serves to demonstrate the procedure. In section 4.4, we study a more restrictive
class of problems where we find analytic results, allowing us to classify possible phase portraits.
In this class, the vector field V depends linearly upon the discontinuous term e, and we show
that our GSPT approach and the Filippov convention result in equivalent sliding vector fields;
see Theorem 4.3.

In section 4.5, we provide examples of the method’s use for physical applications, and
illustrate other phenomena.

4.2 Preliminaries

We consider the system (4.1), with a codimension-2 discontinuity set Σ of a vector field F. We
straighten out Σ at least locally so that Σ = {x = 0, y = 0, z ∈ Rn−2} or a subset thereof. Hence
we have F(x, y, z) where x ∈ R, y ∈ R and z ∈ Rn−2. We assume the following.

Assumption 4.1. F takes the form

(4.3) F(x, y, z) ≡ V(e(x, y), x, y, z),

107



CHAPTER 4. REGULARISATION OF ISOLATED CODIMENSION-2 DISCONTINUITY
SETS

where V : S1 × R2 × Rn−2 → Rn is sufficiently smooth in all its entries, and e : R2 \ {0} → S1

given by

(4.4) e(x, y) :=

(
x√

x2 + y2
,

y√
x2 + y2

)ᵀ
,

which corresponds to the unit vector pointing radially away from the origin at (x, y)ᵀ 6= 0.

The straightening of Σ and the geometrical interpretation of e are given in Figure 4.4.

Remark 4.1. There is a jump in e(x, y) at the origin. If we write e along a line, which passes
through the origin at a fixed angle θ, given by

(4.5) (x, y)ᵀ = l(cos θ, sin θ)ᵀ, l ∈ R,

then

(4.6) e(l cos θ, l sin θ) = sign(l)(cos θ, sin θ)ᵀ.

Along this line e results in a standard piecewise switch. From (4.6), we note that for both l > 0

and l→ 0+, we have

(4.7) e(l cos θ, l sin θ) ≡ (cos θ, sin θ)ᵀ.

From Assumption 4.1 it follows that there is a well-defined directional limit vector field
F∗(θ, z) given by

(4.8) F∗(θ, z) := lim
ε→0

F(ε cos θ, ε sin θ, z) = V((cos θ , sin θ)ᵀ, 0, 0, z),

that is sufficiently smooth in both θ and z.

HHj

Straightening

ΣHHj

Σ
@@I

y

x

z

(
x
y

) e(x
, y)

θ

F∗(θ, z)

Figure 4.4: Straightening of Σ so that Σ =
{
x = 0, y = 0, z ∈ Rn−2

}
and the geo-

metric interpretation of e.
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Hence, from now on, we consider the system

(4.9) (ẋ, ẏ, ż)ᵀ = V (e(x, y), x, y, z) ,

where z ∈ Rm,m = n− 2 > 0. It will often be useful to split (4.9) into two coupled ODEs

(ẋ, ẏ)ᵀ = U (e(x, y), x, y, z) ,(4.10a)

ż = W (e(x, y), x, y, z) .(4.10b)

Equation (4.10a) corresponds to dynamics normal to Σ, and (4.10b) corresponds to dynamics
tangent to Σ.

4.2.1 Dynamics near the discontinuity set

Following [2], we will now study (4.10) using polar coordinates (ρ, θ), where

(4.11) x = ρ cos θ and y = ρ sin θ,

with the aim of describing how solutions reach Σ. Hence, by substituting (4.11) into (4.10),
using the property in (4.7), and re-arranging, we find (4.10) becomes(

ρ̇

θ̇

)
=

(
1 0

0 1
ρ

)
R(θ)ᵀU ((cos θ, sin θ)ᵀ, ρ cos θ, ρ sin θ, z) ,

ż = W ((cos θ, sin θ)ᵀ, ρ cos θ, ρ sin θ, z) ,

(4.12)

where R(θ) is the rotation matrix

(4.13) R(θ) :=

(
cos θ − sin θ

sin θ cos θ

)
.

Notice that along Σ, which corresponds to ρ = 0, the dynamics is not defined. We therefore
transform to a new time T , given by dT = 1

ρdt, so that (4.12) becomes

d

dT

(
ρ

θ

)
=

(
ρ 0

0 1

)
R(θ)ᵀU ((cos θ, sin θ)ᵀ, ρ cos θ, ρ sin θ, z) ,

d

dT
z = ρW ((cos θ, sin θ)ᵀ, ρ cos θ, ρ sin θ, z) .

(4.14)

With this transformation, (4.14) is well-defined along Σ and orbits are preserved. Note that
trajectories can approach ρ = 0 in finite time in (4.12), whereas trajectories can only reach
ρ = 0 in infinite time in (4.14).

Since ρ = 0 is an invariant manifold of (4.14), equilibria of (4.14) exist when the θ component,

Θ (ρ, θ, z) := (− sin θ, cos θ) U ((cos θ, sin θ)ᵀ, ρ cos θ, ρ sin θ, z) ,(4.15)

109



CHAPTER 4. REGULARISATION OF ISOLATED CODIMENSION-2 DISCONTINUITY
SETS

is simultaneously zero. The function Θ (ρ, θ, z) is sufficiently smooth at ρ = 0, and

Θ (0, θ, z) = (− sin θ, cos θ) U ((cos θ, sin θ)ᵀ, 0, 0, z) .(4.16)

Let there exist θ0, z0 such that Θ(0, θ0, z0) = 0; then

(4.17) P0 = (0, θ0, z0)

is an equilibrium of (4.14).

The importance of these equilibria along ρ = 0 has previously been identified in [2] where
they were called limit directions. These are the directions along which trajectories reach (or
leave) the discontinuity set Σ. It is useful to study the stability of these equilibria. Linearising
around P0, we find that the Jacobian is given by

J0(θ0, z0) :=


λρ(θ0, z0) 0 01×m

∂Θ(0,θ0,z0)
∂ρ

∂Θ(0,θ0,z0)
∂θ

∂Θ(0,θ0,z0)
∂z

W((cos θ0, sin θ0)ᵀ, 0, 0, z0) 0m×1 0m×m

 ,(4.18)

which has only two nonzero eigenvalues,

λρ(θ0, z0) := (cos θ0 , sin θ0) U ((cos θ0, sin θ0)ᵀ, 0, 0, z0)(4.19)

and

λθ(θ0, z0) :=
∂Θ(0, θ0, z0)

∂θ
.(4.20)

By the centre manifold theorem [89], if λρ(θ0, z0) < 0, then there is an orbit approaching Σ

along the direction θ = θ0, and we say that the equilibrium P0 is radially attracting. Conversely,
if λρ(θ0, z0) > 0, then there is an orbit leaving Σ along θ = θ0, and P0 is radially repelling.
Similarly, if λθ(θ0, z0) < 0 then we call P0 angularly attracting and if λθ(θ0, z0) > 0 then we call
P0 angularly repelling. If an equilibrium P0 is both angularly and radially attracting, then there
is a neighbourhood of P0 that reaches Σ at P0 in finite time under the forward flow of (4.12).

In [2], the authors define the sliding region to be the subset Σsl ⊂ Σ such that for each
z0 ∈ Σsl, if there exist solutions θ0 such that Θ(0, θ0, z0) = 0, then λρ(θ0, z0) < 0 (they have an
alternative definition when no solutions exist to Θ(θ, z0) = 0). We will discuss the suitability of
this definition later. If there is sliding, a sliding vector field should be prescribed. Whilst [2]
used the Filippov convention, we will proceed with a different approach.
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4.2.2 Regularisation

Our strategy is to regularise the nonsmooth vector field V in (4.9), viewing it as the limit of a
smooth one. To proceed, let us first define a regularisation function Ψ(s).

Definition 4.1. We define a regularisation function Ψ(s) that satisfies the following conditions24.

(R1) Ψ(s) is sufficiently smooth ∀s ∈ [0,∞).

(R2) Ψ(0) = 1.

(R3) Ψ(s) > 0 ∀s ∈ [0,∞).

(R4) Ψ′(s) ≤ 0 ∀s ∈ [0,∞).

(R5) Ψ1(s) is sufficiently smooth ∀s ∈ [0,∞), where

Ψ1(s) :=

limσ→∞Ψ(σ), s = 0

Ψ(1/s), s > 0
.

For example, Ψ(s) = (1+s)−1, Ψ(s) = e−s and Ψ(s) = 1 all satisfy Definition 4.1. To be able
to apply center manifold theory and Fenichel’s theory in the following, we will by “sufficiently
smooth” require that V and Ψ are at least C2 [70, 89]. We use Ψ in the regularisation of e given
in (4.4) as follows.

Definition 4.2. Let D1 ⊂ R2 be the unit disc centred at the origin and let Ψ be a regularisation
function as in Definition 4.1. Then we define eΨ : R2 → D1, a regularisation of e, as eΨ(x, y; ε)

given by

(4.21) eΨ(x, y; ε) :=

 x√
x2 + y2 + ε2Ψ

(
x2+y2

ε2

) , y√
x2 + y2 + ε2Ψ

(
x2+y2

ε2

)

ᵀ

for 0 < ε� 1.

Remark 4.2. eΨ does not jump discontinuously at the origin. When written along a line through
the origin (4.5), we have

eΨ(l cos θ, l sin θ) =LΨ(l; ε)(cos θ, sin θ)ᵀ,(4.22)

where

LΨ(l; ε) :=
l√

l2 + ε2Ψ (l2/ε2)
(4.23)

is a smooth function whose limit is a sign function as ε→ 0 (see Figure 4.5).
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l

LΨ(l; ε)
ε→ 0

1

−1

Figure 4.5: The component of the map eΨ along any line through the origin LΨ(l; ε)
is a smooth function of l, whose limit is a sign function as ε→ 0. For example, if we
set Ψ(s) = s/ sinh2(

√
s), then LΨ(l; ε) = tanh(l/ε).

We note the following properties of eΨ.

Lemma 4.1. Consider eΨ : R2 → D1 given by (4.21); then we have the following

(a) eΨ(x, y; ε) is equivariant under rotations

(4.24) eΨ (R(φ)(x, y)ᵀ; ε) ≡ R(φ)eΨ(x, y; ε)

for all φ ∈ [0, 2π), where R(φ) is a rotation matrix as in (4.13),25

(b) eΨ(x, y; ε) satisfies the scaling property

(4.25) eΨ(kx, ky; kε) ≡ eΨ(x, y; ε),

for some k > 0, that is, eΨ is a homogeneous function of degree 0 on (x, y, ε),

(c) eΨ(x, y; 1) is one-to-one,

(d) eΨ(x, y; ε) satisfies

(4.26) eᵀΨeΨ < 1.

The proof of Lemma 4.1 can be found in Appendix D.
We now study the system

(ẋ, ẏ, ż)ᵀ = V(eΨ(x, y; ε), x, y, z)(4.27)

24Conditions (R1)-(R4) do not necessarily imply (R5).
25This equivariance, or rotational symmetry, seems a natural assumption in many cases. However, in certain

systems (such as mechanical systems where an interaction between two bodies is rougher in one direction than
another), this may not be suitable, and an alternative regularisation may be necessary.
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as a regularisation of (4.9). In order to bring the singularly perturbed system (4.27) into standard
slow-fast form, we adopt the scalings

(4.28) x = εx2 and y = εy2.

As a result we find

ε(ẋ2, ẏ2)ᵀ = U(eΨ(x2, y2; 1), εx2, εy2, z),

ż = W(eΨ(x2, y2; 1), εx2, εy2, z),
(4.29)

using the scaling property in Lemma 4.1(b). The system (4.29) is a standard slow-fast system
written in slow time. Setting ε = 0 in (4.29) gives the reduced problem

0 = U(eΨ(x2, y2; 1), 0, 0, z),(4.30a)

ż = W(eΨ(x2, y2; 1), 0, 0, z).(4.30b)

If we can solve (4.30a), finding

(4.31) eΨ(x2, y2; 1) = (c(z), s(z))ᵀ

such that U((c(z), s(z))ᵀ , 0, 0, z) = 0, ∀z in neighbourhood U , then there exists a critical
manifold given by (4.31). The slow flow, found by substituting (4.31) into (4.30b),

(4.32) ż = W ((c(z), s(z))ᵀ , 0, 0, z)

is independent of the regularisation Ψ.

It is evident from the limit ε → 0 of (4.28) that this slow flow corresponds to a notion
of a sliding vector field along Σ. This definition differs from that in [2], where the Filippov
convention was used. We show in section 4.4 that these definitions are equivalent, provided V

depends linearly on e. Nevertheless, for a general V, there is nothing to suggest that there is a
unique solution (4.31) for any given z, and thus there is no guarantee of a unique sliding flow
(see Example 4.5.3 below).

We can also find the layer problem of (4.29),

(x′2, y
′
2)ᵀ = U(eΨ(x2, y2; 1), 0, 0, z),

z′ = 0,
(4.33)

where (·)′ = d
dτ and the fast time τ is given by dτ = 1

εdt. From Fenichel’s theorem [35], the
flow of (4.29) can be approximated by combining the flow of (4.30) with the flow of (4.33) for
0 < ε� 1 where the critical manifold (4.31) is normally hyperbolic with respect to (4.33). We
discuss the layer problem and its implications in subsection 4.3.2.
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4.2.3 Summary

In subsection 4.2.1, using polar coordinates, we have shown how trajectories of the nonsmooth
system (4.9) approach or leave Σ. In subsection 4.2.2, we have shown that the slow flows of
(4.27) limit onto Σ as ε→ 0. However, we have not yet been able to connect the solutions of the
nonsmooth system (4.9) in subsection 4.2.1 with those of the general regularised system (4.27)
in subsection 4.2.2. In the next section, using blowup, we will describe these dynamical systems
in two charts, which can be connected by changes of coordinates in the regions where the charts
overlap.

4.3 Blowup for the general regularised system

In this section we study a general regularised system of the form (4.27) using blowup. This
analysis acts as a demonstration of our approach in section 4.4 where V depends linearly on e.
First, we consider the system

(x′, y′, z′)ᵀ = εV(eΨ(x, y; ε), x, y, z),

ε′ = 0,
(4.34)

found by rescaling time in (4.27) and treating the parameter ε as a variable. In (4.34), the
set ε = 0 is a hyperplane of equilibria and the intersection of ε = 0 with Σ is singular due to
the nonsmoothness of eΨ there. But we can gain smoothness through the use of the blowup
transformation

(4.35) (ρ, (x̄, ȳ, ε̄), z)→ (x, y, ε, z)

defined by

(4.36) (x, y, ε) = ρ(x̄, ȳ, ε̄), (ρ, (x̄, ȳ, ε̄)) ∈ [0,∞)× S2
+,

where

(4.37) S2
+ := {(x̄, ȳ, ε̄) | x̄2 + ȳ2 + ε̄2 = 1, ε̄ ≥ 0}

is the unit hemisphere. Informally, we are inserting a hemisphere at each point on x = y = ε = 0

in order to make the vector field well behaved along the discontinuity set Σ in the limit ε→ 0

(see Figure 4.6). With (4.35), ε̄ is then a common factor of the transformed vector field and so
can be divided out. We study the resulting desingularised system in what follows.

Although blowup allows us to gain smoothness in the vector field, we cannot easily study the
dynamics everywhere simultaneously. Instead we use charts to study multiple separate systems
that are simpler but valid only in certain regions. Here, we adopt an atypical approach to charts.
Whilst we study the scaling chart (the directional chart found by setting ε̄ = 1) in the usual way,
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the trigonometric terms associated with e suggest that it is natural to use a single entry/exit
chart26 (found by setting ε̄ = 0). In particular, near the equator {S2

+|ε̄ = 0} we reparameterise
the blowup using polar-like coordinates (ρ, ε̄, θ) to write

(4.38) x̄ =
√

1− ε̄2 cos θ, ȳ =
√

1− ε̄2 sin θ,

and so obtain the local version of (4.35), the entry/exit chart

(4.39) κ1 : x = ρ
√

1− ε2
1 cos θ, y = ρ

√
1− ε2

1 sin θ, ε = ρε1,

with the chart-specific coordinates (ρ, ε1, θ). Note that setting ε1 = 0 in (4.39) gives (4.11).
The scaling chart is found by setting ε̄ = 1 in (4.36)

(4.40) κ2 : x = ρ2x2, y = ρ2y2, ε = ρ2,

with the chart-specific coordinates (x2, y2, ρ2). Note that (4.40) is equivalent to (4.28).
The change of coordinates between κ2 and κ1 is given by

(4.41) κ12 : (x2, y2, ρ2) 7→



ρ =
ρ2√

1 + x2
2 + y2

2

ε1 =
1√

1 + x2
2 + y2

2

θ = arctan

(
y2

x2

) .

These charts and coordinates are shown in Figure 4.6.
Now we shall demonstrate that the dynamics in the plane ε1 = 0 of the chart κ1 corresponds

precisely to the dynamics studied in subsection 4.2.1, and that the dynamics in the scaling chart
κ2 corresponds precisely to the dynamics of the scaled regularised system in subsection 4.2.2.

26We do not consider multiple directional entry/exit charts (found by setting x̄ = ±1 and ȳ = ±1 here) as
is typical. Whilst Krupa and Szmolyan [67] correctly note that it is often “almost mandatory” to use multiple
directional charts in order to aid analysis, the trigonometric terms here suit a single entry chart.
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z
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Figure 4.6: Sketches of the blowup geometry given by (4.35): (a) Blowup of a point
z on x = y = ε = 0 to the unit hemisphere (note the geometric interpretations of the
scaling chart ε̄ = 1, the plane ε̄ = 0 and the coordinates in the charts κ1, κ2). (b) How
blowup extends the dimension of each point z in the implicit set x = y = ε = 0 (here
we collapse the m-dimensional z onto a single axis).

4.3.1 Entry chart κ1: dynamics near the discontinuity set

Let us study the dynamics in the chart κ1. Rewriting (4.34) using (4.39) and transforming time,
we divide the right-hand side by the common factor ε1, to find

d

dT

(
ρ

θ

)
=

(
ρξ 0

0 ξ−1

)
Rᵀ(θ)U (ẽΨ(θ, ε1), ρξ cos θ, ρξ sin θ, z) ,

d

dT
z = ρW (ẽΨ(θ, ε1), ρξ cos θ, ρξ sin θ, z) ,

d

dT
ε1 = −ε1ξ(cos θ, sin θ)U (ẽΨ(θ, ε1), ρξ cos θ, ρξ sin θ, z) ,

(4.42)

where dT = ε1
ε dt = 1

ρdt,

(4.43) ξ = (1− ε1)
1
2 ,

U is given in (4.10a), W in (4.10b),

ẽΨ(θ, ε1) := eΨ (ρξ cos θ, ρξ sin θ; ρε1)

:=

 1− ε2
1

1− ε2
1

(
1−Ψ1

(
ε21

1−ε21

))
 1

2

(cos θ, sin θ)ᵀ
(4.44)

and Ψ1 is defined as in (R5) of Definition 4.1 in subsection 4.2.2.
The singularity at ε1 = 1 does not concern us since we will only work with (4.42) near

ε1 = 0. Note that the plane ε1 = 0 is an invariant manifold and that the dynamics within the
plane is identical to (4.14). Accordingly, we shall follow the analysis in subsection 4.2.1 closely.
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Theorem 4.1. Consider (4.42); then we have the following

(a) If θ = θ0 is a solution to

(4.45) Θ(0, θ, z) := (− sin θ, cos θ)U((cos θ, sin θ)ᵀ, 0, 0, z) = 0

for a given z = z0, then there exists an equilibrium of (4.34) along the equator of the
blown-up hemisphere at

(4.46) Q0 = (0, θ0, z0, 0).

(b) Consider such an equilibrium point Q0: if there exists an eigenvalue λρ(θ0, z0) of the
linearisation of (4.42), corresponding to radial attractiveness as in subsection 4.2.1, then
there exists a corresponding eigenvalue −λρ(θ0, z0) with an eigenvector solely in the ε1

direction. Hence, if there is a stable manifold of Q0 within ε1 = 0 extending into ρ > 0,
then there is a corresponding unstable manifold of Q0 within ρ = 0 extending into ε1 > 0,
and vice versa.

(c) If no solutions for θ exist to (4.45) for a given z = z0, then there are no equilibria along
the equator of the blown-up hemisphere inserted at that particular z (the case of no limit
directions in [2]). There is therefore a limit cycle on the equator which has a stable manifold
in ε1 = 0 and an unstable manifold in ρ = 0 if

∫ 2π
0 λρ(θ, z)/|Θ(0, θ, z)|dθ < 0, and vice

versa if
∫ 2π

0 λρ(θ, z)/|Θ(0, θ, z)|dθ > 0.

(d) On the sphere, where ρ = 0, z remains constant for the flow of (4.42).

Proof. Following subsection 4.2.1 closely,

(a) We have already noted that ε1 = 0 is an invariant manifold of (4.42) and that dynamics
within it is given by (4.14). Therefore, if there exists an equilibrium P0 of (4.14) then Q0

is an equilibrium of (4.42).

(b) The Jacobian of (4.42) at Q0, is given by

(4.47) K0(θ0, z0) :=

(
J0(θ0, z0) 0m×1

01×m −λρ(θ0, z0)

)
.

It is then straightforward to show that there are now three nonzero eigenvalues: λρ, λθ
and −λρ. The eigenvectors corresponding to λρ and λθ are as before, with 0 in the ε1

component. The eigenvector corresponding to −λρ points solely in the ε1 direction and
hence represents travelling up or down the sphere (Figure 4.7). Then by the centre manifold
theorem [89], there are corresponding stable and unstable manifolds of Q0 tangent to the
eigenvectors associated with λρ and −λρ or vice versa.
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(c) If no solutions exist to (4.45) for a fixed z = z0, then along the invariant manifold of
the equator (ρ = ε1 = 0), the θ component of (4.42) does not change sign and there
exists a limit cycle along the equator. In the plane ε1 = 0, if we take a Poincaré section
at some constant θ, we can find that the local stability of this limit cycle is given by∫ 2π

0 λρ(θ, z)/|Θ(0, θ, z)|dθ. As with the stability of equilibria along the equator, the stability
of the closed orbit is opposite within ρ = 0.

(d) On the sphere ρ = 0, we find ż = 0 from (4.42). Hence the dynamics on the sphere of
trajectories that reach the equator at Q0 is effectively parameterised by z = z0 in (4.42).

�

From Theorem 4.1, we note that if λρ(θ0, z0) < 0, then there exists an orbit of (4.42)
that approaches the equator along θ = θ0 (tangent to a stable manifold of the equilibrium
Q0) and then travels along the corresponding unstable manifold of Q0 up the sphere. If both
λρ(θ0, z0) < 0 and λθ(θ0, z0) < 0 then there exists an open set of orbits of the nonsmooth
system that reach Q0 and travel up the sphere (see Figure 4.7). Manifolds that appear in the
dynamics in the chart κ1 that extend into ε1 > 0 can be recovered in the scaling chart κ2 using
(4.41), where the system is standard slow-fast.

Q0

ρ

ε1

θ

λθ

λθ

λρ

−λρ

Figure 4.7: Sketch demonstrating how orbits travel up the side of the sphere. The
yellow surface corresponds to the hemisphere of the blowup. The red orbit is for
0 < ε� 1.

In Figure 4.8, we see sketches of dynamics in the chart κ1 for ε1 = 0, projected into the (x̄, ȳ)

plane. The sphere and manifolds extending from equilibria along its equator are also projected
down into the same plane, ignoring the z dynamics.

Odd numbers of equilibria along the equator occur at bifurcations, when

(4.48) Θ(0, θ∗, z) =
∂

∂θ
Θ(0, θ∗, z) = 0.

Where there are no solutions to (4.45), and hence no equilibria along the equator (no limit-
directions), the equator is a closed orbit of the system. Therefore, from index theory [89], there
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Q1Q3

Q2
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(a)

Q1Q3

Q2

Q4

(b)

Q1

Q2

Q3
Q4

Q5

Q6
Q7

Q8

(c)

Figure 4.8: Sketches of the dynamics in the chart κ1 for ε1 = 0, projected into the
(x̄, ȳ) plane. (a) All equilibria on the equator are radially attracting (λr|Qi < 0 ∀i),
whilst Q1 and Q3 are angularly repelling and Q2 and Q4 are angularly attracting
(λθ|Qi > 0, i ∈ {1, 3} and λθ|Qi < 0, i ∈ {2, 4} respectively). (b) Q1 and Q3 are radially
attracting and angularly repelling (λθ|Qi > 0, λr|Qi < 0, i ∈ {1, 3}) and Q2 and Q4 are
radially repelling and angularly attracting (λθ|Qi < 0, λr|Qi > 0, i ∈ {2, 4}). (c) Each
Qi is radially attracting (λρ|Qi < 0 ∀i), and Qi are angularly attracting for i even
(λθ|Qi < 0, i ∈ {2, 4, 6, 8}) and angularly repelling for i odd (λθ|Qi < 0, i ∈ {1, 3, 5, 7}).
The case in (c) is analysed in Example 4.5.3.

must exist at least one critical set in the region enclosed by the equator. This region is described
by the scaling chart κ2, which we will now discuss.
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4.3.2 Scaling chart κ2: dynamics on the discontinuity set

In the previous section, using the entry chart κ1, we studied how orbits can reach or leave Σ.
To study the dynamics along Σ, we use the scaling chart κ2. Substituting (4.40) into (4.34), we
find

(x′2, y
′
2)ᵀ = U (eΨ(x2, y2; 1), εx2, εy2, z) ,(4.49a)

z′ = εW (eΨ(x2, y2; 1), εx2, εy2, z) ,(4.49b)

ε′ = 0.(4.49c)

Equations (4.49a) and (4.49b) are equivalent to (4.29) but written with respect to a fast time.
In subsection 4.2.2, we identified that if there is a solution eΨ(x2, y2; 1) = (c(z), s(z))ᵀ such

that U((c(z), s(z))ᵀ , 0, 0, z) = 0, then there exists a critical manifold in the scaling chart κ2

given by (4.31), and a corresponding slow flow (4.32). However, we have yet to study the layer
problem (4.33) and its implications.

First, it will be useful to calculate the derivative D(x2,y2)eΨ(x2, y2; 1) to find

(4.50) D(x2,y2)eΨ(x2, y2; 1) =
1√

ζ2 + Ψ(ζ2)
I− 1 + Ψ′(ζ2)√

ζ2 + Ψ(ζ2)
3

(
x2

y2

)(
x2 y2

)
,

where ζ2 := x2
2 + y2

2.

Remark 4.3. We note certain properties of the matrix D(x2,y2)eΨ(x2, y2; 1). Firstly, by Defini-
tion 4.1, both the trace and determinant are positive:

tr
(
D(x2,y2)eΨ(x2, y2; 1)

)
=
ζ2
(
1−Ψ′(ζ2)

)
+ 2Ψ(ζ2)

(ζ2 + Ψ (ζ2))3/2
> 0(4.51)

and

det(D(x2,y2)eΨ(x2, y2; 1)) =
Ψ(ζ2)−Ψ′(ζ2)ζ2

(ζ2 + Ψ(ζ2))2
> 0(4.52)

respectively. Secondly, D(x2,y2)eΨ(x2, y2; 1) is positive definite, since

ηᵀD(x2,y2)eΨ(x2, y2; 1) η =
(η1y2 − η2x2)2 + ηᵀηΨ(ζ2)− (η1x2 + η2y2)2Ψ′(ζ2)

(ζ2 + Ψ(ζ2))
3
2

> 0(4.53)

for any η = (η1, η2)ᵀ.

Theorem 4.2. Given a system of the form (4.34), the following hold:

(a) Suppose there exist sufficiently smooth functions c(z), s(z) : c(z)2 + s(z)2 < 1 for z ∈ U
where

(4.54) U ((c(z), s(z))ᵀ, 0, 0, z) = 0,
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then

(4.55) C = {(x2, y2, z) |eΨ(x2, y2; 1) = (c(z), s(z))ᵀ, z ∈ U }

is a critical set of the equations in the scaling chart κ2, that is, a set of equilibria of the
layer problem.

(b) The attractiveness and normal hyperbolicity of the critical set (4.55) are given by the
eigenvalues of the Jacobian of the fast subsystem (4.49a) about C

(4.56) J := D(c,s)U((c, s)ᵀ, 0, 0, z)D(x2,y2)eΨ(x2, y2; 1)
∣∣
C
.

Then it follows that if det
(
D(c,s)U((c, s)ᵀ, 0, 0, z)

)
< 0 then the critical set C is a saddle

with respect to the fast flow, irrespective of the regularisation function Ψ. On the other
hand, if

(4.57) det
(
D(c,s)U((c, s)ᵀ, 0, 0, z)

)
> 0

then the critical set C can be a stable or unstable node or focus, possibly depending on the
regularisation.

(c) When a critical set C exists, the slow flow along it is given by

(4.58) ż = W((c(z), s(z))ᵀ, 0, 0, z),

which is independent of the regularisation function Ψ.

(d) Where a critical manifold C is compact and normally hyperbolic, it perturbs to a corre-
sponding slow manifold Cε in the smoothed system for 0 < ε� 1. This slow manifold Cε
lies ε-close to C and the slow flow (4.58) gives the first order approximation to the flow
along Cε.

Proof. The proof is as follows.

(a) Treating ε as a parameter, let us study the layer problem of (4.49), found by setting ε = 0,

(x′2, y
′
2)ᵀ = U(eΨ(x2, y2; 1), 0, 0, z)(4.59a)

z′ = 0.(4.59b)

Evidently sets of the form (4.55) are sets of equilibria of (4.59), also described by (4.31).
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(b) In order to describe the local stability of these critical set we study the layer problem. Lin-
earising (4.59a) around a critical set C, we find the Jacobian (4.56). Since the determinant
of D(x2,y2)eΨ(x2, y2; 1) is strictly positive (Remark 4.3), we can determine that

sign(det J) ≡ sign
(
det
(
D(c,s)U((c, s)ᵀ, 0, 0, z)D(x2,y2)eΨ(x2, y2; 1)

))
≡ sign

(
det
(
D(c,s)U((c, s)ᵀ, 0, 0, z)

))
.

Therefore, if det
(
D(c,s)U((c, s)ᵀ, 0, 0, z)

)
< 0 then the critical set C is a saddle, irrespective

of the regularisation function. It is not so straightforward to comment on the stability
of the critical set when sign

(
det
(
D(c,s)U((c, s)ᵀ, 0, 0, z)

))
> 0. In fact, in Case III of

subsection 4.4.3, we prove by example that the stability of C can depend upon the
regularisation function Ψ.

(c) As in subsection 4.2.2, we find the slow flow along a critical set C is given by (4.58),
subject to the algebraic constraint that (x2, y2) ∈ C, which is trivially independent of Ψ.

(d) By Fenichel’s theorem [35], where a critical manifold C is compact and normally hyperbolic,
it perturbs to a slow manifold Cε which lies Hausdorff distance O(ε) from C. In addition
the slow flow along Cε is smoothly O(ε) close to (4.58) from the same theorem.

�

We recall from subsection 4.2.2 that the slow flow (4.58) corresponds to sliding dynamics.
Examples of dynamics in the scaling chart κ2 are shown in Figure 4.9. Figure 4.9a corresponds
to stable sliding, Figure 4.9b to a type of unstable sliding, and Figure 4.9c to nonunique sliding.
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Figure 4.9: Sketches of possible limiting dynamics in the scaling chart κ2, correspond-
ing to ε̄ = 1 in (4.36). (a) There exists one critical set C which is a stable in the layer
problem. (b) There exists one critical set — a saddle node in the layer problem. (c)
There are three critical sets — two stable nodes and one saddle with respect to the
fast flow, each with a different slow flow. The case in (c) is analysed in Example 4.5.3.

4.3.3 Summary

We can piece together solutions to the full system (4.34) from the dynamics in charts κ1 and κ2.
In the regions where charts κ1 and κ2 overlap, we can track how orbits in the entry/exit chart
appear in the scaling chart and vice versa, using the change of coordinates κ12 (4.41).

In Figures 4.10 and 4.11, we give sketches of the phase portraits of the dynamics of the full
system (4.34) after the blowup in the nonsmooth limit ε → 0 for each of the three examples
in Figures 4.8 and 4.9, corresponding to stable sliding, unstable sliding and nonunique sliding
respectively.

For a general V, it is difficult to comment any further. Depending on the nonlinearity
of the vector field, finding solutions to (4.45) will typically be difficult, even impossible, and
the dynamics in the scaling chart can become complex, including nonunique sliding (as in
Figures 4.9c, 4.10c and 4.11c) and limit cycles. We have already noted that these dynamics may
depend upon the regularisation function Ψ. For that reason we shall analyse a simpler setting,
where the vector field V is linear in e, the so-called “e-linear” system.
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C

(a)
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Q2
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Figure 4.10: Sketches of examples of the dynamics of (4.34) after the blowup in
(4.35) projected into the (x̄, ȳ) plane. Each subfigure pieces together the respective
dynamics in the plane ε1 = 0 of the chart κ1 (Figure 4.8) and in the limit ε→ 0 of
the scaling chart κ2 (Figure 4.9). Labels are omitted in (c), where � signifies that
the slow flow along the critical manifold is moving out of the plane whilst ⊗ signifies
that it is moving into the plane. We see that the sliding vector field is dependent upon
the direction in which trajectories approach the discontinuity set. Any trajectory that
starts in the right-hand plane tends to the rightmost critical manifold C3, and hence
travels ‘into the page’, yet any trajectory that starts in the left-hand plane tends to
the leftmost critical manifold C1, and hence travels ‘out of the page’. The case in (c)
is analysed in Example 4.5.3.
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(a) (b)

(c)

Figure 4.11: Sketches of the dynamics projected onto (x̄, ȳ, z) space. Each subfigure
pieces together the respective dynamics in the plane ε1 = 0 of the chart κ1 (Figure 4.8)
and in the limit ε→ 0 of the scaling chart κ2 (Figure 4.9). In (c), the projection of
the equator is cut away, so that the slow flow is visible.
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4.4 Classification of the “e-linear” system

Let us consider a normal form of (4.9) that is linear in eẋẏ
ż

 =

(
A(z)

B(z)

)
e(x, y) +

(
f(x, y, z)

g(x, y, z)

)
,(4.60)

where A(z) ∈ R2×2, B(z) ∈ Rm×2, f(x, y, z) ∈ R2 and g(x, y, z) ∈ Rm. Here A, B, f and g are
assumed to be well defined at Σ. Without loss of generality (see Appendix E), we can consider
A(z) to be of the form

(4.61) A(z) =

(
a(z) −b(z)

b(z) d(z)

)
.

Remark 4.4. A lemma on the suitability of the particular form of the e-linear normal form is
given in Lemma G.1 in Appendix G. An additional lemma that extends the form of (4.60) to
include models such as Stribeck friction[88] is given in Lemma F.1 in Appendix F.

We study this particular class of systems for a number of reasons. Most importantly, the
physical systems that have motivated this paper fit into this form. Rigid body mechanical
systems in 3D with Coulomb friction [3] can be written as (4.60), with b = 0 [3]. In addition,
the Filippov convention is well-posed here and the resulting unique sliding vector field can be
compared to the slow flow from the regularisation approach. With (4.61), combinations of pairs
of incident vectors are coplanar, so there is a unique affine combination of incident vectors
that is tangent to the discontinuity (see Figure 4.12). Where this affine combination is also a
convex combination, there is sliding (Figure 4.12a), and where the combination is not convex,
there is crossing (Figure 4.12b). Moreover, (4.60) is analogous to standard Filippov systems: the
linear dependence on e relates to the linear dependence of standard Filippov problems on sign

functions (unlike the nonlinear dependence of problems on sign functions in [49]).
Using the Filippov approach, the limit vector field (4.8) is given by

(4.62) F∗(θ, z) =

(
A(z)

B(z)

)(
cos θ

sin θ

)
+

(
f(0, 0, z)

g(0, 0, z)

)
.

The plane of affine combinations of pairs of these limit vectors FC(λ1, λ2, z) is given by

FC(λ1, λ2, z) = α1F
∗(θ1, z) + α2F

∗(θ2, z), θ1 6= θ2, θ1, θ2 ∈ [0, 2π), α1 + α2 = 1,

FC(λ1, λ2, z) =

(
A(z)

B(z)

)(
λ1

λ2

)
+

(
f(0, 0, z)

g(0, 0, z)

)
(4.63)

where (λ1, λ2) ∈ R2. The intersection of this plane with Σ is unique and given by

(4.64) FΣ(z) =

 0

0

−B(z)A−1(z)f(0, 0, z) + g(0, 0, z)

 .
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Σ

F∗(θ, z)

FC(λ1, λ2, z)

(a) Sliding

Σ

F∗(θ, z)

FC(λ1, λ2, z)

(b) Crossing

Figure 4.12: Sliding and crossing in the e-linear system (4.60) and (4.61). In (a),
there is sliding, when a convex combination of a pair of limit vectors is tangent to Σ.
In (b), there is crossing, when no affine combination is convex. F∗(θ, z) is the limit
vector field, given in (4.62). FC(λ1, λ2, z) is the plane of affine combinations of pairs
of these limit vectors, given in (4.63). A cross (×) marks the unique intersection of
FC(λ1, λ2, z) with Σ, given by (4.64).

FC(λ1, λ2, z) is convex when (λ1, λ2) ∈ D1, the unit disc centred on the origin (see Definition 4.2),
i.e. when

(4.65) (A−1(z)f(0, 0, z))ᵀ(A−1(z)f(0, 0, z)) ≤ 1.

As already noted, the Filippov convention is well-posed here. Nevertheless, it is worth studying
the linear case given by (4.60) and (4.61) using regularisation in order to understand the
robustness of the convention to perturbations and the stability of sliding. Furthermore, in
Theorem 4.3 of subsection 4.4.1, we show that the slow flow in the scaling chart from our
regularisation approach is equivalent to the sliding vector field resulting from the Filippov
convention (4.64).

So we regularise and augment (4.60), to give

x
′

y′

z′

 = ε

((
A(z)

B(z)

)
eΨ(x, y; ε) +

(
f(x, y, z)

g(x, y, z)

))
,

ε′ = 0

(4.66)

and then study the dynamics of (4.61) and (4.66) in the charts κ1 and κ2.
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4.4.1 Entry chart κ1: dynamics near the discontinuity set

As in the general case, we consider the augmented system and blowup x = y = ε = 0 to a sphere
using (4.35). We first study the equations in chart κ1, so that (4.42) becomes

d

dT

(
ρ

θ

)
=

(
ρξ 0

0 ξ−1

)
Rᵀ(θ) (A(z)êΨ(θ, ε1) + f(ρξ cos θ, ρξ sin θ, z)) ,

d

dT
z = ρ (B(z)êΨ(θ, ε1) + g(ρξ cos θ, ρξ sin θ, z)) ,

d

dT
ε1 = −ε1

ρ
ρ̇.

(4.67)

The equator ρ = ε1 = 0 is once again an invariant manifold, with equilibria when

Θ(0, θ, z) = (0, 1)Rᵀ(θ)

(
A(z)

(
cos θ

sin θ

)
+ f(0, 0, z)

)
= (d(z)− a(z)) sin θ cos θ + f2(0, 0, z) cos θ − f1(0, 0, z) sin θ + b(z) = 0.

(4.68)

Solutions of (4.68) can be viewed as the intersection of the hyperbola(
x̄ ȳ

)( 0 (d(z)−a(z))
2

(d(z)−a(z))
2 0

)(
x̄

ȳ

)
+
(
f2(0, 0, z) −f1(0, 0, z)

)(x̄
ȳ

)
+ b(z) = 0(4.69)

with the unit circle (the equator)(
x̄ ȳ

)(1 0

0 1

)(
x̄

ȳ

)
− 1 = 0.(4.70)

Hence there can be at most four unique equilibria. This is clear either algebraically when
writing (4.69) and (4.70) as a single quartic in either x̄ or ȳ, or geometrically in Figure 4.13.
Generically, equilibria on the equator are created in saddle node bifurcations (subsection 4.4.4).
These occur where (4.48) is satisfied, resulting in

f1 = b sin θ − (a− d) cos3 θ

f2 = (a− d) sin3 θ − b cos θ.
(4.71)

However, closed form solutions to (4.71) are too lengthy to be of much use. In our geometric
interpretation, this bifurcation occurs when the hyperbola (4.69) is tangent to the unit circle
(4.70).

There are also degenerate cases of (4.68) to consider as follows:

(D1) a(z) = d(z):
In this case, unique equilibria are given by

θ = θ∗(z) = arcsin

(
b(z)

|f(0, 0, z)|

)
+ arctan

(
f2(0, 0, z)

f1(0, 0, z)

)
.

Here we have no equilibria when |b(z)| > |f(0, 0, z)| and 2 equilibria when |b(z)| <
|f(0, 0, z)| (with a saddle node bifurcation when |b(z)| = |f(0, 0, z)|).

128



4.4. CLASSIFICATION OF THE “e-LINEAR” SYSTEM

(D2) At least one of f1(0, 0, z) or f2(0, 0, z) is zero and b(z) = 0:
Without loss of generality we shall suppose that f2(0, 0, z) = 0, then (4.68) becomes

sin θ ((a(z)− d(z)) cos θ − f1(0, 0, z)) = 0.

In this case we always have two equilibria θ = θ∗(z) = 0, π on the equator. Other equilibria
are born in pitchfork bifurcations at |f1(0, 0, z)| = |d(z)− a(z)|, given by

θ = θ∗(z) = ± arccos

(
f1(0, 0, z)

d(z)− a(z)

)
when |f1(0, 0, z)| < |d(z)− a(z)|. The analysis when f2(0, 0, z) = 0 and b(z) = 0 is similar.

(a) 0 intersections (b) 2 intersections (c) 4 intersections

Figure 4.13: Intersections of conics: the ways that the hyperbola (4.69) and the unit
circle (4.70) can intersect generically. There can be only 0, 2 or 4 intersections of these
conics and hence only 0, 2 or 4 equilibria on the equator (or “limit directions”) for
our linear system (4.60). Each subfigure depicts the (x̄, ȳ) plane and the unit circle
corresponds to the equator of the blowup.

4.4.2 Scaling chart κ2: dynamics on the discontinuity set

Following the same procedure as for the general system we study the dynamics in the scaling
chart κ2, setting ε̄ = 1, to obtain

ε(ẋ2, ẏ2)ᵀ = A(z)eΨ(x2, y2; 1) + f(εx2, εy2, z),

ż = B(z)eΨ(x2, y2; 1) + g(εx2, εy2, z).
(4.72)

As expected we obtain a slow-fast system where x2 and y2 are fast.

Theorem 4.3. Considering the dynamics in the scaling chart κ2 given by (4.72), then we have
the following:

(a) Where A(z) and f(0, 0, z) satisfy

(4.73) (A(z)−1f(0, 0, z))ᵀA(z)−1f(0, 0, z) < 1,
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there exists exactly one unique equilibrium of the layer problem in the scaling chart κ2

given by

(4.74) C = {(x2, y2, z)|A(z)eΨ(x2, y2; 1) + f(0, 0, z) = 0}

for a fixed z. On the other hand, if

(4.75) (A(z)−1f(0, 0, z))ᵀA(z)−1f(0, 0, z) > 1,

then there is no such critical set.

(b) Where a unique critical set C exists, the slow flow in the reduced problem is given by

(4.76) ż = −B(z)A−1(z)f(0, 0, z) + g(0, 0, z),

which coincides with the Filippov convention [2, (5.20)].

Proof. Rescaling time in (4.72), we obtain the system in fast time(
x′2, y

′
2

)ᵀ
= A(z)eΨ(x2, y2; 1) + f(εx2, εy2, z),

z′ = ε (B(z)eΨ(x2, y2; 1) + g(εx2, εy2, z)) .
(4.77)

The layer problem is given by the limit ε→ 0(
x′2, y

′
2

)ᵀ
= A(z)eΨ(x2, y2; 1) + f(0, 0, z)

z′ = 0.
(4.78)

(a) A unique critical set (4.74) exists for a given z in the scaling chart κ2 if there is a solution
to

(4.79) eΨ(x2, y2; 1) = −A−1(z)f(0, 0, z).

When (4.73) holds, solutions to (4.79) exist, since eᵀΨeΨ < 1, from (4.26). If the critical set
exists, it is unique, from Lemma 4.1(c). When (4.75) holds, no solutions exist to (4.79),
and therefore there can be no critical set C. Condition (4.79), together with (4.26), can
be thought of as f(0, 0, z) lying within the ellipse

(4.80) (A(z)−1h)ᵀA(z)−1h = 1

since det
((

A(z)−1
)ᵀ

A(z)−1
)

= det(A(z))−2 (see Figure 4.14).

(b) If the critical set (4.74) exists, the slow flow along it is given by (4.76), found by substituting
(4.79) into the reduced problem (4.72).

�
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As with the general system, the slow flow (4.76) corresponds to the sliding vector field in Filippov
terminology.

Limit cycles may also occur in the scaling chart κ2. Hyperbolic limit cycles persist and
therefore form a cylinder. The reduced flow along such a cylinder is defined by an average of
the slow component of the vector field.

Proposition 4.1. If there exists a limit cycle in the layer problem of the scaling chart, then
the reduced flow along the limit cycle is given by (4.76).

Proof. If we suppose that there exists a limit cycle where (x2(τ+T ), y2(τ+T )) = (x2(τ), y2(τ)),
then averaging the layer problem (4.78) over the period T , we find

1

T

∫ T

0

(
x2(τ)′

y2(τ)′

)
dτ =

1

T

∫ T

0

(
A(z)eΨ(x2(τ), y2(τ); 1) + f(0, 0, z)

)
dτ(4.81)

=⇒ 0 = A(z)

(
1

T

∫ T

0

(
eΨ(x2(τ), y2(τ); 1)

)
dτ

)
+ f(0, 0, z)(4.82)

Accordingly, the reduced problem along the limit cycle will be given by

(4.83) ż = B(z)

(
1

T

∫ T

0

(
eΨ(x2(τ), y2(τ); 1)

)
dτ

)
+ g(0, 0, z),

which, using (4.82), results in (4.76). �

h1

h2
h = f(0, 0, z)

�
��
�

��
(A(z)−1h)ᵀA(z)−1h = 1

(a) f(0, 0, z) is within the ellipse and hence
there is a critical set within the scaling chart

h1

h2
h = f(0, 0, z)

��
(A(z)−1h)ᵀA(z)−1h = 1

(b) f(0, 0, z) is outside the ellipse and hence
there is no critical set within the scaling
chart

Figure 4.14: Sketch of a geometric interpretation of the condition on f(0, 0, z) for
the existence of a critical set in the scaling chart.

It is also possible to infer some of the dynamics in the scaling chart κ2 purely from
an examination of the entry chart κ1 using arguments from index theory (as was done in
subsection 4.3.1 when there were no equilibria on the equator).
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4.4.3 Cases

In order to classify the possible global dynamics of (4.66) we shall now consider three cases of
our e-linear system (4.60), determined by the elements of A(z) given by (4.61), and described
in Table 4.1.

Case I sign(a) = sign(d) det(A) > 0

Case II
sign(a) 6= sign(d)

det(A) < 0

Case III det(A) > 0

Table 4.1: The 3 cases of the linear normal form (4.60) with (4.61).

4.4.3.1 Case I

We consider a, d < 0 for fixed z and hence det(A) is necessarily positive (the analysis of a, d > 0

is equivalent after a reversal of time).

Theorem 4.4.

(a) If (A(z)−1f(0, 0, z))ᵀA(z)−1f(0, 0, z) < 1, there exists a unique critical set in the scaling
chart. Furthermore, all orbits in the layer problem of the scaling chart limit onto the
critical set. Generically, there can be 0, 2 or 4 equilibria along the equator for a fixed z.

(b) If (A(z)−1f(0, 0, z))ᵀA(z)−1f(0, 0, z) > 1, no critical set exists in the scaling chart and
there can be either 2 or 4 equilibria along the equator generically.

(c) There are 5 qualitatively different types of generic phase portraits for systems of the form
(4.60) with (4.61) for Case I.

Proof. Let us consider (4.60) with (4.61). From Theorem 4.3, if (4.73) holds, then there exists
a critical set in the layer problem in the scaling chart and that if(

A−1f(0, 0, z)
)ᵀ

A(z)−1f(0, 0, z) > 1

there is no critical set.

(a) Let us assume that such a critical set exists. The divergence of the vector field of the layer
problem

div(ẋ2, ẏ2) =

(
∂

∂x2
,
∂

∂x2

)
(A(z)eΨ(x2, y2; 1) + f(0, 0, z))(4.84)

=
(a(z) + d(z))Ψ(ζ2)− (a(z)x2

2 + d(z)y2
2)Ψ′(ζ2) + (a(z)y2

2 + d(z)x2
2)

(ζ2 + Ψ(ζ2))
(4.85)

132



4.4. CLASSIFICATION OF THE “e-LINEAR” SYSTEM

is negative everywhere for our class of regularisation functions (Definition 4.1), so all
orbits in the layer problem tend to it and there can be no limit cycles. Furthermore, it is
straightforward to show that there can be 0, 2 or 4 equilibria along the equator generically
for a fixed z (see Figures 4.15a to 4.15c and 4.16a to 4.16c). Each equilibria along the
equator is radially attracting and the angular attractiveness can be determined using
arguments from index theory.

(b) If
(
A(z)−1f(0, 0, z)

)ᵀ
A(z)−1f(0, 0, z) > 1, we have no critical set and from Theorem 4.1(c)

there must be at least two equilibria along the equator. Again it is straightforward to
show that, generically, it is possible to have either 2 or 4 equilibria on the equator for a
fixed z, whose radial and angular attractiveness can be determined using arguments from
index theory (see Figures 4.15d, 4.15e, 4.16d and 4.16e).

(c) Thus, given the three possible types of dynamics when there exists a critical manifold,
and the two possible types of dynamics when there is not critical set, there are 5 different
possible types of dynamics for Case I.

�

Sketches of the five possible phase portraits for Case I when a, d < 0 are given in Figure 4.15.
Numerical examples are given in Figure 4.16 .

Coulomb friction falls into our Case I and results in b(z) ≡ 0. In that case, the hyperbola
(4.69) passes through the origin and so there are at least two intersections with the unit circle:
at least two equilibria along the equator. Hence Figure 4.15a is not possible for Coulomb friction
and Figures 4.15b to 4.15e correspond to the “four generic cases” in [3, section 4.2.4].
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(a) Critical set, no equilibria on
the equator

(b) Critical set, 2 equilibria on
the equator

(c) Critical set, 4 equilibria on
the equator

(d) No critical set, 2 equilibria
on the equator

(e) No critical set, 4 equilibria
on the equator

Figure 4.15: Sketches of the five possible cases of dynamics for Case I when a, d < 0.
The blown-up sphere from Figure 4.6 is projected down onto a plane. Blue dots are
equilibria of the system along the equator, whilst red dots are critical sets of the layer
problem in the scaling chart κ2. Sketches for a, d > 0 can be obtained after a reversal
of time.
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20-2

2

0

-2

(a) a = −1, b = 1, d = −1,
f1 = 0 & f2 = 0

20-2

2

0

-2

(b) a = −1, b = 0, d = −1.5,
f1 = −0.5 & f2 = 0

20-2

2

0

-2

(c) a = −2, b = 0, d = −1,
f1 = −0.5 & f2 = 0

20-2

2

0

-2

(d) a = −1, b = 0, d = −1,
f1 = 1.1 & f2 = 0

20-2

2

0

-2

(e) a = −0.3, b = 0, d = −1,
f1 = 0.5 & f2 = 0

Figure 4.16: Numerical examples of the five possible cases of dynamics of Case I
when a, d < 0. The blown-up sphere from Figure 4.6 is projected down onto the (x̄, ȳ)
plane, and the equator is the unit circle. Trajectories are plotted in black �. In ε̄ = 0,
nullclines of ρ̇ are shown in � and nullclines of θ̇ are shown in �. The lines ax̄−bȳ = f1

and bx̄+ dȳ = f2 are also shown (� when inside the unit circle and � outside).
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4.4.3.2 Case II

Here a, d have opposite signs and det(A) < 0. In this case there are three qualitatively different
generic phase portraits for fixed z, as shown in Figure 4.17.

(a) (b) (c)

Figure 4.17: Sketches of the three possible qualitative phase portraits of Case II
for the blown up system of (4.60) when sign(a) 6= sign(d) and det(A) = ad+ b2 < 0.
Figure 4.17a shows the only possible phase portrait when there is a critical set in the
scaling chart. Figures 4.17b and 4.17c (equivalent to Figures 4.15d and 4.15e) show
the two possible phase portraits when there is no critical set in the scaling chart.

Theorem 4.5.

(a) If (A(z)−1f(0, 0, z))ᵀA(z)−1f(0, 0, z) < 1, then there exists exactly one unique critical set
in the layer problem of the scaling chart, which is a saddle regardless of the regularisation
function Ψ. Hence there are exactly four equilibria along the equator, each of which is a
saddle with respect to the radial and angular flows.

(b) If (A(z)−1f(0, 0, z))ᵀA(z)−1f(0, 0, z) > 1, then there is no critical set in the layer problem
of the scaling chart and there are generically either 2 or 4 equilibria along the equator as
in Case I.

Proof. Here it is straightforward to show that when a and d are of opposite signs there can be
either one unique critical set in the scaling chart or none.

(a) If
(
A(z)−1f(0, 0, z)

)ᵀ
A(z)−1f(0, 0, z) < 1 there is exactly one unique critical set in the

scaling chart. Furthermore, if det A = ad+ b2 < 0 then, due to the positive definiteness of
DeΨ, the critical set is a saddle with respect the fast flow. Then from the uniqueness of
the critical set we can infer that there will be exactly 4 equilibria along the equator: one
for each of the intersections of the stable and unstable manifolds of the critical set with the
equator. The radially attractiveness of these equilibria correspond to the stable/unstable
manifolds of the equilibria in the scaling chart. This is the only possible type of dynamics
when there is an equilibrium in the scaling chart.
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(b) Conversely, if
(
A(z)−1f(0, 0, z)

)ᵀ
A(z)−1f(0, 0, z) > 1 then there is no critical set in the

scaling chart. It follows from index theory that, generically, there must be at least 2
equilibria along the equator. It is straightforward to verify that there can be either 2 or 4
equilibria in this case.

�

Remark 4.5. The result that if there is a critical set in the scaling chart there must be at
least two equilibria on the equator, or conversely, and perhaps more intuitively, that if there
are no equilibria on the equator then there must be at least one critical set in the scaling chart
is a consequence of index theory [89, 101] and strongly connected to the Hairy Ball Theorem
[90, 100].

4.4.3.3 Case III

For a system of the form (4.60) where sign(a) 6= sign(d) and det A = ad+ b2 > 0, the dynamics
is sensitive to the regularisation function Ψ in the scaling chart κ2. We demonstrate this in the
following example. Consider a system of the form (4.60) where

(4.86) a(z) = 172, b(z) = 186, d(z) = −200, f1(x, y, z) = −86, f2(x, y, z) = −93.

Let us also consider a particular class of regularisation functions

(4.87) Ψ(r2;n) =
3

3 + (4r2)n
,

chosen such that Ψ((1
2)2;n) = 3

4 is independent of n. It is easy to show that the critical manifold
in the scaling chart is a stable node for n = 1, a stable focus for n = 2, an unstable focus for
n = 3 and an unstable spiral for n = 4 (see Figures 4.18 and 4.19). In order to understand the
stability of the critical manifold, we study the trace tr(J), determinant det(J), and discriminant
∆(J) := tr(J)2 − 4det(J) of the Jacobian of the fast flow J, given in (4.56), around the critical
manifold, as shown in Figure 4.18.

As evident from Figure 4.19, limit cycles can exist in the scaling chart for Case III. The
slow flow along these limit cycles is given by (4.76) (Proposition 4.1). We should also note here
that whether trajectories slide or cross depends upon their initial conditions.

We have demonstrated the sensitivity of the dynamics in the scaling chart κ2 to the
regularisation. Classification of all possible phase portraits for Case III with one up to one limit
cycle in the scaling chart is possible using arguments from index theory.
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tr(J)

det(J)

∆(J) < 0)

∆(J) > 0

−50 50

500

(a) Trace and determinant

Re(λ)

Im(λ)

10

−10

(b) Eigenvalues

0
0 1

r2

1

Ψ
(r

2
;n

)

(c) Regularisation function (4.87)

Figure 4.18: Demonstration of the effect the choice of regularisation function can
have on the dynamics for Case III. For a(z) = 172, b(z) = 186, d(z) = −200,
f1(x, y, z) = −86, f2(x, y, z) = −93, choosing a different regularisation function
(4.87) can cause the unique equilibrium to be a stable node, a stable focus, an
unstable focus or an unstable node (for n = 1�, n = 2�, n = 3�, and n = 4�
respectively). (a) the trace tr(J) and determinant det(J) of the Jacobian of the
linearisation around the unique equilibrium for each n, (b) the eigenvalues of the same
matrix and (c) the regularisation function Ψ(r2;n) (4.87) for n = 1 . . . 4. Note the
different gradients at r2 = 1

4 for each n. Also note that the sign of the discriminant of
J, ∆(J) := tr(J)2 − 4 det(J), is also shown in (a).
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(a) n = 1: tr(J) < 0, ∆(J) > 0 (b) n = 2: tr(J) < 0, ∆(J) < 0

(c) n = 3: tr(J) > 0, ∆(J) < 0 (d) n = 4: tr(J) > 0, ∆(J) > 0

Figure 4.19: Phase portraits for Case III of the “e-linear” system (4.60) and (4.61),
for parameters given in (4.86), with regularisation function (4.87), for n = 1 . . . 4 (see
also Figure 4.18a). In (a) the critical manifold is a stable node, whereas in (b) it is
a stable focus. In (c), tr(J) has changed sign and the critical manifold undergoes a
supercritical Hopf bifurcation; it is now an unstable focus enclosed by a limit cycle
(shown in red) in the layer problem. In (d), the limit cycle persists, but the critical
manifold has become an unstable node.

4.4.4 Bifurcations

So far, we have studied the generic cases of (4.66) for fixed z. Here we detail some possible
bifurcations that are codimension-1 in parameter space, or which can be unfolded by the slow
variable z.

In Figure 4.20 a critical set is created at infinity in the scaling chart κ2, for the case when
there are two equilibria on the equator (there could also be four equilibria on the equator). The
radial attractiveness of one equilibrium switches at the bifurcation. This bifurcation occurs when

(4.88) (A(z)−1f(0, 0, z))ᵀA(z)−1f(0, 0, z) = 1.

In Figure 4.21, we consider the saddle-node bifurcation between zero and two equilibria on the
equator where there is critical set in the scaling chart (we could also pass between two and four
equilibria). Each pair of equilibria created on the equator has opposite angular attractiveness.
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(a) (b) (c)

Figure 4.20: (a) there are two equilibria on the equator (blue dots), both radially
attracting and of opposite angular attractiveness, and a critical set (in red) in the
scaling chart κ2. (b) there are two equilibria on the equator, one of which is radially
nonhyperbolic, with a critical set at infinity. (c) there are two equilibria along the
equator, one of which is now radially repelling and no critical set in the scaling chart.

(a) (b) (c)

Figure 4.21: Saddle-node bifurcation of equilibria on the equator. (a) No equilibria
along the equator and a critical set in the scaling chart κ2; (b) The saddle-node
bifurcation: one angularly nonhyperbolic equilibrium appears on the equator with
a heteroclinic connection to the critical set and a homoclinic connection; (c) Two
equilibria on the equator: one angularly attracting, the other repelling and both with
heteroclinic connections to the critical set.
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This bifurcation occurs when when θ 7→ Θ(0, θ, z) has a double root: Θ(0, θ, z) = ∂
∂θΘ(0, θ, z) = 0.

Geometrically, this occurs when the hyperbola (4.69) is tangent to unit circle (4.70).
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4.4.5 Tables of classification

Here we present tables of more complete classification. In Table 4.2, we show the possible generic
combinations of radially attracting and repelling equilibria along the equator.

Attracting
0 1 2 3 4

R
ep

el
lin

g 0 X × X × X
1 × X × X ⊗
2 X × X ⊗ ⊗
3 × X ⊗ ⊗ ⊗
4 X ⊗ ⊗ ⊗ ⊗

Table 4.2: Generic multiplicity of radially attracting and repelling equilibria along the
equator for the linear case. We discount cases with more than 4 equilibria along the
equator (denoted by ⊗) due to the conic sections argument. We also discount cases
with an odd number of equilibria along the equator (denoted by ×) since these cannot
occur generically (from topology). Possible cases are denoted by X. However, we need
not consider all of these, as cases in the upper triangle (X) are equivalent to cases in
the lower triangle after a reversal of time.

In this section we introduce new notation for the classification of phase portraits.

IC = 1 =⇒ node Figure 4.22

Table 4.3: Index for 0 equilibria along the equator.
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IC = 1 =⇒ node Figure 4.23

IC = 0 =⇒ no eq. Figure 4.24 IC = 0 =⇒ inconsistent

Table 4.4: Indices for 2 equilibria along the equator. We need not consider 2 radially
repelling as equivalent to reversal of time of 2 radially attracting. In the linear case
there can be at most 1 equilibria in the scaling chart, therefore we can discount indices
/∈ {−1, 0, 1}.

IC = 1 =⇒ node Figure 4.25

IC = 2 =⇒ inconsistent IC = 0 =⇒ no eq.Figure 4.26

IC = 1 =⇒ node Figure 4.27 IC = 3 =⇒ inconsistent IC = −1 =⇒ saddle Figure 4.28

Table 4.5: Indices for four equilibria along the equator. We need not consider three
or four radially repelling as equivalent to reversal of time of three and four radially
attracting. In the linear case there can be at most one equilibria in the scaling chart,
therefore we can discount indices /∈ {−1, 0, 1}.
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(a) (b) (c) (d)

Figure 4.22: Possible phase portraits for 0 equilibria along the equator.

(a) (b) (c) (d)

Figure 4.23: Possible phase portraits for 2 equilibria along the equator, both radially
attracting.

Figure 4.24: Possible phase portraits for 2 equilibria along the equator, one radially
attracting, one radially repelling.
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(a) (b) (c) (d)

Figure 4.25: Possible phase portraits for 4 equilibria along the equator, all radially
attracting.

Figure 4.26: Possible phase portraits for 4 equilibria along the equator, all but one
radially attracting.
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(a) (b) (c)

(d) (e) (f)

Figure 4.27: Possible phase portraits for 4 equilibria along the equator, two adjacent
equilibria radially attracting, whilst the other two are radially repelling. (a) and (b)
are equivalent to (f) and (e) respectively, but included as to demonstrate the system
undergoing a heteroclinic bifurcation in the scaling chart.

Figure 4.28: Possible phase portraits for 4 equilibria along the equator, two opposite
equilibria radially attracting.
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4.4.6 Beyond the e-linear normal form

Let us briefly consider a normal from of (4.9) that includes order-N powers of the components
of e,

ẋẏ
ż

 =

 N∑
k=1

 ∑
i+j=k

ai,j(z)

bi,j(z)

ci,j(z)

 xiyj

(x2 + y2)
i+j
2


+

(
f(x, y, z)

g(x, y, z)

)
.(4.89)

In the entry chart, the equilibria along the equator are given by the solutions to

(4.90) Θ(0, θ, z) = (− sin θ, cos θ)

 N∑
k=1

 ∑
i+j=k

(
ai,j(z)

bi,j(z)

)
cosi θ sinj θ

+ f(0, 0, z)

 ,

which can be written as a trigonometric polynomial of order (N + 1). Therefore, generically,
there can be any nonnegative even number of equilibria l along the equator, up to and including
2(N + 1) [92].

Let us now consider the number of possible cases of the dynamics in the entry chart for
a particular number of equilibria along the equator l. From the structure of the number of
possible cases of the dynamics in the chart κ1 for l =0, 2 and 4 equilibria along the equator (see
Tables 4.3 to 4.5), we might expect that the number of qualitatively different phase portraits to
follow 2, 4, 9, 16... with (1 + l/2)2 (or 1,3,6,10... with 1

4 l
(
n
2 + 1

)
if we include time reversal).

However, for a positive even number of equilibria along the equator l, the number of possible
cases ignoring time reversal follows

(4.91) M(l) =
1

2

2
l
2

+1 +
2

l

∑
d| l

2

22dφT

(
l

2d

)
[91], where φT is the Euler totient function, and

(4.92) M(2) = 4, M(4) = 9, M(6) = 20, M(12) = 51...

Therefore, for an order-N equation of the form (4.89), the number of possible qualitatively
different phases portraits in the entry chart follows

(4.93) P (N) = 2 +
N+1∑
r

M(2r).

Within the scaling chart there can be up to N critical sets for a normal form of order N .
Hence only indices over the equator ∈ [−N,N ] are possible. We leave detailed investigation of
the possible scaling charts to further work.
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4.4.7 Codimension-n

The task of extending this method to higher codimension problems is not trivial. Consider the
linear normal form of a codimension-n system(

ẋ

ż

)
=

(
A(z)

B(z)

)
x

|x|
+

(
f(x, z)

g(x, z)

)
,(4.94)

where x ∈ Rn, z ∈ Rm, A ∈ Rn×n, B ∈ Rm×m, f ∈ Rn, and g ∈ Rm.
For codimension-2 problems, we have benefitted from the use of polar coordinates. This

would no-longer be practical with higher-codimension problems as hyper-spherical coordinate
systems [10] would be necessary. Instead of being able to write a single entry chart as in
subsection 4.3.1, one might have to study multiple directional entry charts. This may result in a
potential 2n entry charts, unless symmetries are present and can be exploited.

4.5 Examples

We now discuss some examples, including some from [2].

4.5.1 Ball at bottom of a pool [2]

We consider a rigid ball of mass m slipping at the bottom of a pool of viscous fluid, as in
Figure 4.29. Coulomb friction acts on the ball at the point of contact with the pool floor and
viscous friction acts through the centre of mass of the ball due to the viscous fluid. The coefficient
of Coulomb friction is µ, and coefficient of viscous friction is K > 0.

g

x y

z1 z2

Figure 4.29: Ball at the bottom of a pool: (x, y) is the relative velocity at the contact
point, whilst z = (z1, z2)ᵀ is the velocity of the centre of mass. Both Coulomb and
viscous friction act upon the ball.

The dynamics is governed by ODEs

(4.95)


ẋ

ẏ

ż1

ż2

 = F(x, y, z1, z2) =



−7
2µg

x√
x2+y2

− K
mz1

−7
2µg

y√
x2+y2

− K
mz2

−µg x√
x2+y2

− K
mz1

−µg y√
x2+y2

− K
mz2
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where (x, y) is the relative velocity at the point of contact of the ball with the pool, and
z = (z1, z2) is the velocity of the centre of mass of the ball in the same axes (for details of the
derivation, see [2, section 6.2]). These equations can be written in our e-linear normal form
given by (4.60) and (4.61), where
(4.96)

A = −7

2
µg

(
1 0

0 1

)
, f(z) = −K

m

(
z1

z2

)
, B = −µg

(
1 0

0 1

)
, g(z) = −K

m

(
z1

z2

)
.

In the entry chart κ1, this is degenerate case (D1), since the diagonal elements of A are
equal. Since the off-diagonal elements of A are zero, there are two unique equilibria on the
equator, given by

(4.97) θ∗1 = arctan

(
f2

f1

)
= arctan

(
z2

z1

)
, θ∗2 = θ∗1 + π.

These equilibria have eigenvalues given by

λρ(θ
∗
1) = −7

2
µg − K

m
|z|, λθ(θ

∗
1) = +

K

m
|z|,(4.98)

λρ(θ
∗
2) = −7

2
µg +

K

m
|z|, λθ(θ

∗
2) = −K

m
|z|,(4.99)

where |z| =
√
z2

1 + z2
2 . Hence, as noted by [2],

• the equilibrium θ∗1 is always angularly repelling and radially attracting; and

• the equilibrium θ∗2 is always angularly attracting, but it is radially attracting when
|z| < zcrit and radially repelling when |z| > zcrit,

where zcrit = 7µmg
2K > 0.

In the scaling chart κ2 (ε̄ = 1), the critical manifold (4.55) is given by

(4.100) C =

{
(x2, y2, z)

∣∣∣∣∣ c(z) = − 2K

7µmg
z1, s(z) = − 2K

7µmg
z2

}
.

To exist, C must lie within D1, the unit disc centred on the origin (see Definition 4.2), and so

(4.101) |z| < zcrit,

equivalent to the constraint that θ∗2 is radially attracting.
When C exists, the reduced dynamics along it is given by

ż1 =
2K

7m
z1 −

K

m
z1 = −5K

7m
z1

ż2 =
2K

7m
z2 −

K

m
z2 = −5K

7m
z2

(4.102)
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and so the speed of the ball tends to zero in this case. From Theorem 4.2, the stability of the
critical manifold C is given by the eigenvalues of

(4.103) D(c,s)U((c, s)ᵀ, 0, 0, z)D(x2,y2)eΨ(x2, y2; 1) =

[
−7

2µg 0

0 −7
2µg

]
DeΨ.

Since

(4.104) tr(D(c,s)U((c, s)ᵀ, 0, 0, z)D(x2,y2)eΨ(x2, y2; 1)) = −7

2
µgtr(DeΨ) < 0

and

(4.105) det(D(c,s)UDeΨ) =
49

4
µ2g2det(DeΨ) > 0,

(using properties from Remark 4.3) the critical manifold C, when it exists, is stable, independent
of the regularisation Ψ, as expected from Theorem 4.4.

This problem contains the bifurcation shown in Figure 4.20, when the critical manifold
C appears on the equator at θ∗2 (scaled such that θ∗2 = 0). Physically, we can interpret the
bifurcation as follows. In Figure 4.20a, all trajectories end up on the critical manifold C; the
speed of the centre of mass |z| < zcrit, so the ball sticks and starts rolling, slowing due to viscous
friction. In Figure 4.20b, at the critical speed |z| = zcrit, the ball is on the point of slipping, as
the equilibrium θ∗2 becomes radially nonhyperbolic at the bifurcation. Finally in Figure 4.20c,
for |z| > zcrit all trajectories are slipping except for the singular trajectory across the unit circle,
where the ball instantaneously sticks, only to slip again. This bifurcation can occur dynamically
as shown in Figure 4.30. This example demonstrates that the limiting case of our analysis
is identical to that from other methods. The advantage is that it is now possible to analyse
perturbations away from this nonsmooth limits using standard techniques, and to study the
system with the framework of smooth dynamical systems.
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z

|z| = zcrit

Figure 4.30: Ball at the bottom of the pool. There is a tangency of the vector field
to the discontinuity at |z| = zcrit ≡ 7µmg

2K . This could be considered to be the extension
of a PWS invisible fold tangency to an isolated codimension-2 discontinuity [36, 65].
Taking sections at |z| < zcrit, |z| = zcrit and |z| > zcrit gives Figures 4.20a to 4.20c,
respectively. The cylindrical surface corresponds to the equator of the blowup for each
z whilst the cylinder’s volume corresponds to the scaling chart. The blue lines along
the cylinder are therefore sets of equilibria in the entry chart, whilst the red curve
corresponds to the critical manifold in the scaling chart.

4.5.2 System with attracting and repelling directions

Consider the following system [2, Example 4.5], which is nonlinear in e.

ẋ = − x√
x2 + y2

+
2x2

x2 + y2
− 1

2

ẏ = − y√
x2 + y2

ż = −z.

(4.106)

Using our approach, we recover the results in [2] and quantify the effects of regularisation on
the dynamics.

Regularising (4.106), we obtain

ẋ = − x√
r2 + ε2Ψ(r2/ε2)

+
2x2

r2 + ε2Ψ(r2/ε2)
− 1

2

ẏ = − y√
r2 + ε2Ψ(r2/ε2)

ż = −z

(4.107)

where r2 = x2 + y2.
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In the entry chart κ1, written in desingularised polar coordinates, (4.107) becomes

d

dT
ρ = ρξ

(
2 cos3 θ − cos θ − 1

2

)
,

d

dT
θ = ξ−1 sin θ

2
(1− 2 cos θ) (1 + 2 cos θ) ,

d

dT
z = −ρz,

d

dT
ε1 = −ε1

ρ

d

dT
ρ.

(4.108)

Equilibria on the equator occur atQi = {(ρ, θ, z, ε1)|ρ = 0, θ = θi, ε1 = 0} where θi = (i−1)π3 .
Equilibria Qi, i ∈ {1, 3, 5} are angularly attracting (λθ < 0 for θi, i ∈ {1, 3, 5}), whilst the others
are angularly repelling. Furthermore, Qi, i ∈ {2, 3, 4, 5, 6} are all radially attracting (λρ < 0 for
θi, i ∈ {2, 3, 4, 5, 6}), whilst Q1 is radially repelling.

In the scaling chart κ2 (ε̄ = 1) critical sets are given implicitly by

(4.109) C± =

{
(x2, y2)

∣∣∣∣∣y2 = 0, x2 = x∗2, x
∗
2 = ±

√(
1± 2√

5

)
Ψ
(
x∗2

2
)}

,

where C+ is always a saddle, whilst C− is always a stable node.
The combined dynamics projected into the (x̄, ȳ) plane is shown in Figure 4.31. This

example demonstrates the ambiguity of the terms crossing and sliding for problems with isolated
codimension-2 discontinuities. For initial conditions (x0, y0) where |arctan (y0/x0)| < π

3 there is
crossing; otherwise, there is sliding.

x̄

ȳ

C−

C+
Q1

Q2Q3

Q4

Q5 Q6

Figure 4.31: Figure showing the blown-up discontinuity x = y = ε = 0 of (4.107).
Equilibria Qi, i ∈ {1, 3, 5}, are angularly attracting whilst Qi, i ∈ {2, 4, 6}, are
angularly repelling. Q1 is radially repelling whilst the other equilibria along the
equator are radially attracting. Within the scaling chart κ2, there are two critical
manifolds C± (4.109), a saddle and a stable node respectively with respect to the fast
flow.

Note that in this example (4.106), ż is independent of e and so the slow flow in the regularised
problem is the same for the two critical sets C± (4.109). In the next example ż depends on e.
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We will show that when there are multiple stable critical sets in the scaling chart with different
corresponding slow flows, this can result in nonunique sliding in the nonsmooth limit. This
sliding can then depend upon the direction along which trajectories approach the discontinuity
set Σ.

4.5.3 System with nonunique sliding vector field

Consider the following system, which is nonlinear in e and where ż depends on e.

ẋ = − x√
x2 + y2

(
x√

x2 + y2
− 1

2
χ(z)

)(
x√

x2 + y2
+

1

2
χ(z)

)
,

ẏ = −1

2

y√
x2 + y2

,

ż = −2
x√

x2 + y2
+

1

4

(4.110)

where χ(z) = (1 + 2z2)/(1 + z2). This system has been chosen such that there exist multiple
critical manifolds in the scaling chart, each with a different slow flow.

Regularising as before, (4.110) becomes

ẋ = − x√
r2 + ε2Ψ

(
r2

ε2

)
 x√

r2 + ε2Ψ
(
r2

ε2

) − 1

2
χ(z)


 x√

r2 + ε2Ψ
(
r2

ε2

) +
1

2
χ(z)

 ,

ẏ = −1

2

y√
r2 + εΨ

(
r2

ε2

) ,
ż = −2

x√
r2 + εΨ

(
r2

ε2

) +
1

4
.

(4.111)

Following the procedure (4.42) of using polar coordinates in the plane ε̄ = 0 (the entry chart
κ1), we find that (4.111) becomes

d

dT
ρ = −ρ

(
cos4 θ − χ(z)2 + 2

4
cos2 θ +

1

2

)
,

d

dT
θ = sin θ cos θ

(
cos2 θ − χ(z)2 + 2

4

)
,

d

dT
z = −2ρ cos θz +

1

4
,

d

dT
ε1 = −ε1

ρ

d

dT
ρ.

(4.112)
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There are eight equilibria (limit directions) Qi = {(ρ, θ, z)|ρ = 0, θ = θi(z), i = 1 . . . 8} of (4.112)
along the equator, where

θ1 = 0, θ2 = −θ8 = arccos

(√
χ2 + 2

2

)
, θ3 = −θ7 =

π

2
, θ4 = −θ6 = π − θ2, θ5 = π.

(4.113)

They are all radially attracting (λρ(θi(z), z) < 0, ∀i). The equilibria θ = θi, i ∈ {1, 3, 5, 7} are
angularly repelling (λθ(θi(z), z) > 0, i ∈ {1, 3, 5, 7}) whilst the equilibria θ = θi, i ∈ {2, 4, 6, 8}
are angularly attracting (λθ(θi(z), z) < 0, i ∈ {2, 4, 6, 8}).

We now proceed to study the dynamics in the scaling chart κ2 of (4.111) after the blowup.
We find the slow-fast system

εẋ2 = − x2√
ζ2 + Ψ (ζ2)

(
x2√

ζ2 + Ψ (ζ2)
− 1

2
χ(z)

)(
x2√

ζ2 + Ψ (ζ2)
+

1

2
χ(z)

)
,

εẏ2 = −1

2

y2√
ζ2 + Ψ (ζ2)

,

ż = −2
x2√

ζ2 + Ψ (ζ2)
+

1

4
,

(4.114)

where ζ = x2
2 + y2

2 as before. There are three critical sets (4.55) given by

C1 =

{
(x2, y2, z)|y2 = 0, x2/

√
x2

2 + Ψ
(
x2

2

)
= −1

2
χ(z)

}
,(4.115a)

C2 =

{
(x2, y2, z)|y2 = 0, x2/

√
x2

2 + Ψ
(
x2

2

)
= 0

}
,(4.115b)

C3 =

{
(x2, y2, z)|y2 = 0, x2/

√
x2

2 + Ψ
(
x2

2

)
= +

1

2
χ(z)

}
.(4.115c)

For a fixed z, C1 and C3 are stable nodes in the layer problem for all regularisation functions Ψ

in our class (Definition 4.1), whilst C2 is a saddle.
The slow flow along along C1 is ż = χ(z) + 1

4 , and ż = −χ(z) + 1
4 along C3. We can see the

dynamics of this example in Figures 4.8c, 4.9c, 4.10c and 4.11c.
These critical sets correspond to different sliding vector fields in the nonsmooth limit. Hence

we have constructed an example where the sliding vector field is dependent upon the direction
of approach to the codimension-2 discontinuity set Σ.

4.6 Discussion and conclusions

In this work, we have proposed an approach for the study of general dynamical systems
with isolated codimension-2 discontinuity sets (4.1), by using GSPT and blowup to study a
regularised version of the system, which also helps with the understanding of the robustness of
these discontinuous problems to smoothing perturbations.

154



4.6. DISCUSSION AND CONCLUSIONS

For our general system (4.9), with a directional limit of the vector field onto Σ, F∗(θ, z) (4.8),
we have demonstrated that the methods and terminology of Filippov [36] can be ambiguous. In
particular, sliding and crossing are dependent upon the approach to the discontinuity set (as in
Example 4.5.2), and it is possible to have more than one sliding vector field (see Example 4.5.3).

We have also proposed a natural extension of standard Filippov systems to codimension-2
problems in section 4.4: the e-linear system. For such systems, we have classified the dynamics
into three cases and found analogues to sliding, crossing and the sliding vector field.

Within our framework there is potential for sliding if there is a critical set (4.31) in the
scaling chart κ2. In particular, the sliding vector field corresponds to the slow flow along the
critical set. In the e-linear system, this flow will be unique, even if there are limit cycles
Proposition 4.1. Whether or not there is sliding can depend upon the direction of approach to
the discontinuity set (see Figure 4.19), and we have the possibility of multiple sliding vector
fields in Example 4.5.3.

In this paper, we consider the class of regularisation functions Ψ that lead to monotonic
smoothed step functions (see Figure 4.5). Hence within our current framework, we study Coulomb
friction. Other types of regularisation would be needed to study other friction laws, such as
“stiction” [12, 62]. Using our regularisation approach, certain physical phenomena that are not
covered here may be facilitated. For example, we can expect stick-slip oscillations to be given
by heteroclinic connections between equilibria along the equator, where one of the connections
occurs in the chart κ1 and the other in the chart κ2 (slip and stick respectively).

A piece of further work could be to link this analysis to the concept of friction cones. For an
application of friction cones, see [16]).
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Chapter 5

Discussion and Conclusions

We have demonstrated the nonexistence and nonuniqueness of forward-time solutions due to
the conflict between the rigid-body assumptions and the the resulting dynamics seen in the 2D
problem also occur in the 3D problem (see also [16, 109, 110]). Crucial to the paradox are the
nondimensional terms p(θ, ϕ;α, µ) and b(θ,Ψ,Θ) (given in (1.25) and (1.26)).

We have extended the understanding of geometry of the planar Painlevé problem to the full
3D problem. We show that the planar problem is a singular subset of the full 3D problem. We
have given generalisations of certain key results from [38] where possible, and demonstrated
where these results do not generalise to the full 3D problem.

Notably, we have demonstrated that the critical value of the coefficient of friction µC is not
as significant in the extended problem. Furthermore, we have demonstrated the importance
of the relative slip angle ϕ and the azimuthal angular velocity Ψ. This angular velocity (not
present in the planar problem) is particularly key to the dynamics, both in avoiding the paradox
and causing lift-off. Nonetheless, we have shown only part of the richness of the dynamics of the
Painlevé paradox in 3D.

We prove that unlike in the planar problem, it is typical for the rod to reach inconsistency.
These orbits, identified in [16], may be particularly important in applications, as they could
provide a new mechanism for mechanical systems to undergo juddering behaviours. This may
be an unwanted phenomenon which could cause damage to machinery, or a useful response if
bouncing is desired.

We then proceed to resolve the “paradox” through the incorporation of compliance, general-
ising results obtained by Hogan and Kristiansen from the 2D problem [42] to the 3D problem.
This compliance includes both stiffness and damping terms and leads to the introduction of a
small parameter ε. We use GSPT to study the problem, singularly perturbed by this ε, using
the framework of blowup to “zoom-in on”, and match across, regimes.

We recover IWC in the compliant system in both inconsistent and indeterminate regions.
We find that the saddle structure in the indeterminate region shown in [42], also occurs in the
3D problem. This saddle is significant as it acts as a separatrix between initial conditions that
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lead to IWC and those that lift off. Whilst we find that IWC is still comprised of 3 phases in
the 3D problem (slipping compression, sticking compression, and lift-off), we also find that the
transition between slipping and sticking is important.

We follow the significant orbits present in the rigid-body problem that reach the inconsistent
region from slipping and find that they also undergo IWC with the inclusion of compliance. We
use blowup to “zoom-in on” the boundary between the slipping and inconsistent regions. Within
the scaling chart of this blowup, we find that the dynamics are governed by the type I Painlevé
equation (a satisfying mathematical coincidence) and that a special solution begins the slipping
compression phase. In order to conveniently study the transition from slipping to sticking, we
also view spatial Coulomb friction as the limit of a smooth system and use blowup to analyse
the resulting singularly perturbed system.

Finally, we study this approach of smoothing Coulomb friction more generally. For planar
rigid body problems, Coulomb friction results in a codimension-1 discontinuity. The de-facto
approach to these PWS dynamical systems is to use the Filippov framework. But this framework
does not generalise to systems with higher codimension discontinuities, such as 3D rigid body
problems with point contact. We study a general system with an isolated codimension–2
discontinuity set, not limiting ourselves to spatial Coulomb friction. Continuing our approach of
regularisation and blowup, we regularise the nonsmooth system by taking it to be the limit of a
smooth one and use blowup to study the singularly perturbed dynamics.

We present a framework for studying these codimension-2 problems, drawing from existing
literature on the regularisation of codimension-1 discontinuities [12, 61, 63, 65, 102] and the
intersections thereof [55]. Whilst this work shares many similarities with that by Antali and
Stépán [2, 3], our approach enables the use of several advantageous theories from smooth
dynamical systems (including GSPT and index theory). For our codimension-2 problems, we
have described the local dynamics, and generalising Filippov sliding, crossing, and sliding vector
fields in terms of the nomenclature of smooth dynamical systems, slow-fast theory and blowup.
Whilst motivated by Coulomb friction, the approach is sufficiently general as to apply to any
nonsmooth dynamical system with finite-time approach to a codimension-2 discontinuity. We
have also presented a important class of codimension-2 discontinuities, the e-linear problem.
This case is analogous to standard Filippov systems, which are linear in signum or Heaviside
functions, and includes spatial Coulomb friction. For this class, we have given a more complete
classification of the possible local dynamics, and discussed the possible bifurcations. However,
our physical examples show only a small sample of the possible cases in the e-linear problem. It
would be interesting to find systems that result in no equilibria along the equator of the blowup
or those that demonstrate sensitivity to the regularisation function. These phenomena would
have particularly curious physical implications.

The central thesis of this work is to motivate and further develop the approach of using
regularisation and blowup to study mechanical systems, particularly those that exhibit Painlevé
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paradoxes, nonsmoothness, or nonexistence or nonuniqueness of solutions. Both the lack of
existence or uniqueness of solutions in the Painlevé paradox and the ambiguity of solutions to
mechanical systems with spatial Coulomb friction can be overcome using this methodology.

This approach can often be physically justified. In the case of the Painlevé problem, we may
expect the surface not to be rigid but to have very large stiffness (very small compliance). Whilst
in this work we introduce linear stiffness and damping, there are alternative resolutions of the
paradox: wave propagation in the rod [6], Hertzian contact [52], or more complicated contact
mechanics that include asperities [39]. In the case of friction, there exist models that include
“creep forces”, where friction is indeed a smooth but sharp system [7, 46, 88, 97]. Independent
of the physcial justification, the approach of viewing the system as a small perturbation to a
smooth system is a powerful one, as it enables the use of well understood theory from smooth
dynamical systems.

The theories used in this work are also very powerful. GSPT enables the deconstruction
of extremely complicated high-dimensional nonlinear ODEs into multiple simpler differential
equations that are valid in different regimes. The theory then allows the matching across
these regimes. In this work we have used this mathematical toolbox in a relatively novel
way, not to build up rigorous proofs, but instead as a form of dimensional reduction, used to
simplify equations in order to gain insight into the potential dynamics. Previously, blowup
has mainly featured in the detailed analysis of relatively low-dimensional dynamical systems
[43, 50, 59, 60, 66]. However, this level of detail can become intractable for higher-dimensional
problems.

However, in applications where even in high dimensional systems there is a clear structure
or different scales in time or space, it is possible that the use of GSPT can be extended. For
example, in multi-layer or network-on-networks, where there exist many similar nodes or patches
governed by similar equations, it is possible that the difficulties in the mathematical computation
can be overcome [47].
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Appendix A

Bifurcations of the geometry of p = 0

and b = 0

In Figure A.1, we demonstrate the bifurcations in the geometry of the surfaces p = 0 and
b = 0 for fixed Ψ with changes in the variable Ψ and the parameter µ. All codimension-1 and
codimension-2 bifurcations in (µ,Ψ) space are shown, which occur at the curves µ = µP, µ = µL,
Ψ = ΨL, Ψ = Ψ1, Ψ = Ψ1, and their pairwise intersections (where they exist). Certain regions
are grouped qualitatively (e.g. for |Ψ| > Ψ2 and µ > µP all the geometries are qualitatively
equivalent), whilst others are grouped due to being exactly equivalent (e.g. for µ = µL ΨL ≡ Ψ1).
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µ ∈ [0, µP) µ = µP µ ∈ [µP, µL) µ = µL µ > µL

|Ψ| ∈ [0,ΨL)

|Ψ| = ΨL

|Ψ| ∈ [ΨL,Ψ1)

|Ψ| = Ψ1

|Ψ| ∈ [Ψ1,Ψ2)

|Ψ| = Ψ2

|Ψ| > Ψ2

1

2

3

4 5

6

7

Figure A.1: Here we show all possible codimension-1 and codimension-2 bifurcations
between geometric cases 1 - 7 in (µ,Ψ) space. This figure accompanies Figures 2.17
and 2.18a.
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Appendix B

Phase portraits of the constrained 3D
Painlevé problem

In Figures B.1 to B.3, as in section 2.9, we present phase portraits in (ϕ,Θ) space for varying
values of parameters and variables. Similarly, in Figures B.4 to B.7, we present phase portraits
in (θ,Θ) space for varying values of parameters and at sections of fixed variables. Whilst these
are included for completeness as analogues to crucial results from [38], they indicate that due to
the higher number of dimensions involved in the study of the 3D Painlevé, it will be necessary
to find useful projections to qualitatively describe the dynamics.
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Figure B.1: Phase portraits in (ϕ,Θ) for fixed Ψ = 0 and sections of θ. (a) θ = 0,
(b) θ = 0.38459, (c) θ = 0.76918, (d) θ = 1.0513, (e) θ = 1.3333, (f) θ = 1.4521 , (g)
θ = 1.5708. ϕ̇ = 0�, θ̇ = 0�, Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.7.

166



−π −π/2 0
−2

0

2

Θ

ϕ

(a)

−π −π/2 0
−2

0

2

Θ

ϕ

(b)

−π −π/2 0
−2

0

2

Θ

ϕ

(c)

−π −π/2 0
−2

0

2

Θ

ϕ

(d)

−π −π/2 0
−2

0

2

Θ

ϕ

(e)

−π −π/2 0
−2

0

2

Θ

ϕ

(f)

−π −π/2 0
−2

0

2

Θ

ϕ

(g)

Figure B.2: Phase portraits in (ϕ,Θ) for fixed Ψ = 1 and sections of θ. (a) θ = 0,
(b) θ = 0.48508, (c) θ = 0.97016, (d) θ = 1.0955, (e) θ = 1.2209, (f) θ = 1.3958 , (g)
θ = 1.5708. ϕ̇ = 0�, θ̇ = 0�, Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.4.
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Figure B.3: Phase portraits in (ϕ,Θ) for fixed Ψ = 0 and sections of θ. (a) θ = 0,
(b) θ = 0.38459, (c) θ = 0.76918, (d) θ = 1.0513, (e) θ = 1.3333, (f) θ = 1.4521 , (g)
θ = 1.5708. ϕ̇ = 0�, θ̇ = 0�, Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.7.
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Figure B.4: Phase portraits in (θ,Θ) for fixed Ψ = 0 and sections of ϕ. (a) ϕ =
−3.1416, (b) ϕ = −2.5111, (c) ϕ = −1.8806, (d) ϕ = −1.7257, (e) ϕ = −1.5708 ,
(f) ϕ = −1.4159, (g) ϕ = −1.261, (g) ϕ = −0.63048, (i) ϕ = 0. ϕ̇ = 0�, θ̇ = 0�,
Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.4.
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Figure B.5: Phase portraits in (θ,Θ) for fixed Ψ = 0 and sections of ϕ. (a) ϕ =
−3.1416, (b) ϕ = −2.6908, (c) ϕ = −2.24, (d) ϕ = −1.9054, (e) ϕ = −1.5708 , (f)
ϕ = −1.2362, (g) ϕ = −0.90159, (g) ϕ = −0.45079, (i) ϕ = 0. ϕ̇ = 0�, θ̇ = 0�,
Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.7.
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Figure B.6: Phase portraits in (θ,Θ) for fixed Ψ = 1 and sections of ϕ. (a) ϕ =
−3.1416, (b) ϕ = −2.5111, (c) ϕ = −1.8806, (d) ϕ = −1.7257, (e) ϕ = −1.5708 ,
(f) ϕ = −1.4159, (g) ϕ = −1.261, (g) ϕ = −0.63048, (i) ϕ = 0. ϕ̇ = 0�, θ̇ = 0�,
Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.4.
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Figure B.7: Phase portraits in (θ,Θ) for fixed Ψ = 1 and sections of ϕ. (a) ϕ =
−3.1416, (b) ϕ = −2.6908, (c) ϕ = −2.24, (d) ϕ = −1.9054, (e) ϕ = −1.5708 , (f)
ϕ = −1.2362, (g) ϕ = −0.90159, (g) ϕ = −0.45079, (i) ϕ = 0. ϕ̇ = 0�, θ̇ = 0�,
Ψ̇ = 0�, Θ̇ = 0�. The parameters α = 3 and µ = 1.7.
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Appendix C

Initial conditions and parameter values
for the numerics in Section 3.2

For all numerics in section 3.2, MATLAB’s stiff solver ode23s was used with default tolerances.

C.1 Initial conditions and parameter values for the numerics in
Figure 3.6

In Table C.1, we show the initial conditions and parameter values used in the numerics in
Figure 3.6. These values were chosen for the following reasons. α and µ were chosen as the
typical values such that µ > µP(α). δ = 2 was chosen for its overdamping. ε = 10−4 was
chosen to give a very stiff surface. η(0) = 1 was chosen as an O(1) slipping speed. θ(0) and ϕ(0)

were chosen as follows. θ(0) = 1
2(θ1(µ, α) + θ2(µ, α)) such that θ(0) ∈ (θ1(µ, α), θ2(µ, α)), and

ϕ(0) = ϕ−(θ(0);α, µ)− 0.2, such that p(θ(0), ϕ(0);α, µ) = 0.1355 is fairly small but positive.
Ψ(0) = 0 and Θ(0) = 0.1060 were chosen to give a negative b(Ψ(0),Θ(0), θ(0)) = −0.9900. The
initial conditions r1(0) =

√
p(θ(0), ϕ(0);α, µ) and ε1(0) = εr1(0)−5 are found using the chart

(3.23). Finally ζ(0) = ε1(0)b(Ψ(0),Θ(0), θ(0)) was chosen to demonstrate a perturbation away
from the potential invariant manifold on the sphere. Initial conditions where ζ = nζ(0) and
ε = nε(0) for n ∈ {2, 4, 6, 8, 10} were also used.

α µ δ ε θ(0) η(0) ϕ(0) Ψ(0) Θ(0) r1(0) ε1(0) ζ1(0)

3 1.4 2 10−4 1.0955 1 -2.0793 0 0.1060 0.3682 0.0148 -0.0146

Table C.1: Parameter values and initial conditions used in the numerics in Figure 3.6.
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NUMERICS IN SECTION 3.2

C.2 Initial conditions and parameter values for the numerics in
Figures 3.7 and 3.8

b k ζ2(0) p2(0) w2(0) r2 = 0

-0.5 -0.3244 -0.0315 15.8489 0 0
-0.5 -0.3244 -0.0631 15.8489 0 0

Table C.2: Parameter values and initial conditions used in the numerics in Figures 3.7
and 3.8.

In Table C.2, we give the initial conditions/parameters used in the numerical integration
of equation (3.33). b was chosen as a negative (between its minimum of −1 and 0). k =

k(θ(0), ϕ−(θ(0);α, µ), η(0), 0), where α = 3, µ = 1.4, and θ(0) = 1
2 (θ1(α, µ) + θ2(α, µ)) (such

that p = 0). ζ2(0), p2(0)m, and w2(0) were found by rewriting the linear terms of (3.29) for
some small ε∗1 = 0.001,

ζ1 = bε∗1

w1 = 0

ε1 = ε∗1

(C.1)

in the chart k2

ζ2 = bε∗1
2
5 ≈ −0.0315

w2 = 0

p2 = ε∗1
− 2

5 ≈ 15.8489.

(C.2)

In Figure 3.8, where we study an orbit close to the special solution, the initial condition
ζ2(0) = 2bε∗1

2
5 is used.
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Appendix D

Proof of the regularisation function
lemma

Proof of Lemma 4.1

Proof. a From the definition of R(φ) (4.13), we have that

eΨ (R(φ)(x, y)ᵀ; ε) = eΨ(x cosφ− y sinφ, x sinφ+ y cosφ; ε).(D.1)

=
((x cosφ− y sinφ) , (x sinφ+ y cosφ))ᵀ√

x2 + y2 + ε2Ψ
(
x2+y2

ε2

) ,(D.2)

= R(φ)
(x, y)ᵀ√

x2 + y2 + ε2Ψ
(
x2+y2

ε2

) ,(D.3)

≡ R(φ)eΨ (x, y; ε)(D.4)

since |R(φ)(x, y)ᵀ|2 = |(x, y)ᵀ|2

b From the definition of eΨ (4.21), we have that

eΨ(kx, ky; kε) =
(kx, ky)ᵀ√

k2x2 + k2y2 + k2ε2Ψ
(
k2x2+k2y2

k2ε2

)(D.5)

=
k(x, y)ᵀ

√
k2

√
x2 + y2 + ε2Ψ

(
x2+y2

ε2

) .(D.6)

Therefore, for k > 0,

eΨ(kx, ky; kε) =
(x, y)ᵀ√

x2 + y2 + ε2Ψ
(
x2+y2

ε2

) ,(D.7)

≡ eΨ(x, y; ε).(D.8)
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c Writing

eΨ(ρ̃ cos θ̃, ρ̃ cos θ̃; ε) = eΨ(ρ cos θ, ρ cos θ; ε)(D.9)

in terms of polar coordinates,〈
ρ̃√

ρ̃2 + ε2Ψ(ρ̃2/ε2)
, θ̃

〉
=

〈
ρ√

ρ2 + ε2Ψ(ρ2/ε2)
, θ

〉
.(D.10)

Comparing components, we have θ ≡ θ̃, and from the monotonicity of Ψ (Definition 4.1),
we have ρ ≡ ρ̃.

�
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Appendix E

Lemma on the e-linear normal form

Lemma E.1. Consider the e-linear normal (4.60) from section 4.4 given byẋẏ
ż

 =

(
A(z)

B(z)

)
e(x, y) +

(
f(x, y, z)

g(x, y, z)

)
.(E.1)

Then there is transformation such that the system can be re-written as in (E.1), with A in the
form

(E.2) A(z) =

(
a(z) −b(z)

b(z) d(z)

)
.

Proof. Let us consider the systemẋẏ
ż

 =

(
A(z)

B(z)

)
e(x, y) +

(
f(x, y, z)

g(x, y, z)

)

where A is any real matrix

A(z) =

(
a(z) b(z)

c(z) d(z)

)
.

We can write A(z) as
A(z) = Rᵀ (φ(z)) Ã(z)R (φ(z))

where R is a rotation matrix through the angle

φ(z) =
1

2
arctan

(
b̃(z) + c̃(z)

d̃(z)− ã(z)

)
,

and Ã is a matrix in the same form as (E.2)

Ã :=

(
ã(z) −b̃(z)

b̃(z) d̃(z)

)
.
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Let us now change to coordinates (x̃, ỹ, z) using the coordinate transformation given by

(E.3) (x̃, ỹ)ᵀ = R (φ(z)) (x, y)ᵀ.

Differentiating (E.3)(
˙̃x

˙̃y

)
= R(φ(z))

(
ẋ

ẏ

)
+
∂φ

∂z
ż
∂

∂φ
(R(φ(z)))

(
x

y

)
,

then substituting and using the equivariance of e from Lemma 4.1(a)

= R (φ(z)) (A(z)Rᵀ (φ(z)) e(x̃, ỹ) + f(Rᵀ (φ(z)) (x̃, ỹ)ᵀ, z), ) +

∂φ

∂z
ż
∂

∂φ
R (φ(z)) Rᵀ (φ(z)) (x̃, ỹ)ᵀ

= Ã(z)e(x̃, ỹ) + R(φ(z))f(Rᵀ (φ(z)) (x̃, ỹ)ᵀ, z) +
∂φ

∂z
żR (π/2) (x̃, ỹ)ᵀ

( ˙̃x, ˙̃y)ᵀ := Ã(z)e(x̃, ỹ) + f̃(x̃, ỹ, z).(E.4)

Similarly

ż = B(z)Rᵀ(φ(z))e(x̃, ỹ) + g(Rᵀ(φ(z))(x̃, ỹ)ᵀ, z),

ż := B̃(z)e(x̃, ỹ) + g̃(x̃, ỹ, z)(E.5)

�
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Appendix F

Lemma on an alternative e-linear
normal form with radial dependence

ẋẏ
ż

 =

(
A(z)

B(z)

)
γ
(
x2 + y2

)
e(x, y) +

(
f(x, y, z)

g(x, y, z)

)
.(F.1)

Lemma F.1. Consider (F.1), which is linear in e but now with some radial dependence
γ
(
x2 + y2

)
. Then there is transformation such that the system can be written as in (F.1), with

A in the form

(F.2) A(z) =

(
a(z) −b(z)

b(z) d(z)

)
.

Proof. Let us consider the system (F.1) where A is any real matrix

A(z) =

(
a(z) b(z)

c(z) d(z)

)
.

We can write A(z) as

A(z) = Rᵀ (φ(z)) Ã(z)R (φ(z))

where R is a rotation matrix through the angle

φ(z) =
1

2
arctan

(
b̃(z) + c̃(z)

d̃(z)− ã(z)

)
,

and Ã is a matrix in the same form as (F.2)

Ã(z) :=

(
ã(z) −b̃(z)

b̃(z) d̃(z)

)
.
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APPENDIX F. LEMMA ON AN ALTERNATIVE e-LINEAR NORMAL FORM WITH
RADIAL DEPENDENCE

Let us now change to coordinates (x̃, ỹ, z) using the coordinate transformation given by

(F.3) (x̃, ỹ)ᵀ = R (φ(z)) (x, y)ᵀ.

Differentiating (F.3)(
˙̃x

˙̃y

)
= R(φ(z))

(
ẋ

ẏ

)
+

(
∂φ

∂z
ż

)
∂

∂φ
(R(φ(z)))

(
x

y

)
,

then substituting and using the equivariance of e from Lemma 4.1(a)

= R (φ(z))
(
A(z)γ

(
x̃2 + ỹ2

)
Rᵀ (φ(z)) e(x̃, ỹ) + f(Rᵀ (φ(z)) (x̃, ỹ)ᵀ, z)

)
+
∂φ

∂z
ż
∂

∂φ
R (φ(z)) Rᵀ (φ(z)) (x̃, ỹ)ᵀ

= Ã(z)γ
(
x̃2 + ỹ2

)
e(x̃, ỹ) + R(φ(z))f(Rᵀ (φ(z)) (x̃, ỹ)ᵀ, z)

+
∂φ

∂z
żR (π/2) (x̃, ỹ)ᵀ

( ˙̃x, ˙̃y)ᵀ := Ã(z)γ
(
x̃2 + ỹ2

)
e(x̃, ỹ) + f̃(x̃, ỹ, z).(F.4)

Similarly

ż = B(z)γ
(
x̃2 + ỹ2

)
Rᵀ(φ(z))e(x̃, ỹ) + g(Rᵀ(φ(z))(x̃, ỹ)ᵀ, z),

ż := B̃(z)γ
(
x̃2 + ỹ2

)
e(x̃, ỹ) + g̃(x̃, ỹ, z)(F.5)

�
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Appendix G

Lemma on the suitability of the
e-linear normal form

Lemma G.1. For the following set of ODEsẋẏ
ż

 =

(
A(x, y, z)

B(x, y, z)

)
e(x, y) +

(
f(x, y, z)

g(x, y, z)

)
,(G.1)

where A and B depend smoothly on (x, y, z), the system can be re-written as in (E.1), with A

in the form

(G.2) A(z) =

(
a(z) b(z)

c(z) d(z)

)
.

Proof. Let us consider the system, as in (G.1)ẋẏ
ż

 =

(
A(x, y, z)

B(x, y, z)

)
e(x, y) +

(
f(x, y, z)

g(x, y, z)

)
.

Writing the matrices A and B as Taylor series with respect to x and y and grouping terms that
are constant w.r.t (x, y) and the terms with dependence upon (x, y),

A = A(0, 0, z) + (A(x, y, z)−A(0, 0, z))

and

B = B(0, 0, z) + (B(x, y, z)−B(0, 0, z))
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APPENDIX G. LEMMA ON THE SUITABILITY OF THE e-LINEAR NORMAL FORM

we find ẋẏ
ż

 =

((
A(0, 0, z)

B(0, 0, z)

)
+

(
A(x, y, z)−A(0, 0, z)

B(x, y, z)−B(0, 0, z)

))
e(x, y) +

(
f(x, y, z)

g(x, y, z)

)
ẋẏ

ż

 =

(
A(0, 0, z)

B(0, 0, z)

)
e(x, y) +

((
A(x, y, z)−A(0, 0, z)

B(x, y, z)−B(0, 0, z)

)
e(x, y) +

(
f(x, y, z)

g(x, y, z)

))
.(G.3)

Finally, we can re-write (G.3) in the formẋẏ
ż

 =

(
Ã(z)

B̃(z)

)
e(x, y) +

(
f̃(x, y, z)

g̃(x, y, z)

)
,

where

Ã(z) = A(0, 0, z),

B̃(z) = B(0, 0, z),

f̃(x, y, z) = (A(x, y, z)−A(0, 0, z)) e(x, y) + f(x, y, z),

and

g̃(x, y, z) = (B(x, y, z)−B(0, 0, z)) e(x, y) + g(x, y, z).

This is possible because both (A(x, y, z)−A(0, 0, z)) e(x, y) and (B(x, y, z)−B(0, 0, z)) e(x, y)

are both well defined as 0 when x = y = 0.
�
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