
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Mcewan, Dave

Title:
Behaviour analysis in binary SoC data

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



Behaviour Analysis in Binary SoC
Data

By

DAVID MCEWAN

Department of Electrical and Electronic Engineering
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in
accordance with the requirements of the degree of DOCTOR

OF PHILOSOPHY in the Faculty of Engineering.

JAN 2022

Thirty five thousand words





ABSTRACT

Modern System-on-Chips (SoCs) are highly complex systems specified chiefly using
digital clocked logic and implemented in silicon circuitry. The applications served
by SoC-based products vary from tiny embedded devices to massive supercom-
puters. A common factor in systems across the scale is that designers require a
thorough understanding of component interactions lest they sacrifice unnecessary
energy, performance, development time and other important resources.

The approach taken in this thesis is via behaviour analysis on key internal sig-
nals carrying binary data. Systems with appropriate instrumentation can provide
engineers with signals on the workings and interactions of components in state
format (e.g. transactionIsInflight) or event format (e.g. transactionInitiated and
transactionCompleted). Gaining an understanding of a system’s runtime behaviour
entails uncovering knowledge about key statistics of these signals and, with equal
importance, knowledge about the underlying relationships connecting them.

Statistical experiments are devised to find which interpretations of the term
“correlation” are most useful, and whether individual performance counters can be
used effectively for correlation analysis over a single time window. Metrics based
on covariance and independence are found to be more useful than those based
on sets or geometrical concepts. Individual performance counters are shown to
be inadequate for discerning useful correlation information within a single time
window; however, the inclusion of at least one pairwise counter enables useful
correlation metrics to be calculated. Building upon these results, a hardware
design is developed to discover what is required to implement a device for passive
on-chip correlation monitoring and data collection. A novel sampling method is
developed out of necessity to enable correlation to be detected between signals with
a slight but unknown delay, and a novel window function which enables low-cost
windowing counters. The correlator device is demonstrated via integration with
UltraSoC’s commercial toolkit for embedded analytics in a highly complex multi-
core system. It is observed that behaviour analysis involves a large amount of data
that is difficult to consume using existing tools and techniques (e.g. time-series
plots and tables). This is addressed by tackling the problem of how to effectively
present large amounts of correlation data in a way which allows a system designer
to comprehend the required statistics without being overwhelmed.

This work prepares SoC designers for understanding their system’s behaviour
at a theoretical level via a thorough evaluation of correlation metrics, and at a
practical level via an exploration of both implementation in digital logic hardware
and novel visualisation techniques to present behaviour.

i



DEDICATION AND ACKNOWLEDGEMENTS

I could not be more grateful to my supervisors Jose Nunez-Yanez, Kerstin Eder, and
Gajinder Panesar, who’ve given me so much guidance and support over the course
of this project. Also, many thanks to the tireless efforts of the other university staff,
particularly Mark Beech and Suzanne Binding. Sponsorship from UltraSoC and
the industrial expertise provided by Marcin Hlond, Rupert Baines, Matt Lokes,
Iain Robertson, and Hanan Moller has proven invaluable in realising sound and
practical hardware. I’m especially grateful to Χρυσανθη, Lolly, Lockhart, Robb,
and Paul for their help with writing and great patience. And finally, my friends
and colleagues in the Communications CDT Adam, Roger, Justin, Michael, and
Mark who have helped spawn interesting ideas on beermats and napkins.

ii



AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accor-
dance with the requirements of the University’s Regulations and Code
of Practice for Research Degree Programmes and that it has not been
submitted for any other academic award. Except where indicated by
specific reference in the text, the work is the candidate’s own work.
Work done in collaboration with, or with the assistance of, others, is
indicated as such. Any views expressed in the dissertation are those of
the author.

SIGNED: .......................................... DATE: ..............................

iii



TABLE OF CONTENTS

Page

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 General Problem Description . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Notation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Literature Review 7
2.1 Abstract Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Knowledge Discovery and Interestingness . . . . . . . . . . . 7

2.1.2 Behaviour and Function . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Pre-existing Datasets . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Collecting SoC Data . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Visualisations for Behaviour . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Heuristic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Existing Tools and Techniques . . . . . . . . . . . . . . . . . . 19

2.4 Summary and Direction . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Correlation Metrics in Binary SoC Data 27
3.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Definition of Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Binary Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



TABLE OF CONTENTS

3.2.2 Geometric Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Probabilistic Metrics . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Probabilistic Assumptions . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Further Description of System Construction . . . . . . . . . 35

3.3.3 Methods of Scoring . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Metric Scoring Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Learning New Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Calculating Metrics with Counters . . . . . . . . . . . . . . . 42

3.5.2 Neural Network Parameters and Setup . . . . . . . . . . . . 43

3.5.3 Metric Learning Results . . . . . . . . . . . . . . . . . . . . . 47

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Hardware for SoC Correlation Analysis 53
4.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Window Functions . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Synthesis, Layout, and Characterisation . . . . . . . . . . . . 60

4.3 Correlator Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Sampling Mechanism . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1.1 Introducing Variance to the Sample Period . . . . 65

4.3.1.2 Jittery Sample Strobe Mechanism . . . . . . . . . . 66

4.3.2 Windowing Counters . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2.1 Rectangular . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2.2 Logdrop . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.3 Consuming Correlation Results . . . . . . . . . . . . . . . . . 76

4.3.3.1 Real-time Results via ΔΣ and Low-Pass Filter . . 77

4.3.3.2 Calculating Correlation Using Counters . . . . . . 77

4.3.4 Synthesis Characterisation on FPGAs . . . . . . . . . . . . . 79

4.4 Integration Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 Case Study 1: Slow Datalink . . . . . . . . . . . . . . . . . . . 85

4.4.2 Case Study 2: Fast Datalink . . . . . . . . . . . . . . . . . . . 91

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

v



TABLE OF CONTENTS

5 Visualizing Pairwise Correlations 97
5.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Visualisations for Binary SoC Data . . . . . . . . . . . . . . . . . . . 100

5.2.1 Statistics on Binary Signals . . . . . . . . . . . . . . . . . . . 101

5.2.2 Netgraph View . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2.1 Statistics on Individual Signals . . . . . . . . . . . 103

5.2.2.2 Identicons as Aids for Orientation . . . . . . . . . . 105

5.2.2.3 Circular Graphical Layout . . . . . . . . . . . . . . 106

5.2.2.4 Interactive Features . . . . . . . . . . . . . . . . . . 108

5.2.3 Tabdelta View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Gestalt Evaluation Against Heuristics . . . . . . . . . . . . . . . . . 112

5.3.1 Nielsen’s Usability Heuristics . . . . . . . . . . . . . . . . . . 112

5.3.2 Shneiderman’s Visual-Information-Seeking Tasks . . . . . . 115

5.3.3 Gerhardt-Powals’ Cognitive Engineering Principles . . . . . 116

5.3.4 Forsell and Johansson’s Visualisation Heuristics . . . . . . . 118

5.3.5 Direct Comparison with State of the Art . . . . . . . . . . . . 120

5.4 Demonstration Case Studies . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Case Study 1: Static Behaviours . . . . . . . . . . . . . . . . . 122

5.4.1.1 Description of praxi System . . . . . . . . . . . . . . 122

5.4.1.2 Behaviour Overview in Netgraph View . . . . . . . 124

5.4.1.3 Behaviour Overview in Tabdelta View . . . . . . . 125

5.4.2 Case Study 2: Changing Behaviours . . . . . . . . . . . . . . 127

5.4.2.1 Description of tinn System . . . . . . . . . . . . . . 127

5.4.2.2 Behaviour Changes in Netgraph View . . . . . . . 127

5.4.2.3 Behaviour Changes in Tabdelta View . . . . . . . . 131

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Conclusions 133
6.1 Summary of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Achieved Objectives and Contributions . . . . . . . . . . . . . . . . . 135

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Appendices 138

A List of Publications 139

vi



TABLE OF CONTENTS

B Parameter Sets 141

C Results From Section 3.4 By System Type 143

D Model Summaries for FFNN-based Metrics 149
D.1 Counter Inputs Combination perfCntrs . . . . . . . . . . . . . . . . . 149

D.2 Counter Inputs Combination withAssist . . . . . . . . . . . . . . . . . 152

D.3 Counter Inputs Combination fullAssist . . . . . . . . . . . . . . . . . 155

D.4 Counter Inputs Combination withIsect . . . . . . . . . . . . . . . . . 158

D.5 Counter Inputs Combination withSymdiff . . . . . . . . . . . . . . . . 161

D.6 Counter Inputs Combination withIsectSymdiff . . . . . . . . . . . . . 164

E Quantified Confidence in fmax Robustness 167
E.1 Confidence In A Single Design . . . . . . . . . . . . . . . . . . . . . . 168

E.2 Comparison of Competing Designs . . . . . . . . . . . . . . . . . . . . 170

E.3 Comparing Similar Configurations . . . . . . . . . . . . . . . . . . . . 172

F Modelling the Jittery Strobe Counter Circuit 175

G BytePipe Protocol 179

H USB-FS Electrical Interface Over Five Pins 185

I Colourspace for Bounded 2D Data 189

Bibliography 195

Glossary 210

vii



LIST OF TABLES

TABLE Page

3.1 FFNN architectures in metric-learning experiments. . . . . . . . . . . . 45

3.2 Hyper-parameters for FFNN experiments. . . . . . . . . . . . . . . . . . 46

3.3 Input sets for FFNN experiments. . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Direct comparison of usability features. . . . . . . . . . . . . . . . . . . . 121

E.1 Comparison of PRNG implementations on Lattice iCE40LP. . . . . . . 173

viii



LIST OF FIGURES

FIGURE Page

2.1 Example data on a waveform viewer. . . . . . . . . . . . . . . . . . . . . . 20

2.2 Spiral and Helical Visualisations of Periodic Time-Series. . . . . . . . . 21

2.3 Example kernel data on Trace Compass. . . . . . . . . . . . . . . . . . . 22

2.4 Example corrgram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Example of Solar Correlation Map. . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Example system with src and dst nodes connected via binary operations. 35

3.2 Probabilistic model for Binary SoC Data. . . . . . . . . . . . . . . . . . . 37

3.3 KDE plots of metric score PDFs. . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Illustrations FFNN structure and input combinations. . . . . . . . . . . 44

3.5 Epoch loss in metric learning (Part 1 of 2). . . . . . . . . . . . . . . . . . 49

3.6 Epoch loss in metric learning (Part 2 of 2). . . . . . . . . . . . . . . . . . 50

4.1 Usage of correlator device. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Microarchitecture of a correlator engine. . . . . . . . . . . . . . . . . . . 63

4.3 Correlator data capture mechanism. . . . . . . . . . . . . . . . . . . . . . 64

4.4 Event/counter anti-phase sampling timeline. . . . . . . . . . . . . . . . . 65

4.5 Logical design of sampling strobe generator. . . . . . . . . . . . . . . . . 66

4.6 PDF of sampling strobe period. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Logical design of scalable counter with rectangular windowing. . . . . 71

4.8 Logdrop windowing function with small N. . . . . . . . . . . . . . . . . . 73

4.9 Logdrop windowing function with large N. . . . . . . . . . . . . . . . . . 74

4.10 Logical implementation of Logdrop. . . . . . . . . . . . . . . . . . . . . . 75

4.11 Logical design of scalable counter with Logdrop windowing. . . . . . . . 76

4.12 Logical design of correlator metric calculators. . . . . . . . . . . . . . . . 78

4.13 Multi-PnR results correlator on Lattice iCE40LP8K. . . . . . . . . . . . 81

4.14 Correlator floorplans in Lattice iCE40LP. . . . . . . . . . . . . . . . . . . 82

4.15 Correlator floorplan in Xilinx 7-Series FPGAs. . . . . . . . . . . . . . . . 83

4.16 OpenPiton Memory Hierarchy Datapath. . . . . . . . . . . . . . . . . . . 85

ix



LIST OF FIGURES

4.17 Logical connections of case study 1. . . . . . . . . . . . . . . . . . . . . . 86

4.18 Experimental setup of case study 1. . . . . . . . . . . . . . . . . . . . . . 87

4.19 Oscilloscope plots showing correlator results. . . . . . . . . . . . . . . . . 88

4.20 Floorplans of OpenPiton+Ariane on VC707. . . . . . . . . . . . . . . . . 90

4.21 UltraSoC Status Monitor augmented with correlator engines. . . . . . 92

4.22 Plots of recorded data and correlations from correlator. . . . . . . . . . . 93

5.1 Visualisation of individual signal’s statistics. . . . . . . . . . . . . . . . . 104

5.2 Identicon derived from signal name. . . . . . . . . . . . . . . . . . . . . . 105

5.3 Netgraph visualisation with edges in 2D colourspace. . . . . . . . . . . 107

5.4 Mouse interaction with netgraph visualisation. . . . . . . . . . . . . . . 109

5.5 Features of tabdelta visualisation. . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Tabdelta view from praxi read sub-system over time. . . . . . . . . . . . 111

5.7 Demonstration system “praxi”. . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 System Verilog specifying actual behaviour of slv.idle. . . . . . . . . . . 124

5.9 Identifiable behaviour sub-systems in praxi. . . . . . . . . . . . . . . . . 125

5.10 Specific behaviour of praxi idle signal visible in tablar view. . . . . . . 126

5.11 Demonstration system “tinn”. . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.12 Changing behaviour patterns visible in netgraph. . . . . . . . . . . . . . 129

5.13 Tabdelta view of tinn over time. . . . . . . . . . . . . . . . . . . . . . . . . 131

B.1 Linear diagram of SoC parameter sets. . . . . . . . . . . . . . . . . . . . 142

C.1 KDE plots of metric score PDFs on AND-only logical relationships. . . 144

C.2 KDE plots of metric score PDFs on OR-only logical relationships. . . . 145

C.3 KDE plots of metric score PDFs on XOR-only logical relationships. . . 146

C.4 KDE plots of metric score PDFs on mix of logical relationships. . . . . . 147

C.5 KDE plots of metric score PDFs on LHA logical relationships. . . . . . 148

E.1 Multi-PnR results of prototype BytePipe gadget. . . . . . . . . . . . . . . 169

E.2 Multi-PnR comparison of functionally equivalent design choices. . . . . 171

E.3 Multi-PnR results of Xoroshiro gadgets. . . . . . . . . . . . . . . . . . . . 174

F.1 State machine of strobe generation down-counter c. . . . . . . . . . . . 176

F.2 PMF of number of cycles in a period with s = 100. . . . . . . . . . . . . . 177

G.1 BytePipe single read transaction. . . . . . . . . . . . . . . . . . . . . . . . 181

G.2 BytePipe single write transaction. . . . . . . . . . . . . . . . . . . . . . . 181

G.3 BytePipe burst read transaction. . . . . . . . . . . . . . . . . . . . . . . . 182

G.4 BytePipe burst write transaction. . . . . . . . . . . . . . . . . . . . . . . . 183

x



LIST OF FIGURES

H.1 Schematic for external USB Full Speed electrical interface. . . . . . . . 186

H.2 PCB rendering of external USB-FS electrical interface. . . . . . . . . . 187

I.1 Variants of bounded 2D colourspace. . . . . . . . . . . . . . . . . . . . . . 191

I.2 Worked example of colour calculation. . . . . . . . . . . . . . . . . . . . . 193

I.3 Example SoC analysis assisted by colourspace. . . . . . . . . . . . . . . 194

xi





C
H

A
P

T
E

R

1
INTRODUCTION

1.1 General Problem Description

Developing SoCs which are tuned for the desired balance of compute performance,

power consumption, cost, development time, and other product constraints is a

difficult task. Detailed knowledge of many layers of technology is required, from the

intricacies of physical silicon manufacture to high levels of abstraction in software.

The logical layer is concerned with producing a logical construction of primitive

components which can perform the required data transformations. For example,

a manufacturing process might provide AND, OR, and NOT primitives which

can be combined to implement a Central Processing Unit (CPU). This research is

principally concerned with analysis on the logical layer which can have immediate

and far-reaching consequences on the physical implementation as well as the

performance of higher level system components such as software.

The complexity of SoCs has continued to grow at an astonishing pace, particu-

larly those which are aimed towards high-performance applications. For example,

Graphcore’s most recent chip, the GC200 [1], can process 8332 concurrent threads

over 1472 independent CPUs. At the extreme end of the scale, wafer-scale (as

opposed to conventional chip-scale), the Cerebras CS-1 [2] contains a massive

400k CPUs consuming an enormous area of approximately 46225 mm2. Managing

and scheduling tasks between so many workers is extremely complex and often

requires specialised software tools (e.g. TensorFlow [3]) to analyse the structure of

programs and utilise the hardware efficiently. At the other end of the scale, embed-

ded devices often use abstract concepts to enable system designers to comprehend

1



CHAPTER 1. INTRODUCTION

their systems’ behaviour such as hardware events [4], peripheral tasks [5], or, at

a fundamental level, communicating sequential processes [6]. As such, system

designers apportion their creations into manageable blocks of functionality. For ex-

ample, a complex piece of software is composed of connected functions, procedures,

and data objects. Similarly, the logical circuit of a complex SoC is composed of

connected modules which must co-operate in order to perform the desired function.

Proper co-operation between these sub-systems is essential, otherwise the system

may fail to meet expectations on aspects such as performance, power consumption,

scalability, price, and time to market.

Naturally, systems do not always operate in the correct or desired manner, so

engineers require methods of monitoring the activity and behaviour of sub-system

blocks. For example, in a many-CPU system running several distinct software

programs, the designer might have a firm idea that particular groups of CPUs

will operate independently, but co-operate within each group. Using a dedicated

side-channel for passive monitoring, the designer can observe internal signals to

confirm or deny that the CPUs are co-operating or are independent as desired [7].

The majority of a modern SoC is typically digital sequential (clocked) logic, at

least in terms of logical complexity. Sequential elements, e.g. flip-flops or latches,

take binary logical values on their inputs and produce binary logical values on their

outputs. Frequencies of the clocks which drive sequential elements are relatively

fast in comparison to those in other fields of science with rates of 2 GHz and higher

being common in consumer products. Due to the physical requirements of recording

high-bandwidth data, a system designer must be selective about which internal

signals they record. These bases of construction mean that data collected from

SoCs have several recognisable characteristics: (1) time is discretised by sampling

on clock edges; (2) data is sampled in parallel using a common clock; (3) values

are binary, either states or events; (4) time-series contain many samples; and (5)

the number of sampled signals is relatively small. These informally described

characteristics are addressed in detail in the Chapter 2 and Chapter 3.

Investigating the activity and behaviour of signals in SoC data can be a difficult

task, because picking through long binary time-series in order to understand their

connections is laborious and time-consuming without the appropriate tools. Despite

being difficult, properly understanding inter-component interactions is essential

for the development of competitive SoCs because the consequences of unintended

behaviours can be detrimental to system operation, and thus the product’s success.

2



1.2. OBJECTIVES

1.2 Objectives

This thesis is concerned with improving the process of investigation and under-

standing of complex SoCs in order to aid their development. Chapter 2 discusses

the importance of behaviour analysis in complex systems, which entails gaining

knowledge and understanding of both the context surrounding key signals, and

the relationships between them. Using the outcomes of this work, a SoC designer

should be better equipped to understand their system’s behaviour by learning the

inter-signal correlations which comprise its behavioural structure. Also discussed

in Chapter 2, with a detailed expansion in Chapter 3, is the gap in the current liter-

ature with regards to how correlations should be usefully quantified. Two further

knowledge gaps are identified as a direct consequence: (1) the requirements and

practicalities of low-cost hardware are currently unknown for on-chip assistance

with real-time correlation analysis; (2) without the knowledge of how correlations

should be measured and quantified, effective techniques for their presentation are

also uncertain. Thus, three objectives are addressed in this thesis:

1. Methods of measuring and quantifying correlation in SoCs are to be charac-

terised. This requires a model of the nature of SoC signal data.

2. Requirements and practicalities surrounding low-cost on-chip support for

correlation analysis are to be examined. Issues around the data collection,

system integration, and real-time monitoring are of particular interest.

3. Effective and ergonomic methods of presenting correlation are to be examined

with a view to improving behaviour analysis in SoCs.

These three objectives correspond to the contents of Chapter 3, Chapter 4 and

Chapter 5 respectively.

1.3 Thesis Outline

Core concepts and key philosophies behind the use of correlation analysis in the

development of complex systems are explored in Chapter 2. The fundamental

nature of knowledge discovery is described in conjunction with a discussion around

the concepts of interestingness and understanding. These concepts provide an

abstract basis for an analysis strategy focused on the behaviour and function

of SoC signals. The importance of understanding behaviour by the context and

details around correlations is explained to provide a background to the reasoning

behind this work. Additionally, inconsistencies around the term “correlation”

3



CHAPTER 1. INTRODUCTION

among different fields of science are described which highlight the need for precise

definitions in this work. A discussion on SoC datasets sets the scene for Chapter 3

by explaining why this field of study is different from other popular research

topics such as visual feature extraction, speech recognition, and textual sentiment

analysis. Practical methods of collecting data from running systems are then

described to clarify where Chapter 4 fits in. Lastly, a background on the use of

heuristic evaluation is provided to support the approach of Chapter 5 by comparing

the qualities of a careful selection of visualisation heuristics.

Chapter 3, based principally on [8], defines the concept of “Binary SoC Data” as,

briefly, a relatively small number of very long parallel discrete-time-series binary

vectors, which are thought to be somehow related via unknown logical functions.

The usefulness of several adapted definitions of correlation are then explored using

a Monte-Carlo experiment based on a probabilistic model of SoC structure and

operation. Further, the usefulness of counters for compressing event and binary-

state data is explored. Pairwise counters which are based on the intersection or

symmetric difference are shown to provide significantly more useful information

for correlation analysis than counters of single signals.

Results from Chapter 3 are used in Chapter 4 as the basis of a novel hardware

device for real-time correlation analysis on pairs of binary signals. A proof-of-

concept design is systematically devised with the goal of low-cost high-performance

correlation analysis which is applicable to a wide range of scenarios. The method

of operation is designed to approximate and mimic the process of an experienced

SoC engineer trying to understand how waveform signals are related to each other.

The correlator device is first developed as a stand-alone device, then incorporated

as part of a larger project to form two case studies. Usefulness of the techniques is

demonstrated via examples of cache behaviour in the “OpenPiton+Ariane” project,

i.e. a modern large multi-core system running Linux.

Chapter 5 explores visualisation techniques for presenting correlation results

with the aim of improving behaviour analysis. Building upon the exploration

of existing methods given in Chapter 2, a novel set of techniques is developed

based on a circular graphical layout and a particular table arrangement. These

techniques are first critically evaluated and described using appropriate heuristics

from Nielsen, Shneiderman, Gerhart-Powals, and Forsell and Johansson. In line

with the conclusions of Hvannberg et al. [9], the novel techniques are necessarily

subjected to gestalt evaluation before using two case studies to demonstrate their

utility.

In the final chapter, the thesis is summarised, achievement of objectives is

discussed, and recommendations are made for possible directions of future work.

4



1.4. NOTATION SUMMARY

1.4 Notation Summary

Common mathematical notations, such as Pr(X |Y ) meaning “posterior probability

of event X given Y ”, are used where possible. For brevity and precision some

additional notation is introduced and used frequently throughout this work. This

notation is fully explained at appropriate points in the following chapters and

listed here simply as a convenient reference.

fx Sequence of samples in the unit interval [0,1]n ⊂Rn, i.e normalised.

Assumed to be further restricted to the boolean domain {0,1}n =Bn

unless otherwise stated, i.e. binarised.

fx ¯ f y Element-wise multiplication of vectors fx and f y. Equivalent to

element-wise logical-and (∧) for binary vectors.

∣∣ fx − f y
∣∣ Element-wise absolute difference. Equivalent to element-wise exclusive-

or (⊕) for binary vectors.

E[ fx] Expected value (expectation) of vector fx treated as a random variable.

Equivalent to weighted arithmetic mean.

E
[
fx| f y

]
Conditional expectation of fx given f y.

Ḣam
(
fx, f y

)
Statistical metric of correlation based on Hamming distance (sym-

metric difference).

Ṫmt
(
fx, f y

)
Statistical metric of correlation based on Tanimoto coefficient (ratio

of union to intersection).

Ċls
(
fx, f y

)
Statistical metric of correlation based on Euclidean distance (geomet-

ric closeness).

Ċos
(
fx, f y

)
Statistical metric of correlation based on cosine similarity.

Ċov
(
fx, f y

)
Statistical metric of correlation based on covariance and Pearson

correlation coefficient.

Ḋep
(
fx, f y

)
Statistical metric of correlation based on the theory of independence.

5



CHAPTER 1. INTRODUCTION

Additionally, these symbols are used throughout Chapters 3, 4, and 5 to denote

various quantities.

m Number of signal/vectors in a given dataset.

t Discrete time index.

N Number of samples in a time window.

n Window index ∈ [0, N −1).

u First time index in a time window, i.e. n = 0.

w Signal width measured in bits. Disparate from w[t] which denotes a

window function.

δ Time offset measured in number of clock cycles.

δ ∈ (−∆,0]; fx〈δ〉[t] := fx[t+δ]

Σw Sum of a window function’s coefficients.

6



C
H

A
P

T
E

R

2
BACKGROUND AND LITERATURE REVIEW

2.1 Abstract Hypothesis

The fundamental question this research aims to address is how SoC designers

can be better supported in the process of building up knowledge and gaining an

understanding of a complex system. With the availability of improved learning

processes, more resources are available for the development of higher quality

products. The interpretation of “quality” is, naturally, dependent on the SoC’s

intended application, but would typically include a balance of physical size, power

consumption, computational latency, and computational bandwidth.

2.1.1 Knowledge Discovery and Interestingness

Fayyad et al. [10, 11] discuss the process of knowledge discovery at an abstract

level, with a focus on automated methods instead of manual inspection. Inspecting

datasets manually is a comparatively unattractive option because it is slower,

more expensive, and more prone to human bias than automated methods. This is

particularly true in very large datasets where the sheer volume of data means that

a manual comprehensive survey is infeasible. Knowledge Discovery in Databases

(KDD) is defined as the process of identifying patterns in a dataset which are valid,

non-trivial, potentially useful, novel, and understandable. Requiring a discovered

pattern to be valid means that the pattern must be both relevant and statistically

significant, as opposed to a simple coincidence. Human bias in manual analysis

makes us prone to assigning too much importance to patterns whose occurrence

7



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

is merely a coincidence [12] (apophenia and pareidolia), e.g. perceiving faces

in inanimate objects. Automated analyses which are immune to pareidolia are

therefore desirable in the search for knowledge about qualitative and quantitative

features in SoC data. Patterns contributing to knowledge must be derived through

non-trivial inference or searching, as opposed to simple or obvious quantities.

Fayyad’s example is “the average value of a set of numbers”; however, in binary

data viewed on a waveform analyser, the average value may not be a simple or

obvious quantity. Due to the difference in scale of axes (many values horizontally,

only two values vertically) comprehending the average requires an involved search-

and-count process. Thus, the interpretation of the “non-trivial” requirement is

dependent on the nature of the data.

The properties of usefulness and understandability are noted as subjective

qualities which depend on both the context and the viewer. The concept of interest-

ingness is closely related to these properties, and is used to identify and extract

pieces of knowledge which the viewer is likely to deem most useful. Hilderman

and Hamilton [13] survey 17 metrics of interestingness, classifying them by their

foundations and formulations. Each metric is a mathematical interpretation of the

term “interesting”; i.e. that a particular data feature should be highlighted for fur-

ther investigation. A common theme among all formulations is that they are based

on the statistical relationship between two or more items of a dataset, expressed

in terms of estimated prior and posterior probabilities (E[X ] and E[X |Y ]).

Roddick and Rice [14] identify interestingness metrics using the concrete

example of the reporting of events in sports, e.g. cricket. Reports of events are

classified as either static facts which have already occurred, or anticipated events

which are estimated to occur in the close future. Three simple interestingness

metrics are given which link an occurrence of X to a potential cause occurring Y

in a dataset of size N: (1) confidence =E[X |Y ], (2) completeness =E[Y |X ], and

(3) support =E[X ∧Y ]. For example, let X be “Alice scores a point”, let Y be “Bob

is on the field”, and say the confidence E[X |Y ] is high (because Alice has been

observed to score more often when Bob is also on the field). A reporter should

mention this fact when Bob enters the field because viewers will pay particular

attention to Alice in order to confirm or deny their expectation that these two

events are related. Sports reporting, like many forms of temporal analysis, bears

some resemblance to the investigation of SoC data – A reporter’s purpose is to view

the game and present a filtered summary of the important events and their context

to listeners. The first step in investigating SoC data (or other temporal data) is

to identify the most important events based on the context of which events have

previously occurred, then condense this knowledge into some sort of summary. By

8



2.1. ABSTRACT HYPOTHESIS

mentally sorting pieces of knowledge by their interestingness we can prioritise

investigation effort. Roddick and Rice also note the importance of non-linear

functions, in particular threshold functions, for determining interestingness by

selectively discarding uninteresting data rather than simply investigating with

lower priority. The use of threshold functions for removing extraneous results is

also useful in visual presentations in order to avoid overwhelming a viewer. This

is discussed further in Chapter 5.

A recurring theme in the literature on KDD (also known as “data mining”)

and metrics of interestingness, is that the most valuable information is in the

identification of relationships between items.

2.1.2 Behaviour and Function

SoCs comprising modern silicon products are often built on a foundation of life-

times of work by hundreds of engineers implementing systems of extremely high

complexity [15]. The sheer scale of the complexity makes it all but impossible for

one systems architect to have a complete understanding of every part of a design.

Instead, individual engineers with deep and detailed knowledge of specific compo-

nents rely on well-defined abstractions and interfaces in order to have confidence

that the SoC products using these components will function correctly [16, 17].

The concepts of behaviour and function can be distinguished by a familiar

analogy: the function of a waitress, moving food between a kitchen and tables, is

different from her behaviour, which may range from fast to slow and from silent to

chatty. A restaurant employing a waitress, as a component of the business, is able

to easily and explicitly specify the exact function of a waitress, i.e. which plates

to transfer to which tables. Behaviour, on the other hand, is a set of qualities

difficult to pin down but essential to the success of the business and specific to

the restaurant’s target market. The scale of complexity in modern SoCs means

that, while at first glance a system may appear to be functioning, there may

be unintended interactions between system components leading to undesirable

consequences such as reduced performance, increased energy usage, information

leakage, or unexpected susceptibility to faults.

Cao’s exposition on behaviour understanding [18] explores the concept of be-

haviour thoroughly. The field of behaviour informatics is concerned with the

modelling, construction, simulation, presentation, and usage of data about the

action or reaction of an entity, human or otherwise, to stimuli in its environment.

While Cao’s two case studies and most of the accompanying examples refer to

analysis of human choices, it is emphasised that the conclusions apply to complex

9



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

systems in general. A more abstract interpretation is that the concept of behaviour

is about identifiable patterns of relationships between observable events. Further,

behavioural data is often recorded only implicitly and therefore requires significant

processing to extract features. The example given by Cao is of economic data where

only the time, price, and volume of stock transactions is recorded, but patterns

indicating human social behaviours (like confidence in a commodity) are implicitly

contained.

Wang et al. [19] describe an ontology-based system of analysis and identify that

behaviour analysis is fundamentally based upon the identification of relationships

and the subsequent uncovering of contentions and co-operation between entities.

Two fundamental limitations are identified by Cao: (1) analysis of the exact

details of a relationship are not fully supported; (2) analysis of intention is not

supported either. Behaviour analysis is shown to be immensely important in the

understanding and development of refined business processes, but it does not

provide immediately usable results without context. Instead, behaviour analysis

is a useful complement to traditional pattern-analysis techniques to “join the

dots” between observed trends and the issues driving those trends. In Cao’s

examples of investigating customer behaviour in relation to business processes,

an understanding of the reasons behind favourable (or unfavourable) customer

actions enables the business to adapt its methodology in a holistic and considered

manner. The first limitation, that the extraction of precise relationship details is

not supported, means that behaviour analysis can be used to uncover the presence

of a relationship. By highlighting that a relationship exists, the involved entities

are marked as more interesting and worthy of higher-priority further analysis. The

second limitation, that behaviour analysis cannot uncover intention, means that

knowledge can only be extracted if it exists in a dataset (implicitly or explicitly),

i.e. intention exists only in the mind of a system’s designer.

In the context of SoC development, a simulation might record the times of

different events, e.g. Advanced/ARM eXtensible Interface (AXI) transactions on

interconnect nodes, to a database for later behavioural analysis. Interactions

and relationships between interconnect nodes are implicitly contained in this

record, and the ability to extract this behavioural data allows a system designer

to gain a deeper understanding. Ultimately, more efficient methods of gaining

deep understanding about a SoC allow it to be developed more efficiently, thereby

reducing the time (and cost) of development or accelerating the production of

higher-quality products.

10



2.2. DATA COLLECTION

2.1.3 Correlation

Correlation as a concept, if not the term, has been around as long as humanity

itself as it is the core concept behind all learning, and therefore essential to

understanding our environment. The term “correlation” has different several

meanings, depending on context. For example, in the field of signal processing, the

term usually refers to the cross-correlation operation [20, 21] on a pair of ordered

sample sets:

( f ? g)[n]=∑
m

f [m]g[m+n] (2.1)

By contrast, the Pearson Correlation Coefficient [22, 23] is the most common

interpretation in the field of statistics, which presents the ratio of covariance to

the product of standard deviations:

ρX ,Y = cov(X ,Y )
σXσY

(2.2)

Even in the field of machine learning which is fundamentally based on statistics,

“correlation” can have a different meaning, i.e. learned posterior probability [24].

These are vastly different interpretations of the term with no bijective mappings

between interpretations. For example, while both Equation (2.1) and Equation (2.2)

may be calculated for a pair of number sequences, only Equation (2.2) may be

calculated for a pair of unordered sample sets; i.e. the index term n of Equation (2.1)

requires that the data has a natural ordering but Equation (2.2) does not have

such a requirement.

Thirteen ways of interpreting the term are given by Rodgers and Nicewater [25]

including several algebraic, geometric, and trigonometric interpretations. Each

of these shares the common notion that two things are related but without the

requirement that one thing leads to another. In this work, the term “correlation”

is used in the broadest and most literal sense to mean a reciprocal relationship

between two objects. Different mathematical interpretations which somehow

quantify how the extent of a pairwise relationship are referred to as “correlation

metrics”. Chapter 3 examines six correlation metrics to evaluate their usefulness

for the purpose of identifying relationships in SoC data.

2.2 Data Collection

This work is about the analysis of datasets containing information from SoCs,

which naturally requires a source of data to evaluate. There are several options for

acquiring SoC data:

11



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

• Open/publicly available dataset.

• Private/proprietary dataset.

• Collect data from a collection of SoC models.

• Collect data from a collection of real SoCs in operation.

• Don’t use a collection of data. Instead, use an abstract model of data.

2.2.1 Pre-existing Datasets

Other fields of research rely on publicly available datasets, e.g. computer vision

research often uses the CIFAR dataset [26]. The free availability of this dataset

ensures that valid comparisons may be drawn between competing researchers.

Additionally, allowing the data to be openly scrutinised ensures that any problems,

e.g. biased samples, can be openly discussed and addressed. This option provides

the easiest path to high-quality research by allowing researchers to focus solely on

the target problem without much up-front effort required to collect data.

At the present time, there are no well-established publicly available datasets

suitable for the evaluation of SoC behaviour analysis techniques. This situation

is perhaps unsurprising, as silicon design companies are traditionally secretive

about the precise construction of their designs, given the high level investment

required to create them. In recent years, open-source hardware has become more

prevalent, chiefly driven by development [27, 28] around the RISC-V Instruction

Set Architecture (ISA) specification [29] and Free Open Source Software (FOSS)

tools for Field Programmable Gate Array (FPGA) development [30]. However, while

designs for open-source hardware are available, simulation data, e.g. Value Change

Dump (VCD) recordings, of these designs running under realistic scenarios are not

widely available. Compiling such a dataset is certainly possible, but would require

significant collaborative effort to compile a large and varied set of designs with

corresponding scenarios, gather data from simulations or instrumented systems,

and organise the results.

For sensitive, private, or internal research, a company may choose to compile

its own dataset. Care must be taken to acknowledge and address biases which will

inevitably appear in data collected from a single perspective without the benefit

of open scrutiny. Torralba and Efros [31] describe a simple experiment where a

Support Vector Machine (SVM) classifier is trained to estimate from which one

of 12 datasets an image originates. The high rate of success for most of their

candidate datasets shows that despite the best efforts of the dataset compilers, an

12



2.2. DATA COLLECTION

identifiable “signature” indicates fundamental bias in the collection process. For

example, the Caltech101 dataset [32] contains 101 categories of image including

“cars”; however, a bias in the collection process has meant that most images of cars

are from a side-on perspective. This means that models trained on this dataset are

likely to struggle with alternative or unusual angles of perspective.

The phenomena of bias in data collection has connotations for privately col-

lected and proprietary SoC datasets. For example, a collection of real-world test

cases for a particular company’s own SoCs may have diversity in terms of many

different systems; however; if their systems depend upon a common architectural

framework, e.g AXI networks [33], then it is difficult to say with confidence that

any results apply to systems using different architectural frameworks, e.g. Open

Core Protocol (OCP) networks [34].

2.2.2 Collecting SoC Data

SoCs can be simulated at different levels of abstraction including analogue, gate,

logical, and functional levels. At the lowest level of abstraction, analogue models of

each transistor are executed to simulate specific features of hardware [35]. Digital

logic is typically designed and manufactured using a standard library of pre-

characterised logic cells [36]. Each cell is designed to implement a specific logical

function (e.g. 2-input AND, D-Type Flip-Flop (DFF), etc.) which enables use of a

simplified logical model to enhance simulation throughput versus analogue models.

A typical modern digital logic system is composed of an arrangement of these

cells which are selected and connected in the process of logic synthesis. Systems

specified principally in Register Transfer Language (RTL) (e.g. SystemVerilog [37])

permit further performance optimisations for simulation such as modelling an

entire 32 b adder circuit with an addition instead of as 32 separate logic functions.

At even greater levels of abstraction, functional models may be used for simulation

of high-level interfaces such as an instruction set simulator (e.g. Spike [38] for

RISC-V a processor).

This work is most closely aligned with data collected at RTL-level simulations.

Higher-level functional simulations are not intended to be accurate on a cycle-

by-cycle basis and therefore do not contain the necessary timing information for

investigation of temporal logic issues. Lower-level analogue or gate simulations

certainly contain all of the information necessary for investigating SoC behaviour,

but require orders of magnitude more power, memory, and time to execute. RTL

simulations contain timing information on the values and transitions of every

logical wire, commonly stored in the VCD format [39], and are thus suitable for

13



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

behaviour analysis. However, simulations in general are not without their issues.

Logical simulations operate inherently more slowly than physical devices, which

poses difficulty in working with real-time data.

Lagraa’s thesis [40] provides a review of currently available methods of ex-

tracting data from real-time SoCs including (1) software instrumentation, (2)

dedicated trace interfaces, (3) hardware performance counters, and (4) hardware

instrumentation.

Software instrumentation is the insertion of additional instruction sequences

to record information about the state of execution as the program progresses. One

approach to software instrumentation is to use send data to a dedicated support

peripheral [41], and another approach is to store instrumentation data in a memory

for later retrieval. In Chapter 5, the second case study uses the first approach

to monitor the execution state of a multi-processor system. As Lagraa writes, a

notable downside to software instrumentation is that the sequence of executed

instructions is necessarily altered, which may affect the validity of conclusions.

Systems which are centred around CPUs may also feature a dedicated interface

for tracing the flow of execution [42, 43]. This approach is desirable when visibility

of full CPU state is required in real-time operation. While execution trace is useful

for understanding every detail of a system’s software, other SoC components with

more specialised functions are unable to make use of these interfaces.

Performance counters are dedicated hardware components which passively

count occurrences of logical events during system operation. This has the advan-

tage of not requiring alterations to software, thus validity of captured data is

unquestionable on that basis. For example, Zellweger et al. [44] examine the use of

event-based performance counters in multi-core x86 SoCs. Their system is trained

to learn which events are most related to specific performance characteristics via

analysis of counters – effectively a low-cost high-loss compression of event data.

Amortizing over many time windows to view changes in behaviour is identified as

a shortcoming in existing approaches where only a coarse-grained view of inter-

component relationships is available. In contrast to using many time windows,

the approach of this work is to identify correlations, and thus system behaviour,

within a single time window.

Performance counters are a specific type, but the hardware instrumentation

typically refers to hardware support which enables the extraction of information

about particular wires in a SoC. For example, in the development of a FPGA-based

system, a small set of wires may be routed to pins which can then be monitored

with an oscilloscope. This is particularly useful for observing the precise relative

timing of events known to be related, e.g. packet arrived and packet processed.

14



2.3. VISUALISATIONS FOR BEHAVIOUR

General Purpose Input Output (GPIO) pins are a limited resource on FPGAs and

each pin must be connected to external test equipment, so extracting many events

in this way is not generally feasible.

To assist development on FPGA platforms, some vendor-specific tools are avail-

able which can extract a small set of binary signals. Xilinx offers ChipScope [45]

and Altera (now Intel) offers SignalTap [46] which both make use of otherwise

unused Joint Test Action Group (JTAG) pins. While these tools are useful for

extracting specific signal values under specific conditions, consideration must be

given to the fact that their data is travelling over a single pin; i.e. it is not possible

extract an arbitrary number of fast signals over an arbitrary period of execution.

For example, a SoC operating at a modest 100 MHz with 50 interesting event

signals produces uncompressed data at 5 Gbs−1 – an unattainable rate for a JTAG

port. With some deeper knowledge of how events are specified, careful configura-

tion of match and trigger logic may enable data from a small set of signals to be

sufficiently compressed to allow continuous real-time collection. Although the tools

SignalTap and ChipScope are only available for FPGA systems, similar tools exist

for Application Specific Integrated Circuit (ASIC) systems, such as UltraSoC’s

Static Instrumentation and Bus Monitor modules [41, 47].

In the range of hardware options available for extracting SoC event data, none

provides explicit support for general correlation analysis. This is identified as a

gap in the current knowledge and addressed more fully in Chapter 4 with the

design of a specialised device.

2.3 Visualisations for Behaviour

Formal and static analyses of RTL source code, e.g. proofs, visualisation of logical

structures, and linting, are immensely useful for understanding static aspects

of a system [48], but are of limited use for understanding temporal system be-

haviour; i.e. simply having access to system source code is not enough to fully

understand system behaviour in all but the most trivial cases. Challenges noted

by Chen et al. [49] include the scalability of formal and static approaches in terms

of computation but also the human part of the process (specification). Engineers,

as people, can only comprehend so much about a system before becoming over-

whelmed, which is why dynamic analysis is the only practical methodology for

understanding complex temporal behaviour [50]; i.e. observation of a system’s

execution.

People learn mostly by applying analogies with different rules to suit the

application [51]. Gentner and Markman [52] in particular argue that the most

15



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

effective information to learning about a system is in the relationships between its

components. Effective visualisation therefore relies on intuitive rules to convert

back and forth between a visual attribute and its meaning. Visual analogies include

statements like “Darker is more significant”, “I want to maximise the number of

data points on the left”, or “A smoother line is better”. Chapter 5 approaches

behaviour analysis through the exploration of visualisation techniques to present

correlations in binary SoC data. In order to critically evaluate new techniques,

heuristic evaluation is applied and comparisons are made to existing tools and

techniques.

2.3.1 Heuristic Evaluation

Heuristic evaluation, as a method of evaluating the usability of visual presentation

techniques, has its roots in the field of Human-Computer Interaction (HCI) –

pioneered most famously by Nielsen [53, 54] primarily to improve the usability

of early websites. Nielsen’s goal in developing a set of heuristics was to enable

development of robust and effective user interfaces in a cost-constrained research

environment.

N1 Visibility of system status.

N2 Match between system and the

real world.

N3 User control and freedom.

N4 Consistency and standards.

N5 Error prevention.

N6 Recognition rather than recall.

N7 Flexibility and efficiency of use.

N8 Aesthetic and minimalist design.

N9 Help users recognise, diagnose,

and recover from errors.

N10 Help and documentation.

This set of heuristics has remained popular with HCI practitioners because

they are effective for identifying problems in existing interfaces. Where a website

has been implemented and must be fixed to improve usability, Nielsen’s heuristics

provide a reliable framework for identifying issues. Although Nielsen’s heuristics

provide insight into potentially negative aspects, they offer less insight into the

especially positive aspects of an interface.

Shneiderman [55] offers a smaller set of heuristics aimed more towards in-

teractive exploratory analysis, based around his mantra: “Overview first, zoom

and filter, then details-on-demand.” Seven abstract tasks are given which a user

attempts when visually seeking information. Naturally, each of Shneiderman’s

tasks should be straightforward, intuitive, and low-effort for the user:

16



2.3. VISUALISATIONS FOR BEHAVIOUR

S1 Overview: Gain an overview of the entire collection.

S2 Zoom: Zoom in on items of interest.

S3 Filter: Filter out uninteresting items.

S4 Details-on-demand: Select an item or group and get details when needed.

S5 Relate: View relationships among items.

S6 History: Keep a history of actions to support undo, replay, and progressive

refinement.

S7 Extract: Allow extraction of sub-collections and of the query parameters.

Gerhardt-Powals [56] compiled a different set of heuristics (referred to as

“cognitive engineering principles”) aimed toward producing cognitively friendly

interfaces rather than finding problems in existing ones:

GP1 Automate unwanted workload.

GP2 Reduce uncertainty.

GP3 Fuse data.

GP4 Present new information with

meaningful aids to interpretation.

GP5 Use names that are conceptually

related to function.

GP6 Group data in consistently, mean-

ingful ways.

GP7 Limit data driven tasks.

GP8 Include in the displays only that

information needed by the opera-

tor at a given time.

GP9 Provide multiple coding of data.

GP10 Practise judicious redundancy.

Her study compared the effectiveness of three interfaces, each using a different

design strategy. The candidate interface designed using Gerhardt-Powals’ heuris-

tics, i.e. the cognitively engineered interface, was found to enable faster and more

accurate interactions. Additionally, the cognitively engineered interface was found

to be less tiring to use and generally preferred by most test subjects.

Armed with Nielsen’s usability heuristics, Shneiderman’s visual-information-

seeking tasks, and Gerhardt-Powals’ cognitive engineering principles, we have

the necessary frameworks to find problems in an interface, predict the user’s

intended tasks, and construct effective user interfaces. In the closely related field

of information visualisation, similar frameworks are used to construct and evaluate

novel methods. Amar and Stasko [57] take an abstract philosophical approach to

17



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

heuristic evaluation of both user interfaces and information visualisation. Their

main conclusions are that careful consideration is required to close the rationale

gap and the world-view gap; i.e. users must be able to rationalise about every

aspect of a presentation, and that the information shown contains everything they

need to make further decisions. These gaps can only be closed by considering

representational primacy, whereby the representation must be faithful to how we

think about it, and ensure that the construction of a diagram does not contain black-

box functions. The world-view gap and the relationship with analytical primacy

are not considered applicable to this work because these deal with knowledge at

a higher level than a single system. Zuk et al. [58] note in their meta-analysis

of heuristic sets, Amar and Stasko’s approach depends on subject-matter experts

with intimate knowledge of a large corpus similar data. However, in this work

it is not assumed that decisions made about one system will necessarily apply to

others.

Zuk et al’s meta-analysis [58] is used and expanded upon by Tarrell et al. [59]

in their search for an optimal set of visualisation-specific heuristics. Four main

categories of visualisation heuristics are elucidated (perception, cognition, usabil-

ity, and interaction) in their search for an effective set of information visualisation

heuristics. Forsell and Johansson [60] further refine visualisation heuristics into

seven categories and compile heuristics from several sources in a thorough ex-

position of differences between sets. A total of 63 heuristics are extracted from

previous works, including those mentioned above, to perform a meta-analysis

aimed at finding the 10 most effective heuristics for information visualisation.

FJ1 Information coding.

FJ2 Minimal actions.

FJ3 Flexibility

FJ4 Orientation and help.

FJ5 Spatial organisation.

FJ6 Consistency.

FJ7 Recognition rather than recall.

FJ8 Prompting.

FJ9 Remove the extraneous.

FJ10 Dataset reduction.

Information visualisation is only one form of user interface, so some heuristics

from Nielsen’s set are not be generally applicable. The set proposed by Forsell and

Johansson is specialised towards information visualisation.

In Chapter 5, visualisations are first evaluated against the less-specific sets

from Nielsen, Shneiderman, and Gerhardt-Powals, then against Forsell and Jo-

hansson’s set. Hvannberg et al’s comparison [9] of Nielsen vs Gerhardt-Powals’

18



2.3. VISUALISATIONS FOR BEHAVIOUR

heuristics notes that effectively using a set requires considering the set as a whole

instead of combining similar-sounding heuristics from different sets. In combining

heuristics from different sets based only on their title, meaning and intention are

lost and evaluation based on the combination may be flawed. For this reason, the

techniques in Chapter 5 are evaluated holistically against different sets instead of

combining similar sounding heuristics from different sets.

2.3.2 Existing Tools and Techniques

A digital SoC engineer’s most familiar visualisations include logical schematics,

floorplans, waveform diagrams, and waveforms analysers. Logical schematics

and waveform diagrams are used in specification of low-level logic, and floorplans

represent how physical components are used to implement a logical specification.

While specification diagrams are useful for understanding low-level details and

predicting how a design will respond to specific inputs, they are static figures

which provide little help in understanding high-level dynamic behaviour.

Waveform analysers are specialised multi-plot tools, often bundled with logic

simulators, for browsing binary signal values over time. The primary data format

for storing data from logical simulations is VCD which is defined as part of the

first Verilog standard [39]. Additional formats are used by different tools to offer

faster data retrieval and smaller file sizes, but the VCD format highlights a key

attribute of binary SoC data: Only changes in value are stored because each signal

is considered to be a 1 b state machine; i.e. signals are expected to have the same

value over many consecutive times, so storage space is reduced by only recording

changes. In a simulation running for many millions of cycles, explicitly recording

the value of every signal (i.e. in a tabular format) would produce an extremely

large file. Consequently, tools working with SoC simulation data effectively require

native support for a waveform-specific storage format (e.g. VCD) instead of pre-

processing via a supported format (e.g. Comma Separated Values (CSV)). The

unwieldy process of creating an extremely large intermediate file thereby inhibits

the usability of generic visualisation software for exploratory analysis of binary

SoC data.

Waveform analysers often feature several types of analysis on individual sig-

nals which are intuitive to digital designers. For example, GTKWave [61] allows

plotting a multi-bit signal in binary, hexadecimal, or transforming via Gray code,

and VCS [62] allows plotting of simple user-defined expressions. However, visuali-

sation of pairwise information like correlations is not well-supported. Expressions

implementing correlation metrics may be written to produce multi-plots, but multi-

19



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

plots do not fare well against heuristic evaluation. To demonstrate this point,

GTKWave is evaluated using the heuristic sets from Nielsen and Shneiderman for

the purpose of correlation analysis rather than the intended use of browsing signal

values over time.

Three from Nielsen’s set (N1 - Visibility of system status; N8 - Aesthetic and

minimalist design; and N10 - Help and documentation) are discounted in this

case because they are too subjective. N7 - Flexibility and efficiency of use - is

partially supported because the user can plot whatever they desire, but writing

many expressions may not be considered efficient. For the same reason N3 - User

control and freedom - is fully adhered to. As the user has full flexibility and

strange-but-intended expressions cannot be distinguished from mistakes, three

heuristics are violated (N4 - Consistency and standards; N5 - Error prevention;

and N9 - Help users recognise, diagnose, and recover from errors). In exploratory

analysis, N6 - Recognition rather than recall - does not make sense to apply when

N4, N5, and N9 are not adhered to. The most significant heuristic, according to

Amar and Stasko [57], is about representational primacy; N2 - Match between

system and the real world - is interpreted to mean that there should be visual

indicators of pairwise relationships. In a conventional waveform analyser there are

no visual indications of how the relationship between pairs of plot-lines changes

over time.

All seven of Shneiderman’s visual-information-seeking tasks require writing

cumbersome expressions for correlation analysis, even though all seven heuristics

are well-supported for the use case of browsing signal values over time.

In this succinct evaluation of waveform analysers against two sets of usability

heuristics, the time-value analysis tool most familiar to digital engineers is shown

to be inadequate for correlation analysis. Observing signals in a waveform viewer

in order to learn something about system behaviour is therefore difficult and

error-prone due to the presentation and format of information.

Figure 2.1: Example data of 2-state, event, bit-vector, and quantised-real types
displayed using the GTKWave waveform analyser.

20



2.3. VISUALISATIONS FOR BEHAVIOUR

(a) (b)

Figure 2.2: Spiral and Helical Visualisations of Periodic Time-Series. Reproduced
from Loudon and Granat [64].

In order to squeeze a larger range of time into a single view, Gautier et al [63]

exploit the presence of cyclical components by presenting time-series data as a

virtual helix or spiral. By contrast, common multi-plots such as waveforms present

larger ranges of time by changing the horizontal scale such that nearby value

transitions are merged indistinguishably. The example reproduced in Figure 2.2

highlights that when rendering data as a 3D shape, some results are necessarily

hidden due to the eventual projection onto a 2D space; i.e. paper or a computer

screen. Cyclical compression techniques such as helical diagrams which associate

the cyclical and linear attributes of time-series data are best suited to data with

strong periodic components as exemplified by Loudon and Granat [64] to display

health monitoring data. Healthcare data is, by its very nature, highly periodic

as we all require some level of daily routine for sleep and basic interaction with

wider society. Use of a helix with an adjustable radius, or the corresponding period,

vividly exhibits the daily routine of patients, allowing anomalies to be flagged to

the appropriate physician. Health scientists are interested in finding correlations

between long time-series of events in order to better understand the behaviour

of patients so that they can provide the most appropriate medical interventions.

However, helical and spiral timeline compression techniques are limited in their

support for presenting more than handful of signals at once because the helix

grows too “thick” as signals are added. This inherent limitation in the number

of parallel signals means that the spiral and helical techniques are inferior to

conventional multi-plot techniques, such as waveforms, for SoC analysis.

21



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Low-level software, including the Linux kernel, often uses the Common Trace

Format (CTF) for recording the precise timing of software events [65]. The most

common CTF plotting tool Trace Compass [66] is similar in appearance and usabil-

ity to waveform analysers, as the example shows in Figure 2.3. Kernel trace, and

low-level software development in general, is tightly coupled to the field of frontend

logic design, therefore it is unsurprising that the tools share commonalities. In the

use case of correlation analysis, these commonalities mean that Trace Compass

also fails to support the same usability heuristics.

The most relevant type of visualisation common to other fields is the cor-

rgram [67] which maps each element of a correlation matrix to a colour. Figure 2.4

shows an example of a corrgram which highlights two main usability issues in

relation to binary SoC data. Each row and column in a corrgram relates to a single

variable, and each cell is coloured according to the covariance between its row and

column variables.

The first issue is that variables should be ordered such that “similar” variables

are adjacent. However, the definition of “similar” is not always readily apparent.

For example, the cache interface signals probed in Section 4.4 could be grouped

according to either their Network-on-Chip (NoC), tile, or direction, with no grouping

having a clear superiority. Friendly and Kwan [68] suggest a pre-processing stage

to find an optimal ordering based on Singular Value Decomposition (SVD) of

the correlation matrix. This type of pre-processing is not suitable for temporal

data because the ordering is likely to change as behaviour changes over time,

thereby violating heuristics relating to consistency and visual recognition. As

shown on the left of Figure 2.4, using an arbitrary (but consistent) ordering

is also an unsatisfactory choice because, as Friendly and Kwan note, patterns

of relations among variables are not easily discerned. A further complication

with the lack of natural ordering between SoC signals is that a lower resolution

Figure 2.3: Example kernel event data displayed using Trace Compass. Image
from https://www.eclipse.org.

22

https://www.eclipse.org


2.3. VISUALISATIONS FOR BEHAVIOUR

or zoomed-out view does not convey an overview of the system’s correlations.

Shneiderman’s mantra specifically begins with “Overview first” because having

a clear understanding of context is pertinent to understanding the details. Thus,

corrgrams violate heuristics related to gaining an overview, maintaining context,

and spatial organisation.

The second issue with corrgrams, also known as “correlograms”, is that they are

inherently 2D; i.e. corrgrams are specialised for rendering matrices, not tensors.

The crux of Chapter 3 is that there are several valid interpretations of correlation

and it makes sense to use multiple metrics concurrently, e.g. Ċov and Ḋep. Using

n correlation metrics on m signals produces a correlation tensor of shape m×m×n

for a single time window. Additional ranks for time index and δ offsets compound

the issue that correlation analysis in binary SoC data is a problem which cannot be

easily visualised with a 2D matrix. Attempting to force high-dimensional analysis

into 2D visualisations thus violates FJ1 - Information coding – and Amar and

Stasko’s notion of representational primacy.

Other novel methods of correlation visualisation such as Zapf and Kraushaar’s

“Solar Correlation Map” [69] (see Figure 2.5) suffer from the same issues, i.e. a

lack of natural ordering or intuitive adaptations to higher-rank data. In the solar

correlation map method, the main issue is that one signal must be selected as the

“sun”, thereby limiting the amount of viewable data and depriving the viewer of an

overview.

Auto data: Alpha order

Displa
Gratio

Hroom 

Length
MPG 

Price 
Rep77 

Rep78 

Rseat 

Trunk 
Turn 

Weight

W
e
ig

h
t T
u
rn

 T
ru

n
k
 R
s
e
a
t R
e
p
7
8
 

R
e
p
7
7
 

P
ri
c
e
 M

P
G

 
L
e
n
g
th H

ro
o
m

 

G
ra

ti
o D

is
p
la

Auto data: PC2/1 order

Gratio
MPG 

Rep78 

Rep77 

Price 
Hroom 

Trunk 
Rseat 

Length
Weight

Displa
Turn 

T
u
rn

 D
is

p
la W

e
ig

h
t

L
e
n
g
th R

s
e
a
t T
ru

n
k
 H
ro

o
m

 

P
ri
c
e
 R
e
p
7
7
 

R
e
p
7
8
 

M
P

G
 

G
ra

ti
o

Figure 2.4: Example corrgram visualising correlations between physical measures
of auto-mobile models. Correlation values are depicted by colour. Left: Alpha-
betically ordered variables Right: Variables ordered by angles of the first two
eigenvectors. Image from [68].

23



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.5: Example of the Solar Correlation Map technique from Stefan Zapf and
Christopher Kraushaar showing the Pearson correlation coefficient between vari-
ables thought to affect the value of homes in Boston. The median value of a home
MEDV is selected as the variable for inspection, and other variables are seen to “orbit”
more closely when they are more closely related. Reproduced from https://www.

oreilly.com/content/a-new-visualization-to-beautifully-explore-correlations/.

Yeh [70] gives examples of incorporating higher-rank data into a corrgram,

primarily by replacing each cell with a sub-plot. Cramming too much into corrgram-

based visualisations also violates heuristics related to minimalist aesthetics, error

prevention, and gaining an overview. The examples are concerned with chemicals

and doses in pharmaceutical products which are, again, static analyses rather than

temporal. However, Yeh does hint at the use of graphical (network) structures for

exploratory correlation analysis by treating a covariance matrix as an undirected

adjacency matrix. It is noted that the representation of a pharmaceutical treatment

provides a visual signature derived from correlations between dosage and presence

of particular chemicals in subjects’ bodies. A parallel can be drawn between the

behaviour of a SoC and the behaviour of a subject’s metabolism which is noted to

be intuitive and invites interactivity.

24

https://www.oreilly.com/content/a-new-visualization-to-beautifully-explore-correlations/
https://www.oreilly.com/content/a-new-visualization-to-beautifully-explore-correlations/


2.4. SUMMARY AND DIRECTION

Graphical techniques are used in other scientific fields because they are in-

tuitive for displaying sets of items and relationships between items. Rendering

graphical visualisations in an attractive and usable manner has received atten-

tion from Gansner and North[71], and later from Ellson et al. [72]. Well-defined

mathematical methods are followed to produce figures which generally evaluate

favourably against information visualisation heuristics. Gansner and Koren [73]

explore usability issues around circular layouts including longer edges, visual regu-

larity obscuring relevant information. Following paths on circular layouts can also

be difficult. Their arguments and proposed relief measures include re-positioning

nodes, routing edges outside of the circle, and combining parallel edges. These

techniques and their relation to binary SoC data are tackled in Section 5.2, with

the argument centred around the balance which must be struck between usability

for both static and dynamic behaviour analysis.

2.4 Summary and Direction

SoC designers desire efficient methods to understand their systems, thereby en-

abling them to focus their development and sharpen their competitive edge. The

most valuable type of information when learning about a complex system is its

behaviour, which is comprised of the context surrounding key internal signals

and their correlations. There is no definitive method for measuring correlation,

and different fields of science take diverse approaches. Chapter 3 explores which

approaches are best suited to identifying correlations in binary SoC data.

Achieving knowledge of correlations is infeasible using static analyses so ob-

servations are made from running systems and collected for further analysis.

Chapter 4 explores practical aspects of data collection and calculating correlation

in low-cost real-time hardware.

Simply having the calculated values of correlation, using whatever set of

metrics is appropriate, is not enough for a human SoC designer. The results must

be presented in a useful fashion to facilitate efficient learning. Existing tools

and techniques are evaluated using well-known sets of heuristics and Chapter 5

extends this evaluation with proposed techniques for presenting correlation using

graphical and table-based models.

25





C
H

A
P

T
E

R

3
CORRELATION METRICS IN BINARY SOC DATA

3.1 Aim

This chapter is concerned with the statistical evaluation of correlation metrics for

binary SoC data. Chapter 4 builds upon the results of this chapter to implement

practical physical hardware for use in real-time monitoring of correlations between

selected pairs of events. In a slightly different direction, Chapter 5 then builds

upon the results of this chapter to explore effective visualisation techniques. With

a statistical evaluation of correlation metrics, practical hardware to collect and

process the required data, and effective methods of consuming the results, SoC de-

signers have the tools required to discover relationships between signals, and thus

perform effective behaviour analysis. Material from this chapter has previously

been published in [8].

3.1.1 Problem Description

SoC designs include the processors and the associated peripheral blocks of silicon

chip-based computers. They are an intrinsic piece of modern computing, owing

their complex design to huge volumes of work by many hardware and software

engineers. For example, the SoC in a RaspberryPi [74] includes 4 ARM processors,

memory caches, a graphics processor, timers, and all the associated interconnect

components. Measuring, analysing, and understanding the behaviour of these

systems is important for the optimisation of cost, size, power usage, performance,

and resilience to faults.

27



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

System components are often a mixture of hardware and software which should

work in harmony to achieve the designer’s goal, and the designer will usually have

some idea of how this harmony should work. For example, a designer might like

to confirm that software is using cache efficiently by analysing the interaction

of events such as cache_miss and execute_someProcedure. By recording events and

measuring inter-event relationships, a system designer can decide if the set of

design parameters should be modified, thus aiding the SoC design-optimisation

process.

“Correlation” is a vague term which has several possible interpretations [25],

including treating data as high-dimensional vectors, sets, and population samples.

A wide survey of binary similarity and distance measures by Choi et al. [75] lists 76

methods from various fields and classifies them as either distance, non-correlation,

or correlation-based. A similarity measure is one where a higher result is produced

for more similar data, whereas a distance measure will give a higher result for data

which are further apart, i.e, less similar. The distinction between correlation and

similarity can be shown with an example: If it is noticed over the course of many

of parties that the pattern of attendance is similar for Alice and Bob, then it may

be inferred that there is some kind of relationship connecting them. In this case

the attendance patterns of Alice and Bob are both similar and correlated. However,

if Bob is secretly also seeing Eve it might be noticed that Bob only attends parties

if either Alice or Eve attend, but not both at the same time. In this case Bob’s

pattern of attendance may not be similar to that of either Alice’s or Eve’s, but

will be correlated with both. It can therefore be seen that correlation is a more

powerful approach for detecting relationships, although typically involving more

calculation than similarity.

The problem this chapter deals with is that different metrics of correlation are

suited to different types of data because there is no one-size-fits-all solution for

correlation analysis. For example, in information theory and signal processing,

the hamming weight (number of equivalent bits) is often used to quantify the

similarity between bit-vectors. Further afield in medicinal chemistry, bit-vectors

are used to represent the existence of chemical properties and thereby measure

the similarity of different molecules using the Jaccard Index [76] (or the closely

related Tanimoto and Sorensen-Dice coefficients). Both fields of study examine

data composed of very long parallel sequences of bits which appear similar on the

surface but are backed by vastly different meaning. As described in Chapter 2,

in order to perform effective correlation analysis and thereby build up knowledge

of system behaviour, it is necessary to know which correlation metrics are most

effective for SoC data.

28



3.1. AIM

3.1.2 Objective

Sampling the voltage levels of many individual wires is typically infeasible due

to bandwidth and storage constraints so sparser event-based measurements are

often used instead; e.g. Observations like “cache_miss @ 123 ns”. This gives rise to

datasets of very long parallel sequences of bits (occurrence/non-occurrence), so an

understanding of how these events are related is key to the design optimisation

process. It is therefore desirable to have an effective estimate of the connectedness

between bit-vectors to indicate the existence of pairwise relationships.

Given that a SoC may perform many different tasks, its inter-signal relation-

ships may change over time, which means that a windowed or, more generally, a

weighted approach is required in a real system. The objective of the experiments

presented in this chapter is to characterise simple but effective metrics for estimat-

ing the presence of a logical relationship between binary SoC signals. By assuming

that behaviour is independent of time, i.e. stationary, a windowed approach is not

required in this chapter.

3.1.3 Approach

Relationships between bit-vectors are modelled as Boolean functions composed

of negation (NOT), conjunction (AND), inclusive disjunction (OR), and exclusive

disjunction (XOR) operations since these fit well with natural language, and

this approach has previously been successfully applied to many different system

types [77]; e.g. Relationships of a form like “cache_flush occurs when cache_filled

AND read_access occur together”.

Lo et al. [78] describe a system for describing behaviour with a series of state-

ments using a search-space exploration process based on Boolean set theory. While

this work has a similar goal of finding temporal dependencies, it is acknowledged

that their mining method does not perform adequately for the very long traces

often found in real-world SoC data. Modelling relationships as Boolean functions

has been used for measuring complexity and pattern detection in a variety of

fields including complex biological systems from the scale of proteins to groups of

animals [79].

With the collection of metrics defined and their usefulness measured against

a probabilistic data model in Section 3.3, a Neural Network (NN) approach pro-

vides an approximation of the upper bounds on their usefulness. A comparison of

a collection of input sets and NN parameters against their achievable accuracy

demonstrates the insufficiency of performance counters in binary correlation anal-

ysis over a single time window. This comparison does however provide clues to

29



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

the design of novel correlation counters which are implemented in hardware for

real-time analysis in Chapter 4 and software in Chapter 5 for visual presentation.

This chapter provides the following novel contributions:

• A probabilistic model for binary SoC data which allows representative data

to be generated and studied on demand.

• An empirical study on the performance of several correlation, distance, and

similarity metrics in the use of relationship estimation.

• An evaluation of counter information for use with correlation metrics.

Six different correlation metrics are reviewed and formally defined along with the

reasoning behind any deviation from standard formulations. Next, the rationale

and methodology behind a probabilistic model of binary SoC data is described and

that model is used to generate a set of SoC-like systems which can be simulated.

Applying the six different metrics to samples from these generated systems allows

the usefulness of these metrics to be empirically evaluated. Further, the use of

counter-compatible formulations is explored using a series of NN models to discover

which counters provide the most useful information.

3.2 Definition of Metrics

A measured sequence of event occurrences is written as f i where i is an identifier

for one particular event source such as cache_miss. Let f i[t]= 1 indicate that event

i occurred at time t, and f i[t]= 0 indicating i did not occur at time t. A windowing

or weighting function w is used to create a weighted average of each measurement

to give an expectation of an event occurrence.

E[ f i]= 1∑
t w[t]

∑
t

w[t] f i[t] ∈ [0,1] (3.1)

Due to the probabilistic generative approach used in this chapter only the simple

case of a rectangular window is required, i.e. w[t]= 1. Therefore, the expectation

of a vector with N samples can be simplified to E[ f i]= 1
N

∑
t

f i[t] for this chapter.

Defining the intersection of binary vectors as the element-wise multiplication

fx ¯ f y allows Bayes’ theorem to be re-arranged to find the conditional expectation.

Pr(X |Y )= Pr(Y |X )Pr(X )
Pr(Y )

= Pr(Y ∩ X )
Pr(Y )

, if Pr(Y ) 6= 0 (3.2)

E
[
fx| f y

]
:=


E

[
fx ¯ f y

]
E

[
f y

] :E
[
f y

] 6= 0

NaN : otherwise

(3.3)

30



3.2. DEFINITION OF METRICS

It is not sufficient to look only at conditional expectation to determine if X and Y

are related. For example, the result Pr(X |Y )= 0.9 may arise from X ’s relationship

with Y , but may equally arise from the case Pr(X )= 0.9.

A naïve approach might be to estimate how similar a pair of bit-vectors are by

counting the number of matching bits. The expectation that a pair of corresponding

bits are equal is the Hamming Similarity [80], as shown in Equation (3.4). Where

X and Y are typical sets [24] this is equivalent to |E[X ]−E[Y ]|. The absolute

difference |X −Y | may also be computed on binary data using a bitwise exclusive-

OR operation.

Ḣam
(
fx, f y

)
:= 1−E

[∣∣ fx − f y
∣∣] (3.4)

The dot above the name in this notation is used to show that this metric is

similar to, but not necessarily equivalent to, a standard definition. Modifications to

standard definitions include disallowing NaN, restricting or expanding the range

to exactly [0,1], or reflecting the result. For example, by reflecting the result of

E
[∣∣ fx − f y

∣∣] in the definition of Ḣam, a metric is given where 0 indicates fully

different and 1 indicates exactly the same. For consistency and valid comparison,

all six metrics defined in this chapter are functions of the same form defined by

Equation (3.5). These formulations take a pair of equal-length normalised vectors,

i.e. each element is between 0 and 1, and each metric produces a scalar result

between 0 and 1.

({R∩ [0,1]}N , {R∩ [0,1]}N )→ (R∩ [0,1]) (3.5)

(BN ,BN )→ (R∩ [0,1]) (3.6)

Most SoC designs are proprietary and commercially sensitive, which means that

compiling a dataset of real SoC data is not a viable approach, hence the Monte-

Carlo approach used in this chapter. The restriction to binarised data in this

research is due to the difficulty in defining a probabilistic model for what nor-

malised data should look like. This research explicitly covers only the restricted

case of binarised vectors, defined in Equation (3.6), although metrics have been

defined using the more general case to allow for future work finding relationships

between binary and non-binary SoC signals. For example, finding the relationship

between a binary vector cache-miss and a normalised vector temperature may be

useful in energy optimisation for low-power applications.

31



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

3.2.1 Binary Sets

A similar approach to the Hamming Similarity is treating a pair of bit-vectors as

a pair of binary sets, as per Equation (3.8). The Jaccard index, first described for

comparing the distribution of alpine flora [81] and later refined for use in general

sets, is defined as the ratio of the size of the intersection to the size of the union,

shown in Equation (3.7). Tanimoto’s reformulation [82] of the Jaccard index, also

shown in Equation (3.7), was given for measuring the similarity of binary sets.

J(X ,Y )= |X ∩Y |
|X ∪Y | =

|X ∩Y |
|X |+ |Y |− |X ∩Y | , |X ∪Y | 6=∅ (3.7)

Ṫmt
(
fx, f y

)
:= E

[
fx ¯ f y

]
E[ fx]+E

[
f y

]−E
[
fx ¯ f y

] (3.8)

3.2.2 Geometric Vectors

Treating measured signals as points in bounded high-dimensional space, i.e. each

signal comprised of N samples is a point in N-dimensions, allows the Euclidean dis-

tance between signals to be calculated. Reflecting and normalizing the Euclidean

distance, as shown in Equation (3.9), provides a metric of closeness rather than

distance. This approach is common for problems where the alignment of physical

objects is to be determined, such as facial detection and gene sequencing [83]. Such

analogies between binary vectors of SoC data and physical objects are straightfor-

ward for most people to comprehend, making this approach attractive for quickly

understanding a dataset.

Ċls
(
fx, f y

)
:= 1−

√
E

[∣∣ fx − f y
∣∣2]

(3.9)

This formulation is seen to be similar to the Hamming distance, albeit grow-

ing quadratically rather than linearly as the number of identical bits increases.

Another geometric approach is to treat a pair of measurements as bounded high-

dimensional vectors and calculate the angle between them using the cosine simi-

larity as is often used in natural language processing [84] and data mining [85].

CosineSimilarityX ,Y = X ·Y
|X | |Y | , X ,Y 6= 0 ∈ [−1,1] (3.10)

Ċos
(
fx, f y

)
:= E

[
fx ¯ f y

]√
E

[
f 2
x
]√

E
[
f 2

y
] ∈ [0,1] (3.11)

The domain of the measured samples fx, f y ∈ [0,1] means that Ċos always gives a

non-negative result.

32



3.2. DEFINITION OF METRICS

3.2.3 Probabilistic Metrics

The above metrics attempt to uncover relationships by finding pairs of bit-vectors

which are similar to each other. These may be useful for simple relationships

of forms similar to “X leads to Y” but less useful for finding relationships which

incorporate multiple measurements via a function of Boolean operations such as “A

AND B XOR C leads to Y”. Treating measurement data as samples from a population

invites the use of covariance, shown in Equation (3.12), or the Pearson correlation

coefficient, shown in Equation (2.2), as a distance metric. The covariance between

two bounded-value random variables is also bounded, as shown in Equation (3.13).

cov(X ,Y )=E[(X −E[X ]) (Y −E[Y ])]=E[XY ]−E[X ]E[Y ] (3.12)

X ,Y ∈ [0,1] =⇒ cov(X ,Y ) ∈
[−1

4
,
1
4

]
(3.13)

Ċov
(
fx, f y

)
:= 4

∣∣∣E[
fx ¯ f y

]−E[ fx]E
[
f y

]∣∣∣ ∈ [0,1] (3.14)

For binary measurements with equal weights, i.e. σX =σY = 1
2 , Ċov is seen to

be equivalent to the Pearson correlation coefficient. Equivalence to ρX ,Y exists

only for the specific case where the product of standard deviations of X and Y

is equal to 1
4 , which is quite specific and unlikely for most SoC signals. A metric

exactly matching ρX ,Y is not used in this research because calculating standard

deviation, i.e. σX =
√
E

[
(X −E[X ])2

]
, requires knowledge of the expectation E[X ]

and the signal X concurrently. Requiring both pieces of information concurrently

means that, for a hardware implementation all samples from X must be stored,

requiring an unviable amount of memory when dealing with long signals.

From the above definition, it can be seen that if two random variables are

independent then Ċov(X ,Y ) = 0. However, the reverse is not true in general as

the covariance of two dependent random variables may be 0. The definition of

independence in Equation (3.15) is used to define a metric of dependence.

X ⊥⊥Y ⇐⇒ Pr(X )=Pr(X |Y ) (3.15)

Ḋep
(
fx, f y

)
:=

∣∣∣∣E
[
fx| f y

]−E[ fx]
E

[
fx| f y

] ∣∣∣∣ (3.16)

Normalizing the difference in expectation E
[
fx| f y

]−E[ fx] to the unit inter-

val [0,1] allows this to be re-arranged showing that Ḋep(X ,Y ) is an undirected

similarity; i.e. the order of arguments X and Y is unimportant.

Ḋep
(
fx, f y

)= E
[
fx| f y

]−E[ fx]
E

[
fx| f y

] = 1− E[ fx]E
[
f y

]
E

[
fx ¯ f y

] = Ḋep
(
f y, fx

)
(3.17)

33



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

The metrics defined above (Ḣam, Ṫmt, Ċls, Ċos, Ċov, and Ḋep) all share the

same codomain [0,1] where 1 means the strongest relationship. In order to com-

pare these correlation metrics an experiment has been devised to quantify their

effectiveness as described in the next section.

3.3 Experimental Procedure

To create the dataset 1000 systems with static behaviour were generated, with N =
10000 samples from each signal taken from each system. Systems are constructed

as a random graph structure where each node represents a binary SoC signal

which is sampled to produce a bit-vector. This procedure is repeated for each

metric for each system and the Probability Density Function (PDF) of each metric’s

accuracy is plotted using Kernel Density Estimation (KDE) to see an overview of

how well each performs over a large number of different systems. The number of

systems and samples are not particularly special or chosen with great care; i.e.

parameters are chosen to be large enough to produce observable trends, but not

too large to require excessive computation.

3.3.1 Probabilistic Assumptions

This experiment constructs a large number of SoC-like systems according to a

probabilistic structure, then records event-like data from them. Each system has

a fixed topology, which means that the actual relationships between bit-vectors

are fixed and known. Metrics are then applied to the recorded data and compared

to the known relationships, which allows the effectiveness of each metric to be

demonstrated empirically.

The maximum number of measurement nodes nmaxm is set to 100 to keep the

size of systems within reasonable limits. Each system is composed of a number

of measurement nodes f i∈[1,m] of either type “src” or “dst”, i.e. m = msrc +mdst,

arranged in a bipartite graph as shown in Figure 3.1. In each system the num-

bers of measurement nodes are chosen at random msrc,mdst ∼ U(1, nmaxm
2 ). Src

nodes are binary random variables with a fixed density ∼ Arcsin(0,1) where the

approximately equal numbers of high and low-density bit-vectors represent equal

importance in detecting relationships on reflected values. The function of each dst

node is formed by combining a number of edges ∼Lognormal(0,1) from src nodes.

There are five types of system which relate to the method by which src nodes

are combined to produce the function of a dst node. One fifth of the systems uses

only AND operations (∧) to combine connections to each dst node, another fifth

34



3.3. EXPERIMENTAL PROCEDURE

dst0 dst1 dst2

src0 src1 src2 src3

Figure 3.1: Example system with src and dst nodes connected via binary operations.

uses only OR (∨), and another fifth uses only XOR (⊕). The fourth type of system

uniformly chooses one of the ∧, ∨, ⊕ methods to give a mix of homogenous functions

for each dst node. The fifth type gets the functions of each dst node by applying

chains of operations ∼ U({∧,∨,⊕}) combined via a Left Hand Associative (LHA)

rule. By keeping different connection strategies separate, it is easier to see how

the metrics compare for different types of relationships.

3.3.2 Further Description of System Construction

(a) A generated system is comprised of m signal nodes, each of which is on either

the src side or the dst side. msrc is a (uniform) randomly-chosen integer

between 1 and 50 (inclusive), and mdst is chosen from the same range. Thus,

m is a positive integer, triangularly distributed between 2 and 100.

(b) Nodes on the src side are binary random variables with fixed densities

assigned at the time of system creation. A density of 0.1 means that 10% of

measured samples have a value of 1 and the remaining samples have a value

of 0. Density of a binary random variable must be in [0,1], and densities

of src nodes are picked from an Arcsine distribution, meaning that some

nodes will be high-density, around the same number will be low-density, and

a lesser proportion will be medium-density.

(c) Connections are made from the src side to nodes on the dst side by logic

trees which combine the values of one or more src nodes via a tree of logic

operations. The number of connections to each dst node is chosen from a

35



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

lognormal distribution with a mean µ= 0 and variance σ= 1. Therefore, dst

nodes with a small number of connections are more common than highly

connected ones.

(d) Five types of system are defined to ease the validation of metrics over differ-

ent types of relationships. The type is chosen uniform-randomly at system

construction time. For example, Ḣam is useful for finding relationships based

primarily on AND operations, but less useful for relationships based on XOR

operations. The “mix” type means that operations comprising a single dst

node are all the same, but the operations between different dst nodes are

mixed uniform-randomly. The LHA type, as per the example in Figure 3.1,

uses chains of binary operations to connect src nodes to dst nodes by complex

logic functions.

These four probability distributions comprising the probabilistic model of

Binary SoC Data are visualised using their respective probability mass or density

functions in Figure 3.2. Naturally, real systems are unlikely to exactly match any

probabilistic model. However, in the absence of a large corpus of real SoC datasets

this model provides a straightforward method of generating datasets which are

similar enough to real SoCs.

3.3.3 Methods of Scoring

The known relationships were used to construct an adjacency matrix K , whose

elements indicate whether a pair of nodes are connected or not, i.e. K i j = 1 indicates

that node i is connected to node j, and K i j = 0 otherwise. The diagonal is not used

because these tautological relationships will provide a perfect score with every

metric, without providing any new information about the metric’s effectiveness.

Each metric is applied to every pair of nodes to construct an estimated adjacency

matrix E; i.e. the six metrics discussed in Section 3.2 produce six estimated

adjacency matrices: E
Ḣam

, E
Ṫmt

, E
Ċls

, E
Ċos

, E
Ċov

, E
Ḋep

. Each element E i j is compared with

K i j to give a value of True-Positive (TP) and False-Negative (FN) where K i j = 1, or

a value of True-Negative (TN) and False-Positive (FP) where K i j = 0.

TP=∑
i, j

min
(
K i j,E i j

)
(3.18)

FN=∑
i, j

min
(
K i j,1−E i j

)
(3.19)

FP=∑
i, j

min
(
1−K i j,E i j

)
(3.20)

TN=∑
i, j

min
(
1−K i j,1−E i j

)
(3.21)

36



3.3. EXPERIMENTAL PROCEDURE

0 10 20 30 40 50

(a) Uniformly distributed number of nodes on
each side. p(x)= 1

50

0 0.25 0.5 0.75 1

(b) Density of a src node binary random vari-
able. p(x)= 1

π
p

x(1−x)

0 1 2 3 4 5 6 7 8 9 10

(c) Lognormal distributed number of edges,
showing msrc < 10, adjacent to a dst node.
p(x)= 1

x
p

2π
exp

(
ln(x)2
−2

)
AND-only OR-only XOR-only mix LHA

(d) Uniformly distributed choice of system
type, by operators used. p(x)= 1

5

Figure 3.2: Probabilistic model for Binary SoC Data depicted as Probability Mass
Function (PMF) or PDF of random variables used to construct each system. Vertical
axes are relative likelihood and horizontal axes are value.

For example, if a connection is known to exist (K i j = 1) and the metric calcu-

lates a value of 0.7, then the True-Positive and False-Negative values would be

0.7 and 0.3 respectively, with both True-Negative and False-Positive equal to 0.

Alternatively, if a connection is known to not exist (K i j = 0) then True-Negative

and False-Positive would be 0.3 and 0.7, with True-Positive and False-Negative

equal to 0.

A confusion matrix composed of TP, TN, FP, and FN is constructed for each of

the metrics to compare their function as binary classifiers using eight statistics

commonly used for this purpose. True Positive Rate (Sensitivity) (TPR) measures

the proportion of connections which are correctly estimated, and the True Negative

Rate (Specificity) (TNR) similarly measures the proportion of non-connections

correctly estimated.

37



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

TPR= TP
TP+FN

(3.22) TNR= TN
TN+FP

(3.23)

Positive Predictive Value (Precision) (PPV) and Negative Predictive Value

(NPV) measures the proportion of estimates which are correctly estimated to equal

the known connections and non-connections.

PPV= TP
TP+FP

(3.24) NPV= TN
TN+FN

(3.25)

Accuracy (ACC) measures the likelihood of an estimation matching a known

connection or non-connection. For imbalanced datasets ACC is not necessarily

a good way of scoring the performance of these metrics as it may give an overly

optimistic score. Normalizing TP and TN by the numbers of samples gives the

Balanced Accuracy [86], which may provide a better score for large systems where

the adjacency matrices are sparse.

ACC= TP+TN
TP+FN+TN+FP

(3.26) BACC= TPR+TNR
2

(3.27)

Book-Maker’s Informedness, also known as Youden’s J statistic, attempts to

capture the performance of a binary classifier by combining the sensitivity and

specificity to give the probability of an informed decision.

BMI=TPR+TNR−1 (3.28)

Matthews Correlation Coefficient finds the covariance between the known and

estimated adjacency matrices which may also be interpreted as a useful score of

metric performance.

MCC= TP×TN−FP×FNp
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(3.29)

With the scoring methods defined in Equation (3.22) thru Equation (3.29) each

metric is then evaluated and compared.

38



3.4. METRIC SCORING RESULTS

3.4 Metric Scoring Results

Given the large number of systems of various types, it is necessary to take an

overview of the scores, rather than focusing on the detail of individual systems.

PDF plots are used, and approximated using kernel density estimation to give

an overview, as shown in Figure 3.3. Due to the empirical and general nature of

the experiment, exact values of the results are unimportant. The most important

feature is that more weight on the right-hand side towards 1 indicates a better

metric for all eight scoring methods.

The overall results indicate that Ḣam, Ṫmt, Ċos and Ċls are close to useless for

detecting connections in datasets resembling the SoC data model described above.

Ċov and Ḋep, based on covariance and the theory of independence, are shown to

be generally useful for the desired purpose.

Figure 3.3a shows that Ċov and Ḋep correctly identify approximately 25%

of existing connections, and that other metrics identify many more connections.

However, Figure 3.3b shows that Ċov and Ḋep are much more likely to correctly

identify non-connections than other metrics, especially Ḣam and Ċls.

For a metric to be considered useful for detecting connections the expected

value of both PPV and NPV must be greater than 0, and ACC must be greater

than 0.5. It can be seen in Figure 3.3d that all metrics score highly for estimating

non-connections; i.e. when a connection does not exist, they give a result close to

0. This does not carry much meaning on its own because a constant 0 will always

give a correct answer. Similarly, a constant 1 will always give a correct answer for

positive links. Therefore, the upper four plots must be considered together with

the lower four plots to judge the usefulness of a metric.

Results from this experiment provide an imbalanced dataset, because each

node has a likelihood of much less than 50% of being connected to each other node.

Given that ACC is potentially misleading for imbalanced datasets such as this one

it is essential to check against Balanced Accuracy (BACC). Ḣam usually has ACC

of close to 0.5, which alone indicates that it is no better than a random guess for

estimating the presence of a logical connection. The wider peaks of Ċos and Ṫmt in

both ACC and BACC indicate that these metrics are much more variable in their

performance than Ċls, Ċov, and Ḋep. In this pair of plots Ċov and Ḋep both have

much more weight towards the right-hand side, which indicates that these metrics

are more likely to give a good estimate of connectedness.

Finally, using Figure 3.3h and Figure 3.3g as checks, it can be seen that Ċov

and Ḋep once again outperform the other four metrics. Matthews Correlation

Coefficient (MCC) actually has an interval of [−1,1], although the negative side is

39



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(a) True Positive Rate (Sensitivity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(b) True Negative Rate (Specificity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(c) Positive Predictive Value (Precision).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(d) Negative Predictive Value.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(e) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(f) Balanced Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(g) Book-Maker’s Informedness.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(h) Matthews Correlation Coefficient.

Figure 3.3: KDE plots of score PDFs averaged across all system types. Vertical
axes are relative likelihood and horizontal axes are score result. More weight on
the right-hand side is always more desirable.

40



3.4. METRIC SCORING RESULTS

not shown. All metrics have weight on the positive side, which shows that all six

defined metrics contain at least some information on the connectedness.

A characteristic feature employed by both Ṫmt and Ċos is the intersection

fx ¯ f y, whereas Ḣam and Ċls employ the absolute difference
∣∣ fx − f y

∣∣. The best

performing metrics Ċov and Ḋep have consistently higher accuracy scores and

employ both the intersection and the product of expectations E[ fx]E
[
f y

]
.

The simplicity of these metrics allows clues about system behaviour to be found

efficiently, albeit without further information about the formulation or complexity

of the relationships. Any information which can be extracted about a system’s

inner workings may be used to ease the work of a SoC designer. For example,

Chapter 5 describes how results may be presented in an easily comprehensible

visualisation. This allows a SoC designer to make more educated choices about

their design parameters in order to provide a more optimal design for their chosen

market.

Similar results might be obtained algebraically by using the distributions

defined in Section 3.3.1, potentially requiring less computing power than the

Monte-Carlo method of this experiment. Generating a large number of systems

and performing simulations does require a significant amount of computation;

however, it is straightforward to alter the model by substituting any of the four

distributions. Deriving results algebraically requires significant time, effort and

skill, whereas the Monte-Carlo method allows for quick and low-effort alterations.

Full results, broken down by system type, are included in Appendix C.

41



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

3.5 Learning New Metrics

3.5.1 Calculating Metrics with Counters

In the analysis of a real SoC, only a simulation will provide stored access to the

values of every signal over time. Storing and processing the value of a signal at

every timeslot is infeasible for real-time analysis because this large dataset must

be transferred off-chip, requiring a prohibitively expensive high-bandwidth com-

munication link. Information about signals and their interactions must therefore

be compressed. The most common method is using w-bit “performance counters”

which count the number of events in a given window of N discrete times, with

the assumption that N < 2w. Once sufficient time has passed and the window is

finished, the counter value is transferred off-chip for storage and later analysis.

The counter process is, effectively, a high-loss low-complexity data compression

from N bits to w bits. While other methods of compression based on techniques

such as exploiting statistical redundancy or cryptographic hashes may be possible,

these are not considered in this research. Counters are the favoured method of

lossy compression because of their simplicity, both in theory and implementation,

compared to other methods such as Huffmann coding or run-length coding.

All six metrics described in Section 3.2 can be expressed in terms of the expected

values of bit-vectors, rather than requiring the raw bit-vectors. This property is

convenient because it allows the use of counters instead of requiring long bit-vectors

to be stored. Using three counters to represent E[ fx], E
[
f y

]
, and E

[
fx ¯ f y

]
allows

calculation of Ṫmt, Ċov, and Ḋep. To calculate Ḣam, an additional counter for

the symmetric difference E
[∣∣ fx − f y

∣∣] is required, which is equivalent to counting

the set bits of fx ⊕ f y. Similarly, Ċls and Ċos require additional counters for

E
[
f 2
x
]
, E

[
f 2

y

]
, and E

[∣∣ fx − f y
∣∣2]

. A full examination of using counters is given in

Section 4.3.2 where definitions accommodating normalised data, i.e. in the unit

interval [0,1] rather than the set B = {0,1}, are important for applying window

functions. Briefly, each time a signal expression is observed “high”, a counter

c is incremented by k; Once the window has completed, the expectation can be

computed directly E[ f i]= ci
kN .

42



3.5. LEARNING NEW METRICS

3.5.2 Neural Network Parameters and Setup

Feed-Forward Neural Network (FFNN) models have been proven capable of learn-

ing arbitrary functions, given sufficient size, computational power, and training

over an appropriate dataset [87]. For example, a densely connected FFNN of

sufficient width, depth, and with appropriate activation functions could be trained

to represent Ċov, or any other metric. Known as the Universal Approximation

Theorem, this is used as the basis of a further experiment with the two aims of

exploring counter-based correlation metrics on binary SoC data:

• Determine which kinds of counters provide the most useful information for

off-chip analysis.

• Approximate the maximum usefulness of any metric.

A modern Python-based Machine Learning (ML) framework, TensorFlow/Keras,

is used to compare the viability of metrics based on specific sets of counter inputs

over a variety of NN structures. To avoid over-fitting the models, the structures

are kept simple and relatively small with less than 20 neurons. Figure 3.4 depicts

two of the FFNN structures used in this series of experiments.

Each FFNN structure is trained, and the epoch loss is recorded over a fixed

number of training steps. The small size of these NNs also makes their imple-

mentation on-chip a feasible proposition, suggested as a future direction of this

research in Section 6.3. In this series of statistical experiments, datasets are

generated in the same manner as Section 3.3. These datasets contain adjacency

matrices of known and estimated connections, as well as expectations representing

various counters.

While not an explicit goal of these experiments, the possibility of implementing

FFNN-based metrics in hardware has been kept in mind. Accordingly, the net-

works are small, comprised of two 1 densely-connected same-size hidden layers

of two, four, or eight neurons. The details of neuron structures are listed fully

in Appendix D. Each structure is named using a regular scheme based on the

first hidden layer, then second hidden layer, then output layer, separated by un-

derscores. Table 3.1 lists all nine structures tested. All structures use a sigmoid

activation function on the output layer in order for the output to be continuously

differentiable, and hence compatible with the gradient-based Adam [88] learning

strategy.

1 A structure (2qsig_0_sigm) of only one layer with two neurons is also tested, demonstrat-
ing learning on a tiny configuration with an activation function which is friendly to fixed-point
implementations.

43



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

Ḋep(fx,fy)

Ċov(fx,fy)

E[fy]

E[fx]

E[fx⊙fy]

E[|fx-fy|]

Ṫmt(fx,fy)

(a) Structure is 4sigm_4sigm_sigm. Combination of inputs is “withAssist”.

E[fy]

E[fx]

E[fx⊙fy]

E[|fx-fy|]

(b) Structure is 8relu_8relu_sigm. Combination of inputs is “withIsectSymdiff”.

Figure 3.4: Illustrations of FFNN structure and input combinations. Only two of
the nine tested structures, and two of the six tested input combinations are shown.

44



3.5. LEARNING NEW METRICS

Name 1st hidden layer 2nd hidden layer
#Neurons Activation #Neurons Activation

2qsig_0_sigm 2 Quantised Sigmoid 0 not applicable
2qsig_2qsig_sigm 2 Quantised Sigmoid 2 Quantised Sigmoid
4qsig_4qsig_sigm 4 Quantised Sigmoid 4 Quantised Sigmoid
4sigm_4sigm_sigm 4 Sigmoid 4 Sigmoid
4tanh_4tanh_sigm 4 Hyperbolic Tangent 4 Hyperbolic Tangent
8qsig_8qsig_sigm 8 Quantised Sigmoid 8 Quantised Sigmoid
8relu_8relu_sigm 8 ReLU 8 ReLU
8sigm_8sigm_sigm 8 Sigmoid 8 Sigmoid
8tanh_8tanh_sigm 8 Hyperbolic Tangent 8 Hyperbolic Tangent

Table 3.1: FFNN architectures used in metric-learning experiments.

Four activation functions are tested including Hyperbolic Tangent
[
tanh(x)

]
,

Rectified Linear Unit
[
max(0, x)

]
, Sigmoid

[
(1+ e−x)−1]

, and a quantised sigmoid

defined in Equation (3.30). This definition of a quantised sigmoid is chosen for its

potential simplicity in a hardware implementation using fixed-point arithmetic;

i.e. the division by 4 may be performed using a right-shift by 2 operation.

qsig(x)=max
(
0, min

(
1,

x+2
4

))
(3.30)

The selection of activation functions and layer sizes has been chosen arbitrarily

to demonstrate that the learning process on SoC counters is not restricted to a

particular NN configuration. Similarly, other hyper-parameters such as the size of

datasets and the number of epochs have been chosen as arbitrary round numbers

to demonstrate that there is nothing inherently special about the values used.

Hyper-parameters to the FFNN learning process are listed in Table 3.2. The first

aim of these experiments, to determine which counters are most useful, does not

depend on achieving a particular value of accuracy or loss, only that a learning

trend is observable. Figure 3.3g shows a most likely Book-Maker’s Informedness

(BMI) for Ċov and Ḋep of around 0.2. Therefore any FFNN which learns how to

estimate correlations with a BMI loss of less than −0.2 is said to be more useful.

Approximating the maximum usefulness is done by observing the loss value which

the learning process trends towards over many epochs. After an initial period

of fast learning, epoch loss is expected to “settle” around the value of maximum

usefulness for that particular structure and set of inputs.

This FFNN-based experiment trains models to learn an “ideal” metric for

estimating the presence of a logical relation between a pair of binary SoC bit-

vectors. The learning process attempts to minimise the Book-Maker’s Informedness

45



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

Parameter Value
Size of training dataset 4000 systems
Size of validation dataset 1000 systems
Cost function Book-Maker’s Informedness, Equation (3.28)
Learning strategy Adam [88] (α= 0.001, β1 = 0.9, β2 = 0.999, ε̂= 10−7)
Number of epochs 100
Number of steps per epoch 100

Table 3.2: Hyper-parameters common to all variations of FFNN experiments.

with loss recorded after every epoch of 100 training steps. Loss is plotted over 100

epochs in Figure 3.5 and Figure 3.6, where substantive learning is indicated by a

clear downward trend from left to right, i.e. increasing BMI as training progresses.

The lowest steady value of epoch loss provides empirical evidence on the limits of

how good a counter-based metric may be.

Name # Inputs Inputs
perfCntrs 2 E[ fx], E

[
f y

]
withAssist 7 perfCntrs +

E
[
fx ¯ f y

]
, E

[∣∣ fx − f y
∣∣],

Ċov
(
fx, f y

)
, Ḋep

(
fx, f y

)
, Ṫmt

(
fx, f y

)
fullAssist 11 withAssist +

E
[
fx| f y

]
, E

[
f y| fx

]
,

Ċos
(
fx, f y

)
, Ċls

(
fx, f y

)
withIsect 3 perfCntrs +

E
[
fx ¯ f y

]
withSymdiff 3 perfCntrs +

E
[∣∣ fx − f y

∣∣]
withIsectSymdiff 4 perfCntrs +

E
[
fx ¯ f y

]
,

E
[∣∣ fx − f y

∣∣]
Table 3.3: Input sets for FFNN experiments based on counters and pre-calculated
assistance values also based on counters.

The same experiment is repeated for different sets of inputs, as listed in

Table 3.3. A downward trend in epoch loss for all structures implies that an

input set contains the required information for effectively estimating correlation,

thereby allowing substantive learning. Absence of a downward trend indicates

that additional counters are required for correlation analysis. Analysis using a

series of time windows is a separate problem, not covered in this research, because

the pair of bit-vectors is effectively replaced by a pair of normalised real-vectors.

46



3.5. LEARNING NEW METRICS

While the metrics defined in Section 3.2 are specified to allow use with normalised

data, i.e, in the interval [0,1], their effectiveness has not been investigated in this

work.

To assure that a FFNN model will learn a metric at least as good as Ċov or

Ḋep, some pre-calculated metrics are given as additional inputs. Summaries of

each model are given in Appendix D listing the number of trainable parameters,

epoch loss after 100 epochs, accuracy, and mean-squared-error.

3.5.3 Metric Learning Results

The set “perfCntrs”, plotted in Figure 3.5a, is used as a baseline because this

set is often available and used in real-world situations. For example, to identify

whether a particular CPU is affected by memory bottlenecks one might count

transactions on the interconnect, beside both the CPU and the memory controller.

Counting and plotting the volume of these memory transactions allows the engineer

to postulate whether the bandwidth consumed by the CPU is likely to affect

other components via a bottleneck effect [44]. Where this approach tells the

engineer how much bandwidth is being consumed at particular locations of the

interconnect, it does not tell them directly that the CPU is affecting the behaviour of

another component sharing the memory; That information is guessed and requires

further effort, often by constructing new experiments, to validate the hypothesis.

Using a correlation metric gives this information directly, thereby cutting down

engineering time and providing value. For a set of m signals, the number of

counters required to implement the perfCntrs input set is equal to m. It can be

seen in Figure 3.5 that performance counters alone do not contain the requisite

information to perform efficient correlation analysis over a single time window.

The slightly lower epoch loss in Figure 3.5a corresponding to 8relu_8relu_sigm does

not constitute a significant trend and is attributed to the well-known dying ReLU

problem [89].

The next set “withAssist”, plotted in Figure 3.5b, adds counters for the intersec-

tion and symmetric difference as well as three pre-computed metrics which have

simple hardware implementations. Adding more assistance counters to give the

“fullAssist” input set shows similar learning rates and a similar stable level of loss.

Comparing the plots for withAssist and fullAssist demonstrates that the required

information is present in the withAssist set, and adding further inputs only serves

to confuse the learning process, as seen by the slower learning rate in Figure 3.5c.

The limit on usefulness is estimated to have a Book-Maker’s Informedness of

around 0.4 as seen by the level at which the epoch loss levels off for FFNNs using

47



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

the withAssist and fullAssist input sets.

Transferring results off-chip incurs an undesirable real-world cost somewhere

along the silicon production line, directly impacted by the efficiency of the transfer

process. It is therefore desirable to minimise the amount of data transferred while

still acquiring enough to provide compelling analysis. To this end, three input sets,

plotted in Figure 3.6, are compared to visualise their contribution to the learning

process. Figure 3.6a and Figure 3.6b each adds one counter per pair of signals for

the intersection and symmetric difference respectively. For a set of m signals, the

number of counters required to perform pairwise correlation with one counter per

pair is m2+m
2 , including perfCntrs. It can be seen in Figure 3.6 that for analysis

with access to either E
[
fx ¯ f y

]
or E

[∣∣ fx − f y
∣∣] allows learning to occur at a steady

rate for most of the tested FFNN structures with the smaller structures learning

at a slower pace.

Input from counters for both the intersection and symmetric difference allows

all FFNN models to learn at a clear and steady rate, as plotted in Figure 3.6c. For

a set of m signals, the number of counters required to perform pairwise correlation

with two counters per pair is m2, including perfCntrs.

For the smallest structures, the symmetric difference appears to provide more

information than the intersection, which is noteworthy because the most useful

explicit metrics Ċov and Ḋep are instead based on the intersection. The reason

behind this is not fully understood, highlighting one of the disadvantages of using a

trained-FFNN metric, i.e. lack of explainability. A system designer must therefore

decide between a minimal addition of correlation counters m2+m
2 , or assigning

more resources to implement m2 counters. The device developed in Chapter 4

includes circuitry allowing off-chip retrieval of both the intersection and symmetric

difference.

48



3.5. LEARNING NEW METRICS

0 20 40 60 80 100
Epoch Step

1.0

0.8

0.6

0.4

0.2

0.0
Lo

ss

2qsig_0_sigm
2qsig_2qsig_sigm
4qsig_4qsig_sigm
4sigm_4sigm_sigm
4tanh_4tanh_sigm

8qsig_8qsig_sigm
8relu_8relu_sigm
8sigm_8sigm_sigm
8tanh_8tanh_sigm

(a) Performance counters only, i.e. only E[ fx] and E
[
f y

]
.

0 20 40 60 80 100
Epoch Step

1.0

0.8

0.6

0.4

0.2

0.0

Lo
ss

2qsig_0_sigm
2qsig_2qsig_sigm
4qsig_4qsig_sigm
4sigm_4sigm_sigm
4tanh_4tanh_sigm

8qsig_8qsig_sigm
8relu_8relu_sigm
8sigm_8sigm_sigm
8tanh_8tanh_sigm

(b) Performance counters, plus some “assistance” inputs E
[∣∣ fx − f y

∣∣], E[
fx ¯ f y

]
, Ċov

(
fx, f y

)
,

Ḋep
(
fx, f y

)
, and Ṫmt

(
fx, f y

)

0 20 40 60 80 100
Epoch Step

1.0

0.8

0.6

0.4

0.2

0.0

Lo
ss

2qsig_0_sigm
2qsig_2qsig_sigm
4qsig_4qsig_sigm
4sigm_4sigm_sigm
4tanh_4tanh_sigm

8qsig_8qsig_sigm
8relu_8relu_sigm
8sigm_8sigm_sigm
8tanh_8tanh_sigm

(c) Performance counters, with assistance inputs, plus further assistance inputs Ċos
(
fx, f y

)
,

Ċls
(
fx, f y

)
, E

[
fx| f y

]
, and E

[
f y| fx

]
.

Figure 3.5: Epoch loss over 100 training steps for three different input sets (Part 1
of 2). Each subfigure compares nine FFNN architectures.

49



CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

0 20 40 60 80 100
Epoch Step

1.0

0.8

0.6

0.4

0.2

0.0
Lo

ss

2qsig_0_sigm
2qsig_2qsig_sigm
4qsig_4qsig_sigm
4sigm_4sigm_sigm
4tanh_4tanh_sigm

8qsig_8qsig_sigm
8relu_8relu_sigm
8sigm_8sigm_sigm
8tanh_8tanh_sigm

(a) Performance counters plus intersection counter E
[
fx ¯ f y

]
.

0 20 40 60 80 100
Epoch Step

1.0

0.8

0.6

0.4

0.2

0.0

Lo
ss

2qsig_0_sigm
2qsig_2qsig_sigm
4qsig_4qsig_sigm
4sigm_4sigm_sigm
4tanh_4tanh_sigm

8qsig_8qsig_sigm
8relu_8relu_sigm
8sigm_8sigm_sigm
8tanh_8tanh_sigm

(b) Performance counters plus symmetric difference counter E
[∣∣ fx − f y

∣∣].

0 20 40 60 80 100
Epoch Step

1.0

0.8

0.6

0.4

0.2

0.0

Lo
ss

2qsig_0_sigm
2qsig_2qsig_sigm
4qsig_4qsig_sigm
4sigm_4sigm_sigm
4tanh_4tanh_sigm

8qsig_8qsig_sigm
8relu_8relu_sigm
8sigm_8sigm_sigm
8tanh_8tanh_sigm

(c) Performance counters plus both intersection and symmetric difference counters.

Figure 3.6: Epoch loss over 100 training steps for three different input sets (Part 2
of 2). Each subfigure compares nine FFNN architectures.

50



3.6. CONCLUSION

3.6 Conclusion

This chapter has explored a statistical approach to a key area of SoC behaviour

analysis using a series of Monte-Carlo experiments. All of the code used to perform

these experiments, written in Python, is provided online. 2 Key points and

contributions of this chapter are thus:

• A probabilistic model of binary SoC data is defined in Section 3.3.1 to work

around the lack of access to a large high-quality dataset.

• Ċov and Ḋep are shown to consistently estimate the existence of logical

relationships in SoC-like data with more useful results than metrics used

in other fields for correlation in binary data such as cosine similarity or the

Tanimoto coefficient.

• Performance counters alone are shown to be insufficient for detecting pair-

wise logical relationships over a single time window. However, including

counters for one or both of the pairwise intersection and symmetric difference

is shown to be sufficient for correlation analysis.

• On datasets resembling the given probabilistic model, the maximum achiev-

able Book-Maker’s Informedness is found to be around 0.4.

The formulation and rationale behind six methods of measuring similarity or

correlation has been given, to estimate relationships between bit-vectors compris-

ing binary SoC data. These formulations may also be applied more generally to

bounded data in the range [0,1], although this is not explored in this work and may

be the subject of future work. It has been shown that methods which are common

in other fields such as the Hamming distance, Tanimoto coefficient, Euclidean

distance, or Cosine similarity are ill-suited to low-cost relationship detection when

the relationships are potentially complex. This result highlights a potential pitfall

for scientists working with related binary sequences: that of not considering a

system’s logical construction. Knowledge that the metrics based on covariance

(Ċov) and independence (Ḋep) provide the most useful metrics gives confidence

that detection systems may employ these approaches to make meaningful gains in

the process of optimizing SoC behaviour. By using more accurate metrics unknown

2 All pieces of code are in a single git repository available at https://github.

com/DaveMcEwan/dmppl. Methods described in Section 3.2, Section 3.3, and Sec-
tion 3.5 correspond to the files dmppl/nd.py, dmppl/experiments/relest/relest.py, and
dmppl/experiments/relest/relest_learn.py respectively.

51

https://github.com/DaveMcEwan/dmppl
https://github.com/DaveMcEwan/dmppl


CHAPTER 3. CORRELATION METRICS IN BINARY SOC DATA

relationships may be uncovered, giving SoC designers the information they need

to optimise their designs and sharpen their competitive edge.

Various FFNN structures have been presented, composed of different numbers

and types of neurons, in order to attempt learning better quality correlation metrics,

albeit without explainability. Comparing the learning process using different sets

of input data suggests that hardware implementing at least one of the counters for

pairwise intersection or symmetric difference can provide system analysts with

the necessary information to estimate pairwise correlation. FFNNs have also been

used to demonstrate the maximum usefulness of correlation metrics, specified

in terms of BMI, i.e. an informedness of around 0.4 when data for E[ fx], E
[
f y

]
,

E
[
fx ¯ f y

]
, and E

[∣∣ fx − f y
∣∣] are available.

Due to the expansive nature of many-to-one logic functions it is clearly im-

possible to design a metric which can detect every logical connection accurately

by relying on a limited number of observations. Results from this chapter have

paved the way for hardware implementation of metrics which are shown to be good

for the general case. By implementing the suggested counters and metrics which

can be derived from their results, direct estimation of the presence of a logical

connection is possible from a single window of observation. This approach allows

for tracking of fast-changing SoC behaviour which contrasts against the many

windows required for using performance counters alone which can only be used for

correlation analysis when behaviour changes relatively slowly.

52



C
H

A
P

T
E

R

4
HARDWARE FOR SOC CORRELATION ANALYSIS

4.1 Aim

This chapter is concerned with the practical RTL implementation of the correlation

metrics explored in Chapter 3 for the purpose of making tools that can assist in

understanding SoC behaviour. State-of-the-art techniques described in Chapter 2

and the mathematical basis for correlation metrics laid out in Chapter 3 are

used to guide the development of RTL circuitry in this chapter. Where Chapter 5

deals primarily with visualisation in a simulation context, this chapter focuses on

real-time low-cost data collection and analysis in the context of physical systems.

4.1.1 Problem Description

In a simulation context, all values of each bit-vector are expected to be accessible,

thus providing all of the required information for software-based analysis. However,

in a physical context such as a running FPGA or ASIC, gathering and storing the

full data from many binary signals is infeasible due to the implicit cost of providing

a capable datalink. For example, monitoring fifty binary signals clocked at a

modest 200 MHz requires a datalink and storage medium capable of sustaining at

least 10 Gbs−1. Data compression techniques may be applicable to some systems,

but this is not a trivial endeavour and is likely to incur non-trivial costs. Hardware

support for correlation analysis is therefore desirable in at least three scenarios.

The first scenario is to simply collect data required for later (likely software-

based) analysis. While general compression of bit-vectors may not be feasible,

53



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

the metrics explored in Chapter 3 are compatible with counter-based information.

Chapter 3 concludes that only using performance counters is not sufficient to

perform correlation analysis; i.e. at least one of {E
[
fx ¯ f y

]
, E

[∣∣ fx − f y
∣∣]} is required

in addition to E[ fx] and E
[
f y

]
. Hardware support is therefore required to calculate

the intersection and/or symmetric difference of each pair of signals in a running

system.

The second scenario is real-time monitoring of system behaviour. By their

nature, monitors should be passive components which do not affect the operation

of the system they are monitoring; otherwise they would be part of the operation.

Thereby, a monitor which simply collects data must depend on the receiving

equipment to accept all data without negotiation or delay. This is seen as an

onerous burden where engineers might expect to use a common desktop computer

as the receiving equipment. Further, the analysis latency introduced by encoding,

transmitting, and decoding results over a datalink, e.g. Universal Serial Bus

(USB) [90], might stretch the total processing time beyond a reasonable definition

of real-time. Hardware support offers the ability to process data closer to the

source, thus enabling low-latency calculation of correlation metrics.

Embedded analytics, the silicon Intellectual Property (IP) market led by Ul-

traSoC 1 , is centred around on-chip components designed to enable non-intrusive

collection and real-time analysis of SoC data [7]. On-chip monitoring solutions

are desirable because they can be tailored to the specific application of the main

system, allowing behaviour to be analysed and potentially improved throughout

the product life-cycle. This work deals with calculating correlation over a single

time window, not a sequence of windows. Where existing components feature

performance counters which allow for cross-correlation [91], e.g. UltraSoC’s Bus

Monitor or Status Monitor modules [47, 92], there are no products on the market

which currently offer immediate support for the pairwise data required for effective

single-window correlation analysis. Some support for pairwise counting is provided

by the “match logic” feature of UltraSoC’s Status Monitor but, as discussed in

subsequent sections of this chapter, further functionality is required for sampling

and windowing.

Naturally, these three scenarios are not comprehensive or mutually exclusive

so scenarios involving an on-chip module to perform both real-time monitoring

and data collection are to be expected. This chapter aims to address these three

scenarios by exploring their issues and offering solutions that can be implemented

in standard RTL-based toolflows.

1 UltraSoC are now known as the Tessent Embedded Analytics division of Siemens.

54



4.1. AIM

4.1.2 Objective

Real-time correlation analysis allows system engineers to better understand the

behaviour of their creations and use interactive methods to experiment with design

attributes. Over the course of SoC project development, this allows well-reasoned

decisions to be reached more quickly than without the assistance of correlation

analysis. Where a large proportion of development time is devoted to verification,

validation, and performance analysis, any technique which quickens entry to

market is valuable from a business perspective.

The objective of this chapter is to explore the issues surrounding hardware

support for correlation analysis of binary SoC signals. Design and implementation

issues affecting the scenarios of data collection, real-time monitoring, and on-chip

monitoring are addressed in detail. Validation of proposed solutions is provided by

two case studies which use the same parent SoC project running on an FPGA.

4.1.3 Approach

Background material, essential to frame the context of particular issues, is covered

before the available options to address each issue are explored. The culmination

of proposed solutions is the creation of a “correlator” device which is applicable to

both data collection and real-time embedded analytics.

The correlator is first developed as a stand-alone tool, with intended usage

somewhat similar to an oscilloscope, employing at least two measurement probes

to perform real-time correlation analysis. Where an oscilloscope employs one probe

to measure and present voltage over time, the correlator employs a pair of probes

to measure and present pairwise correlation over time. Next, integration of the

correlator into an existing FPGA SoC project is explored to demonstrate usage

as an embedded analytics tool. Developing the correlator as a stand-alone device

before any integration is a useful approach because characterisation and validation

of each component can be performed in isolation. Stand-alone development also

ensures that the resulting device is generally useful rather than too specific to one

particular target system.

High and low bandwidth data collection scenarios are accommodated by pro-

viding the option to consume results from the analogue or digital domains. Two

case studies are considered to demonstrate usage of the developed circuitry via

implementation of a USB Full Speed (12Mb/s) (USB-FS) gadget, and integration

with a commercial embedded analytics toolkit. Due to the high cost of ASIC manu-

facture, only FPGA platforms are tested, although all RTL work presented is also

applicable for ASIC technologies.

55



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

4.2 Background

4.2.1 Sampling

As a passive monitoring device, the correlator has no control over when or how

often any probed voltage transitions occur. In using an RTL design (digital logic)

to measure correlation in binary SoC data from physical wires, the uncertainty

around when voltages might transition begets three distinct issues.

The first sampling issue is that of metastability. It is unknown whether

probed wires operate synchronously, mesochronously, plesiochronously, or even

asynchronously [93]; i.e. each wire attached to the correlator’s probes, while

assumed to be carrying binary data, operates in a clock domain with unknown

properties of period, phase, and jitter. Therefore, the data on each probed wire

must be transferred to the correlator clock domain via a synchronisation process.

In practical terms, this means that each probe must be directly connected to at

least two series DFFs operating in the correlator clock domain, with no logic on

the input path to either DFF [17]. With the addition of these two DFFs to each

probe, the issue of metastability is satisfactorily overcome; however, a thorough

analysis of synchronisation failure modes is given by Dally and Poulton [93].

The second sampling issue is addressed by the Nyquist-Shannon Sampling

Theorem [94]. In order to achieve accurate correlation results, samples must be

collected at or above the Nyquist rate. Fourier analysis of N samples collected be-

low the Nyquist rate begets frequency aliasing, distorting the result of N complex

values. Problems with aliasing arise from the conversion from continuous signals

in the physical domain to discrete signals in the digital domain, with artefacts

of the reconstruction process most visible, literally, in image processing applica-

tions [95]. Fourier analysis produces a vector of N complex elements, whereas a

correlation metric produces a scalar real, therefore sampling too slowly simply re-

duces accuracy rather than introducing a complex response like aliasing. However,

the extent of the inaccuracy introduced by sampling too slowly cannot be known

by a passive device like the correlator. Henceforth, it is assumed that wires probed

by the correlator carry binary voltage levels, transitioning at less than the Nyquist

frequency of the correlator sampling clock.

The third, and most significant, sampling issue is due to the nature of digital

logic construction. In a practical SoC, it is often desirable to know the relationships

between a pair of signals with a small relative time offset; i.e. it is necessary to

look slightly forward or backward in time to find a result such as “X is likely to

occur δ cycles before Y”. For example, in an AXI interconnect, a read response

56



4.2. BACKGROUND

event is expected to be highly correlated with a read request event occurring in

the recent 2 past because transactions between request and response channels are

strictly ordered [33]. Notation f i〈δ〉[t] := f i[t+δ] is used to represent the notion of

measurement i being shifted by δ ∈ (−∆,0] cycles.

A significant part of the issue is that when asked “Is X correlated with Y?”, an

engineer will naturally interpret the question as “Is X correlated with Y〈δ〉 for any

value of δ in some (implicit) range?”. In a simulation context where the full history

of each bit-vector is accessible, this is acceptable because the correlation can be

calculated ∆ times and some or all results returned to the inquirer. However, in

a hardware implementation with limited resources, calculating ∆ results would

require ∆ times more computation hardware, which may impose an unacceptable

cost. Additionally, circuitry to accommodate calculations over all ∆ offsets requires,

at a minimum, ∆ bits of state. The range of δ which would be considered reasonable

is dependent on the context of the signals being probed. For example, a low-level

signal expected transition at close to the Nyquist frequency might be searched for

correlation with other low-level signals delayed by up to ten cycles, but a high-level

signal with fewer transitions might be expected to correlate with signals delayed

by up to a thousand cycles. The difference in what might be considered reasonable

means that the naïve approach of computing correlation for many values of δ is

not a feasible proposition for a real-time hardware device.

The approach taken for the correlator device is to purposefully introduce a

configurable amount of jitter into the sampling clock in order to statistically

combine multiple delayed versions of a signal ( f i〈−∆+1〉 , · · · , f i〈−2〉 , f i〈−1〉 , f i〈0〉) into a

single signal for consideration. Naturally, combining delayed versions of a signal

into one introduces some inaccuracy to the calculation. Acknowledging some

inaccuracy in correlation results is acceptable in the search for logical relationships,

because knowing that a relationship may exist at all is more important than

knowing the exact level of correlation; i.e. results from the correlator device are

intended to guide an exploration of SoC behaviour rather than definitively state

exact values of correlation. Details of how this jittery sampling process can be

modelled and implemented are covered in Section 4.3.1.

2 The definition of “recent” is dependent on the module, SoC, and application running on the AXI
interconnect. A simple peripheral such as a timer might respond within five cycles, but a complicated
peripheral such as a matrix multiplication accelerator might be reasonably expected to respond
within five hundred cycles.

57



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

4.2.2 Window Functions

Window functions are used in Digital Signal Processing (DSP) applications for a

variety of reasons including: (1) Reduce spectral leakage with Fourier analysis [96],

(2) Convert a known probability distribution to a different distribution [97, 98],

and (3) Focus on a particular region of data; i.e. perform a weighted analysis [99].

The simplest window function, rectangular, is defined in Equation (4.1) using

notation consistent with modern texts on Fourier analysis [20]. N represents the

length of a window in number of samples which is often a power of two. Non-

negative integer t represents a discrete point in time, u is the first value of t in

a particular window, and n is the index within a particular window (starting at

zero). The entirety of time is discretely indexed by t, and a particular window

spans from the point where t = u up to, but not including, t = u+N. Other popular

window functions include the power-of-sine family shown in Equation (4.2) which

includes the rectangular (α= 0), sine (α= 1), raised-cosine (α= 2), and alternative-

Blackman (α= 4).

w[n]
rect

= 1 (4.1)

w[n]
sinα

= sinα
( nπ

N −1

)
∈R∩ (0,1] (4.2)

In Fourier analysis applications, window functions are commonly used to

address spectral leakage by focusing a signal’s energy into the fundamental fre-

quency component rather than frequency-domain sidelobes [100]. Non-rectangular

window functions are typically bell-shaped in the time domain, where the exact

construction of the bell curve has a profound impact on results in the frequency

domain. For a given sample rate, a longer window (with more samples) provides

a higher-resolution view of the frequency domain. However, the energy in each

frequency component must be assumed to be constant over the entire window. In

order to detect frequency components which change relatively quickly, either the

sampling rate must also be relatively fast, or a shorter window must be used with

the corresponding loss of resolution.

In the fields of image processing and photography, using bell-shaped window

functions is referred to as foveation and may be used as a data compression

technique or to encourage the viewer to look at a particular area [101, 102]. In

correlation analysis a window function can be applied to focus attention onto a

particular region of time. The corresponding interpretation of bell-shaped window

functions is that the further away from the centre a sample is taken, the less

information it contributes to the analysis. Intuitively, applying a window function

58



4.2. BACKGROUND

to time-series data is equivalent to the human process of paying more attention to

samples gathered around one point in time.

Chapter 3 explores the use of several correlation metrics, all of which are func-

tions of expected values, not the bit-vectors directly. Using metric constructions

which only use expected values, not bit-vectors directly, allows these metrics to be

calculated with counting techniques; i.e. for each time an event occurs, an accu-

mulator is incremented by an amount dependent on the time of occurrence. This

is important because storing a bit-vector as a weighted sum is effectively a lossy

data compression, thereby allowing computations to scale in a practicable manner

with N. As such, counters are used widely in SoC analysis which are often referred

to as “performance counters” [47, 29, 103]. However, experiments in Chapter 3

showed that in order to effectively measure correlation over a single time window,

it is insufficient to use only a counter for each f i; At least one pairwise counter

such as E
[
fx ¯ f y

]
or E

[∣∣ fx − f y
∣∣] is required for pairwise correlation analysis.

Two further definitions are useful to describe the use of window functions

precisely and concisely.

Σw :=
N−1∑
n=0

w[n] ∈R (4.3)

E[ f i]|t∈[u,u+N)
:= 1
Σw

u+N−1∑
t=u

w[t−u] f i[t] ∈R∩ [0,1] (4.4)

Equation (4.3) defines a convenient notation Σw to represent the sum of all coef-

ficients in a window function. For example, for a rectangular window where all

N coefficients are equal to 1, the sum of all coefficients Σw = N. The (windowed)

expectation E[ f i] is calculated by summing coefficients where elements of the

bit-vector f i are asserted, shown in Equation (4.4). The first term in Equation (4.4)

( 1
Σw

) is constant for a given window function and serves to normalise the result

0ÉE[ f i]É 1.

Section 4.3.2.1 describes a hardware implementation technique which enables

subsequent processing of the counter value to proceed without needing to be scaled

according to N. This attribute is important because it enables the correlator device

to adjust the transmission rate of results by only sending the most significant bits;

i.e. the need to send the value of N is avoided. Section 4.3.2.2 builds on the same

principle and describes how choosing a coefficients such that Σw is a power of two

enables efficient hardware implementation of a non-rectangular window function.

59



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

4.2.3 Synthesis, Layout, and Characterisation

A digital RTL module intended for use as an on-chip monitoring component for a

wide variety of parent systems must be able to be implemented on a wide variety of

FPGA technologies. The process which takes a set of RTL design files and produces

an FPGA configuration is comprised of two tightly coupled steps: synthesis, then

Place and Route (PnR). The function of the synthesis step, taking RTL code and

technology library as inputs, is to create a netlist which is composed exclusively

of cells from the technology library connected such that the logic in the RTL

code is implemented. The PnR step, also called layout, takes the netlist, a set

of timing constraints, and a model of the target FPGA’s structure as input. An

FPGA configuration, also called a bitstream, is created via the PnR tool finding a

way of assigning cells in the netlist to physical cells of an FPGA. Different FPGA

technologies are therefore supported by construction of an appropriate technology

library and structural model. Converting an RTL design to a functional FPGA

configuration is a complex process, highly dependent on the RTL being suitably

constructed for the target FPGA. To enable implementation on multiple FPGA

technology families, RTL designs must be carefully written to avoid being limited

by the constraints inherent in each technology. There are three inter-related types

of constraints which should be avoided when creating a technology-portable child

design that integrates easily with a parent system.

(1) Technology constraints. If a design requires resources specific to one par-

ticular technology, e.g. a specific memory macro, then that design cannot be

implemented on other technologies until further redesign work is undertaken. For

example, an RTL design initially created on a Lattice iCE40 FPGA might wish

to make use of the “SB_GB_IO” primitive for its pad-adjacent logic and DFFs;

however, implementing the same design on a Xilinx FPGA is not possible unless

an equivalent component is created.

(2) Resource constraints. If a design requires too much of resource such as

logic cells (often synonymous with Look Up Tables (LUTs)) then they cannot

be used by the parent system. For example, the largest member of the Lattice

iCE40LP family [104] of FPGAs has 7680 logic cells (each comprised of a 4-LUT

+ 1 DFF), whereas members of the Xilinx Virtex-7 family [105] have up to 1955 k

logic cells (each comprised of a 6-LUT + 2 DFFs). If an FPGA is not able to provide

enough resources to logically implement both the parent and child designs, then

the integration is not possible.

(3) Layout constraints. In order to operate digital clocked logic in the usual

manner, there are timing constraints which govern how physically far apart logi-

60



4.2. BACKGROUND

cally adjacent cells may be placed. Where logic is clocked at a high rate, timing

constraints must be tightened to check that voltage from the output of one DFF

can propagate through appropriate combinatorial logic cells to the input of another

DFF within a specific time-frame. Tight timing constraints therefore require that

some cells are placed within a certain distance of each other; i.e. there are con-

straints on the layout of cells. Layout constraints are, naturally, more difficult

to satisfy when a design requires a higher proportion of available resources. If a

combined parent and child design is constrained such that no layout can be found

to meet all timing constraints, then the system cannot function at its intended

clock frequency.

Therefore, to avoid synthesis issues in integrating a child component with

a parent system an ideal child design should use only generic logic constructs,

require few logic resources, and have loose timing constraints. By aiming toward

these design goals, a SoC engineer can expect the integration to pass through an

FPGA toolchain and produce a successful configuration.

FPGAs and ASICs can be manufactured using a variety of different process

technologies; Some allow operation at higher clock frequencies, some offer lower

power characteristics, and others can be manufactured cheaply. For example,

Lattice manufacture their own chips using a 40 nm process for their iCE40LP

family with focus on low-power [104], whereas Xilinx has their 7-Series family

manufactured using TSMC’s 28 nm for their focus on high-performance [105]. It

can be reasoned that if a design can be successfully implemented on an FPGA

technology which is relatively restricted in terms of logic resources and clock

frequency, then implementation on a more advanced FPGA technology is also

likely to be successful. Intel have famously used similar reasoning in their “tick-

tock” development model for their CPUs [106] where each “tick” took advantage of

a process shift to implement a die shrink, giving power and performance benefits

with change to the logic design.

PnR is often a non-deterministic process, instead based on randomised algo-

rithms such as simulated annealing [107, 108], which means that multiple solu-

tions are possible. Appendix E fully describes the method used to characterise an

RTL design in relation to the synthesis and layout process for the low-performance

Lattice iCE40, based on comparison of different PnR solutions. Based on the

hypothesis that a process shift to a higher performance FPGA technology can

be expected to have looser timing and layout constraints, the correlator device

has been initially developed and characterised on the low-performance Lattice

iCE40LP FPGA technology.

61



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

4.3 Correlator Device

As explained in Section 4.1.3, the issues surrounding hardware support for cor-

relation analysis of binary SoC signals are explored via the design of a passive

monitoring tool, the correlator.

The purpose of this device is to enable correlation analysis of binary signals

in running systems using the metrics explored in Chapter 3. Basic setup of the

correlator is intended to be similar to that of an oscilloscope or logic analyser.

Instead of one probe for measuring voltage over time, each correlator “engine” uses

two probes for measuring pairwise correlation data over time. In Figure 4.1, a

correlator with a single engine is shown, controlled by a host computer over USB,

and the correlation between the probed signals is presented in the brightness of

an LED.

Where Figure 4.1 depicts a stand-alone correlator device, the alternative in-

tended usage scenario is an integrated on-chip monitor suitable for embedded

analytics. In an integrated scenario the probes are connected directly to potentially

interesting signals within the RTL code. To enable flexibility in choosing which

pair of RTL signals each correlator engine can monitor, the set of probes are routed

correlator

Circuit Under Test

X

Y

Figure 4.1: Usage of stand-alone correlator device. A host computer is used to
configure the device and retrieve data over a USB-FS link. A pair of probes are
placed on signals in the circuit under test. Results may be obtained using the Light
Emitting Diode (LED), an oscilloscope (not shown), or retrieved for offline analysis.

62



4.3. CORRELATOR DEVICE

through a set of multiplexers, a crossbar. This enables each engine to dynamically

select which pair of probed signals to monitor. For example, an implementation

built with 3 probes (x, y, z) and 2 engines could be configured at runtime to cal-

culate Ċov
(
fx, f y

)
and Ḋep( fx, fz). Each engine contains independent circuitry to

facilitate: (1) jittery sampling, (2) counting binary assertions with a pre-applied

window function, (3) low-latency calculation of Ċov, Ḋep, and Ḣam metrics, and (4)

recording necessary data for offline analysis.

Figure 4.2 shows an overview of a correlator engine’s microarchitecture to set

the scene for further sections which detail the reasoning and function of the main

sub-systems. Section 4.3.1 covers how signal data enters the monitor via a jittery

sampling mechanism which works in conjunction with the windowing counters

covered in Section 4.3.2. The need for a specialised construction of counters is

rationalised by the requirement of flexibility in a tool used in a variety of systems.

Two solutions for obtaining the counter data required for correlation analysis

are described in Section 4.3.3; One for transferring data to the host computer

for external analysis, and another for low-cost real-time correlation monitoring

through the use of aΔΣmodulator. In line with the reasons set out in Section 4.2.3,

the RTL design is characterised for implementation on the Lattice iCE40LP then

the Xilinx 7-Series FPGA technologies.

X

Y

USB FS

B
y
t
e
P
i
p
e
 
m
e
m
m
a
p

r
e
g
i
s
t
e
r
 
i
n
t
e
r
f
a
c
e

pktfifo

strobe generator
(with jitter)

sampleJitter

samplePeriod

ΔΣ
modulator

window counter
(Rectangular)

window counter
(Logdrop)

windowLength

windowShape

Cov

Dep

Ham

countX

countY

countIsect

countSymdiff

ledSource

Figure 4.2: Microarchitecture of a standalone correlator with a single engine.
Strobes if the anti-phase sampling mechanism are shown as a single blue line.
Output of the ΔΣ modulator is depicted regulating the brightness of an LED, but
could also be measured using an oscilloscope.

63



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

4.3.1 Sampling Mechanism

In order to acquire data from the circuit under test, a sampling mechanism is re-

quired to interpret voltage levels on wires operating in unknown clock domains. As

explained in Section 4.2.1, the assumptions must be made that probed signals carry

binary data and transition at less than the Nyquist frequency. Figure 4.3 depicts

the main structures in the data capture mechanism. A pair of signals are selected

from a set of probes after passing through a standard meta-stability mitigation

(2 series DFFs). Four signals representing fx, f y,
(
fx ¯ f y

)
, and

∣∣ fx − f y
∣∣ carry the

binary value present when sampleStrobeX and/or sampleStrobeY was last asserted.

For all DFFs to operate in a single clock domain, thus straightforward FPGA

implementation [109], the sampleStrobe* signals control re-circulating multiplexers

which control data-flow into the correlator.

In an on-chip integration scenario where hardware is designed to monitor

signals of a parent system, the set of monitorable signals is fixed in RTL code and

cannot be changed at runtime. Using a crossbar (set of multiplexers) to flexibly

route signals to a limited set of correlator engine probes is useful for system

designers when it is unclear what the most useful signals will be in a running

application. This data capture scheme mostly comprises of techniques common to

other embedded analytics modules [92]; however, the novelty of this work lies in

the logic behind the sampleStrobe* signals.

clk

d q

X

sampleStrobeX

eventXprobeX

clk

d q

Y

eventY

eventIsect

eventSymdiff

clk

d q

clk

d q

clk

d q

clk

d q

clk

d q

clk

d q

resyncA
probe_1

resyncB
probe_1

resyncA
probe_2

resyncB
probe_2

resyncA
probe_n

resyncB
probe_n

...

double-flop
metastability

mitigation

probe
routing

crossbar

selectX

selectY

sampleStrobeY

probeY

sampling
per engine

events to
counters

Figure 4.3: Correlator data capture mechanism. Metastability issues are mitigated
by the double-flop technique [17], shown on the left. Flexible source selection, es-
sential for embedded analytics scenarios, is enabled via the probe routing crossbar.
Events, sampled from probes on assertions of sampleStrobe*, are delivered to the
windowing counters as event*. All DFFs operate in the same clock domain.

64



4.3. CORRELATOR DEVICE

4.3.1.1 Introducing Variance to the Sample Period

The nature of digital logic design means that it is intuitive to find correlations

between events occurring close to each other, rather than just concurrently. For ex-

ample, a pair of status signals busy and idle on the same module can be reasonably

expected to be highly correlated. This is still a reasonable expectation even when

the relationship is not a simple inversion, i.e. ¬busy 6= idle. Instead, one might

expect that this pair of signals will transition close to each other, e.g. busy get

de-asserted at the end of a calculation, then some wind-up routine is performed,

then idle is asserted. As described in Section 4.2.1, the notation f i〈−δ〉 is defined to

represent f i delayed by δ cycles of the correlator clock. Hardware to deterministi-

cally support searching for correlations over many values of δ presents a significant

challenge to practical implementation. Real-time correlation monitoring across ∆

versions of each signal would naturally require ∆ additional bits of state, as well

as ∆ calculations running in parallel for each pair signal pair. However, accepting

some error in the correlation analysis offers an avenue for exploitation.

Statistically combining a range of δ-shifted versions of a signal allows the

sampling mechanism to capture some of the potential occurrences into one counter.

Knowing that a signal pair is correlated at all is a more salient feature of behaviour

than knowing the exact result of a correlation metric. Seeing a small but significant

result when the sampling period has a large variance may motivate an engineer

to investigate further by experimenting with the period variance and specific

values of δ to find the most correlated one. Searching over δ in this way therefore

requires only a single calculation, but experimenting with ∆ different values of δ

still requires the ∆ bits of state.

Introducing introducing jitter to the sampling process delivers the timeline

shown in Figure 4.4. Samples of probeX and probeY are most like to be taken around

the same time, rather than at precisely regular intervals.

sampleStrobeX

sampleStrobeY

counterStrobe

Figure 4.4: PDF of event/counter anti-phase sampling timeline. Counters incre-
ment at regular intervals spaced as far as probabilistically possible from when
events are sampled to avoid missed/repeated samples; i.e. the sampling processes
operate in anti-phase to the counter processes.

65



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

4.3.1.2 Jittery Sample Strobe Mechanism

The most useful number of samples in a window and the level of jitter in the

sampling process is dependent on the system being analysed. Therefore, circuitry

driving the sampleStrobe* signals in Figure 4.3 must provide a method of controlling

both the period mean length, and the period variance. Analogue and closed-loop

solutions for driving the sample strobes might make use of a Phase-Locked Loop

(PLL) or Delay-Locked Loop (DLL) [110, 111], which invites comparison with a

FPGA solution using a digital equivalent [112]. In contrast to this application of

aiding correlation analysis, typical DLL circuits aim to reduce jitter rather than

introduce a specific variance to the period. Open-loop control allows for imple-

mentations requiring fewer logic cells than closed-loop PLL or DLL constructions,

particularly when the desired frequency range (sample rate in the correlator) is

very large [113].

In digital design, test-benches often take an open-loop approach to generating

clocks in simulation, e.g. always #(PERIOD/2) clk = !clk;. A synthesisable version

of this approach is to employ a higher-frequency root clock and a counter to

implement the delay between toggles, e.g. always_ff @(posedge rootClk) if (count

== PERIOD/2) clk <= !clk;. Counters are well-understood constructions offering

clk

d q

c
20

-1

-2

PRNG
xoshiro128+

1

8

32

K

ctrlPeriodM1

ctrlJitter
<

J

=
0

clk

d q

strobe

rst

20

20

1

1

Figure 4.5: Logical design of sampling strobe generator with both period mean and
variance controllable. Mean number of correlator clack cycles between assertions
of the strobe µ, is programmable in the range µ ∈ [2,220]. Jitter, in the form of
variance is programmable in the range σ ∈ [0, 28−1

28 ]. Values 20 and 8 are those used
in the case studies of Section 4.4, but are not special so may be parameterised.
Arithmetic operations are unsigned (subtract, and compare-less-than).

66



4.3. CORRELATOR DEVICE

efficient implementation on modern FPGAs by taking advantage of specialised

carry paths.

In the absence of suitable designs in literature, a method of generating sam-

pling strobes with the required control over the period is presented. Figure 4.5

shows the logical topology of the most significant components of the sampling strobe

generator implemented in the correlator. To configure the mean interval between

strobe pulses to a value µ, counter c is then initialised by holding ctrlPeriodM1

at the unsigned value µ−1, then counts down towards 0. Each time c reaches 0,

the strobe output is asserted for a single-cycle and the counter is re-initialised to

the value of ctrlPeriodM1. The counting process is affected by the output of the

Pseudo-Random Number Generator (PRNG) such that on each correlator clock

cycle the decrement is chosen to be 0, −1, or −2.

True random number generators are not appropriate for a digital design which

must be simulated with reproducible results, but a PRNG is an appropriate ap-

proach for introducing randomness into the sample period. In this application,

cryptographic-strength is not a factor in choosing a suitable PRNG algorithm.

Instead, a suitable algorithm is chosen based on the ability to produce a multi-bit

value on each clock cycle, while using a minimum of resources, and exhibiting good

statistical randomness. Although Blackman and Vigna’s xo(ro)shiro [114] family

of PRNGs were originally designed and optimised for software implementations,

some members of the family allow for efficient implementation in FPGA hard-

ware. From the 32 b generators in the xo(ro)shiro family 3 , “xoshiro128+” has been

chosen for the relatively low requirements of single 32 b adder and 128 b state.

Multiple bits are required on each cycle to provide two Bernoulli random

variables, marked J ∼ B( j) and K ∼ B
(1

2
)
. On each cycle, J is tested to decide

whether the counter should decrement by one or something else (zero or two).

Consistently decrementing by one results in the counter reaching zero in exactly

µ cycles. If J determines that the decrement should not be one, K is tested to

decide whether the counter should decrement by zero or two. When the counter is

initialised to s, the probability that c = 0 after n cycles can be modelled 4 as the

simple random walk on Z but shifted in the positive direction by s. The simple

random walk on Z is a well-known problem [115], and the PDF of the number of

correlator clock cycles between strobe assertions is approximated by the Gaussian

function in Equation (4.5). Figure 4.6 visualises the expected number of correlator

clock cycles between each sample with a selection of variances.

3 Appendix E provides characterisation of a selection of this family’s PRNGs.
4 Further analysis, showing how closely the Gaussian PDF approximates the PMF of the counter

process, is given in Appendix F.

67



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

Pr(c = 0 in exactly n cycles)≈ 1√
s j
p

2π
exp

(
−1

2

(
n− s√

s j

)2)
(4.5)

The plot in Figure 4.6 visually highlights how control signals of the mechanism

in Figure 4.3 relate to the statistical properties of the sampling process described

by Equation (4.5).

Two instances of this mechanism are required to drive the two signals sampleStrobeX

and sampleStrobeY in Figure 4.3 in order for these strobes to operate independently.

A further instance with the variance control ctrlJitter fixed to zero is used to drive

the counterStrobe signal of Figure 4.4, whose purpose is described in Section 4.3.2.

Purposefully introducing variance to the interval between samples, i.e. using

a jittery sampling process, enables samples to be taken from signals which may

be slightly offset in time. The mechanism described in this section enables jittery

sampling in a runtime-configurable manner which is straightforward to implement

on an FPGA.

0 20 40 60 80 100 120 140
#cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

variance=100*0.3
variance=100*0.5
variance=100*0.9

Figure 4.6: PDF of sampling strobe period, counted in number of clock cycles. Three
values of variance are shown, corresponding to setting ctrlJitter in Figure 4.5 to
0.3 ≈ 77

28 , 0.5 ≈ 128
28 , and 0.9 ≈ 230

28 . Period is centred around a mean of 100 cycles,
corresponding to holding ctrlPeriodM1 at a value of 99, i.e. s = 100.

68



4.3. CORRELATOR DEVICE

4.3.2 Windowing Counters

Chapter 3 considers discrete-time binary SoC signals which assert according to a

behaviour defined by a probabilistic model. However, in real systems behaviour

is non-stationary and is expected to change as the system performs different

tasks or reacts to different inputs. The non-stationarity of correlations which

transition as a system works on different data or applications therefore requires a

correlation analysis to refer to a particular time interval. Repeating correlation

analyses for different intervals thereby allows a SoC engineer to see how component

interactions change over time.

Chapter 3 shows that it is possible to calculate useful metrics of pairwise

correlation using the expected values of both bit-vectors ( fx and f y) and at least

one of
(
fx ¯ f y

)
or

∣∣ fx − f y
∣∣. It is also noted that an expected value can be computed

using a counter, thus foregoing the need to store a potentially large bit-vector; Each

time a signal expression is observed “high”, a counter c is incremented by constant

k; Once the window has completed the expectation can be computed directly

E[ f i] = ci
kN . In effect, this method applies a rectangular window function; i.e.

k = 1
Σw

from Equation (4.3). The correlator device expands on this method to provide

mechanisms supporting window functions of different lengths (different number

of samples, N), and a non-rectangular window function. The same mechanisms

are applied for counters used to calculate E[ fx], E
[
f y

]
, E

[
fx ¯ f y

]
and E

[∣∣ fx − f y
∣∣].

This work considers correlation analysis over a single time window rather than

the separate problem of cross-correlation of counter values over a sequence of time

windows.

The simplest window function, rectangular, does not provide an accurate model

of how engineers (people) visually search for patterns of interest [116]. To support

a better model of foveal and peripheral vision, a bell-shaped window function is

more appropriate. A novel approach, specific to digital logic implementation, is

presented to implement a new window function “Logdrop” which is suitable for

use with a window counter. The mechanisms behind the rectangular window

counter are first explained in Section 4.3.2.1, then the Logdrop window function

and counter mechanism are presented in Section 4.3.2.2.

4.3.2.1 Rectangular

A sampling strobe asserts for a single correlator clock cycle at specified intervals

which signals a sampling circuit, as in Figure 4.3, to measure and store one sample

from a probe. The counterStrobe signal in Figure 4.4 is asserted with the same

mean interval between sample strobes, but in anti-phase. At the beginning of

69



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

each time window, all four rectangular-window counters are initialised to zero. On

each assertion of counterStrobe within a time window, a sample pair from fx and

f y are examined, then the four counters increment if, and only if, their respective

conditions are met ( fx, f y, fx ∧ f y, fx ⊕ f y).

For a rectangular window counter, the scaling factor 1
Σw

may be applied either

at the point of each increment, or at the point that the result is retrieved. Scaling

at the point of retrieval has the advantage of using a standard counter using an

increment value with only the lowest bits set, which allows for the simplest cir-

cuitry. However, in order to interpret a fixed-width result, it must be accompanied,

somehow, by the number of samples in that window N. Scaling at the point of

increment, while necessitating more logic in the counter circuitry, provides two

advantages: (1) The value of each result bit is fixed for all values of N; i.e. the

highest bit index of the result is always the most significant bit, and the lowest

bit index is always the least significant. (2) Non-rectangular window functions,

which do not generally have the option of scaling at the point of retrieval (because

∀n ∈ [0, N) : w[n]É 1), can use the same mechanism.

There are multiple widely used options available for the binary format of

counters and correlation results. IEEE floats [117], while supported in software

compilers, require more complex logic than posits [118, 119, 120], which in turn

require more complex logic than fixed-point formats [121]. Expected values lie

on the fixed interval [0,1], and therefore there is no need for the much larger

range afforded by floating point formats. The correlator device, aiming for low-

cost and small implementation uses the most common fixed-point representation,

Q-format [122]. As the counter value represents E[ f i] ∈ [0,1] the position of the

implicit fixed point is constant for any value of N. For example, a 32 b counter

represents an expected value in unsigned Q1.31 format, where bit 30 always

represents 1
2 , bit 29 always represents 1

4 , etc.

Figure 4.7 shows the mechanism used in the correlator device. The beginning

of a new window (t = u, n = 0) is signalled by asserting tWrap to zero the counter.

Restricting the range of N to powers of two means that the corresponding incre-

ment value, selected using windowLengthExp, is also restricted to powers of two; i.e.

exactly one bit set. This restriction is convenient for RTL implementation because

inconsistencies with rounding errors can be completely avoided. If arbitrary values

of N are allowed then rounding errors are necessarily introduced; For example,

N = 10 implies an increment of 1
10 which lies between 0.09375 = 0.000112 and

0.125 = 0.001002, which cannot be represented without error in Q1.5 format (or

any Qm.n format) because 0.1 (decimal) is a recurring bicimal.

The function of the rectangular window counter mechanism is to facilitate

70



4.3. CORRELATOR DEVICE

clk

d q

count
w+ w

0

tWrap

w

w<<1

<<2
...

<<(w-1)

windowLengthExpw-1

0

...
w-10

1

w

counterStrobe
event

Figure 4.7: Logical design of scalable counter with rectangular windowing. Counter
of w bits is cleared by tWrap at the beginning of each time window. For each sample
the counter is incremented if event is asserted. Increment is a onehot value selected
by windowLengthExp.

scaling at the point of increment by directly using the definition of N; i.e. N =
2windowLengthExp. By restricting N to integer powers of two, thereby restricting in-

crements to fractional powers of two, a simple multiplexer-based structure is

permitted, thus providing a foundation for the Logdrop window counter in Sec-

tion 4.3.2.2.

4.3.2.2 Logdrop

In Fourier analysis, a non-rectangular window function is often employed to focus

sample energy into the fundamental frequency component. The most straightfor-

ward approach in software is to store a table of pre-computed coefficients, then

at runtime simply lookup the coefficient indexed by n then multiply with the

corresponding sample. The lookup-table method is attractive because it allows

arbitrary window functions to be specified; however, the drawback in a resource-

limited hardware implementation is that a memory is required to store the table

of coefficients. For example, a window with N = 216 with a coefficient resolution

of 16 b requires a memory of 1 Mib. This is too much to fit on a small FPGA such

as the Lattice iCE40LP8K used which has only 128 Kib of available flash memory.

An alternative approach may be to use a CORDIC-based [123] circuit to calculate

successive coefficients. CORDIC implementations also require storage for param-

eters and a significant amount of logic to control their iterative process, making

this approach less appropriate for resource-constrained FPGAs. For many signal

processing applications, the benefits of using a window function far outweigh the

cost of implementation, particularly in software-based systems where memory is

relatively cheap.

In correlation analysis, the purpose of a window function is to focus analysis on

a particular region of time; i.e. to assign more weight to samples close to the centre

71



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

of a time region of interest. Real-time on-chip correlation analysis, implemented

in digital logic, should aim toward smallest possible hardware requirements, as

explained in Section 4.2.3. Differences in purpose and type of implementation alter

the cost/benefit calculation, creating the desire for a window function that can be

implemented in digital logic with no memories and few logic resources. To this end,

a novel window function, “Logdrop”, is presented in Equation (4.6).

w[n]
logdrop

:= 2dlog2 min(n+1,N−n)e−log2
N
2 ∈R∩ (0,1] (4.6)

The name Logdrop comes from the action of dropping a number of bits based on

log2 n. Each Logdrop coefficient is a fractional power of two, allowing multiplication

to be performed using a bit-shift operation. Calculating each coefficient from the

window index n means that no memory is required to store coefficients. Further,

as all multiplications are possible via bit-shifting, there is no need for a multiplier

unit, notorious for their logic requirements [124, 125]. As is standard for presenting

window functions, plots showing coefficient values and the normalised frequency

response are shown in Figure 4.8. As the coefficients towards the edges of the

Logdrop window depend on N, a second plot is given in Figure 4.9 which highlights

the difference in operation as N increases.

Figure 4.8 plots the coefficient values over a window with N = 32 using zero-

indexing as is most convenient for RTL implementation. As N is increased, the

edges of the Logdrop window function become smoother with an additional “step”

introduced for each increase in N. Spectral performance of Logdrop with N = 32

appears poor for Fourier analysis with only around −30 dB of sidelobe suppression;

however, this is due to the low value of N. Increasing N to a larger value of, e.g.

N = 216 shown in Figure 4.9, smooths out the frequency response and suppresses

the magnitude of sidelobes.

72



4.3. CORRELATOR DEVICE

0 31
n

1
16

1
8

1

1
4

1
2

w
[n

]

(a) Coefficients of Logdrop windowing function.

−π 0 π

Normalized Frequency (radians/sample)

−80

−70

−60

−50

−40

−30

−20

−10

0

M
ag

n
it

u
d

e
(d

B
)

(b) Frequency response of Logdrop windowing function. Spectral sidelobes are sup-
pressed by approximately −30 dB.

Figure 4.8: Logdrop windowing function with N = 25.

73



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

0 65535
n

1
16

1
8

1

1
4

1
2

w
[n

]

(a) Logdrop coefficients plotted as a line rather than histogram because bars would be
indistinguishable. Smooth-edge effect can be seen on the smaller values.

−π 0 π

Normalized Frequency (radians/sample)

−80

−70

−60

−50

−40

−30

−20

−10

0

M
ag

n
it

u
d

e
(d

B
)

(b) Frequency response of Logdrop large N.

Figure 4.9: Logdrop windowing function with N = 216.

74



4.3. CORRELATOR DEVICE

>> 1

>> 2

>> 3

>> 4

Index of
most significant

set bit.

4
4 3

8

8

1

5

M
S
B

n
x

w[n].x

Figure 4.10: Logical implementation of Logdrop on 8 b input where N = 32; i.e.
window index is 5 b wide. The Most Significant Bit (MSB) of n selects whether
to invert the lower bits of n, the choice of which produces a triangular counter
(counting up 0 → ( N

2 −1), then down ( N
2 −1) → 0) as shown on the top-left. The

most-significant-set-bit operation is defined as mssb(a) := max(y | 2y É a), and is
used to select the number of bits to right-shift the input.

The mechanism depicted in Figure 4.10 shows that no state is required to

implement Logdrop because all coefficients are straightforward to calculate from

the window index n in combinatorial logic. Implementation of Logdrop is simply

the matter of determining the amount by which to the input x[t]. Direct calculation

of coefficients from the window index with fixed logic is a less flexible approach

than fetching coefficients from a memory which would allow for arbitrary window

functions. However, in the application to apply a statistical focus around a cen-

tral point in time, the cost/benefit calculation strongly favours the low resource

requirements afforded by Logdrop.

Figure 4.11 shows how the Logdrop function is used to build a windowing

counter. Referring back to Figure 4.7 for comparison, it can be seen that the

increment value (lower-left) is backed by the Logdrop logic which changes the

coefficient as the window index progresses.

Using the scaling increment mechanism, the Logdrop window function is

implemented in the correlator. This mechanism enables implementation in digital

hardware of a model of how people focus their attention; i.e. more weight applied

to the centre of an interesting region than the edges.

75



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

clk

v vd q

count+
0

counterStrobe tWrap

v

v

event

<<1

<<2
...

<<(w-1)

v

windowLengthExp

i

i

Index of
most significant

set bit.

v=w+i-1

v-1

0

...

w-1

0

...
w

v≥w

>>1

>>2
...

>>(i-1)

v-1

i-1

...
w-10

...

0

i-1

0

...i-10

1
log2i

w-1

0

...

i-1

0

...

w≥i

i-1<<1

<<2
...

<<(w-1)

windowLengthExp

wt
w

Figure 4.11: Logical design of scalable counter with Logdrop windowing. Similar
to the rectangular scalable counter, except the onehot increment amount is further
determined by the window index t and the counter is wider. The resulting wb
value is obtained by reading the w most significant bits from the counter.

4.3.3 Consuming Correlation Results

In the correlator device, when a window completes it is immediately followed by

another, which means that the counters produce results at a steady fixed rate. At

the end of each window each correlator engine produces four fixed-precision results

corresponding to E[ fx], E
[
f y

]
, E

[
fx ¯ f y

]
, and E

[∣∣ fx − f y
∣∣] at a rate determined by

N and the sample rate. Off-chip options for correlation analysis, perhaps using the

machine-learning techniques discussed in Chapter 3, are enabled by the pktfifo

component shown in Figure 4.2. However, very high result data rates can be

specified with a high sample rate and a short window length.

While it is often desirable to transfer correlator results off-chip for later analy-

sis, specifying a window length and sample period which produces data at a rate

higher than the datalink can sustain, is a valid case for analysis. Additionally,

for datalinks with unknown or uncontrollable bandwidth resources 5 , such as

USB [90], it is not practical to change analysis parameters to suit the datalink.

5 USB datalinks are controlled by the host, not the device, which allows the Operating System
(OS) to disconnect, throttle, or otherwise restrict devices at any time without notice. Additionally,
the tree topology of USB means that bandwidth and latency properties depend on what other devices
are connected.

76



4.3. CORRELATOR DEVICE

Accommodating high data rate analysis therefore requires an alternate method of

presenting results which is not dependent on the main datalink.

4.3.3.1 Real-time Results via ΔΣ and Low-Pass Filter

The correlator micro-architecture, depicted in Figure 4.2, features an LED driven

by a ΔΣ modulator, which is the implemented solution for presenting high data

rate results. A digital solution to moving data off-chip, i.e. using GPIO pins, allows

the design to be implemented across different FPGA technology families. Human

vision is too slow to distinguish pulses produced at frequencies in the MHz range.

Pulse modulation therefore appears as a dimming effect via the persistence-of-

vision visual phenomenon. Additionally, LEDs are a convenient low-cost method

of introducing a physical threshold function to filter out low-valued results. The

dimming transformation is non-linear due to both the gamma correction effect

of human vision, explained in Appendix I, and the LED’s IV curve. The forward

region of IV curves of different LED chemistries are similar to Rectified Linear

Unit (ReLU) functions with different offsets and gradients [89]. This has the effect

of keeping the LED in the dark state, effectively suppressing low-value results.

To view and accurately record fast-changing behaviour, an off-the-shelf oscil-

loscope may be used to measure voltage on ΔΣ output pins. Passing the high-

frequency ΔΣ pulses through a Low-Pass Filter (LPF) transforms the result data

[0,1]→ [GND,VCC], allowing the LPF parameters to be adjusted appropriately for the

expected rate of change in behaviour. Transmitting correlator results using a ΔΣ

modulator is a convenient low-cost approach where each correlator engine requires

only a single GPIO pin, and functions as a side-channel separate from operation of

the parent system.

4.3.3.2 Calculating Correlation Using Counters

Chapter 3 defines six metrics with simple formulations (Ḣam, Ṫmt, Ċls, Ċos, Ċov,

and Ḋep), investigating their effectiveness for finding pairwise logical relationships

between SoC signals. As discussed in Chapter 3 and Section 4.3.2, these metrics

are amenable to calculation using counters. It is found in Chapter 3 that Ċov and

Ḋep are the most effective at uncovering logical relationships between SoC signals,

therefore the correlator device implements these two metrics. It is also noted that

for binary signals Ḣam is extremely simple to implement, requiring only a bitwise

inversion of the countSymdiff counter result. Real-time calculation of Ḣam, Ċov,

and Ḋep is performed by the mechanism shown in Figure 4.12. The ΔΣ modulator

can then select one of these results to control the frequency of output pulses.

77



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

The other simple metrics (Ṫmt, Ċls, Ċos) are not implemented due to the signif-

icant complexity involved in their operation and their relatively poor performance

in Chapter 3. An implementation of the Jaccard index (Tanimoto’s reformulation

Ṫmt) would require an additional divider circuit. Geometric closeness Ċls and

the cosine similarity Ċos require circuits for calculating square-roots, as well as

additional counters for E
[
f 2
x
]
, E

[
f 2

y

]
, and E

[∣∣ fx − f y
∣∣2]

. While both division and

square-root operations are straightforward using a Finite State Machine (FSM) im-

plementing variants of the CORDIC algorithm, the logic requirements are deemed

too significant for inclusion in the correlator device.

w-1

0

...

p-1

0

...w
p

clk

d q

Ham

w-1

0

...

p-1

0

...w
p

w-1

0

...

p-1

0

...w
p

w-1

0

...

p-1

0

...

w≥p

w
p

w≥p

w≥p

w≥p

×

-

countX

countY

countIsect

countSymdiff

2p-1

0

...

p-1

0

...2p
p

clk

d q

-

p

clk

d q<<2
p

Cov

clk

d q p

clk

d q...×p
divider FSM

clk

d q

Dep

<

clk

d q

Double flop stage

for Xilinx 7s DSP481E.

Figure 4.12: Logical design of correlator metric calculators. Ḣam is the simple
reflection of E[X ⊕Y ]. Ċov involves a multiplier followed by an adder then a
multiplexer. DFFs are inserted to allow FPGA synthesis tools to use DSP cells
which significantly reduces timing pressure. On the Xilinx 7-Series technology two
flop stages are required to infer a DSP481E cell. The Lattice iCE40LP technology
does not include any multiplier primitives so the two flop stages simply relax
timing constraints on a multiplier assembled with SB_LUT4 and SB_CARRY cells.
Ḋep requires a divide operation which is implemented with a multi-cycle FSM
because calculation latency is not critical.

78



4.3. CORRELATOR DEVICE

4.3.4 Synthesis Characterisation on FPGAs

The correlator device is intended to be integrated into parent SoCs, and must

facilitate implementation across a variety of FPGA technology families. The

correlator can also be implemented as a stand-alone device, similar in concept

to an oscilloscope, which allows the design to be developed and characterised

without unintended effects from a parent system. As explained in Section 4.2.3,

characterisation is essential to ensure that the RTL design is readily usable across

different FPGA technologies, thus facilitating integration with different parent

systems.

To this end, the stand-alone correlator is first characterised using the method-

ology described in Appendix E. Briefly, a minimal example system is synthesised to

a netlist and the maximum operating clock frequency ( fmax) of many PnR solutions

are compared. Viewing a PMF of the achievable fmax then allows the robustness

of a design to be visually quantified. This multi-PnR method is applied to the

correlator device on the Lattice iCE40LP process which is marketed for its low

power consumption. Low power consumption comes at the cost of low achievable

fmax relative to other FPGA technologies. The benefit of targeting a known-slow

technology is that further implementations on faster technologies are likely to be

straightforward. In parent systems that already consume a large percentage of

their FPGA’s resources, congestion is a particular concern because the number

of PnR solutions are restricted [126, 127]. Floorplans of various correlator imple-

mentations are shown to visually demonstrate the flexibility available to the PnR

process.

The only component of the stand-alone correlator device with a fixed clock

frequency requirement is the USB-FS interface, which must run at 48 MHz to

provide the required baud-rate of 12 Mbs−1. Hence, an fmax of 48 MHz is set as

the target for the correlator device; i.e. the minimum fmax sufficient for correct

operation. However, a higher value is desirable to indicate that the design has

enough slack to accommodate layout and timing and layout constraints imposed

by a parent system.

Figure 4.13 shows the estimated PMF of fmax from different combinations of

PnR and timing report tools. It can be seen that a satisfactory fmax is achieved

using the tool “nextpnr” because the red and green plots have most of their weight

rightwards of 48 MHz. For the same two variants Figure 4.14 shows the placed and

routed floorplan for the stand-alone correlator device, implemented on a Lattice

iCE40LP8K. It can be seen that in the 2-engine variant, around one third of logic

resources are unused, with the 3-engine variant approaching the resource limits

79



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

for this part. On the Lattice iCE40LP8K, each engine requires around 1800 LUTs

with the 2-engine design in Figure 4.14a using 4435 available LUTs (57%), and a

3-engine design in Figure 4.14b requiring 6261 LUTs (81%). Despite approaching

the practical limits in terms of logic resources, the 3-engine variant does not suffer

too greatly in terms of achievable fmax. The PMF seen in Figure 4.13 of nextpnr

solutions (red and green) is forced downwards by around 4% (≈ 2MHz), despite

moving from 57% to 81% LUT. This suggests that the additional logic of the third

engine is not required to be inserted into critical regions of other two engines,

allowing some flexibility in placement; i.e. layout and timing constraints are slack,

as required to permit integration with parent systems.

Aside from minor changes at the electrical interface, described in Appendix H,

and technology-specific changes such as pin selection and clock configuration, the

same design is implemented on FPGAs from the Xilinx 7-Series family. Floorplans

for the correlator device implementations on Kintex-7 and Virtex-7 (Zedboard and

VC707 development boards) are shown in Figure 4.15. Due to the black-box nature

of the Vivado tool currently required for developing designs on Xilinx FPGAs,

it is not possible to perform a multi-PnR analysis. However, the reported fmax

of around 250 MHz is several times greater than the target of 48 MHz, which

indicates integration should be possible with fast-running parent systems. Noting

the high achieved fmax and the low requirements on logic resource, it is predicted

that the correlator RTL design is suitable for integration to a larger design on a

Xilinx 7-Series FPGA. This is confirmed via successful integrations with a parent

system in Section 4.4.

80



4.3. CORRELATOR DEVICE

25 30 35 40 45 50 55 60
MHz

45.69 56.98

44.61 56.52

29.50 44.10

nextpnr.log
nextpnr.rpt
arachne.rpt

(a) 2-engine variant

25 30 35 40 45 50 55 60
MHz

41.29 54.57

40.35 52.87

27.08 38.23

nextpnr.log
nextpnr.rpt
arachne.rpt

(b) 3-engine variant

Figure 4.13: Multi-PnR results of correlator device implemented on Lattice
iCE40LP8K with 2-engine and 3-engine design variants. Legacy PnR tool arachne-
pnr [128] (blue) achieves the slowest solutions, as reported by analysis tool icetime.
Another tool nextpnr produces faster solutions, also analysed by icetime (green).
Results reported directly by nextpnr (red) are slightly more optimistic, centred
around an achievable fmax in excess of 50 MHz.

81



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

(a) 4 probes, 2 engines

(b) 4 probes, 3 engines

Figure 4.14: Correlator floorplans in a Lattice iCE40LP part (iCE40LP8K on a
TinyFPGA-BX development board).

82



4.3. CORRELATOR DEVICE

(a) 8-engine correlator floorplan in a Xilinx Kintex-7 part (xc7z020clg484 on a Diligent
Zedboard). Upper-left corner is the hard ARM core, and correlator logic is on the right.

(b) 8-engine correlator floorplan in a Xilinx Virtex-7 part (xc7vx485tffg1761 on a VC707
development board). Utilised logic on the bottom-right.

Figure 4.15: Correlator floorplan Xilinx 7-Series FPGAs.

83



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

4.4 Integration Case Studies

Demonstrating integration of the correlator device into a larger project requires

an interesting pre-existing system which permits modification at the RTL level.

OpenPiton+Ariane is a complex multi-faceted open-source SoC project capable of

running a Linux-based OS. This system combines the work of many independently-

developed open-source projects, each of which have been developed through decades

of collaboration amongst the best minds in their fields. Ariane [28] is an application

class RISC-V CPU (specifically RV64GC), originally developed as part of the PULP

project. OpenPiton [129, 130] is a tiled cache-coherent many-core architecture for

creating SoCs with many homogeneous CPU cores. Each of these sub-projects is so

complex that while their source code and specifications are open, their interaction

details are sufficiently complex that very few people, if any, can claim to have a

full understanding of the system. Therefore, the complexity of this system is so

high that it effectively constitutes black-box functionality despite source code being

available for all constituent components.

Two case studies, based on the same parent system, are given to validate

that the correlator design can: (1) implement correlation analysis in RTL as an

on-chip module, (2) effectively support lossy output where high result rates are

specified, (3) effectively support lossless output where a datalink can support the

result data rate, and (4) integrate with existing embedded analytics tooling. The

first case study presents an integrated correlator with a USB-FS datalink and

uses an oscilloscope to record ΔΣ modulated data (via a LPF). This validates

that correlation analysis can be successfully implemented as a passive on-chip

correlation monitoring solution and that high results rates can be effectively

presented by use of a simple LPF. The second case study features a correlator

engine implemented in a modified version of UltraSoC’s Status Monitor [92] and

retrieves lossless data through an UltraSoC sub-system. This validates that the

correlator design is suitable for reporting data, suitable for correlation analysis, to

a host system for further processing via an existing commercial embedded analytics

solution.

Correlation analysis, which quantifies how signals do behave, rather than

should behave, turns the process of understanding around to a top-down approach,

freeing engineers to better focus their attention towards other problems. By

selecting only top-level signals for monitoring, the time-consuming and difficult

task of finding the intended behaviour of each signal is necessarily avoided. The

case studies are based upon the parent system, OpenPiton+Ariane, running a

synthetic workload on a Linux OS. OpenPiton specifies a cache-coherent tiled

84



4.4. INTEGRATION CASE STUDIES

Figure 4.16: OpenPiton Memory Hierarchy Datapath [131]. Three physical NoCs,
guaranteed to be deadlock-free by using a priority system, provides cache coherence
across manycore architecture.

topology of processors. Three physical NoCs, shown in Figure 4.16, are defined to

co-operate via a simple priority system to implement the cache-coherent protocol.

Each link in each NoC is composed of a 64 b bus data and two binary control signals,

yummy and valid (semantically equivalent to *READY and *VALID in an AXI channel [33,

131]). Integration of a correlator device is intended to be a simple process requiring

little platform-specific knowledge, therefore no logic is added to the monitoring

probes; i.e. no attempt is made to decode the cache-coherence or flow-control

protocols. Instead, a single top-level RTL file is modified to programmatically

attach a probe to each of the valid signals. In contrast to the stand-alone correlator

characterised in Section 4.3.4, these case studies connect probes to logical RTL

signals rather than external wires. To minimise the effect on synthesis and PnR

decisions made by Vivado when building OpenPiton+Ariane, a delay-line of five

DFFs is placed in front of each probe input. These DFFs ensure that timing

constraints from monitored signals are relaxed, thus mitigating issues where

addition of the correlator design might impact the achievable fmax relative to the

parent system.

4.4.1 Case Study 1: Slow Datalink

The purpose of the “slow datalink” case study is to demonstrate that the correlator

device can monitor, analyse, and present information about the behaviour of

binary SoC signals, even when behaviour changes so quickly that the datalink

cannot support the result rate. The relatively slow datalink (USB-FS) means

that retrieving counter data is limited to cases with low sampling rates and long

windows. Correlation results from each engine are instead consumed either by

viewing the brightness of an LED, or by using the oscilloscope to record the voltage

potential on a header pin.

The main components and their connections in the experimental setup are

shown in Figure 4.18. The OpenPiton+Ariane system requires a software image, in

this case a Linux OS, to be present on the SD card in the VC707 development board.

85



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

When a bitstream is written via the “USB/JTAG” interface, the OpenPiton+Ariane

system is started, a Linux OS it booted, and a serial terminal is provided over the

“USB/UART” interface. A synthetic workload 6 designed to stimulate interaction

between cores is started, control registers in the correlator are configured, then

measurements are recorded using the oscilloscope.

Control registers are used to select which counter result or metric is presented

by the ΔΣ modulator, as well as other configuration parameters such as sample

rate and window length. In use as an interactive tool, printed plots and text cannot

convey every aspect of the user experience. Using key presses, the control registers

are easily changed, thus enabling interactive exploration of the design similar to

how other lab tools are used with knobs and buttons. For example, by selecting

the output as E[ fx] then sweeping over all values of selectX, it can be seen by the

voltage level reported on the oscilloscope which signals are most active.

Figure 4.19 contains voltage plots recorded with the oscilloscope shown in

Figure 4.18. The observed correlations are, naturally, dependent on the type of

work the system is performing. Changing the workload, by running different

6 The synthetic workload is a group of shell scripts which forces processes to transfer data
between themselves via Linux FIFO files. Source code is available online at: https://github.com/
DaveMcEwan/dmpvl/tree/master/prj/corrOPA/dummyload

1

2

3

1

1
1

2

2

2

3

3

3

Ariane
Tile

1

2

3

1

1
1

2

2

2

3

3

3

Ariane
Tile

1

2

3

1

1
1

2

2

2

3

3

3

Ariane
Tile

xbar

engineX
Y

ΔΣ

engineX
Y

ΔΣ

engineX
Y

ΔΣ

.

.

.
USB-FS

BytePipe +
pktfifo

registers

36

Figure 4.17: Logical connections of case study 1. Correlator and its probes (black)
passively monitor the OpenPiton+Ariane parent system (blue) by connecting to
the valid signals of inter-tile cache interfaces.

86

https://github.com/DaveMcEwan/dmpvl/tree/master/prj/corrOPA/dummyload
https://github.com/DaveMcEwan/dmpvl/tree/master/prj/corrOPA/dummyload


4.4. INTEGRATION CASE STUDIES

Figure 4.18: Experimental setup of case study 1 - Demonstrating correlator usage
where results are presented viaΔΣmodulated GPIO pins. Blue highlights indicate
custom built components and green highlights off-the-shelf components. The
“USB/JTAG” cable is used only to configure the FPGA with a bitstream. The
SD card in the VC707 contains a pre-compiled Linux image. The Linux OS
running on the OpenPiton+Ariane system provides a serial terminal over the
“USB/UART” cable. The “USB/correlator” cable is used to configure and interact
with the correlator. Outputs from ΔΣ modulators exit the XM105 via the LPF to
be measured by the oscilloscope.

workloads, produces different results showing changes in the way the tile’s caches

interact. Observing the plots in Figure 4.19, unremarkable values are seen in

the individual counters (E[ fx] and E
[
f y

]
). Similarly, unremarkable values are

observed for pairwise counters (E
[
fx ¯ f y

]
and E

[
fx ⊕ f y]

]
) which are difficult to

discern from the noise floor. However, correlation results using either the Ċov or

Ḋep metrics display in sharp contrast the cache interface’s periodic interactions.

Differences between metrics are apparent in the plots for Ċov and Ḋep high-

lighting the utility of comparing different definitions of correlation. Figure 4.19f

shows two signals which become highly dependent approximately every 10 ms for

around 2 ms. As each spike in Ḋep is around the same level, close to 1, further

periodic aspects of correlation cannot be seen clearly using only Ḋep. In contrast,

87



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

100ms/div
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V

(a) E[ fx].

100ms/div
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V

(b) E
[
f y

]
.

100ms/div
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V

(c) E
[
fx ¯ f y

]
.

100ms/div
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V

(d) E
[
fx ⊕ f y]

]
.

100ms/div
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V

(e) Ċov
(
fx, f y

)
.

100ms/div
0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V

(f) Ḋep
(
fx, f y

)
.

Figure 4.19: Oscilloscope plots visualizing counter values and associ-
ated correlations where fx = system.chip.tile_0_0_out_E_noc2_valid and f y =
system.chip.tile_0_1_out_E_noc2_valid; i.e. eastern ports of NoC2 on the left and
middle tiles. Green rulers highlight 0 V and 1.8 V levels. Correlator register config-
uration is the same for all six subplots: sampleRate= 48MHz, windowLength= 215.
Unremarkable signals, are seen on outputs for performance counters E[ fx] and
E

[
f y

]
. Similarly, inconspicuous values are seen for intersection and symmetric

difference counters (E
[
fx ¯ f y

]
and E

[
fx ⊕ f y]

]
). In contrast, signals presenting

correlation using Ċov and Ḋep metrics show pronounced periodic voltage spikes.
Spikes in the Ḋep results are consistently close to 1.8 V (i.e. a correlation result
close to 1), whereas spikes in Ċov are more variable.
These results show that the level of activity (E[ fx] and E

[
f y

]
), while similar to the

level of coincidences (E
[
fx ¯ f y

]
and E

[
fx ⊕ f y]

]
), is quite different from the level of

interactions (Ċov and Ḋep) between these two cache interfaces.

88



4.4. INTEGRATION CASE STUDIES

Figure 4.19e shows that while these signals become highly covariant with the same

time profile, there are differing levels of covariance between the spikes. A Linux

OS is composed of many threads which run and suspend periodically, coordinated

by a scheduler. Differences between the observed Ċov and Ḋep may therefore

be explained by differences in thread behaviour, but confirming this would re-

quire further exploration of the source code. The correlator device is intended to

guide exploration of SoC behaviour rather than provide explicit explanations or

reverse-engineering capabilities, and as such is meeting its design intentions.

Evidence that the correlator design permits straightforward integration with

a parent system running on an FPGA is shown in Figure 4.20. The correlator

design is intended to avoid synthesis issues and placement issues by using only

generic logic constructs, requiring few logic resources, and having loose timing

constraints. Technology constraints are demonstrably avoided because the design

is implemented in two very different FPGA technologies, described in Section 4.3.4.

Placement issues are also shown to have been avoided in Figure 4.20c where it can

be seen that the correlator logic has filled in “gaps” in the parent system. Timing

constraints do not present an obstacle to synthesising the integrated system, with

no changes required to the default fmax of the OpenPiton+Ariane system, 50 MHz.

This case study features the parent system OpenPiton+Ariane with an inte-

grated on-chip correlator that passively monitors the cache interfaces between

CPU tiles. Validation is shown that the correlator design can be readily integrated

with a complex parent system. Insights into the system’s behaviour can be gleaned

by performing real-time on-chip correlation analysis and viewing a lossy repre-

sentation of results with an oscilloscope. The example data shown in Figure 4.19

tells us that a pair of cache interfaces periodically interact in a highly dependent

manner, but the difference between Ċov and Ḋep suggests that one is not simply

mirroring the other. Using the correlator as a tool to guide exploration of system

behaviour, an engineer might therefore be motivated to investigate the reasons

behind this behaviour, thus providing assistance in understanding their system.

89



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

(a) Without correlator. (b) With integrated correlator.

(c) Highlighted differences.

Figure 4.20: Floorplans of OpenPiton+Ariane on VC707 with and without inte-
grated correlator device. LUT utilisation is high at 81% without and 83% with the
correlator. Highlighting differences (dark) in the floorplan shows that the design is
very similar (mostly white). This confirms that adding the correlator has not forced
Vivado to make drastically different synthesis or placement decisions because the
correlator does not impose difficult constraints on timing or placement.

90



4.4. INTEGRATION CASE STUDIES

4.4.2 Case Study 2: Fast Datalink

In the previous section, a correlator is integrated into a parent system as a way

of monitoring and analysing the behaviour of cache interfaces. However, correla-

tion analysis is only one tool amongst many aimed at helping SoC engineers to

understand and improve their systems. UltraSoC is the leading supplier of com-

mercial SoC embedded analytics tools and the industrial sponsor of this research.

Their product portfolio is centred around RTL modules for passive monitoring of

specialised aspects of SoC behaviour, and the surrounding sub-system required for

configuration and to extract data. These modules include a Bus Monitor consisting

of performance counters for interconnect transactions (AXI, OCP, etc), a Static

Instrumentation block to assist software profiling, and execution trace encoders

for embedded CPUs (RISC-V, CEVA, ARM, etc). Missing from their offerings,

and indeed the offerings of all major silicon IP suppliers, are modules supporting

real-time correlation analysis. While cross-correlation can be calculated using

a succession of performance counter values over many time windows, this is a

different type of analysis from the single-window analysis considered in this work.

In this case study, the correlator is implemented as part of an UltraSoC sub-system

enabling use with UltraSoC’s standard RTL and software set of tools. This piece

of work, assisted by engineers at UltraSoC, demonstrates the viability of the cor-

relator device in a commercial setting where flexibility, low resource usage, and

toolchain compatibility are paramount.

The primary advantages of this case study over Section 4.4.1 are out-the-box

software support for recording data and faster datalink; i.e. USB High Speed

(480Mb/s) (USB-HS) vs USB-FS. An existing UltraSoC module, the Status Moni-

tor [92], is augmented to include correlator engines alongside the existing features.

The Status Monitor uses a flexible arrangement of comparison, sequencing, match-

ing, and filtering steps to derive a number of “qualifiers” which are used as input

to performance counters in place of the probe wires. Using the powerful qualifier

logic, complex conditions between input wires can be created at runtime, instead of

requiring a specific input wire for each condition. Integration of the correlator into

an UltraSoC component makes use of the qualifier logic, treating each qualifier

wire as a probe.

Figure 4.21 shows the internal organisation of the augmented UltraSoC Status

Monitor which is used in place of the correlator structure in Figure 4.17 (drawn in

black). The USB-FS datalink, control registers, and input crossbar are replaced

with UltraSoC components (USB-HS datalink, message-based sub-system, and

match/filter/qualifier logic). Implementation characteristics on the same FPGA,

91



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

such as logic resource requirement, layout flexibility, and achieveable fmax are very

similar to the case study in Section 4.4.1.

Instead of using an oscilloscope to record data in analogue form, the faster

datalink is used to retrieve counter values from correlator engines, thus enabling

the offline calculation of any counter-compatible correlation metric. Section 4.3.2.1

explains how scaling at the point of increment enables the volume of data on

the datalink to be dynamically adjusted by dropping the least significant bits.

Transmitting only the most significant bits from the counters means that precision

is lost, but that the mechanism for supporting a slower datalink is straightforward.

While the counters in the UltraSoC-like correlator engines are 20 b wide, only the

most significant 8 b are actually recorded.

Figure 4.22 plots the correlation between the same pair of signals as Figure 4.19

with the OpenPiton+Ariane system running a similar workload. Without additional

circuitry in the correlator device, calculation of other metrics, such as Ṫmt, from

the output of a single engine is not possible. However, access to the recorded

values from the correlation counters allows other metrics to be used. Figure 4.22

demonstrates this by calculating Ṫmt and two of the FFNN-based metrics learned

in Chapter 3.

perf
counter

0

correlator
engine

0

perf
counter

1

correlator
engine

1

... ...

matchers filters sequencer

match
input wires

filter
input wires

qualifier
wires

cross connect

clk_sts

clk_udb

message interface

UltraSoC messages

Figure 4.21: UltraSoC Status Monitor augmented with correlator engines. Other
features of the Status Monitor including GPIO, data-tracer, accumulators, and
interval timer are not shown here. Probe wires are replaced with qualifier wires to
take advantage of the match, filter, and sequencing logic [92].

92



4.4. INTEGRATION CASE STUDIES

100ms/div
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000
E[fx]
E[fy]

(a) E[ fx] and E
[
f y

]
.

100ms/div
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

(b) Ṫmt
(
fx, f y

)
.

100ms/div
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

(c) Ċov
(
fx, f y

)
.

100ms/div
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

(d) Ḋep
(
fx, f y

)
.

100ms/div
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

(e) withIsectSymdiff_4qsig_4qsig_sigm
(
fx, f y

)
.

100ms/div
0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

(f) withAssist_8tanh_8tanh_sigm
(
fx, f y

)
.

Figure 4.22: Plots of data captured via the correlator and five calculated metrics of
correlation. OpenPiton+Ariane system is running a similar workload and the same
pair of signals are probed as in Figure 4.19. Values observed for the performance
counters (E[ fx] and E

[
f y

]
) do show in-phase periodic low levels of activity which

does hint towards correlation, but actual confirmation of correlation according to
various interpretations is given by the other plots. Recorded counter values enable
calculation of different correlation metrics, including the FFNN-based metrics
trained in Chapter 3. As in Figure 4.19, Ċov shows less consistent and lower
values than Ḋep. The ratio between union and intersection Ṫmt is different again,
highlighting the difference in the various interpretations of correlation. Vertical
axes are labelled underneath each plot.

93



CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

This “fast datalink” case study validates that the correlator design can pro-

vide data suitable for correlation analysis over a datalink capable of supporting

the rate of results. Additionally, use of the correlator design is demonstrated

to integrate well with an existing toolchain and product line from the market-

leading vendor of embedded analytic solutions. Plots in Figure 4.22, partic-

ularly withIsectSymdiff_4qsig_4qsig_sigm and withAssist_8tanh_8tanh_sigm, demon-

strate that the data retrieved via the correlator design is suitable for use with

esoteric correlation metrics such as the FFNN-based ones discussed in Chapter 3.

4.5 Conclusion

With the ever-increasing complexity of modern SoCs, designers and engineers

require increasingly sophisticated analysis tools. As explored in Chapter 3 cor-

relation analysis provides a useful tool to fill knowledge gaps like “Why does X

happen?” by rephrasing the problem to “What is X correlated with?”. Capturing

and monitoring correlations between SoC signals can be used to answer these

questions, thus providing a means of guiding system understanding or detecting

anomalous behaviours. Real-time estimation of correlation, by a variety of inter-

pretations, is therefore a valuable tool for engineers attempting to understand how

complex systems, composed of both hardware and software components, behave un-

der different scenarios. With further understanding of nuanced system behaviour,

SoCs designs can be further optimised to gain competitive advantage.

Chapter 3 uses a synthetic dataset based on a probabilistic model to assess the

usefulness of various metrics based on different interpretations of correlation. This

chapter examines how those metrics can be used to analyse RTL designs for both

real-time on-chip monitoring and data collection for off-chip processing. Chapter 5

then explores how that collected data can be presented for effective visual analysis.

Key points and contributions of this chapter are thus:

1. Exposition on the issues around hardware, particularly RTL, support for

correlation analysis. Special attention is paid to the case of on-chip real-time

monitoring for embedded analytics.

2. Jittery sampling mechanism enabling low-cost analysis over a range of δ

offsets.

3. Novel window function Logdrop defined in Equation (4.6), specifically de-

signed for low-cost implementation in digital logic.

94



4.5. CONCLUSION

All RTL code used to design the circuitry, written in SystemVerilog (IEEE 1800-

2005), is made available online. 7

The objective of this chapter, to explore the issues around hardware support

for correlation analysis of binary SoC signal, is achieved through the RTL design

of an on-chip correlator device. The three issues of sampling, window functions,

and integration to a parent system are first described in Section 4.2 before being

addressed in Section 4.3 then validated in Section 4.4. The main issue with

sampling in SoC correlation is that the question “Is X correlated with Y?” will

be reasonably interpreted with the appendix “within a range of time offsets”,

leading to difficulties in scaling the required computation when the range may

be thousands of cycles. By using a sampling strobe with a Gaussian-distributed

period to statistically combine a range of δ-offset signal versions into one sample

population, some accuracy can be sacrificed to gain a result which better answers

the question. Window functions, as used pervasively in Fourier analysis, are useful

to apply a time-dependent weighting to a set of samples for modelling the process

of visual foveation; i.e. paying more attention to the centre of vision than the

periphery. In Fourier analysis applications, the cost of additional hardware for

sophisticated coefficient calculation or a memory is weighed against the benefit

brought by a particular frequency response. However, in correlation analysis the

cost/benefit calculation is different. In order to avoid the need for a memory to

store coefficients, a window function is desired which permits low-cost calculation

of each coefficient from the window index. A new window function Logdrop is

presented which permits simple RTL implementation of this calculation. Logdrop

is a novel window function well-suited to calculation with digital logic because all

components can be implemented using multiplexers and zero-cost bit-shifts. The

use of increment-scaling counters is explained to support runtime configuration

of window length, and their use with rectangular and Logdrop window functions

is illustrated. Practical integration with FPGA-based parent systems is seen as

a critical design goal for useful on-chip monitoring hardware. Issues including

technology, timing, and layout constraints are avoided by first implementing the

correlator as a stand-alone device and performing characterisation using the

methodology described in Appendix E, and examining the floorplans of a variety of

FPGA configurations. The first case study confirms that the characterisation effort

has resulted in a design which can be integrated with a complex parent system.

7 All RTL is in a single git repository available at https://github.com/DaveMcEwan/dmpvl.
The stand-alone correlator device, described in Section 4.3, corresponds to the sub-project
dmpvl/prj/correlator. Integration with OpenPiton+Ariane including the UltraSoC module varia-
tion, described in Section 4.4, corresponds to the sub-project dmpvl/prj/corrOPA.

95

https://github.com/DaveMcEwan/dmpvl


CHAPTER 4. HARDWARE FOR SOC CORRELATION ANALYSIS

Also confirmed by the first case study is that the correlator device is suitable for

real-time on-chip correlation monitoring, even when a fast datalink is not available.

Correlation, as calculated via the Ċov and Ḋep metrics, is presented in analogue

form using an off-the-shelf oscilloscope which requires only a single GPIO pin.

The second case study, integrating the correlator into an UltraSoC sub-system,

demonstrates the utility as a data-collection tool and the viability of the design

within the market-leading embedded analytics portfolio. To gain alternative views

of system behaviour, collected data provides the ability to apply different metrics,

including esoteric methods such as FFNN-based metrics. Chapter 5 extends the

concept of alternative views quite literally to present novel visualisations of signal

behaviour using collected data.

96



C
H

A
P

T
E

R

5
VISUALIZING PAIRWISE CORRELATIONS

5.1 Aim

This chapter is concerned with the visual presentation of correlations to assist in

understanding SoC behaviour. State-of-the-art techniques described in Chapter 2,

correlation metrics explored in Chapter 3, and comparisons with existing tools are

used to guide the development of presentation techniques. While Chapter 4 deals

with real-time analysis and data collection from physical systems, this chapter

focuses on presenting correlations in pre-collected data. Material from this chapter

has previously appeared in [132].

5.1.1 Problem Description

Where traditional methods of SoC analysis such as formal assertions and runtime

checks work well for individual modules and small systems with well-defined usage,

large complex systems with dynamic behaviour present a significant challenge.

Behaviour is a set of qualities which are difficult to quantify and assess due to

their high-level and potentially vague nature. For example, “CPUs 1 and 2 should

work together but separately from CPU 3” describes the intended behaviour of

a multi-processor SoC supporting two concurrent tasks. Precisely defining the

phrase “work separately” may be difficult and depend on presently undefined

properties such as software state.

In the high-level design of a complex system, the designer might have an

idea of what the behaviour should be for the intended application, but a precise

97



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

definition would require too much time and effort; i.e. a real-world cost in terms of

resource usage and lost earnings due to a delay in time-to-market. An intuitive

method of visualisation enables the designer to imagine how a well-behaved system

should present. With this expectation, the designer is no longer required to explain

detailed properties; Instead, they can simply contrast their mental picture with

the one presented. This is similar to the advantages of using a logical schematic in

digital design; i.e. an experienced digital design engineer will be able to quickly

extract key features (deep logic, number of DFFs, combinatorial loops) by looking

at a diagram more easily than reading pages of RTL code. Easing the mental

burden therefore allows a more efficient workflow.

Each correlation metric, as defined in Chapter 3, gives results on the unit

interval for each time window. Naturally, each pairwise correlation may be plotted

like any other time-varying scalar, e.g. Figure 4.22, and multiple results may be

drawn together in a multi-plot. As the number of interesting signals m grows, the

number of pairwise correlation results (including auto-correlations) grows by m2+m
2 .

The correlator device of Chapter 4 implements a number of computation engines,

each of which calculates one pairwise correlation. For example, calculating a single

metric for every pair within m = 50 signals would require 1275 correlator engines.

Even in a very small example with m = 5 signals, 15 plot-lines are likely too much

to keep track of mentally. Where hardware resources are plentiful and the number

of correlation engines is large, the limiting factor is the usability of overcrowded

multi-plots.

Effective visualisations present information with satisfactory precision and

accuracy in a manner such that the viewer can easily (1) understand what features

are desirable, (2) achieve an overview, (3) identify points of interest, and (4) selec-

tively ignore parts which are less interesting [133]. The effectiveness and usability

of information visualisation techniques are readily evaluated using heuristics [134],

closely related to the field of HCI. Heuristics provide a set of issues which must be

carefully addressed to design effective presentations [9][59]. Critical evaluation

of the currently available tools and techniques for correlation analysis of binary

SoC data, hint that this is an area ripe for improvement. For example, waveform

viewers – specialised multi-plot viewers – adhere closely to the “B5 Information

coding” heuristic [60] in the context of presenting when signals assert over the

time domain. However, no realistic characteristic/technique is apparent to suggest

how related those assertions are. Other analytical tools such as corrgrams [67]

and source code annotations [133] are found to be similarly lacking.

The data required to be presented for effective correlation analysis has many

dimensions, i.e. m2+m
2 pairs over different metrics, time offsets, and time windows.

98



5.1. AIM

Devising methods to present these many different aspects is a difficult task, for

which no adequate solution is currently available. This chapter aims to address

deficiencies in currently available methods of visualisation for pairwise correlations.

Currently available tools and techniques are addressed, then a set of techniques

are proposed to improve upon the state-of-the-art.

5.1.2 Objective

Effective visualisations enable system engineers to better understand the be-

haviour of their systems, thereby allowing faster iteration over ideas and improve-

ments. By speeding up the process of understanding the behaviours of a system,

engineers can meet their design goals faster and provide a competitive edge.

The objective of this chapter is to examine the particularities of effective

visualisation in correlation analysis of binary SoC data. A fuller knowledge of the

requirements thus enables improvement upon the state-of-the-art and, ultimately,

the design of more useful tools for SoC work.

5.1.3 Approach

Chapter 3 examines several interpretations of correlation in binary SoC data, and

Chapter 4 explores the practicalities of extracting correlation data from a running

system. Correlation analysis, used to understand SoC behaviour, requires not

only mathematical foundations and practical methods of accessing results but

also requires effective ways of putting that knowledge into an engineer’s head. A

discussion of common statistics and their relevance to binary SoC data is given in

Section 5.2.1 to uncover the most useful information for presentation. For example,

the use of gradient analysis is shown to be particularly intuitive due to the nature of

clocked digital logic. Information visualisation heuristics, as discussed in Chapter 2,

are used to critically evaluate proposed techniques based on network/graph and

table data models. The widely used heuristics for HCI evaluation, first given by

Nielsen [53], are not entirely applicable to this work, so these are compared with

more recent sets of heuristics designed specifically for information visualisation.

With a further selection of suitable heuristic sets [55, 56, 60] and knowledge of what

information should be presented, a novel method for correlation visualisation is

developed along with a browser-based tool 1 to produce examples of its application.

1 All Python code is available in a git repository at https://github.com/DaveMcEwan/dmppl/tree/
master/dmppl/experiments/eva.

99

https://github.com/DaveMcEwan/dmppl/tree/master/dmppl/experiments/eva
https://github.com/DaveMcEwan/dmppl/tree/master/dmppl/experiments/eva


CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

This chapter focuses on scenarios where data has been collected in advance

of analysis, such as through simulation or instrumentation. Examples from two

case studies are used to demonstrate the described visualisation techniques. A

simple SoC featuring a single AXI interconnect [33] is used to demonstrate visuali-

sations of stationary behaviour. Presentation of behavioural changes over time are

demonstrated using a dual-processor machine learning system with lightweight

software instrumentation. These case studies reflect two very different types of

system which are both applicable to modern SoC engineering, which demonstrates

that the method is not limited to one particular level of abstraction or niche usage.

Working alongside a synergistic colleague who answers questions is a useful

analogy to an effective analysis tool because they will understand the appropriate

level of detail to provide. Providing too little detail leads to a frustrating amount of

further questioning, but providing much detail up-front can swamp our attention,

which is equally frustrating. Shneiderman [135] argues that the most effective

tools for information analysis function as intelligent but subservient co-workers.

Working with colleagues who provide the information we want with minimal

mental effort required to filter out extraneous data is the desired experience in all

fields of work. The subservient aspect is also crucial for effective use, because if

a tool contains black-box functionality which cannot be rationalised by the user,

then the user cannot feel in control of decisions based on that tool. As such, the

visualisation techniques presented in the following sections work on the principle

that they should relieve mental pressure while being fully explainable.

5.2 Visualisations for Binary SoC Data

A novel method for visualising correlations in binary SoC data is described through

a tool’s development in alignment with Shneiderman’s mantra. The input format

is VCD which is the lingua franca for SoC data, which is chosen to avoid pre-

processing and import issues, as explained in Section 2.3.2. Output is presented via

a browser interface, which goes some way to supporting several heuristics related

to status, orientation, recovery, and interactivity. The web browser environment

is familiar with standard methods of interaction such as the Uniform Resource

Locator (URL) for absolute navigation, clickable hyperlinks for relative navigation,

forward/back buttons for a history of views, and zooming. The familiarity of

environment supports ten heuristics by running on a sufficiently powerful machine

(N1, N3, N5, N7, N9, S2, S3, S6, GP1, FJ3, FJ4), i.e. inordinate effort would be

required to violate these heuristics.

100



5.2. VISUALISATIONS FOR BINARY SOC DATA

5.2.1 Statistics on Binary Signals

In other scientific fields, several derived measurements and statistics are commonly

given, such as area under curve, arithmetic mean, variance, and gradient. The

area under a binary curve is equivalent to the number of times where f i ∈ B is

asserted; i.e.
∑

t f i[t]. However, as discussed in Section 4.3.2, using a window

function gives a result focused on the window centre; i.e. weighted expectation

E[ f i].

Where measurements are subject to significant noise, more robust statistics

are also commonly given, such as the median, interquartile range, and uncertainty.

In this work, focused on binary signals whose accurate values are gleaned from

simulation or runtime instrumentation, robust methods are not considered nec-

essary. It is straightforward to calculate the median from the expectation, and

thereby see the limited value it provides:

f i[t] ∈B =⇒ Median( f i)=


1 :

1
2
<E[ f i]

1
2

:
1
2
=E[ f i]

0 : otherwise

The weighted arithmetic mean is equivalent to the weighted expectation E[ f i]
which tells us the proportion of times where the signal is asserted. Variance of

a signal f i is equivalent to covariance with itself; i.e. Ċov( f i, f i). For real-valued

signals variance is a useful statistic, telling us how much a signal value varies

from the usual, but for binary signals Ċov( f i, f i) provides no additional information

over the expectation:

Ċov( f i, f i)= 4
∣∣∣E[ f i ¯ f i]−E[ f i]E[ f i]

∣∣∣
f i[t] ∈B =⇒ E[ f i ¯ f i]=E[ f i]

=⇒ Ċov( f i, f i)= 4
∣∣∣E[ f i]−E[ f i]2

∣∣∣
The gradient of a binary signal is less straightforward but is used intuitively by

referring to the rising and falling edges. For example, “cpu.idle high leads to lower

power consumption” or “cpu.idle rising leads to increased cache activity”. Both

statements refer to the same signal cpu.idle, but it is unlikely that lower power

consumption leads to increased cache activity. Indeed, it is so intuitive for SoC

engineers to refer to the reflection, rising and falling edges, that waveform viewers

often feature methods of showing these sibling signals [61]. This work uses the

101



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

following definitions for the reflection, rising edge, and falling edge, respectively.

¬i[t] := 1− f i[t] (5.1)

↑i [t] :=max(0, f i[t]− f i[t−1]) (5.2)

↓i [t] :=max(0, ¬i[t]−¬i[t−1]) (5.3)

The rising and falling edges are closely related to the first-order derivative.

However, for binary signals, it does not make sense to define functions related to

higher-order derivatives because ↑i [t]= 1 =⇒↑i [t+1]= 0. Taking the rising edge

of a rising edge simply produces a copy, i.e. f j =↑i =⇒↑ j=↑i. The constructions in

Equation (5.2) and Equation (5.3) mean that E[↑i], E[↓i]É 1
2 .

Expectation of the rising edge ↑i [t] is a useful statistic which tells us how often

f i[t] begins to assert. In addition to knowing how often a binary state asserts,

it is also useful to know how long those assertions can be expected to last. The

ratio of rising edges to assertions E[↑i]
E[ f i]

, equivalent to the conditional expectation

E[↑i| f i], provides the expected length of assertions. A higher value means that

assertions are of shorter duration where the maximum value E[↑i| f i]= 1 means

that all assertions of f i last only a single clock cycle. Where it is more intuitive

to speak of the negated signal, E[↓i] and E[↓i|¬i] may be used instead to say how

often f i is de-asserted and how long it remains de-asserted.

Binary signals can be categorised by their intended behaviour based on specific

design knowledge. Events are signals which are asserted to indicate the occurrence

of something interesting at a specific discrete time, e.g. fcache_miss indicating that a

read was made to an uncached address. A binary state, shortened to “bstate”, is

asserted to indicate that some bit of a system is in a specific state, e.g. frd_waiting
indicating that a requester is presently waiting for data. The difference between

events and bstates is somewhat arbitrary, but the suggested guideline is: Signal

names which are either an adjective or present participle refer to bstates, and

signal names which are nouns refer to events. The purpose of this distinction is

that when speaking naturally about signals, events are not typically discussed in

terms of their reflection or edges. For example, in a single-CPU system, fcache_miss
would be expected to be asserted in pulses one cycle wide, so speaking of the rising

edge of fcache_miss is unnecessary because fcache_miss =↑cache_miss. On the other hand,

bstates are usefully discussed by how long assertions perpetuate.

Statistics on individual signals are useful in exploratory correlation analysis

because they allow the viewer to frame the context of correlation results. Present-

ing these individual statistics alongside pairwise correlation results allows the

viewer to gain an overview and make better reasoned decisions more quickly than

102



5.2. VISUALISATIONS FOR BINARY SOC DATA

if these data require separate distinct steps. Avoiding mental overhead in this way

is the basis of several usability heuristics including N7 (flexibility and efficiency of

use), S5 (view relationship hips among items), and GP3 (fuse data). In Section 5.2,

statistics are presented via the colour of graphical nodes or table cells, thereby

allowing the user to quickly comprehend the context of accompanying correlation

results.

The application of a correlation metric is written as ·
(
fx, f y〈δ〉

)
where · is the

metric’s name, δ is a time offset, and both fx and f y are bit-vectors. As described

in Section 5.2.1, it is natural to speak of a bstate f i signal in terms of its sibling

signals ( f i, ¬i, ↑i, and ↓i), therefore a set of m signals may require analysis of

up to 4m bit-vectors, depending on how many are bstates rather than events.

Fully computing the results of n metrics therefore requires up to n∆(8m2 +2m)

calculations. For context, applying the 6 metrics identified in Chapter 3 to a

system with 50 bstate signals and a maximum δ offset of 10 cycles requires

1,206,000 calculations per time window. Given the large number of required

calculations, effective visualisations must be selective in what is displayed to avoid

overwhelming the viewer. For this reason, the number of metrics presented in

any single visualisation is restricted to either n = 1, displayed with a greyscale

colourspace, or n = 2 using the colourspace defined in Appendix I.

5.2.2 Netgraph View

5.2.2.1 Statistics on Individual Signals

For the viewer to understand the context of signal correlations, an overview of

relevant statistics on the individual signals must be known (S1). Relevant statistics

are displayed through the colour of large circular nodes which can be hovered over

to summon a pop-up display with more details. The basic layout is described in

Figure 5.1.

Sibling nodes are always laid out in the same orientation with the signal’s

name below the f node (GP2, GP5). Consistent orientation layout of these circular

nodes and the blue/white coloured squares helps the user to distinguish between

event and bstate signal types, thus adhering to the relevant heuristics (N4, N6,

N8, GP2, GP6, GP10, FJ1, FJ5, FJ6, FJ7). Using darker colours to represent more

significant values is a useful principle because it allows the same diagrams to be

reproduced on printed paper. The largeness of the nodes (relative to the font used

for sibling and signal name) provides visual redundancy and enables the statistic

values to be gleaned even in a zoomed-out view (S1, S2, FJ4). No heuristics are

violated in presenting statistics on individual signals via coloured nodes.

103



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

f

cache.miss
E[f]

Statistic displayed
with 1D colorspace:

Signal name.

White square denotes event type.

(a) Visualisation of an event signal’s statistics. Darkness of the circular node allows the
viewer to quickly estimate how often the event occurs.

f

cpu.stalled

¬ ↓

↑
E[f]

E[¬] (2E[↓], E[↓ | ¬])
(2E[↑], E[↑ | f])

Statistics displayed
with 1D colorspace:

Signal name.

Blue squares denote bstate type.

Statistics displayed
with 2D colorspace:

(b) Visualisation of a bstate signal’s statistics. Darkness of the left-hand circles show the
proportion of time the signal is asserted. Right-hand circles are coloured using the 2D
colourspace described in Appendix I.

Figure 5.1

A bstate signal has six relevant statistics to present about its four sibling

signals. Presenting the expected values of both E[ f i] and E[¬i] in greyscale

provides redundancy (GP2, GP5, GP10). Additionally, presenting both the signal

and its reflection allows the viewer to make natural connections with different

thought processes, e.g. thinking in terms of busy vs not busy, thus adhering to N2

and FJ1. Appendix I describes a 2D colourspace useful for representing a pair of

unit-interval values by a single colour. On each bstate, the colour of the upper-

right node indicates both the number of rising edges, and the average length of

assertion. Similar interpretations about the abundance and length of de-assertions

are enabled by the ↓ nodes in the lower-right position. There are four extreme

points in the colourspace:

white Both E[↑] and E[↑| f ] are close to 0, i.e. few long-lived assertions.

green 2E[↑] close to 1 and E[↑| f ] close to 0, i.e. many long-lived assertions.

black Both 2E[↑] and E[↑| f ] are close to 1, i.e. many pulse-like assertions. The

extreme case is a square wave with a minimal period.

104



5.2. VISUALISATIONS FOR BINARY SOC DATA

purple E[↑] close to 0 and E[↑| f ] close to 1, i.e. few short-lived assertions.

Combining the presentation of sibling statistics using the 2D colourspace supports

heuristics related to minimalism and data fusion (N8, S7, GP3, GP4, GP8, FJ1,

FJ10).

5.2.2.2 Identicons as Aids for Orientation

Intuitive interactive exploration depends on compatibility with zooming (S2) be-

tween an overview (S1) and a detailed view (S4). The text of signal names is

not compatible with zooming out because it is not usable when viewed from far

away. Allowing the user to maintain their mental orientation while changing views

is enabled by coupling each signal with a unique and easily recognisable glyph.

Identicons were first proposed by Park [136] as a method for providing simple,

easily distinguishable user icons for online forums. Several prominent websites

have since adopted similar methods of icon generation including Wordpress and

Github, which informally validates their usefulness.

"slv.stall" 1
2
3
4

5
6
7
8
9

100
11
12
13
14

Figure 5.2: Identicon derived from signal name.

To create an identicon, 15 b are extracted from the signal name’s MD5 hash,

then used to fill a 3× 5 grid of squares correspondingly. As humans, we find

vertically symmetric figures easily recognisable, even the simple aliens of the

computer game “Space Invaders”, which is related to our ability to recognise

faces [137]. Horizontally mirroring the 3× 5 grid over the rightmost column

produces a vertically symmetric identicon. As the resulting identicons often bear

a resemblance to faces, bodies, castles, or other familiar shapes, assigning an

identicon to each signal provides a strong visual aid for the viewer to quickly

identify a signal (N6, FJ7). Tapping into the user’s ability to efficiently recognise

vertically symmetric shapes thus supports N6 (equivalent to FJ7).

The utility of identicons in exploratory analysis is further demonstrated in

the next sections. Applying critical analysis to the association of signal names to

identicons, it can be argued that their purpose may not be immediately apparent to

new users, which would violate N2 and potentially GP4. To mitigate the effects of

these potential usability issues, the presence of identicons must not interfere with

the presentation of other data, i.e. a user confused by their purpose should be able

105



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

to completely ignore them with minimal effort. In the netgraph view described

in the next section, identicons are placed outside the circle of signal nodes, thus

easily ignored but available as a visual aid if desired.

5.2.2.3 Circular Graphical Layout

Extending the use of coloured circles to present statistics on all m signals simply

involves placing all nodes (or node quads for bstates) on the same figure. A circular

layout with each signal’s position determined by alphabetical order is chosen

instead of another layout (e.g. grid) for two reasons: (1) edges can be drawn

between the nodes of any two signals; (2) visual redundancy is provided by the

relative angles between nodes and the accompanying identicons, such that a user

can identify a location on the circle even from a zoomed-in view containing only

one node. For example, Figure 5.3 shows an overview of a system’s correlations,

and the position of the zoomed-in portion shown in Figure 5.4a is made clear via

the relative angles of other signals and the identicon.

Correlations between metrics are represented by the colour and thickness

of connecting edges, i.e. a heavier darker edge represents a higher correlation.

This holds closely to Amar and Stasko’s representational primacy and the related

heuristics (N2, N6, N8, S5, GP6, FJ1, FJ5) because a logical connection between

signals is presented with a visual connection. For a high-level understanding,

knowing that a significant link exists is more important than knowing the exact

values of correlation statistics, i.e. a rough estimate is often good enough. Using

the 2D colourspace described in Appendix I either 1 or 2 metrics can be displayed

at once, allowing the viewer to estimate an approximate value. If desired, then a

precise value can be summoned using either the interactive features described in

Section 5.2.2.4 or an alternative view described in Section 5.2.3.

A noticeable feature of Figure 5.3 is that the signal names are so small that

they are practically unreadable on paper. However, viewed on a web browser these

can be interactively zoomed in on, or hovered over to see precise details. This is in

particular keeping with Shneiderman’s mantra (S1, S2, S3, S4) in addition to GP8,

because the familiar and ergonomic controls of a web browser enable a smooth

coupling between what the user wants to know and what is displayed on screen.

The positioning of signals around the circle is given by arranging the signal

names in alphabetical order, which is chosen for two reasons: (1) alphabetical

order is simple for the user to rationalise; (2) alphabetical order is also useful

for SoCs with regular naming schemes, e.g. hierarchical paths, because similarly

grouped signals will be adjacent. The most interesting correlations are those

106



5.2. VISUALISATIONS FOR BINARY SOC DATA

f

axi.r.slverr

f

axi.aw

↓

¬

f

axi.r.okay

f

axi.b

f

axi.r

¬

f

axi.aw.page2

f

axi.r.decerr

f

axi.b.slverr

f

axi.ar.page2

f

axi.aw.page3

f

axi.ar.page0

f

axi.b.decerr

↑

f

axi.ar.page1

f

axi.b.okay

f

axi.ar

↑

↑

f

slv.idle

f

slv.busy

f

slv.stall

↓

↓

f

axi.aw.page0

¬

f

axi.aw.page1 f

axi.ar.page3

Figure 5.3: Netgraph visualisation with edges in 2D colourspace
(
Ċov,Ḋep

)
. Each

node is coloured according to its statistics, and each signal is accompanied by an
identicon to assist recognition and orientation. Correlations are represented by
the weight of edges

between distinct sub-systems, and the least interesting results are between signals

of the same sub-system because these relationships may be already understood via

module-level verification. Alphabetical positioning places regularly named signals

from the same sub-system beside each other so connecting edges will be short, thus

contributing less visual impact than longer edges crossing the centre (N2, S5, GP6,

FJ5).

Gansner and Koren [73] argue that circular graphs suffer from three main

disadvantages: (1) longer edges, (2) visual regularity, and (3) following paths is

difficult. In terms of visual impact, a longer edge crossing near the middle of the

107



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

figure is more prominent than a shorter edge chording near the periphery. Ganser

and Koren’s usage of circular graphs is primarily aimed at the layout of computer

networks and system management where connections are binary. In contrast to

Gansner and Koren’s argument longer edges are seen as an advantage because,

in combination with alphabetical positioning, they highlight connections between

non-adjacent signals. The disadvantages of visual regularity distracting from

less prominent edges and increased difficulty of following paths must be weighed

against the advantages provided by a circular layout, i.e. circular layout is the

simplest and easiest for a user to rationalise, in comparison to alternative layouts.

Support for the display of multiple δ offsets is limited in the netgraph view.

Between a pair of signals, only the δ ∈ (−∆,0] offset with the highest correlation is

shown in order to avoid overwhelming the figure with too many lines (N8, GP3,

FJ5, FJ9, FJ10). Section 5.2.3 describes alternative views which are suitable for

investigating correlation over δ (cross-correlation).

5.2.2.4 Interactive Features

Colours provide a fast visual approximation of various pertinent statistics, but it

is difficult to realise exact values, so interactive features are available to uncover

precise values. Figure 5.4 shows how the mouse pointer is used to examine the

exact values of a node’s statistics and metrics for a specific connection. Pointing

with the mouse to specify a feature of particular interest, allows exact values to be

obtained on request without adding unnecessary clutter to the overview (N8, N10,

S4, S7, GP4, GP7, FJ4, FJ8).

The netgraph view presents a full set of correlation results for a single time

window, and relative navigation through time is enabled via clickable hyperlinks,

i.e. to the previous or next window. Further detail on relationships with a specific

signal or a specific δ offset is enabled with the tabdelta view.

5.2.3 Tabdelta View

Netgraph views present correlations between all signals for an overview of system

behaviour during a specific time window, but support for different δ offsets is lim-

ited. The tabdelta partner view enables effective exploratory analysis by viewing

differences in correlation over δ. There are three variations of the table-based

visualisation, δ×u, δ× x, and δ× y which present correlation alongside related

statistics. In contrast, corrgrams (described in Section 2.3.2) present the variation

x× y with fixed δ and u; i.e. constant δ and a single time window. Tables are a tried

108



5.2. VISUALISATIONS FOR BINARY SOC DATA

(a) Hovering a pointer over a node displays a dialogue box containing precise values of
relevant statistics. The strong green colour presents the low value of E[↑i] and high value
of E[↑i| f i] where i represents the signal name slv.stall.

(b) Hovering a pointer over an edge displays a dialogue box containing precise values of
several statistics and correlation results. The purple tinge to the edge colour represents
the correlation results

(
Ċos≈ 0.6351, Ṫmt≈ 0.4653

)
. Redundant information, including

the signal names and types, is included to help the user maintain orientation.

Figure 5.4: Hovering a pointer provides interactive details on demand.

109



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

1 2 3 4 5

6 7 8 9 10 11

Figure 5.5: Features of tabdelta visualisation.

1. E[ fx] as colour and text.

2. Title of data view.

3. Browser-based navigation URL.

4. δ varies horizontally.

5. Links for navigation through time.

6. Where y is event, only show E
[
f y

]
.

7. Where y is bstate, show additional
statistics.

8. Identicons on blue/white squares
indicate type of y.

9. Precise value displayed by hover-
ing a pointer.

10. Zero-valued results not displayed
to avoid distraction.

11. Result cells use 1D or 2D
colourspace background. Light-
coloured text on light-coloured
background reduces distraction
from low values.

110



5.2. VISUALISATIONS FOR BINARY SOC DATA

Figure 5.6: Tabdelta view from demonstration system “praxi”, described in Sec-
tion 5.4.1. Central dark grey column shows the first time index of each window.
Correlation results are shown for different values of δ in each main column. Metric
names are prominently displayed in the upper-left corner, and the URL is shown
at the top.

and true method of presenting a 2D cross product with text in a grid – used since

at least 120BCE by Hipparchus, and therefore do not require much evaluation.

The same 2D colourspace is used in the background colour of all data cells to

provide a fast and intuitive method of visually identifying higher, more significant

values. Identicons are clearly associated with each signal name, which simplifies

the translation from a signal’s position on a netgraph to a tabdelta row.

URLs assign a unique locator to each view, thus enabling direct and absolute

navigation. Hyperlinks enable relative navigation to a view which is different by

only one variable, i.e. changing view by swapping or altering one of x, y, or u.

Figure 5.5 shows the main features of a tabdelta view using an example of

the δ× y variation, and Figure 5.6 shows an example of the δ×u variation. In

the centre, the dark grey column shows the value of the vertical-axis variable.

Identicons and blue/white squares identify the signal types and aid navigation

between different views. Left of the central column, expected values of the row’s

sibling signals are presented via both text and colour. The main result area is

right of the central column, where δ is varied on the horizontal axis. Each table

cell shows a correlation result as text with the background colour providing a fast

111



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

visual estimation of the value. To reduce visual distractions, a low-contrast font

colour is used, and very low-valued results are simply not displayed.

5.3 Gestalt Evaluation Against Heuristics

Hvannberg et al. note that effective use of heuristic sets requires considering a

whole set at a time, otherwise meaning and intention are lost [9]. Gerhardt-Powals’

reasoning for the inclusion of both GP9 and GP10, despite sounding similar, further

demonstrates this requirement. Without GP10, there may be a conflict between

GP6 and GP8, so the set must be given holistic consideration. While individual

elements of a visualisation or an interface can be evaluated separately, the real

test of an interface applies to the whole experience. A gestalt evaluation ensures

that the techniques described above enable greater usability as a whole than the

sum of its parts.

5.3.1 Nielsen’s Usability Heuristics

Nielsen’s usability heuristics are designed to uncover problems in existing designs

and are used here to identify potential usability issues in the combined techniques

of the netgraph and tabdelta views. These heuristics were originally designed for

evaluation of systems that take data from the user, e.g. a form on a website, so

some heuristics must be re-interpreted for use with presentation-only interactive

visualisations. Overall, Nielsen’s heuristics do not highlight any serious usability

issues.

N1 - Visibility of system status. The web-browser interface is a familiar envi-

ronment for SoC engineers, and the built-in features support this heuristic. For

example, the native page-loading animation tells the user that a view request is

currently being processed, and the native page-not-found screen informs the user

that the tool cannot meet a request. This heuristic is mostly aimed at interfaces

used for control, but all applicable interpretations are adhered to.

N2 - Match between system and the real world. This heuristic is interpreted

for visualisation in the same way as Amar and Stasko’s representational primacy.

It is natural to speak of correlated things being connected, and netgraph draws

visual connections to represent correlations. Stronger connections are drawn with

heavier darker lines, which is a good match with our intuition. The use of bstate

sibling signals allows the user to relate their thought process directly to different

112



5.3. GESTALT EVALUATION AGAINST HEURISTICS

parts of the netgraph view whether they are thinking in terms of f i, ¬i, ↑i, or

↓i. This heuristic is well-supported by closely matching the display to the user’s

intuition.

N3 - User control and freedom. Again, N3 is aimed at control interfaces, but

the interpretation used here is that the user should be able to navigate the result

space smoothly. Hyperlinks enable relative navigation around the result space

by changing one variable, and absolute navigation is achieved by entering a URL

directly. With the support for familiar navigation methods, both relative and

absolute, N3 is adhered to.

N4 - Consistency and standards. In a novel visualisation, the use of stan-

dards, i.e. what similar visualisations use, is not applicable. N4 is primarily

supported by the consistent use of alphabetical ordering, regular layout, identicons,

and the same colourspace in both netgraph and tabdelta views.

N5 - Error prevention. In the netgraph and tabdelta views, the only way to

introduce an error to the interface is to request a view which doesn’t exist or isn’t

supported, e.g. netgraph view for a window beginning at a negative time. Absolute

navigation by directly entering a URL does not adhere to N5 because nothing

prevents the user from requesting an unsupported view. However, in relative

navigation, only valid hyperlinks are displayed which does support N5. No checks

for potential errors are presented, e.g. “Are you sure?” because this would violate

N3 (user freedom) and interfere with N7 (efficiency of use).

N6 - Recognition rather than recall. Using interactive zooming, the set of

displayed results can be easily altered to avoid having to recall specific ones. N6

can also be interpreted as the ease of finding or maintaining orientation within the

result space, which is supported through the consistent use of layout, identicons,

and colourspace.

N7 - Flexibility and efficiency of use. A sufficiently powerful machine must

be used to run the tool in order for the user to avoid waiting too long between

making a request and receiving a view. To argue that this heuristic is supported

it is noted that the demonstration tool is implemented in Python (known for

low-speed performance) and primarily tested on a laptop with an i5 CPU. The

low-specification machine computes a new netgraph view for the demonstration

113



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

systems of Section 5.4 in less than 2 s, which does not present a significant impedi-

ment. Additionally, as the tool is based on a web-server, it is straightforward to

calculate a view on a powerful machine and display results on a personal machine.

As long as sufficient computing power is available, N7 is adhered to.

N8 - Aesthetic and minimalist design. Several aspects of both the netgraph

and tabdelta views work towards supporting N8. Statistics on individual signals

and their siblings are presented with coloured circles, but without cluttering text

to compete for attention. Correlations are presented with coloured lines, and

weaker correlations are drawn in thinner, lighter lines, which allows attention

to focus naturally on stronger correlations. In the tabdelta view, light-coloured

text is specifically used in the cells so that weaker correlations with light-coloured

backgrounds attract less attention. However, information is not lost because

the interactive pop-up feature provides these details on demand, as shown in

Figure 5.5. In the netgraph view, the correlation with only a single δ offset is

displayed to avoid clutter, but a more detailed display of correlations over different

δ values is available in the tabdelta view. In the combination of these techniques,

N8 is partially supported, but may benefit from a survey of user opinions.

N9 - Help users recognise, diagnose, and recover from errors. In partial

support of N5, error conditions are avoided except for absolute navigation by

directly entering a URL, which also partially supports N9. In the proof-of-concept

implementation, judicious error messages are not included, so N9 is not well-

supported. However, this heuristic is implementation-specific, so work to support

N9 consists of adding more helpful error messages rather than changing the

proposed techniques. Further, this heuristic is argued to be unimportant for

information visualisation because it is aimed specifically at interactive control

interfaces dealing with user input.

N10 - Help and documentation. In information visualisation, the presence

of help and documentation is orthogonal to the method of presentation. As the

proof-of-concept tool only includes basic usage instructions it could be argued that

N10 is not fully supported. However, the strong representational primacy of the

netgraph view and strong analytical primacy of the tabdelta view can be used to

argue that N10 is adhered to because additional help is unnecessary. Additionally,

as a browser-based tool, the internet is also close to hand for extra support.

114



5.3. GESTALT EVALUATION AGAINST HEURISTICS

5.3.2 Shneiderman’s Visual-Information-Seeking Tasks

Shneiderman’s seven heuristics describe high-level tasks that users will expect to

be easily and efficiently accomplished. Using the tool combining the netgraph and

tabdelta techniques, all seven tasks can be accomplished efficiently and intuitively

in the pursuit of exploratory correlation analysis of binary SoC data.

S1 - Overview. The most easily specified view is the netgraph view, requiring

only the window’s first time u, which means this should be the starting point for

exploratory analysis; i.e. “overview first”. In a zoomed out overview, the colours of

nodes and edges remain visible, thus the netgraph view adheres to S1 because all

pairwise correlations can be shown in one figure.

S2 - Zoom. Zooming is chiefly applicable to the netgraph view where the native

browser controls adhere to S2. A close-up view reveals the exact pattern of closely-

packed edges, and further details can be examined by summoning a dialogue

box with the mouse pointer. The tabdelta view provides less scope for zooming,

but using browser controls to fit more table cells onto the screen is a reasonable

interpretation which also supports S2.

S3 - Filter. This heuristic is interpreted to mean that a clutter-free minimalist

aesthetic is used. Figure 5.5 shows a filtering feature of the tabdelta view where

zero-valued results are not displayed in order to avoid distracting clutter. It can be

argued that including text in tabdelta cells constitutes distracting clutter which

would go against S3, but this argument must be balanced by S2 and the ability to

zoom in on exact values. The netgraph view reduces the width of lines showing

weak correlations which are less important than strong correlations, thereby

making it low-effort to visually filter less important results.

S4 - Details-on-demand. Details can be demanded from either the netgraph or

tabdelta view by hovering a pointer, thus adhering to S4 on a per-view level. The

ability to navigate from a netgraph overview to a detailed tabdelta view supports

S4 on a per-use level.

S5 - Relate. By rendering correlations as connecting lines, strong representa-

tional primacy is achieved in the netgraph view which supports S5. Additionally,

sibling results are shown concurrently, which allows the user to easily relate

thought processes to different terms (value, reflected value, or rising or falling

edge), also supporting S5.

115



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

S6 - History. Each view is specified by a URL and web-browsers typically keep

an ordered history of URLs visited. S6 is thereby well-supported through use of a

browser-based interface.

S7 - Extract. Extraction of query parameters is well-supported by looking at

the URL. Support for extraction of sub-collections is limited to that provided by

the features supporting S3 and S4. Further improvement may be possible to inter-

actively extract correlation sub-graphs. Thus, S7 is supported but enhancements

may be possible.

5.3.3 Gerhardt-Powals’ Cognitive Engineering Principles

Gerhardt-Powals’ heuristics are phrased as guidelines for the construction of user

interfaces. All ten heuristics have been adhered to in the development of the tool

combining netgraph and tabdelta views.

GP1 - Automate unwanted workload. Adherence to GP1 is the fundamental

purpose of the novel visualisation techniques specialised towards binary SoC data.

Through effective presentation of data, laborious mental calculations, estimations,

and comparisons are avoided, thus freeing up cognitive resources for higher-level

tasks. The netgraph view supports GP1 particularly well because the overview of

correlations assists higher level thinking more than the detail-oriented tabdelta

view.

GP2 - Reduce uncertainty. Availability of precise details, provided on demand,

removes uncertainty about exact values. Due to the statistical nature of correla-

tions analysis, there is always some uncertainty that parameters such as window

length are ideal for identifying a particular behaviour or change in behaviour. How-

ever, the operator should be made aware of the limitations intrinsic to statistical

analysis. The 2D colourspace is also designed to reduce uncertainty in operators

with protanopia (also known as red/green colour-blindness) as well as those with

normal colour vision. GP2 is supported through identification and addressing

these three types of uncertainty.

GP3 - Fuse data. In information visualisation, as opposed to generic user in-

terfaces, GP3 is interpreted in the same way as GP1 because the purpose of data

fusion is to reduce cognitive load.

116



5.3. GESTALT EVALUATION AGAINST HEURISTICS

GP4 - Present new information with meaningful aids to interpretation.
The use of identicons to aid mental orientation between views can be argued to

violate GP4 because the glyphs do not carry meaning about the signal’s definition or

purpose. However, by keeping the identicons slightly separated from the presented

results, they can be easily ignored or used only on a sub-conscious level, i.e. no

substantial negative impact on GP4. In partnership with GP6, this heuristic

alludes to the notion of representational primacy. As such, it is interpreted and

supported in the same ways as N2.

GP5 - Use names that are conceptually related to function. The names

“netgraph” and “tabdelta” are convenient names for the two views which describe

their structure, and “tabdelta” also describes its function: to tabulate correlations

over δ. “Netgraph” does not describe its function, but does not violate GP5 because

the graphical structure implies the presence of connections or relationships. With

the tool’s intended purpose being correlation analysis, the implied purpose behind

the name “netgraph” is apparent, and GP5 is not violated. Other text displayed

includes the context-dependent title of a tabdelta view (2nd item of Figure 5.5) and

the signal names in the both views. These textual labels help the user maintain a

precise mental orientation, further supporting GP5.

GP6 - Group data in consistently, meaningful ways. Consistent presenta-

tion is achieved through alphabetical ordering. While alphabetical ordering may

not provide the tidiest circular graphs [73], it is a simple scheme requiring little

cognitive effort to understand. Meaning is attached to the consistent layout of

sibling nodes by redundantly presenting bstate statistics in terms of their value,

reflected value, or edges, which matches naturally spoken terms. Additionally,

through an interpretation close to representational primacy, GP6 is supported by

presenting correlations as connections.

GP7 - Limit data driven tasks. In an interface for visualisation rather than

control, GP7 is interpreted as equivalent to GP1 and is therefore well-supported.

GP8 - Include in the displays only that information needed by the opera-
tor at a given time. Section 5.2.1 describes the use of some common statistics

such as median and variance before showing why these are not relevant to binary

signals. By excluding statistics which might be expected (as they are common in

other tools) confusion and misunderstandings are avoided. Both netgraph and

117



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

tabdelta include only the information directly relevant to the view requested, thus

adhering to GP8.

GP9 - Provide multiple coding of data. In the same way as GP2 and S4, this

heuristic is partially supported by the interactive feature of summoning details

using a pointer. The tabdelta view further supports GP9 by presenting correlation

values via both colour and text.

GP10 - Practise judicious redundancy. Redundancy is practised in the net-

graph presentation of individual statistics using large coloured nodes. Larger

nodes provide more redundancy than smaller nodes, and can be more clearly seen

in a zoomed-out view. This principle was devised to resolve possible conflicts be-

tween GP6 and GP8, but as no conflicts have been found between these principles

for correlation visualisation, GP10 is supported according to the original intention.

5.3.4 Forsell and Johansson’s Visualisation Heuristics

Forsell and Johansson’s ten most important visualisation heuristics are found via

meta-analysis of several sets of heuristics, including Nielsen’s and Shneiderman’s.

Therefore, evaluation against each of these heuristics can be deferred to one of

the other three heuristic sets above. The purpose of inclusion here is that these

are found in the meta-analysis to be the most relevant heuristics specifically for

information visualisation interfaces. Checking that visualisation techniques do

not cause conflicts in Forsell and Johansson’s set thereby ensures consistency of

heuristic support when the methodology is considered as a whole.

FJ1 - Information coding. This heuristic is equivalent to the meaning of rep-

resentational primacy encompassed by N2, S5, GP4, and GP6, i.e. well-supported.

FJ2 - Minimal actions. Navigation using URLs or hyperlinks, zooming using

browser controls, and summoning details using a pointer enables tasks to be per-

formed intuitively and with minimal actions. Thus the cognitive load is minimised

for all actions in exploratory analysis and FJ2 is adhered to.

FJ3 - Flexibility. This is distinct from the flexibility term in N7, which is

supported through the use of a browser-based interface on a sufficiently powerful

machine. Instead, FJ3 refers to customisation to enable different exploratory

strategies and workflows, and is aimed at making improvements to an interface

with user feedback. Given that this evaluation is of a novel visualisation where

118



5.3. GESTALT EVALUATION AGAINST HEURISTICS

common habits and strategies have not yet been established, it is not possible to

critically evaluate against this heuristic. However, the combination of the netgraph

view, three variations of the tabdelta view, and relative navigation between them

using hyperlinks goes some way to anticipating possible exploratory strategies.

FJ4 - Orientation and help. The meaning of this heuristic is very broad, en-

compassing documentation, a history of views, and visual orientation. While

extensive documentation is not included in the proof-of-concept tool, this is straight-

forward to add and is orthogonal to the techniques the tool is based on. A history of

views is maintained through the browser interface. Mental orientation is assisted

through consistent layout (also supporting FJ6) and the use of identicons.

FJ5 - Spatial organisation. This heuristic is also very broad, but is adhered

to as explained in evaluation against N2, N8, S1, S5, and GP6. As a rephrasing of

N8 and GP8, this heuristic is well-supported.

FJ6 - Consistency. Similarly to N4 and GP6, this heuristic is supported through

the use of alphabetical positioning and the same colourspace to represent values.

FJ7 - Recognition rather than recall. This is a repetition of N6 in both

phrase and meaning, supported through the consistent use of layout, identicons,

and colourspace.

FJ8 - Prompting. Available actions in any netgraph or tabdelta view include

zooming, navigation to a different view, and hovering a pointer to demand precise

details. Zooming does not require prompting because it uses the native controls

of the web-browser. Hyperlinks for navigation are coloured differently from non-

clickable text (seen at the top of Figure 5.5) which is native functionality for

browser-based interfaces. Hovering a pointer does not require prompting because

there are so few views to learn. This heuristic is aimed at control or data-input

interfaces that have many types of views. However, in the presented method of

only two views, hovering a pointer does not require prompting because learning all

aspects of a view requires minimal effort.

FJ9 - Remove the extraneous. As a rephrasing of N8 and GP8, this heuristic

is well-supported.

119



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

FJ10 - Dataset reduction. This heuristic is concerned with features to reduce

a data-set for the purpose of focused analysis. As in the evaluation against S7, this

heuristic is not fully supported because extracting correlation sub-graphs would

require re-starting the tool with a smaller section of signals chosen for analysis.

As such, this heuristic offers a potential area for improvement in future work.

5.3.5 Direct Comparison with State of the Art

Table 5.1 compares the existing techniques, as described in Chapter 2, with the

proposed techniques for visualising correlations in binary SoC data. The SoC logic

designer’s most familiar visualisation, waveforms, is reviewed first. Waveforms, or

other multi-plot tools, are very useful for visualising signal values over time, but are

ill-suited to presenting relationships. Corrgrams are well-suited to presenting one,

or perhaps two, correlation metrics for a single time window but not for finding the

context around those correlations. Corrgrams are compared for different ordering

methods; (1) sorted by signal identifier, e.g. alphabetical; (2) sorted by correlation

value, e.g. SVD, as described by Friendly and Kwan [67, 68]. Sorting by value

allows a corrgram to provide a zoomable overview because elements can be sensibly

blurred together and still present an accurate depiction. Zapf and Kraushaar’s

Solar Correlation Map [69] excels at providing an intuitive overview of correlations,

but only centred around a selected signal. However, the limitations around other

features explain why their technique is not widely used. Printable tables are also

compared because they are the basis of tabdelta, so the improvements made by the

proposed techniques can be seen clearly.

A direct gestalt comparison shows the netgraph and tabdelta techniques to be

overall preferable in comparison to existing tools and techniques, despite specific

features being less desirable, e.g. density of corrgram versus netgraph.

120



5.3.
G

E
S

T
A

L
T

E
V

A
L

U
A

T
IO

N
A

G
A

IN
S

T
H

E
U

R
IS

T
IC

S

Features supported Waveform
or other

multi-plot

Corrgram
sorted by
identifier

Corrgram
sorted by

value

Solar map Printable
table

Netgraph
only

(this work)

Tabdelta
only

(this work)

Netgraph
+Tabdelta
(this work)

Zoomable timeline 3 7 7 7 7 7 ½ ½
Zoomable overview 7 7 ½ ½ 7 3 ½ 3

Details on demand 7 7 7 7 7 3 3 3

Result-space navigation 7 7 7 7 7 3 3 3

Many signals 3 3 3 7 3 3 3 3

Multiple metrics 7 3 3 7 ½ 3 3 3

Contextual statistics ½ 7 7 7 3 3 3 3

Unordered values 3 3 7 3 3 3 3 3

δ offsets ½ 7 7 7 ½ ½ 3 3

Familiar usage 3 7 7 7 3 3 3 3

Visible connections 7 ½ 3 ½ 7 3 7 3

Dense format 3 3 3 7 3 7 3 3

Table 5.1: Direct comparison of usability features between existing and proposed techniques for visualising correlations in SoC data.
Cells containing 3 indicate full support with intuitive and practical usage; ½ indicates partial support; 7 indicates unsupported or
impractical usage. The columns for netgraph and tabdelta demonstrate the greater usefulness of the proposed techniques in comparison
to existing techniques.

121



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

5.4 Demonstration Case Studies

Two case studies are used to demonstrate the utility of the netgraph and tabdelta

views. First, a simple system with unchanging behaviour is used to showcase how

the netgraph view can uncover sub-systems operating in parallel. An example

is included to show how the tabdelta view can expose behavioural features and

match them to the relevant source code. Second, a complex system which performs

a machine learning task is analysed to demonstrate how changes in behaviour

appear in the netgraph overview. Finding the points in time where behaviour

changes is also shown to be investigable with the tabdelta δ× u view. In the

examples of changed behaviour, the concept of a recognisable behaviour is made

clear, which paves the way for future work in behaviour monitoring.

5.4.1 Case Study 1: Static Behaviours

5.4.1.1 Description of praxi System

Visual analysis of static behaviour is demonstrated using a simple SoC named

“praxi” is depicted in Figure 5.7, created from components usually used to verify

the function of an AXI network. A master communicates pseudo-randomly with a

slave, and signals are recorded via a passive monitor component. The AXI link has

separate channels for write data (W), write address (AW), write reply (B), read address

(AR), and read reply (R) that have independent handshaking mechanisms. Proba-

bility controls are used to determine aspects of the master and slave behaviour,

including the likelihood of a request being generated by the master, and how likely

the slave is to stall a response. These controls are held constant during the entire

simulation, thereby keeping system behaviour static. Queues are implemented on

each side of the AXI link so that multiple transactions may be outstanding.

Event signals are named like “axi.ar” which indicate that a transaction oc-

curred on the AR channel, and similarly for the other four channels. On the AXI

request address channels (AR and AW), four sub-events show where the request was

addressed to; e.g. axi.ar.page3 indicates a read request to page3. On the AXI reply

channels (R and B), three sub-events show the reply status (okay, slverr, or decerr);

e.g. axi.b.decerr indicates a decode error on the write reply channel. For additional

familiar context, three bstate signals are provided on the slave module (busy, stall,

and idle). The busy signal indicates that the slave has accepted requests which

have not been replied to, stall indicates that the slave is currently stalling a reply,

and idle is defined by the code snippet in Figure 5.8; i.e. idle is only asserted

when no reply transactions have occurred in the previous four cycles. In total, the

122



5.4. DEMONSTRATION CASE STUDIES

praxi

AXI master
AW
W
AR
B
R

AXI slave

monitor

idle
stall
busy

measurement signals

Pr Pr

(a) Logical topology of SoC used for demonstration system “praxi”. The passive monitor uses
AXI *VALID and *READY signals to determine when transactions occur on each channel [33].
Additional passive logic decodes the AXI sub-events, and no logic is required to decode the
bstate signals (busy, stall, and idle).

Time 300ns 400ns

(b) Sample of the praxi dataset, approximately 150 ns in length at clock frequency of 1 GHz.
With probabilistic controls held constant, all signals transition at uniform rates, i.e. system
behaviour is unchanging.

Figure 5.7: Demonstration system “praxi”. All components are synthesisable
allowing the system to run in either simulation or FPGA.

123



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

1 // ... snip ...
2 parameter TIMEOUT = 3,
3
4 always @(posedge i_clk)
5 if (bfifo_o_valid || rfifo_o_valid) idlecnt_q = TIMEOUT;
6 else if (idlecnt_q != 0) idlecnt_q = idlecnt_q -1;
7 else idlecnt_q = idlecnt_q;
8
9 assign o_idle = !o_busy && (idlecnt_q == 0);

10 // ... snip ...

Figure 5.8: System Verilog specifying behaviour of slv.idle. The relationship
between fslv.idle and fslv.busy〈−3〉 is readily apparent from lines 2, 5, and 9.

praxi dataset is comprised of 21 binary signals which are collected over several

thousand clock cycles. Figure 5.7a depicts the simple topology of the praxi system,

and Figure 5.7b shows a sample of captured data presented with the GTKWave

waveform analyser.

This static-behaviour system is used to demonstrate three visualisation fea-

tures: (1) the netgraph view provides an overview of behaviour over one time

window; (2) conceptual sub-systems can be identified with the netgraph view; (3)

the tabdelta view can be rationalised to match source code.

5.4.1.2 Behaviour Overview in Netgraph View

The single AXI link in praxi can be thought of as three sub-systems: (1) write

requests elicit write replies, (2) read requests elicit read replies, and (3) status

signals indicate the state of the slave block. While the read and write sub-systems

do not interact directly with each other, both interact with the status sub-system.

Figure 5.9 augments Figure 5.3 to highlight these three sub-systems. Strong

correlations can be seen within each sub-system, as well as interactions with the

status signals. Expected results such as read replies being strongly correlated with

read requests, and replies strongly correlated with the slv.busy status are readily

apparent. It can also be seen that the read channel is not interacting with the

write channel; i.e. expected behaviour is confirmed.

Figure 5.9 is therefore seen to demonstrate that the netgraph view confirms

all the main behavioural aspects of this simple example system. By contrast,

Figure 5.7b highlights the difficulty of identifying behavioural connections from a

busy-looking waveform diagram. For a single time window, the system behaviour

is presented as a graph that enables the viewer to quickly confirm hypotheses

about correlations between signals. The pattern of correlations is clearly visible

even at a zoomed-out perspective, thus an overview is effectively presented. Highly

connected node clusters indicate sub-systems, but recognising these requires care-

124



5.4. DEMONSTRATION CASE STUDIES

ful inspection because circular layout is not optimal for identifying clusters [73].

However, visually confirming node clusters is straightforward, and the advantages

of consistent circular layout (mental orientation, straight edges) outweigh the

disadvantage of less prominent clusters.

f

axi.r.slverr

f

axi.aw

↓

¬

f

axi.r.okay

f

axi.b

f

axi.r

¬

f

axi.aw.page2

f

axi.r.decerr

f

axi.b.slverr

f

axi.ar.page2

f

axi.aw.page3

f

axi.ar.page0

f

axi.b.decerr

↑

f

axi.ar.page1

f

axi.b.okay

f

axi.ar

↑

↑

f

slv.idle

f

slv.busy

f

slv.stall

↓

↓

f

axi.aw.page0

¬

f

axi.aw.page1 f

axi.ar.page3

WRITE READ STATUS

Figure 5.9: Identifiable behaviour sub-systems in praxi.

5.4.1.3 Behaviour Overview in Tabdelta View

Figure 5.10 demonstrates, in the scenario of investigating interactions with

slv.idle, how specific source code features manifest in the tabdelta view. Cor-

relations with all other signals are shown in Figure 5.10a over δ ∈ [−8,0]. The

darkest result cells are auto-correlations that are explained in Section 5.2.1 to offer

no new information over E[ f i]. The next most significant visual features include

the correlation of slv.idle with slv.busy, particularly for δ ∈ [−3,0]. Figure 5.10b

125



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

(a) Correlations in the praxi system between slv.idle and other signals.

(b) Correlations between slv.idle and slv.busy over time.

Figure 5.10: Specific behaviour of praxi idle signal visible in tablar view.

126



5.4. DEMONSTRATION CASE STUDIES

then shows a closer look at how this pairwise relationship evolves over time. As

expected for a static-behaviour system, results are consistent over time (u on the

vertical axis). A strong result for Ḋep with a δ-offset of 3 cycles matches with the

behaviour expected from Figure 5.8. This example therefore demonstrates how a

tabdelta view can be rationalised against source code.

5.4.2 Case Study 2: Changing Behaviours

5.4.2.1 Description of tinn System

In this second case study, a more complex system is used to demonstrate the

visualisation techniques. Where the praxi dataset is based on simulation of a

simple SoC, the “tinn” dataset is recorded from instrumented software running a

machine-learning task on a FPGA-based system, depicted in Figure 5.11. The sys-

tem’s main function is to recognise handwritten numerical digits from the Semeion

dataset [140, 141]. Tinn software is based on a FOSS project implementing a tiny

neural network [139] that has been modified to run on UltraSoC’s dual-CPU sys-

tem Taygete [138]; i.e. to support RISC-V embedded environment, allocate tasks

between two CPUs, and draw on an LCD screen. The smaller, less performant pro-

cessor A_CPU collects batches and passes them to the S_CPU which has floating-point

hardware support. Instrumenting Tinn’s C code uses the -finstrument-functions

flag of the GCC compiler to insert the __cyg_profile_func_enter/exit() standard

profiling functions at the entry and exit points of other C functions, such that each

function call produces an analytics message containing the CPU name, function

entered (or exited), and timestamp. Operation is split into two phases: First, the

training phase where a FFNN is trained using stochastic gradient descent. Second,

the prediction phase where images of handwritten numerical digits are analysed

by the FFNN to predict which digit they represent.

This known change in behaviour is used to demonstrate three points: (1)

behaviour changes are apparent in a series of netgraph views; (2) the netgraph

view provides recognisable images of specific behaviours; (3) the tabdelta view can

be used to find approximate points in time where behaviour changes.

5.4.2.2 Behaviour Changes in Netgraph View

Figure 5.12 shows netgraph views for three time windows corresponding to the

training and prediction phases, as well as a window which straddles the transition

point between them. Prior to this point, no other views of tinn’s correlations

have been shown but it is clear that Figure 5.12 represents a different system

127



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

RV64IM
"Analytics CPU"

RV64IMAFD
"System CPU"

USB-HS UST USB
Communicator

UST Message Engine

UST Static Instrumentation

AXI Interconnect

Memory

UST Taygete

(a) UltraSoC’s Taygete [138] SoC which runs the Tinn [139] software.

bstate.orig.A_CPU.draw_infer_result=0
bstate.orig.A_CPU.draw_semeion_digit=0
bstate.orig.A_CPU.get_addr=0
bstate.orig.A_CPU.prepare_batch=0
bstate.orig.A_CPU.report=0
bstate.orig.A_CPU.wait_until=1
bstate.orig.A_CPU.wait_while=0
bstate.orig.S_CPU.bprop=0
bstate.orig.S_CPU.draw_tinn=1
bstate.orig.S_CPU.fprop=0
bstate.orig.S_CPU.get_addr=0
bstate.orig.S_CPU.infer=0
bstate.orig.S_CPU.train=1
bstate.orig.S_CPU.wait_until=0
bstate.orig.S_CPU.wait_while=0
bstate.orig.S_CPU.xtpredict=0
bstate.orig.S_CPU.xttrain=0

Time 75s 76s

(b) Extract of tinn dataset of approximately 2 s in length, capturing the entry and exit
times of 17 C functions across 2 CPUs. A step change in behaviour can be observed at
around 75.6 s when operation moves from the training to the prediction phase.

Figure 5.11: Demonstration system “tinn”. A small software FFNN, running across
2 CPUs, is trained to recognise handwritten digits from the Semeion dataset [140,
141].

128



5.4. DEMONSTRATION CASE STUDIES

↑

f

S_CPU.draw_tinn

↓

¬

↓

¬

↑

f

S_CPU.infer

↑

↑

f

A_CPU.wait_until

↑
↓

↓

f

S_CPU.xttrain

↑

↓¬

¬

↓

f

A_CPU.wait_while

↓

↓

↓

↓

¬

¬

f

A_CPU.get_addr

↑

¬

↓

↓

↓

¬

↓

¬

f

A_CPU.draw_semeion_digit

¬

f

A_CPU.prepare_batch

¬

↑

f

A_CPU.draw_infer_result

f

S_CPU.fprop

¬

f

S_CPU.train

f

S_CPU.xtpredict

¬

↑

f

A_CPU.report

↑

↓

↑

f

S_CPU.bprop

¬

f

S_CPU.get_addr

↑

f

S_CPU.wait_until

↓

↑

f

S_CPU.wait_while

↓

¬

¬

↑

↑

↑

¬

↑

(a) Training phase, u = 70s.

↑

f

S_CPU.draw_tinn

↓

¬

↓

¬

↑

f

S_CPU.infer

↑

↑

f

A_CPU.wait_until

↑
↓

↓

f

S_CPU.xttrain

↑

↓¬

¬

↓

f

A_CPU.wait_while

↓

↓

↓

↓

¬

¬

f

A_CPU.get_addr

↑

¬

↓

↓

↓

¬

↓

¬

f

A_CPU.draw_semeion_digit

¬

f

A_CPU.prepare_batch

¬

↑

f

A_CPU.draw_infer_result

f

S_CPU.fprop

¬

f

S_CPU.train

f

S_CPU.xtpredict

¬

↑

f

A_CPU.report

↑

↓

↑

f

S_CPU.bprop

¬

f

S_CPU.get_addr

↑

f

S_CPU.wait_until

↓

↑

f

S_CPU.wait_while

↓

¬

¬

↑

↑

↑

¬

↑

(b) Prediction phase, u = 77s.

↑

f

S_CPU.draw_tinn

↓

¬

↓

¬

↑

f

S_CPU.infer

↑

↑

f

A_CPU.wait_until

↑
↓

↓

f

S_CPU.xttrain

↑

↓¬

¬

↓

f

A_CPU.wait_while

↓

↓

↓

↓

¬

¬

f

A_CPU.get_addr

↑

¬

↓

↓

↓

¬

↓

¬

f

A_CPU.draw_semeion_digit

¬

f

A_CPU.prepare_batch

¬

↑

f

A_CPU.draw_infer_result

f

S_CPU.fprop

¬

f

S_CPU.train

f

S_CPU.xtpredict

¬

↑

f

A_CPU.report

↑

↓

↑

f

S_CPU.bprop

¬

f

S_CPU.get_addr

↑

f

S_CPU.wait_until

↓

↑

f

S_CPU.wait_while

↓

¬

¬

↑

↑

↑

¬

↑

(c) Transition from training to prediction phase, u = 74.9s.

Figure 5.12: Changing behaviour patterns visible in netgraph for
(
Ċov,Ḋep

)
per-

spective of tinn. Correlation metrics are calculated over a window of N = 220

samples, corresponding to around 1 s. At this zoomed-out scale all text is too
small to be readable, but the different patterns of edges between Figure 5.12a
and Figure 5.12b clearly convey that system behaviour has changed between the
training and prediction phases. Using a time window which straddles the transi-
tion between phases, as in Figure 5.12c, produces a mixed pattern of edges while
system behaviour stabilises.

129



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

because the identicons are different. Another clear difference is that all signals

are bstates, shown by the blue square in each node. Even without much context it

is straightforward to see that these diagrams refer the same (previously unseen)

system.

It is clear from the visualisations that system behaviour changes between

the training phase (Figure 5.12a) and the prediction phase (Figure 5.12b) by the

pattern of edges. A time window which straddles the transition in phase presents

as a mix of many lighter edges (weaker correlations) than either training or

prediction, e.g. Figure 5.12c. Other windows in the training and prediction phases

present as similar patterns of edges as Figures 5.12a and 5.12b respectively.

This example demonstrates that the netgraph view presents a specific be-

haviour as a specific and recognisable pattern of edges. As behaviour changes, the

pattern of edges changes recognisably, thus providing an effective overview of the

system’s behaviour through time.

130



5.4. DEMONSTRATION CASE STUDIES

5.4.2.3 Behaviour Changes in Tabdelta View

Finding specific points in time where the behaviour transitions is sometimes

possible in a waveform analyser, e.g. Figure 5.11b shows a distinct change at

approximately 75.6 s. However, it is unclear from the waveform how interactions

between the signals change. Waveform diagrams may show that a change has

occurred, but do not offer much help deciphering what the system was doing on

either side of the change. Similar functionality is offered by the tabdelta view as

exemplified in Figure 5.13. Two indicators of the behaviour change at around 75.6 s

are visible: (1) in the E
[
f y

]
column on the left, the cell colour changes from light

grey to white at the row for t ∈ [75.24s,76.29s); (2) on the same row, an increase in

Ḋep and Ċos produces darker cells for low values of δ. After seeing these features,

the user knows that netgraph views before, after, and during this time are worth

further investigation.

The advantages of the tabdelta view over a waveform view are: (1) easy relative

navigation to a netgraph view or other tabdelta views, and (2) correlations are

presented directly, rather than the simple change in density of occurrences visible.

However, a waveform view has the advantage of presenting all signals in one figure,

so effectively searching for the most interesting points in time requires a blended

approach of waveform and tabdelta views. Therefore, the presented visualisation

techniques in this work should be used in conjunction with traditional waveform

analysers, rather than replacing them.

Figure 5.13: Tabdelta view of tinn over time. Change in behaviour can be seen
around 75 s.

131



CHAPTER 5. VISUALIZING PAIRWISE CORRELATIONS

5.5 Conclusion

Better methods to visualise correlations in binary SoC data are desirable to assist

engineers in their process of building up a mental picture of system behaviour.

On the basis that an understanding of system behaviour can be achieved via

knowledge of correlations between signals, visualisations are used to effectively

present this information. A methodology comprised of two different views, netgraph

and tabdelta, has been presented to visualise SoC correlations at different levels

of abstraction. The netgraph view provides a visual overview of all pairwise

correlations in a single time window, and the tabdelta view provides a detailed

view of correlations across a range of δ offsets. Each aspect of these views has been

evaluated against heuristic sets from Nielsen, Shneiderman, Gerhardt-Powals,

and Forsell and Johansson to provide confidence that the proposed techniques

improve upon state-of-the-art visualisations for correlations in binary SoC data.

Further heuristic evaluation is applied to the methodology gestalt to ensure that

the techniques in the netgraph at tabdelta views combine to support a fluid and

effective workflow.

Existing tools and methods are shown in Section 2.3.2 to be insufficient for

effective behaviour analysis in binary SoC data. The novelty of this work is in

the development, heuristic evaluation, and demonstration of visualisations aimed

specifically at SoC engineers looking to understand their system’s behaviour. All

example figures are created using screenshots from a browser-based tool which has

been created to implement these techniques and function as a practical tool. The

two systems used for demonstration represent realistic scenarios in modern SoC

development; i.e. praxi demonstrates the methodology at a low level of abstraction

(AXI channels), and tinn demonstrates the methodology at a software-based higher

level abstraction. This combination establishes that the visualisation techniques

described in this chapter are not restricted to only toy examples but are applicable

to real-life systems with significant complexity.

132



C
H

A
P

T
E

R

6
CONCLUSIONS

6.1 Summary of Thesis

The basis of this thesis is that engineers and system designers can better under-

stand how and why their system exhibits interesting attributes through the use of

correlation analysis. The use of correlation analysis for understanding behaviour

in SoCs has been explored with a view to enhancing the development of complex

systems in the increasingly competitive silicon marketplace. Chapter 1 outlines the

purpose and scope of this research, then Chapter 2 provides the required context

by reviewing state-of-the-art literature in the field.

Various interpretations of the vague term “correlation” are presented in Chap-

ter 3 along with context surrounding their use in other scientific fields. Using a

probabilistic model of binary SoC data, correlation metrics aimed at uncovering

the existence of inter-signal logical relationships are characterised. Six correlation

metrics are defined based on the concepts of set theory, geometry, and probability:

Ḣam Hamming Distance, reflected to form the Hamming Similarity, and

normalised to the unit interval.

Ṫmt Tanimoto Coefficient (also known as the Jaccard Index).

Ċls Euclidean Distance, reflected to form the Euclidean Closeness.

Ċos Cosine Similarity.

Ċov Covariance. Rectified and normalised to the unit interval.

Ḋep Statistical dependence.

133



CHAPTER 6. CONCLUSIONS

These six metrics are compared for usefulness using a Monte-Carlo approach

based on a probabilistic model of binary SoC data. The model is composed of four

probability distributions defining the number of signals in a system, how often

those signals assert, how many other signals each is connected to, and the type of

logic operations forming their connections. Evaluating the performance of these six

metrics, using PDFs of several methods of scoring binary classifiers, reveals that

the most useful metrics for uncovering connected behaviours are Ċov and Ḋep.

Further metrics are constructed and investigated using a machine learning

approach to produce metrics which perform statistically well, but lack explainabil-

ity. A series of FFNN models are trained to perform as correlation metrics using

various configurations and sets of input data. While the unexplainable nature of

metrics based on NNs makes them unattractive for engineering use, the results

obtained show that practical and useful hardware can be constructed based on sets

of counters.

Hardware implementations using the results of Chapter 3 are explored in

Chapter 4. Real-time detection of correlation between signals with a slight (but

potentially variable) offset in time presents a particular challenge for practical

hardware due to the potential costs of buffering large amounts of data. This is

tackled by introducing some randomness to the sampling process, effectively com-

bining multiple time-offsets of a signal into one defined by a Gaussian probability

distribution. A low-cost approach to windowing functions results in the contribu-

tion of a novel windowing function Logdrop which facilitates analysis focused on

a particular region of time without requiring memory to store coefficients. Coun-

ters supporting jittery sampling and specific windowing functions are designed to

collect the data found in Chapter 3 to offer the best value in terms of correlation

information.

Hardware demonstrators are first implemented and characterised on the Lat-

tice iCE40LP technology using the development process described in Appendix E.

Subsequent implementations on FPGAs in the Xilinx 7-Series technology family

are used to demonstrate practical usage of the correlator device. Correlations

between the cache interfaces of an OpenPiton+Ariane SoC running Symmetric

Multi-Processor (SMP) Linux are plotted in real-time using an oscilloscope. Incor-

poration with a commercial product line is also demonstrated using UltraSoC’s

message-based infrastructure for embedded analytics. This commercial integration

is used to capture data from a running system, then several metrics are plotted,

including metrics based on FFNNs described in Chapter 3.

Ergonomic visualisations are developed in Chapter 5 to ease the process of

transferring correlation results, and thus knowledge of behaviour, into the minds

134



6.2. ACHIEVED OBJECTIVES AND CONTRIBUTIONS

of engineers. The techniques developed are critically evaluated using 4 sets of

visualisation heuristics and compared against existing tools and techniques. Two

systems are used to demonstrate the visualisation techniques: (1) “praxi” for

specific behaviours in a static context, (2) “tinn” for changes in behaviour. The

netgraph technique combines correlations between all signals and their sibling

signals into a circular network/graph form where the weight and colour of each

edge/connection represents the level of correlation. Extensive use is made of the 2D

colourspace described in Appendix I, because of the dense presentation of values it

permits. The other presented visualisation technique, tabdelta, is used to navigate

conveniently around a result space with a focus on highlighting correlations with

specific time offsets.

6.2 Achieved Objectives and Contributions

The over-arching goal of this research is to improve the development process

of complex SoCs which is achieved via a multi-pronged approach to behaviour

analysis and the correlations comprising behaviour.

Chapter 3 makes three novel contributions:

1. A probabilistic model for “Binary SoC Data” which provides a basis for

comparison between correlation metrics.

2. A quantitative evaluation of six interpretations of the term “correlation“.

Interpretations based on the concepts of covariance (Ċov) and independence

(Ḋep) are shown to be the most useful.

3. An evaluation of counter information for correlation metrics. A minimum set

of counters equivalent to
{
E[ fx], E

[
f y

]
, E

[
fx ¯ f y

]
, E

[∣∣ fx − f y
∣∣]} is shown to

provide most valuable information.

The objective of Chapter 3 is to characterise simple but effective metrics for

estimating the presence of a logical relationship between binary SoC signals.

Through the three novel contributions listed above, this objective has been achieved,

with the results laying the foundations of the work in Chapter 4 and Chapter 5.

Chapter 4 also makes three novel contributions as it explores the practical

issues surrounding the implementation of on-chip support for correlation (and thus

behaviour) analysis.

1. An exposition on the issues around RTL implementation of circuits to support

real-time monitoring for embedded analytics.

135



CHAPTER 6. CONCLUSIONS

2. A jittery sampling mechanism which enables low-cost analysis over a config-

urable range of δ offsets.

3. A window function Logdrop designed specifically for low-cost implementation

in digital logic.

Chapter 4 culminates in the design and demonstration of a correlator device

which can be used as either a stand-alone tool or embedded into a larger SoC.

The objective of Chapter 4, to explore the issues surrounding hardware support

for correlation analysis of binary SoC signals, is achieved through the listed

contributions and evidenced via demonstration of the correlator device.

Metrics evaluated in Chapter 3 are also used in Chapter 5, which focuses on

presenting the results in an effective manner to efficiently communicate correla-

tions and context to human viewers. Two novel techniques for visually presenting

correlations are contributed:

1. Netgraph – for visualizing all inter-signal correlations in a single time win-

dow in a network/graph format.

2. Tabdelta – for visualizing a 2D slice of a result space using a table form,

particularly the difference in correlation over different δ offsets.

The contributed techniques are subjected to heuristic evaluation using four sets of

heuristics both in terms of individual features and in the gestalt.

Each contribution in Chapter 4 and Chapter 5 is accompanied by a reference

implementation 1 and worked examples through case studies.

6.3 Future Work

This thesis presents several avenues for valuable future work to further the goal

of improving SoC behaviour analysis using correlations.

• The probabilistic model of what constitutes “Binary SoC Data” may be im-

proved using heuristics gathered from datasets of real systems. The model

used in Chapter 3 has been shown to be sufficient for vastly different example

systems (OpenPiton+Ariane, praxi, tinn). A probabilistic model is used in

1 Hardware examples and systems including the correlator, OpenPiton+Ariane integration,
and praxi are provided in a git repository at https://github.com/DaveMcEwan/dmpvl/, all written
in SystemVerilog. Similarly, software tools are provided in a separate git repository at https:

//github.com/DaveMcEwan/dmppl/ which includes the “relest” experiment used in Chapter 3 and the
“eva” tool used in Chapter 5, all written in Python.

136

https://github.com/DaveMcEwan/dmpvl/
https://github.com/DaveMcEwan/dmppl/
https://github.com/DaveMcEwan/dmppl/


6.3. FUTURE WORK

this work due to the lack of available datasets; however, a model based on

the actual observed behaviour of a large collection of real SoCs may provide

the basis for developing new and interesting correlation metrics.

• Developing case studies and example systems which are non-trivial was a

significant challenge for this work, primarily due to commercial sensitivities

around high-value SoC designs. A general trend towards more open hardware

has been observed in recent years, exemplified by the rise of the openly

developed RISC-V instruction set and its many free implementations. Access

to more open hardware, especially that for performing complex workloads,

provides the opportunity to refine and advance the analytic hardware and

visualisation techniques described here.

• Section 3.5 trained a series of FFNN models as correlation metrics. Imple-

menting metrics similar to these in hardware has the potential to provide

high-quality real-time correlation analysis at a low resource cost. Further

investigation of hardware-friendly activation functions, such as qsig in Equa-

tion (3.30), and power-efficient numerical bit-formats (e.g. posits [118, 119,

120]) are compelling directions for hardware implementations which are

low-cost, low-power, real-time, and high-quality.

• Section 5.2.2 describes how different types of behaviour manifest as recognis-

able patterns in netgraph visualisations. Using machine learning techniques,

these behaviours could be classified by a further level of correlation analysis.

Behaviour recognition of this type may be interesting to the field of functional

validation, particularly where low-level hardware probes are used to detect

high-level software behaviours.

137





A
P

P
E

N
D

I
X

A
LIST OF PUBLICATIONS

• David McEwan and Jose Nunez-Yanez, “Relationship Estimation Metrics in

Binary SoC Data,” in Machine Learning, Optimization, and Data Science

(LOD), Sep 2019. [8]

• David McEwan, Marcin Hlond, and Jose Nunez-Yanez, “Visualizations for

Understanding SoC behaviour,” in 15th Conference on Ph.D Research in

Microelectronics and Electronics (PRIME), Jul 2019. [132]

139





A
P

P
E

N
D

I
X

B
PARAMETER SETS

RTL modules are often parameterised in order to allow reuse across multiple

projects. For example, a timer module might have a parameter to control the range

that can be representable, thus limiting the number of inferred DFFs. Design

parameters are used at all levels of SoC development and can be split according to

two partitions shown as a linear set diagram [142] in Figure B.1.

Design parameters can first be partitioned into behavioural and implementa-

tion subsets.

• Behavioural parameters - Affect logical function; e.g. Depth of a buffer, width

of cache line, cache eviction policy, etc. Effects of behavioural parameters

may be determined using purely logic models.

• Implementation parameters - Do not affect logical function; e.g. Ripple carry

adder vs carry-lookahead adder, circular vs linear buffer, clock distribution

strategy, etc.

Or, alternatively, into logical and physical subsets.

• Logical parameters - Affect logical specification; e.g. Depth of buffer, circular

vs linear buffer, ripple carry adder vs carry-lookahead adder etc.

• Physical parameters - Affect only the physical implementation; e.g. Cell

placements, foundry process node, clock distribution strategy, etc.

Behavioural parameters are fundamental to the design because their effects are

visible to higher levels such as software, whereas implementation parameters are

141



APPENDIX B. PARAMETER SETS

FPGA

Abstract model

Digital HDL simulation

ASIC

Design

Physical

Implementation

Logical

Behavioural

Circuit

Figure B.1: Linear set diagram of SoC parameters. Labels underneath show which
design levels each subset is visible to.

used for fine-grained tweaking intended to be functionally transparent. Similarly,

logical parameters are more fundamental than physical parameters because they

are specified by the frontend rather than the backend. Circuit parameters affect

only the circuit being programmed into a FPGA (or etched into an ASIC), but not

the behaviour of the system. The effects of circuit parameters cannot be measured

using logical simulations because they require a hardware implementation to be

characterised. As such, circuit parameters make the most subtle design contri-

butions and are the most difficult to analyse using simulations. At the prototype

stage, a circuit parameter choosing between a ripple adder or a carry-lookahead

adder is less important than a behavioural parameter which chooses the adder’s

result width.

This thesis is concerned only with logical parameters, all of which may be

used in Hardware Description Language (HDL) source such as 4-state SystemVer-

ilog [37] or 9-state VHDL [143].

142



A
P

P
E

N
D

I
X

C
RESULTS FROM SECTION 3.4 BY SYSTEM TYPE

KDE plots of accuracy PDF by system type. More weight on the right-hand side is

always better. X-axis is accuracy from 0 (never correct) to 1 (always correct). Y-axis

is the probability density that the metric will have that score (unitless).

143



APPENDIX C. RESULTS FROM SECTION 3.4 BY SYSTEM TYPE

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(a) True Positive Rate (Sensitivity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(b) True Negative Rate (Specificity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(c) Positive Predictive Value (Precision).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(d) Negative Predictive Value.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(e) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(f) Balanced Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(g) Book-Maker’s Informedness.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(h) Matthews Correlation Coefficient.

Figure C.1: KDE plots of score PDFs for systems with AND-only logical relation-
ships. More weight on the right-hand side is always better.

144



0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(a) True Positive Rate (Sensitivity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(b) True Negative Rate (Specificity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(c) Positive Predictive Value (Precision).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(d) Negative Predictive Value.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(e) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(f) Balanced Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(g) Book-Maker’s Informedness.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(h) Matthews Correlation Coefficient.

Figure C.2: KDE plots of score PDFs for systems with OR-only logical relationships.
More weight on the right-hand side is always better.

145



APPENDIX C. RESULTS FROM SECTION 3.4 BY SYSTEM TYPE

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(a) True Positive Rate (Sensitivity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(b) True Negative Rate (Specificity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(c) Positive Predictive Value (Precision).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(d) Negative Predictive Value.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(e) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(f) Balanced Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(g) Book-Maker’s Informedness.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(h) Matthews Correlation Coefficient.

Figure C.3: KDE plots of score PDFs for systems with XOR-only logical relation-
ships. More weight on the right-hand side is always better.

146



0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(a) True Positive Rate (Sensitivity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(b) True Negative Rate (Specificity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(c) Positive Predictive Value (Precision).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(d) Negative Predictive Value.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(e) Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(f) Balanced Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(g) Book-Maker’s Informedness.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(h) Matthews Correlation Coefficient.

Figure C.4: KDE plots of score PDFs for systems with a mix of AND-only, OR-only,
and XOR-only logical relationships.

147



APPENDIX C. RESULTS FROM SECTION 3.4 BY SYSTEM TYPE

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(a) True Positive Rate (Sensitivity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(b) True Negative Rate (Specificity).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(c) Positive Predictive Value (Precision).

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(d) Negative Predictive Value.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(e) Accuracy

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(f) Balanced Accuracy.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(g) Book-Maker’s Informedness.

0.0 0.2 0.4 0.6 0.8 1.0

Ham
Tmt
Cls
Cos
Cov
Dep

(h) Matthews Correlation Coefficient.

Figure C.5: KDE plots of score PDFs for systems with logical relationships defined
by left-hand-associative functions composed of AND, OR, XOR operations.

148



A
P

P
E

N
D

I
X

D
MODEL SUMMARIES FOR FFNN-BASED METRICS

D.1 Counter Inputs Combination perfCntrs

1 Model: "perfCntrs_2qsig_0_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_19 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_54 (Dense) (None , 2) 6
8 _________________________________________________________________
9 dense_56 (Dense) (None , 1) 3

10 =================================================================
11 Total params: 9
12 Trainable params: 9
13 Non-trainable params: 0
14 _________________________________________________________________
15 EVAL 8 perfCntrs_2qsig_0_sigm loss=-0.0002 acc =0.0445 mse =0.8861

1 Model: "perfCntrs_2qsig_2qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_20 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_57 (Dense) (None , 2) 6
8 _________________________________________________________________
9 dense_58 (Dense) (None , 2) 6

10 _________________________________________________________________
11 dense_59 (Dense) (None , 1) 3
12 =================================================================
13 Total params: 15
14 Trainable params: 15
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 9 perfCntrs_2qsig_2qsig_sigm loss=-0.0013 acc =0.9555 mse =0.0443

149



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

1 Model: "perfCntrs_4qsig_4qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_17 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_48 (Dense) (None , 4) 12
8 _________________________________________________________________
9 dense_49 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_50 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 37
14 Trainable params: 37
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 6 perfCntrs_4qsig_4qsig_sigm loss=-0.0004 acc =0.9555 mse =0.0442

1 Model: "perfCntrs_4sigm_4sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_15 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_42 (Dense) (None , 4) 12
8 _________________________________________________________________
9 dense_43 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_44 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 37
14 Trainable params: 37
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 4 perfCntrs_4sigm_4sigm_sigm loss=-0.0002 acc =0.0445 mse =0.6579

1 Model: "perfCntrs_4tanh_4tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_16 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_45 (Dense) (None , 4) 12
8 _________________________________________________________________
9 dense_46 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_47 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 37
14 Trainable params: 37
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 5 perfCntrs_4tanh_4tanh_sigm loss=-0.0165 acc =0.3076 mse =0.6577

1 Model: "perfCntrs_8qsig_8qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_11 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_30 (Dense) (None , 8) 24
8 _________________________________________________________________
9 dense_31 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_32 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 105
14 Trainable params: 105
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 0 perfCntrs_8qsig_8qsig_sigm loss=-0.0003 acc =0.0445 mse =0.9356

150



D.1. COUNTER INPUTS COMBINATION PERFCNTRS

1 Model: "perfCntrs_8relu_8relu_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_14 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_39 (Dense) (None , 8) 24
8 _________________________________________________________________
9 dense_40 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_41 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 105
14 Trainable params: 105
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 3 perfCntrs_8relu_8relu_sigm loss=-0.0652 acc =0.9555 mse =0.0440

1 Model: "perfCntrs_8sigm_8sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_12 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_33 (Dense) (None , 8) 24
8 _________________________________________________________________
9 dense_34 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_35 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 105
14 Trainable params: 105
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 1 perfCntrs_8sigm_8sigm_sigm loss=-0.0003 acc =0.0445 mse =0.8416

1 Model: "perfCntrs_8tanh_8tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_13 (InputLayer) [(None , 2)] 0
6 _________________________________________________________________
7 dense_36 (Dense) (None , 8) 24
8 _________________________________________________________________
9 dense_37 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_38 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 105
14 Trainable params: 105
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 2 perfCntrs_8tanh_8tanh_sigm loss=-0.0149 acc =0.2467 mse =0.7244

151



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

D.2 Counter Inputs Combination withAssist

1 Model: "withAssist_2qsig_0_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_59 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_174 (Dense) (None , 2) 16
8 _________________________________________________________________
9 dense_176 (Dense) (None , 1) 3

10 =================================================================
11 Total params: 19
12 Trainable params: 19
13 Non-trainable params: 0
14 _________________________________________________________________
15 EVAL 8 withAssist_2qsig_0_sigm loss=-0.3776 acc =0.9555 mse =0.0434

1 Model: "withAssist_2qsig_2qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_60 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_177 (Dense) (None , 2) 16
8 _________________________________________________________________
9 dense_178 (Dense) (None , 2) 6

10 _________________________________________________________________
11 dense_179 (Dense) (None , 1) 3
12 =================================================================
13 Total params: 25
14 Trainable params: 25
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 9 withAssist_2qsig_2qsig_sigm loss=-0.4129 acc =0.9555 mse =0.0438

1 Model: "withAssist_4qsig_4qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_57 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_168 (Dense) (None , 4) 32
8 _________________________________________________________________
9 dense_169 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_170 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 57
14 Trainable params: 57
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 6 withAssist_4qsig_4qsig_sigm loss=-0.4333 acc =0.9543 mse =0.0413

152



D.2. COUNTER INPUTS COMBINATION WITHASSIST

1 Model: "withAssist_4sigm_4sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_55 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_162 (Dense) (None , 4) 32
8 _________________________________________________________________
9 dense_163 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_164 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 57
14 Trainable params: 57
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 4 withAssist_4sigm_4sigm_sigm loss=-0.4120 acc =0.9520 mse =0.0443

1 Model: "withAssist_4tanh_4tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_56 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_165 (Dense) (None , 4) 32
8 _________________________________________________________________
9 dense_166 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_167 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 57
14 Trainable params: 57
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 5 withAssist_4tanh_4tanh_sigm loss=-0.4748 acc =0.9506 mse =0.0462

1 Model: "withAssist_8qsig_8qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_51 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_150 (Dense) (None , 8) 64
8 _________________________________________________________________
9 dense_151 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_152 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 145
14 Trainable params: 145
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 0 withAssist_8qsig_8qsig_sigm loss=-0.4534 acc =0.9512 mse =0.0456

1 Model: "withAssist_8relu_8relu_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_54 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_159 (Dense) (None , 8) 64
8 _________________________________________________________________
9 dense_160 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_161 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 145
14 Trainable params: 145
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 3 withAssist_8relu_8relu_sigm loss=-0.4738 acc =0.9538 mse =0.0447

153



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

1 Model: "withAssist_8sigm_8sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_52 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_153 (Dense) (None , 8) 64
8 _________________________________________________________________
9 dense_154 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_155 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 145
14 Trainable params: 145
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 1 withAssist_8sigm_8sigm_sigm loss=-0.4326 acc =0.9524 mse =0.0444

1 Model: "withAssist_8tanh_8tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_53 (InputLayer) [(None , 7)] 0
6 _________________________________________________________________
7 dense_156 (Dense) (None , 8) 64
8 _________________________________________________________________
9 dense_157 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_158 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 145
14 Trainable params: 145
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 2 withAssist_8tanh_8tanh_sigm loss=-0.4660 acc =0.9514 mse =0.0467

154



D.3. COUNTER INPUTS COMBINATION FULLASSIST

D.3 Counter Inputs Combination fullAssist

1 Model: "fullAssist_2qsig_0_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_9 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_24 (Dense) (None , 2) 24
8 _________________________________________________________________
9 dense_26 (Dense) (None , 1) 3

10 =================================================================
11 Total params: 27
12 Trainable params: 27
13 Non-trainable params: 0
14 _________________________________________________________________
15 EVAL 8 fullAssist_2qsig_0_sigm loss=-0.3828 acc =0.9547 mse =0.0393

1 Model: "fullAssist_2qsig_2qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_10 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_27 (Dense) (None , 2) 24
8 _________________________________________________________________
9 dense_28 (Dense) (None , 2) 6

10 _________________________________________________________________
11 dense_29 (Dense) (None , 1) 3
12 =================================================================
13 Total params: 33
14 Trainable params: 33
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 9 fullAssist_2qsig_2qsig_sigm loss=-0.4144 acc =0.9520 mse =0.0440

1 Model: "fullAssist_4qsig_4qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_7 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_18 (Dense) (None , 4) 48
8 _________________________________________________________________
9 dense_19 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_20 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 73
14 Trainable params: 73
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 6 fullAssist_4qsig_4qsig_sigm loss=-0.4118 acc =0.9544 mse =0.0411

155



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

1 Model: "fullAssist_4sigm_4sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_5 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_12 (Dense) (None , 4) 48
8 _________________________________________________________________
9 dense_13 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_14 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 73
14 Trainable params: 73
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 4 fullAssist_4sigm_4sigm_sigm loss=-0.4176 acc =0.9531 mse =0.0425

1 Model: "fullAssist_4tanh_4tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_6 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_15 (Dense) (None , 4) 48
8 _________________________________________________________________
9 dense_16 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_17 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 73
14 Trainable params: 73
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 5 fullAssist_4tanh_4tanh_sigm loss=-0.4270 acc =0.9536 mse =0.0446

1 Model: "fullAssist_8qsig_8qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_1 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense (Dense) (None , 8) 96
8 _________________________________________________________________
9 dense_1 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_2 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 177
14 Trainable params: 177
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 0 fullAssist_8qsig_8qsig_sigm loss=-0.4356 acc =0.9536 mse =0.0442

1 Model: "fullAssist_8relu_8relu_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_4 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_9 (Dense) (None , 8) 96
8 _________________________________________________________________
9 dense_10 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_11 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 177
14 Trainable params: 177
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 3 fullAssist_8relu_8relu_sigm loss=-0.4756 acc =0.9543 mse =0.0445

156



D.3. COUNTER INPUTS COMBINATION FULLASSIST

1 Model: "fullAssist_8sigm_8sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_2 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_3 (Dense) (None , 8) 96
8 _________________________________________________________________
9 dense_4 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_5 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 177
14 Trainable params: 177
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 1 fullAssist_8sigm_8sigm_sigm loss=-0.4198 acc =0.9535 mse =0.0434

1 Model: "fullAssist_8tanh_8tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_3 (InputLayer) [(None , 11)] 0
6 _________________________________________________________________
7 dense_6 (Dense) (None , 8) 96
8 _________________________________________________________________
9 dense_7 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_8 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 177
14 Trainable params: 177
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 2 fullAssist_8tanh_8tanh_sigm loss=-0.4615 acc =0.9524 mse =0.0458

157



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

D.4 Counter Inputs Combination withIsect

1 Model: "withIsect_2qsig_0_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_39 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_114 (Dense) (None , 2) 8
8 _________________________________________________________________
9 dense_116 (Dense) (None , 1) 3

10 =================================================================
11 Total params: 11
12 Trainable params: 11
13 Non-trainable params: 0
14 _________________________________________________________________
15 EVAL 8 withIsect_2qsig_0_sigm loss=-0.0162 acc =0.9555 mse =0.0436

1 Model: "withIsect_2qsig_2qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_40 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_117 (Dense) (None , 2) 8
8 _________________________________________________________________
9 dense_118 (Dense) (None , 2) 6

10 _________________________________________________________________
11 dense_119 (Dense) (None , 1) 3
12 =================================================================
13 Total params: 17
14 Trainable params: 17
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 9 withIsect_2qsig_2qsig_sigm loss=-0.0080 acc =0.9555 mse =0.0433

1 Model: "withIsect_4qsig_4qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_37 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_108 (Dense) (None , 4) 16
8 _________________________________________________________________
9 dense_109 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_110 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 41
14 Trainable params: 41
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 6 withIsect_4qsig_4qsig_sigm loss=-0.1311 acc =0.9555 mse =0.0440

158



D.4. COUNTER INPUTS COMBINATION WITHISECT

1 Model: "withIsect_4sigm_4sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_35 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_102 (Dense) (None , 4) 16
8 _________________________________________________________________
9 dense_103 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_104 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 41
14 Trainable params: 41
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 4 withIsect_4sigm_4sigm_sigm loss=-0.0328 acc =0.8777 mse =0.0938

1 Model: "withIsect_4tanh_4tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_36 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_105 (Dense) (None , 4) 16
8 _________________________________________________________________
9 dense_106 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_107 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 41
14 Trainable params: 41
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 5 withIsect_4tanh_4tanh_sigm loss=-0.2503 acc =0.9555 mse =0.0426

1 Model: "withIsect_8qsig_8qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_31 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_90 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_91 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_92 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 0 withIsect_8qsig_8qsig_sigm loss=-0.0548 acc =0.9555 mse =0.0445

1 Model: "withIsect_8relu_8relu_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_34 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_99 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_100 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_101 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 3 withIsect_8relu_8relu_sigm loss=-0.3273 acc =0.9546 mse =0.0440

159



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

1 Model: "withIsect_8sigm_8sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_32 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_93 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_94 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_95 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 1 withIsect_8sigm_8sigm_sigm loss=-0.1980 acc =0.9555 mse =0.0441

1 Model: "withIsect_8tanh_8tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_33 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_96 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_97 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_98 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 2 withIsect_8tanh_8tanh_sigm loss=-0.3363 acc =0.9546 mse =0.0441

160



D.5. COUNTER INPUTS COMBINATION WITHSYMDIFF

D.5 Counter Inputs Combination withSymdiff

1 Model: "withSymdiff_2qsig_0_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_49 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_144 (Dense) (None , 2) 8
8 _________________________________________________________________
9 dense_146 (Dense) (None , 1) 3

10 =================================================================
11 Total params: 11
12 Trainable params: 11
13 Non-trainable params: 0
14 _________________________________________________________________
15 EVAL 8 withSymdiff_2qsig_0_sigm loss=-0.0909 acc =0.9400 mse =0.0514

1 Model: "withSymdiff_2qsig_2qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_50 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_147 (Dense) (None , 2) 8
8 _________________________________________________________________
9 dense_148 (Dense) (None , 2) 6

10 _________________________________________________________________
11 dense_149 (Dense) (None , 1) 3
12 =================================================================
13 Total params: 17
14 Trainable params: 17
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 9 withSymdiff_2qsig_2qsig_sigm loss=-0.1844 acc =0.9555 mse =0.0425

1 Model: "withSymdiff_4qsig_4qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_47 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_138 (Dense) (None , 4) 16
8 _________________________________________________________________
9 dense_139 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_140 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 41
14 Trainable params: 41
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 6 withSymdiff_4qsig_4qsig_sigm loss=-0.2471 acc =0.9555 mse =0.0437

161



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

1 Model: "withSymdiff_4sigm_4sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_45 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_132 (Dense) (None , 4) 16
8 _________________________________________________________________
9 dense_133 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_134 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 41
14 Trainable params: 41
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 4 withSymdiff_4sigm_4sigm_sigm loss=-0.2485 acc =0.9555 mse =0.0445

1 Model: "withSymdiff_4tanh_4tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_46 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_135 (Dense) (None , 4) 16
8 _________________________________________________________________
9 dense_136 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_137 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 41
14 Trainable params: 41
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 5 withSymdiff_4tanh_4tanh_sigm loss=-0.2860 acc =0.9546 mse =0.0431

1 Model: "withSymdiff_8qsig_8qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_41 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_120 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_121 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_122 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 0 withSymdiff_8qsig_8qsig_sigm loss=-0.2576 acc =0.9555 mse =0.0444

1 Model: "withSymdiff_8relu_8relu_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_44 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_129 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_130 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_131 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 3 withSymdiff_8relu_8relu_sigm loss=-0.3156 acc =0.9546 mse =0.0438

162



D.5. COUNTER INPUTS COMBINATION WITHSYMDIFF

1 Model: "withSymdiff_8sigm_8sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_42 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_123 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_124 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_125 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 1 withSymdiff_8sigm_8sigm_sigm loss=-0.2757 acc =0.9555 mse =0.0445

1 Model: "withSymdiff_8tanh_8tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_43 (InputLayer) [(None , 3)] 0
6 _________________________________________________________________
7 dense_126 (Dense) (None , 8) 32
8 _________________________________________________________________
9 dense_127 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_128 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 113
14 Trainable params: 113
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 2 withSymdiff_8tanh_8tanh_sigm loss=-0.2651 acc =0.9555 mse =0.0440

163



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

D.6 Counter Inputs Combination withIsectSymdiff

1 Model: "withIsectSymdiff_2qsig_0_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_29 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_84 (Dense) (None , 2) 10
8 _________________________________________________________________
9 dense_86 (Dense) (None , 1) 3

10 =================================================================
11 Total params: 13
12 Trainable params: 13
13 Non-trainable params: 0
14 _________________________________________________________________
15 EVAL 8 withIsectSymdiff_2qsig_0_sigm loss=-0.1613 acc =0.9555 mse =0.0432

1 Model: "withIsectSymdiff_2qsig_2qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_30 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_87 (Dense) (None , 2) 10
8 _________________________________________________________________
9 dense_88 (Dense) (None , 2) 6

10 _________________________________________________________________
11 dense_89 (Dense) (None , 1) 3
12 =================================================================
13 Total params: 19
14 Trainable params: 19
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 9 withIsectSymdiff_2qsig_2qsig_sigm loss=-0.2176 acc =0.9555 mse =0.0444

1 Model: "withIsectSymdiff_4qsig_4qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_27 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_78 (Dense) (None , 4) 20
8 _________________________________________________________________
9 dense_79 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_80 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 45
14 Trainable params: 45
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 6 withIsectSymdiff_4qsig_4qsig_sigm loss=-0.2196 acc =0.9555 mse =0.0426

164



D.6. COUNTER INPUTS COMBINATION WITHISECTSYMDIFF

1 Model: "withIsectSymdiff_4sigm_4sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_25 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_72 (Dense) (None , 4) 20
8 _________________________________________________________________
9 dense_73 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_74 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 45
14 Trainable params: 45
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 4 withIsectSymdiff_4sigm_4sigm_sigm loss=-0.2486 acc =0.9555 mse =0.0444

1 Model: "withIsectSymdiff_4tanh_4tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_26 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_75 (Dense) (None , 4) 20
8 _________________________________________________________________
9 dense_76 (Dense) (None , 4) 20

10 _________________________________________________________________
11 dense_77 (Dense) (None , 1) 5
12 =================================================================
13 Total params: 45
14 Trainable params: 45
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 5 withIsectSymdiff_4tanh_4tanh_sigm loss=-0.2573 acc =0.9555 mse =0.0425

1 Model: "withIsectSymdiff_8qsig_8qsig_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_21 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_60 (Dense) (None , 8) 40
8 _________________________________________________________________
9 dense_61 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_62 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 121
14 Trainable params: 121
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 0 withIsectSymdiff_8qsig_8qsig_sigm loss=-0.2627 acc =0.9555 mse =0.0445

1 Model: "withIsectSymdiff_8relu_8relu_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_24 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_69 (Dense) (None , 8) 40
8 _________________________________________________________________
9 dense_70 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_71 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 121
14 Trainable params: 121
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 3 withIsectSymdiff_8relu_8relu_sigm loss=-0.2965 acc =0.9555 mse =0.0445

165



APPENDIX D. MODEL SUMMARIES FOR FFNN-BASED METRICS

1 Model: "withIsectSymdiff_8sigm_8sigm_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_22 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_63 (Dense) (None , 8) 40
8 _________________________________________________________________
9 dense_64 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_65 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 121
14 Trainable params: 121
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 1 withIsectSymdiff_8sigm_8sigm_sigm loss=-0.2590 acc =0.9555 mse =0.0432

1 Model: "withIsectSymdiff_8tanh_8tanh_sigm"
2 _________________________________________________________________
3 Layer (type) Output Shape Param #
4 =================================================================
5 input_23 (InputLayer) [(None , 4)] 0
6 _________________________________________________________________
7 dense_66 (Dense) (None , 8) 40
8 _________________________________________________________________
9 dense_67 (Dense) (None , 8) 72

10 _________________________________________________________________
11 dense_68 (Dense) (None , 1) 9
12 =================================================================
13 Total params: 121
14 Trainable params: 121
15 Non-trainable params: 0
16 _________________________________________________________________
17 EVAL 2 withIsectSymdiff_8tanh_8tanh_sigm loss=-0.3374 acc =0.9542 mse =0.0441

166



A
P

P
E

N
D

I
X

E
QUANTIFIED CONFIDENCE IN fMAX ROBUSTNESS

Chapter 4 develops an RTL design (correlator) which is implemented first as a

stand-alone device, then as a passive integrated monitoring component in a larger

external SoC (OpenPiton+Ariane). The following design aims were followed for

the correlator device, but are also applicable for developing general RTL designs

suitable for easy integration with larger projects.

1. Compatibility with industry-standard RTL toolchains - Relying only on

widely-supported tool features ensures that integration with external projects

is straightforward, as demonstrated via case studies.

2. Portability to a variety of logic technologies - Although it is impractical to

manufacture ASICs to confirm a design’s portability to different process

nodes, FPGAs are routinely used commercially to prototype digital logic

systems. Successful implementation of the design on multiple FPGA tech-

nologies gives confidence in portability to ASIC process nodes.

3. Low resource requirements - For integration to another project, a large

increase in resource requirements, such as LUTs, DSP slices, or memory

blocks, is likely to affect the synthesis and PnR process.

4. Low power requirements - An integration target which includes any power-

dependent behaviours such as Dynamic Voltage and Frequency Scaling

(DVFS) cannot be passively analysed if the action of analysis consumes so

much power that behaviour is significantly altered.

167



APPENDIX E. QUANTIFIED CONFIDENCE IN fMAX ROBUSTNESS

5. Parameterised design - Allowing an integrator the flexibility to make trade-

off decisions using parameters is preferable to forcing onerous modifications

to RTL logic.

6. High fmax - Deep logic and the associated restrictions on clock speed are

undesirable because this would restrict target integrations to those with low

clock speeds.

Standard digital logic implementation workflows read in RTL code (e.g. written

in VHDL or Verilog), synthesise a netlist (e.g. formatted as BLIF [144], EDIF [145],

or a restricted subset of Verilog), then assign the elements of that netlist to real

on-chip components with a PnR tool. Synthesis tools operate using an sequence

of “passes” to transform the abstract syntax tree from RTL into a network of

connections between primitive components. The function and order of these passes

determine what the resulting netlist looks like and there are many different ways

to produce a netlist which conforms to the same RTL specification. Finding the

ideal result of the PnR process is a hard problem with no known globally optimal

solution, so heuristic methods are employed. Using a seed value, which may be

chosen pseudo-randomly, an initial placement is created, then improved upon

using an iterative process such as simulated annealing [30]. This means that

it is possible to influence the resulting bitstream by setting the seed value such

that some values produce better solutions than others in terms of fmax or power

consumption.

E.1 Confidence In A Single Design

The guidelines of portability and high fmax are adhered to by characterising

individual design components in isolation. It is therefore useful to examine the

build process of intermediate prototype devices which implement only a minimal

set of design features. An advantage of developing on the Lattice iCE40 family is

that there is a high-quality FOSS toolchain from RTL to bitstream. This means

that many experiments may be run in parallel and on many different machines

without license restrictions. Exploiting this streamlined workflow allows designs to

be characterised by running PnR many times, using the same netlist but different

seed values for the initial placement. Plotting the PMF of the achieved fmax then

provides a quantification of how robust a design is against variations in the PnR

step.

On a modern workstation PnR for the Lattice iCE40 technology takes around

5 s to 20 s to complete the process of converting a netlist to a bitstream using either

168



E.1. CONFIDENCE IN A SINGLE DESIGN

arachne-pnr [128] or nextpnr [146] on a single CPU core. This type of Multiple

Place-and-Route (Multi-PnR) experiment is performed using 1000 seed values to

obtain a statistically significant visualisation of how likely a design is likely to

achieve a particular value of fmax.

20 25 30 35 40 45 50 55
MHz

40.65 51.94

39.46 51.09

24.13 38.55

nextpnr.log
nextpnr.rpt
arachne.rpt

Figure E.1: PMF of Multi-PnR results of a prototype design on a Lattice
iCE40LP8K FPGA implementing a 100 B memory accessed via BytePipe over
USB-FS. A legacy PnR tool arachne-pnr which does not attempt to optimise for
timing is seen (in blue) to achieve the slowest solutions. Results are reported
by analysing the netlists with icetime. A new PnR tool nextpnr produces faster
solutions, also analysed by icetime (shown in green). Results reported directly by
nextpnr (shown in red) are seen to be slightly more optimistic.

Figure E.1 shows the results from a prototype used to characterise an imple-

mentation of a memory-mapped register block over the BytePipe protocol (described

in Appendix G). Immediately obvious is that using nextpnr provides consistently

better results than arachne. The blue plot refers to bitstreams produced with

arachne, and the value of fmax found using an external bitstream analysis tool

icetime. The red and green plots both refer to the same bitstreams but use different

methods to extract the value of fmax. Red shows the fmax reported directly by

nextpnr, and green is the value reported using icetime which makes it directly

comparable to blue. Icetime uses an algorithm which is intended to be pessimistic

and can be seen by the green showing a most likely fmax of around 45 MHz and

red showing a most likely fmax of around 47 MHz.

Statistical analysis of the pseudo-random PnR process provides a quantifiable

169



APPENDIX E. QUANTIFIED CONFIDENCE IN fMAX ROBUSTNESS

level of confidence that the design will meet or exceed a particular fmax goal. For

example, from Figure E.1 it can be seen that the probability that a randomly chosen

PnR seed will produce a bitstream capable of functioning correctly at 30 MHz is

approximately 1
2 when using arachne, and approximately 1 when using nextpnr.

E.2 Comparison of Competing Designs

The shape of these fmax PMF plots also provides useful information to the engineer

evaluating a design. A shorter, fatter, flatter plot indicates that a design is quite

dependent on the initial placement in the PnR process, whereas a taller thinner

plot suggests a design which is less affected by PnR. Figure E.2 shows a comparison

of two functionally equivalent designs with different implementations. It can be

seen that Figure E.2a indicates a design which is likely to be easier to integrate

with other components due to the higher fmax and lower LUT requirement.

An ideal plot for a stand-alone design would be a tall thin spike on the right-

hand side showing that the design will reliably produce a fast bitstream regardless

of the PnR process used. Alternatively, an ideal plot for a design intended to

be integrated as part of a larger system may be a rather low bump towards

the right-hand side. A flattish right-trending bump indicates that the design is

highly dependent on physical placement and therefore may require some seed

experimentation to fit around other placement-restricted components in a larger

design. A plot with multiple peaks suggests that the algorithm used by the PnR

tool has found multiple local minima in the solution space, which demonstrates

the importance of running this kind of analysis to find a good seed value for a final

production bitstream.

170



E.2. COMPARISON OF COMPETING DESIGNS

35 40 45 50 55 60 65 70 75
MHz

53.40 71.12

52.33 68.72

33.76 53.34

nextpnr.log
nextpnr.rpt
arachne.rpt

(a) Multi-PnR results of a prototype design on a Lattice iCE40LP8K FPGA imple-
menting a USB-FS serial port gadget which simply echoes bytes. Requires 762 LUTs.

35 40 45 50 55 60 65 70 75
MHz

48.23 60.61

47.11 59.18

33.95 48.79

nextpnr.log
nextpnr.rpt
arachne.rpt

(b) Multi-PnR results of a functionally equivalent design based on work by Luke
Valenty, Lawrie Griffiths, and David Williams. Requires 1015 LUTs.

Figure E.2: Multi-PnR comparison of functionally equivalent design choices. Fig-
ure E.2b is based on the bootloader design shipped with the TinyFPGA-BX,
whereas Figure E.2a is a functionally equivalent design produced as part of this
research.

171



APPENDIX E. QUANTIFIED CONFIDENCE IN fMAX ROBUSTNESS

E.3 Comparing Similar Configurations

A statistical approach to the PnR design step is also useful for understanding

the physical limitations of a design. The results plotted in Figure E.3 provide a

compelling demonstration where six similar designs are compared using the fmax

reported by a single tool.

Marsaglia [147] first introduced the xorshift family of PRNG algorithms as

an alternative to the popular Mersenne Twister algorithms which use a large

state of 2.5 KiB in the most popular variant MT19937. An analysis by Brent [148]

notes that xorshift PRNGs are equivalent to well-understood Linear Feedback Shift

Register (LFSR) algorithms which are known to fail statistical tests in the standard

DIEHARD and TestU01 [149] suites. Vigna provided a thorough exploration [150,

151] of the xorshift family and proposed using addition or multiplication operations

to scramble the output in order to improve statistical qualities. The xoroshiro

family of PRNG algorithms developed by Vigna and Blackman were originally

designed to produce pseudo-random sequences of 64 b or 32 b numbers which pass

randomness tests and execute quickly in software. The components of the naming

prefix (xo, ro, shi) indicate the number of XOR, rotate, and shift bitwise operations,

the number (64, 128, 256) is the size of state in bits, and symbols (+, *) indicate

arithmetic operations. From the practical hardware perspective of implementing

these algorithms in digital logic, the operations involved are attractive due to their

simplicity and low cost. Rotate and shift operations are zero-cost as they translate

to a static arrangement of wires between D-type flip-flops which implement the

state. XOR operations can be implemented using a single gate or LUT, and may be

combined with other logic using Boolean reduction. Addition and multiplication

operations usually require significantly more logic with the carry signal being the

slowest to propagate.

The xoroshiro128+ algorithm is chosen as a reference point because it has

middle values for its attributes such as 128 b state and a single 64 b addition.

Four other algorithms from the xoroshiro family are examined which have similar

attributes which can be neatly compared. Other algorithms of this family are

likely to have implementation problems on a slow FPGA process such as Lattice

iCE40LP because of either a large amount of state (causing congestion problems),

or deep logic (causing timing problems).

The experimental platform used is in the form of a USB-FS gadget using

the TinyFPGA-BX development board and the Multi-PnR method described in

Appendix E. A baseline design was implemented containing the logic required for

the USB Abstract Control Module subsystem and provides a simple memory-map

172



E.3. COMPARING SIMILAR CONFIGURATIONS

protocol which consumes 894 LUTs, 745 of which are the USB subsystem. The

number of LUT cells reported in Table E.1 is that given by the PnR tool (NextPnR),

minus the 894 of the baseline implementation. While it is possible for the synthesis

tool (Yosys) to optimise away unnecessary logic, the baseline implementation has

been designed to avoid these effects as much as possible. The PnR tool is also used

to report fmax using the same flow for all algorithms. The PnR process contains

random elements such as generating an initial layout which the tool attempts

to improve on, and the pseudo-random process is controlled using a seed value.

One thousand PnR solutions of each algorithm’s netlist are created to see a fuller

picture of what value of fmax should be expected. By plotting the distribution of

reported fmax values in Figure E.3 the shape of each plot highlights characteristics

of the design which are heavily affected by the pseudo-random PnR process.

Algorithm Comments wrt. xoroshiro128+ #LUTs fmax (MHz)
xoroshiro128+ 381 60.70
xoshiro128++ 2× 32 b add vs. 1× 64 b add 312 59.69
xoshiro128+ 32 b vs. 64 b add 272 68.26
xoshiro256+ 256 b vs. 128 b state 472 60.70
xoroshiro64* 32 b constant multiply vs. 64 b add 910 48.96

Table E.1: Comparison of PRNG implementations on Lattice iCE40LP.

Examples of different Multi-PnR plot shapes are shown in Figure E.3 where

artefacts of the FPGA technology are visible such as faster routing paths for adders,

including their hard limit, as well as restrictions from routing congestion, and the

deep logic of a large multiplier. Artefacts of the FPGA technology are discerned by

the shape of the Multi-PnR plots:

• xoroshiro128+, requiring 128 b of state and a single 64 b adder, is a middle-

valued member of this family of PRNGs providing a point of comparison for

the other four algorithms. The tall spike at the maximum achievable fmax of

60.70 MHz indicates that initial layout has little effect on fmax because the

64 b carry chain is a fundamentally limiting factor.

• xoshiro128++ also requires 128 b of state, but needs two sequential 32 b

adders instead of one 64 b adder. The deeper logic of two smaller adders,

compared to one adder, prevents carry chain optimisation, which leads to the

slightly lower fmax limit of 59.69 MHz. The limit on achievable fmax appears

to be softer than that of xoroshiro128+, presumably because the PnR tool

has more options on how to place two smaller adders compared to one large

adder.

173



APPENDIX E. QUANTIFIED CONFIDENCE IN fMAX ROBUSTNESS

45 50 55 60 65 70
MHz

53.90 69.84
56.15 60.70

52.65 59.69
52.70 68.26

53.31 60.70
41.86 48.96

baseline (no PRNG)
xoroshiro128+
xoshiro128++
xoshiro128+
xoshiro256+
xoroshiro64*

Figure E.3: Multi-PnR results of a prototype design on a Lattice iCE40LP8K FPGA
implementing different PRNGs from the Xoroshiro family. All results are those
directly reported by nextpnr. A baseline design which returns a constant number
(shown in black) demonstrates that the underlying USB-FS subsystem is highly
dependent on the PnR process but may achieve up to 69.84 MHz.

• xoshiro128+, requiring only a single 32 b adder, produces PnR solutions

achieving fmax nearly as fast as the baseline. The difference is presumed

due to the extra congestion of 272 LUTs which constitutes around 30% of the

netlist

• xoshiro256+ requires twice the amount of state compared to xoroshiro128+

which, due to congestion, appears to limit the feasible PnR options for the

64 b adder. The resulting narrow spike of the PMF indicates that this config-

uration is not very dependent on initial layout, but may present problems

when integrated with another system if other parts restrict PnR layout.

• xoroshiro64* requires a 64 b multiplier. The Lattice iCE40 technology does

not provide specific cells for multipliers, so this must be synthesised using

LUT cells, resulting in deep logic paths that are unable to operate at high

frequency. The deep logic paths can be seen in timing reports to be the

prominent factor limiting fmax to 48.96 MHz.

174



A
P

P
E

N
D

I
X

F
MODELLING THE JITTERY STROBE COUNTER CIRCUIT

Chapter 4 presents a circuit which produces a single-cycle assertion on o_strobe at

nearly regular intervals. See Figure 4.5 for the logical circuit design which is based

around a counter c. The nominal (mean) period is configurable via ctrlPeriod, as is

the amount of jitter (variance) via ctrlJitter. For brevity, let s be the non-negative

integer held in ctrlPeriod, and let j be the unit-normalised real held in ctrlJitter

in Q0.8 format; i.e. s ∈ [0,220) and j ∈ [0,1).

A PRNG is used to introduce (pseudo-)randomness to the strobe interval via two

random variables J ∼ Bernoulli( j) and K ∼ Bernoulli
(1

2
)
. On each clock cycle, J

determines whether to alter the period, then K determines whether that alteration

is an extension or a contraction. At the beginning of an interval (in the cycle

immediately following an assertion of o_strobe) the counter is initialised c = s−1.

The down-counter process is such that on each clock cycle a contraction decrements

c by 2, no alteration decrements c by 1, and an extension leaves c unchanged; i.e.

with no contractions or extensions, c reaches 0 in exactly s cycles. In a practical

circuit the concept of negative c is removed; i.e. the contraction paths which could

lead to c =−1 and c =−2 are absent, as shown in Figure F.1

This process is a variant of the simple random walk on Z, therefore the devia-

tion from an unaltered down-counter after n cycles (s−n− c) can be modelled by

the binomial distribution B
(
n, j

2

)
. Each cycle makes one step with Pr= j, and that

step is +1 instead of −1 with Pr= 1
2 . The Cumulative Density Function (CDF) of

the deviation after n cycles is given in Equation (F.1). However, this approximation

is not completely accurate because of the two missing contraction paths.

175



APPENDIX F. MODELLING THE JITTERY STROBE COUNTER CIRCUIT

3

exact

co
n
tr

a
ct

2

exact

e
x
te

n
d

co
n
tr

a
ct

1

exact

e
x
te

n
d

0

e
x
te

n
d

e
x
te

n
ds-4

exact

co
n
tr

a
ct

s-3

exact

e
x
te

n
d

co
n
tr

a
ct

s-2

exact

e
x
te

n
d

s-1

e
x
te

n
d

e
x
te

n
d

co
n
tr

a
ct

co
n
tr

a
ct

...

wrap

Note: Missing contraction paths

Figure F.1: State machine of strobe generation down-counter c.

Pr(c Ê s | n)≈ 1
2

[
1+erf

(
n− s√
s j
p

2

)]
(F.1)

Let q0 = q2 = j
2 and q1 = (1− j) refer to the probability of the counter decre-

menting by 0, 2, or 1 respectively. Let p(c,n) be the probability of c reaching exactly

0 in n cycles, as defined in Equation (F.2). The Cumulative Mass Function (CMF)

of the counter’s deviation is given in Equation (F.3).

p(c,n) =



qc : n = 1, c ∈ {0,1,2}

q0 p(c,n−1) : c = 0

q0 p(c,n−1) + q1 p(c−1,n−1) : c = 1

q2 p(c−2,n−1) : c = 2n

q1 p(c−1,n−1) + q2 p(c−2,n−1) : c = 2n−1

q0 p(c,n−1) + q1 p(c−1,n−1) + q2 p(c−2,n−1) : otherwise

(F.2)

Pr(c Ê s | n)=


0 : s > 2n∑
d∈[s,2n]

p(d,n) : otherwise (F.3)

176



0 20 40 60 80 100 120 140
#cycles

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Pr

ob
ab

ilit
y

j=0.3
j=0.5
j=0.9

Figure F.2: PMF of number of cycles in a period with s = 100.

Equation (F.3) can be used for precise modelling of the intervals between

assertions of o_strobe, or in case s is small. The discrete first derivative of Equa-

tion (F.3) gives the PMF of period length, as plotted in Figure F.2. Where s is

sufficiently large, the PMF of a Binomial distribution approximates the PDF of a

Gaussian Normal distribution. The recursive nature of Equation (F.3) requires

intensive computation where s is large, but Equation (F.1) provides a reasonable

approximation.

Python code demonstrating that the explicit recursive approach (Equation (F.3))

matches the continuous approximation (Equation (F.1)) is provided at:

https://github.com/DaveMcEwan/dmpvl/blob/master/misc/strobe/plotStrobePeriodPMF.py.

177

https://github.com/DaveMcEwan/dmpvl/blob/master/misc/strobe/plotStrobePeriodPMF.py




A
P

P
E

N
D

I
X

G
BYTEPIPE PROTOCOL

The purpose of the BytePipe protocol is to provide a memory map of up to 127 B,

using an underlying “base” protocol capable of flow-controlled 8 b Flow Control

Digits (flits). Each byte on the 127 B map is individually accessible for both read

and write requests. BytePipe is designed to be simple to implement and low-cost

in terms of power and LUT/area. It is assumed that the base protocol uses a

handshaking mechanism to source an ordered stream of bytes losslessly, and this

assumpion allows BytePipe to be implemented with shallow logic circuits. Common

base protocols which are suitable include UART, USB, Unix TTY, and anything

else which may be represented as a pair of 8b-wide FIFOs flowing in opposite

directions.

Although BytePipe can be used to implement a 127 B Random Access Memory

(RAM), its intended purpose is to provide a structure and control mechanism for

SoC peripheral registers. The behaviour of each addressable byte is user-defined

for addresses 1 to 127, but address 0 is reserved for use controlling burst behaviour.

All burst transactions have an overhead of 5 B. The maximum efficiency of a burst

read is 255
255+5 , just over 98%. The maximum efficiency of a burst write is 256

256+5 , also

just over 98%.

Each byte location may be used in any of the following suggested modes,

although this is not an exhaustive list.

• RW (Read and write)

– Single byte of RAM, where reads return the last value written.

– Reads and writes return and affect separate bits of state.

179



APPENDIX G. BYTEPIPE PROTOCOL

– Data pushed/pulled to/from a First In First Out (FIFO).

• R (Read-only) Writing has no effect.

– Non-programmable constant, such as an identifier like "core number 5".

– Non-constant value, such as a status like “number of entries currently

in queue”.

– Data pulled from FIFO.

• W (Write-only) Reading returns a constant, or an unspecified value.

– Initiation such as "begin processing when any value written here".

– Set alias or clear alias to another set of bits.

– Data pushed to FIFO.

Flow control uses valid/ready handshaking with the same semantics as AXI.

1. A byte has been transmitted when both valid and ready are asserted in the

same clock cycle. The byte being “transmitted” means that the receiver

has taken a valid sample of data and the sender should move onto sending

another byte.

2. Sender may not change data until both valid and ready have been used to

indicate the byte has been transmitted.

3. Sender must not wait for ready before asserting valid when there the sender

has data to send.

4. Receiver must not wait for valid before asserting ready, so during a period of

inactivity ready will be continually asserted.

There are a small number of simple rules governing the 17 mandatory bits

of state comprising the protocol FSM (addr : 7b, burst : 8b, rd : 1b, wr : 1b). A

transaction is initiated by the host sending the device one byte, while the device is

not already processing a transaction. The addr register is updated on the initiation

of each transaction. All single transactions cause the device to produce a 1 B

response. The burst register may be written using address 0 to indicate that the

next transaction is “burst”, rather than “single”.

180



0 1 2 3 4 5 6 7

i_clk

i_bp_data {rd,5} {rd,6}

o_bp_ready

addr_q 5 6

burst_q 0

rd_q

wr_q

o_bp_data @? @5

o_bp_valid

Figure G.1: A single read transaction is initiated by the host sending a single byte
with the top bit clear; i.e. unsigned integer < 128. The device immediately returns
a byte containing the value at whatever address was previously in addr, then
updates addr. For example, if addr contains 0x12, and the host begins a single read
transaction by sending 0x55, then the device will return the contents of location
0x12 and update addr to be 0x55.

0 1 2 3 4

i_clk

i_bp_data {wr,5} 123

o_bp_ready

addr_q 5

burst_q 0

rd_q

wr_q

o_bp_data @5

o_bp_valid

Figure G.2: A single write transaction is initiated by the host sending a single byte
with the top bit set; i.e. unsigned integer > 127. The device immediately begins
waiting for the data byte, and updates addr. The next byte received by the device
is then written to that the location pointed to by addr. This second byte causes
the device to return 1 B containing the value which is now overwritten, in effect a
write acknowledgement. For example, if the host begins a single write transaction
by sending 0xD5, then the device will update addr to 0x55. When the host sends
the next byte, 0xAA the device will write the value 0xAA to address 0x55.

181



APPENDIX G. BYTEPIPE PROTOCOL

0 1 2 3 4 5 6 7

i_clk

i_bp_data {wr,0} 2 {rd,100}

o_bp_ready

addr_q 0 100

burst_q 0 2 1 0

rd_q

wr_q

o_bp_data @0 @100 @100

o_bp_valid

txnBegin

inBurst

inBurstRd

inBurstWr

rdSet

rdClr

wrSet

wrClr

burstInit

burstDecr

Figure G.3: A read burst is initiated by the host by performing a single write
transaction to address 0 where the value is the number of bytes desired. Therefore,
a read burst may be used to receive up to 255 B. The host then sends another
byte with the top bit clear and the address in the lower 7 b, as with a single read.
The first byte returned is the value at address 0, which is implementation-specific.
Each subsequent byte returned by the device decrements burst, and when burst= 0
the transaction is complete.

182



0 1 2 3 4 5 6 7 8

i_clk

i_bp_data {wr,0} 2 {wr,100} d1 d2 d3

o_bp_ready

addr_q 0 100

burst_q 0 2 1 0

rd_q

wr_q

o_bp_data @0 @100

o_bp_valid

txnBegin

inBurst

inBurstRd

inBurstWr

rdSet

rdClr

wrSet

wrClr

burstInit

burstDecr

Figure G.4: A write burst is initiated by the host by performing a single write
transaction to address 0 where the value is one less than the number of bytes
desired. Therefore, a write burst may be used to send up to 256 B. The host then
sends another byte with the top bit set and the address in the lower 7 b, as with a
single write. Each subsequent byte received by the device decrements burst, and
when burst= 0 the transaction is complete.

183





A
P

P
E

N
D

I
X

H
USB-FS ELECTRICAL INTERFACE OVER FIVE PINS

On the TinyFPGA-BX development board there is an existing USB socket, com-

plete with termination resistors and GPIO pins operating at 3.3 V. This makes

developing a single USB Full Speed interface on the TinyFPGA-BX a simple affair,

requiring only RTL logic to drive the appropriate GPIO pins.

The USB-FS specification requires the data lines D+,D- to be driven with a low

state of 0 V to 0.3 V and a high state of 2.8 V to 3.6 V. A 1.5 kΩ pull-up resistor

connecting D+ to 3.3 V is used to indicate USB-FS mode. Conveniently, this allows

3.3 V GPIO pins to interface directly with a USB-FS host without additional

components [152].

In order for the same RTL logic to function on FPGA technologies which drive

GPIO pins at different voltage ranges, an external electrical interface Printed

Circuit Board (PCB) is required. The Xilinx 7-Series, for example, operates GPIO

at 1.8 V.

Using this external circuitry, it is practical to add a USB-FS interface to the

lower-voltage Xilinx 7-Series development boards. Alternatively, this external

circuitry enables the addition of extra USB-FS interfaces to the higher-voltage

TinyFPGA-BX.

Full KiCAD [153] schematics and PCB layout files in Gerber format are avail-

able at: https://github.com/DaveMcEwan/dmpvl/tree/master/misc/extUsb.

185

https://github.com/DaveMcEwan/dmpvl/tree/master/misc/extUsb


APPENDIX H. USB-FS ELECTRICAL INTERFACE OVER FIVE PINS

Figure H.1: Schematic for external USB-FS electrical interface. The 2 b level-
shifter (U1) and low-dropout regulator (U2) allow FPGAs with GPIO voltages in
the range 1.65 V to 5.5 V to safely use the USB lines D+ and D- which operate at
3.3 V. The analogue switch (U3) connects the 1.5 kΩ pull-up (R3) when a voltage
greater than 1.65 V is applied between Vext and GND. This allows a USB host to
detect when the FPGA connected to J2 is undergoing re-programming. The host
will then be able to automatically disconnect, re-connect, and re-enumerate once
programming has completed. Series termination resistors (R1 and R2) provide some
protection from electrical noise introduced from both the transceiver switching
circuitry and environmental effects on the USB cable. The capacitors and ferrite
bead are used to stabilise the constant voltage nodes (+5V, +3.3V, Vext) and suppress
the propagation of noise into the USB cable.

186



(a) Top view.

(b) Bottom view.

Figure H.2: PCB rendering of external USB-FS electrical interface. Outline
dimensions are 12.75 mmx22.75 mm. USB Micro B header is not rendered.

187





A
P

P
E

N
D

I
X

I
COLOURSPACE FOR BOUNDED 2D DATA

Not everybody perceives the same colours in the same way, even among different

people with no diagnosed colour-blindness. This was first demonstrated by Ishi-

hara [154] where a series of tests was developed to quantify and classify colour

vision. As our perception of colour comes from a combination of psychological phe-

nomena and the densities of various types of cell in the retina [101], the Ishihara

tests are a vast simplification of a higher-dimensional space [155].

Despite differences in perception between individuals, colour is used perva-

sively to present multi-attribute datasets in a dense and uncluttered manner.

Greater ability to distinguish additional dimensions of data reduces the amount

of time spent browsing between different plots. In turn, this reduces the mental

load on a viewer by giving them more time to think about higher things. Despite

differences in human perception, colour is found to be extremely useful for present-

ing rich datasets in a dense and uncluttered manner. This appendix defines and

demonstrates a colourspace which is perceived similarly by both those with normal

colour vision and those with protanopia, the most common form of colour-blindness,

often called red-green colour-blindness.

Binary SoC data is defined in Chapter 3 with the domain B= {0,1}, and each of

the correlation metrics has both a domain and codomain of [0,1] 1 ; i.e. all values

can be expressed as a percentage bounded between 0% and 100%. A 1D value

on the unit interval is easily represented using greyscale with the extreme cases

0 → white and 1 → black, or vice-versa. This appendix contributes a colourspace

1 This thesis only explores the usefulness of metrics with binary SoC data, f i[t] ∈ B, but the
definitions also cover the more general case of normalised data, f i[t] ∈ [0,1].

189



APPENDIX I. COLOURSPACE FOR BOUNDED 2D DATA

which is convenient to represent 2D values of the form (a,b) ∈ [0,1]2.

This novel colourspace has been developed to allow the viewer to quickly discern

the approximate location of a point in 2D space by its colour. Naturally, due to

physiological differences between individuals, it is not possible to ensure that all

viewers perceive the exact same value. Instead, as with all colourspace schemes,

only an imprecise estimation is possible. Imprecise estimations are still very useful,

particularly when searching for values in a range, identifying trends, or filtering

out uninteresting points. Examples of values for which this colourspace can be used

to represent include
(
Ċov,Ḋep

)
,
(
E[ fx],E

[
f y

])
, (bandwidth::%,debugEnabled::bool), or

any combination thereof.

Equation (I.1) thru Equation (I.6) define the mapping from [0,1]2 to w-bit Red/-

Green/Blue (RGB) colours as depicted in Figure I.1a. Figure I.1b thru Figure I.1d

show simple variations on the defining equations.

θ =
(
1−

p
a2 +b2
p

2

)γ
(I.1)

φ= arctan
(a

b

)
(I.2)

colorRGB =
⌊
(2w −1)θ(φr , φg, φb)

⌋
(I.3)

φr = 1 (I.4)

φg = 1+max
(
0, φ− π

4

)
(I.5)

φb = 1+max
(
0,

π

4
−φ

)
(I.6)

Equation (I.1) calculates the magnitude θ (Euclidean distance from the ori-

gin), and Equation (I.2) calculates the angular offset φ from the main diagonal.

Where a = b, then φr = φg = φb = 1, meaning the resulting colour is greyscale.

Equation (I.3) has a codomain of [0,2w)3 with the 3-tuple components representing

red, green, and blue pixel brightness. A worked example is given in Figure I.2.

Many modern computer applications use w = 8 allowing each component to be

represented by an unsigned integer ∈ [0,256) in one byte.

Covering a printed page in too much ink is undesirable so this colourspace

uses less ink for points with small values on both axes. Alternatively, for a dataset

containing mostly large values, Figure I.1b shows a variation with an inverted

origin, created by removing the “1−” from Equation (I.1). Inverting the origin, i.e.

using brighter colours for larger values, may also be suitable for display on screen

where a “dark theme” is desired to reduce eye fatigue.

Protanopia, the most common form of colour-blindness affecting up to 10%

of Caucasian men, including this author, has been considered in developing this

colorspace. To avoid confusion and mis-communication, perceived colours should

be similar between protans and those with normal colour vision. Figure I.1c and

190



a

b

1

0 1

(a) Bounded 2D Colorspace defined by Equa-
tion (I.1) thru Equation (I.6).

a

b

1

0 1

(b) Inverted origin (where darker means
smaller) doesn’t work well on printed paper.

a

b

1

0 1

(c) Using green instead of red on the magni-
tude (Equation (I.4)) produces cyan in upper-
left corner, which is indistinguishable from
grey for propantopes.

a

b

1

0 1

(d) Using blue instead of red on the magni-
tude (Equation (I.4)) produces cyan in lower-
right corner, which is indistinguishable from
grey for propantopes.

Figure I.1: Plot of the full colourspace in Figure I.1a, i.e. the cross product (a×b).
Variations on the defined colourspace are shown alongside for comparison.

191



APPENDIX I. COLOURSPACE FOR BOUNDED 2D DATA

Figure I.1d demonstrate variations on the definition which are not suitable for

protans because cyan is essentially indistinguishable from grey.

A worked example of mapping a point in bounded 2D space to a colour is given

in Figure I.2, and a usage example is given in Figure I.3 where a system designer

can visually process the results of many experimental configurations. Distinct

colours in each corner (white, green, purple, and black) allow the designer to create

goals with visual analogies, e.g. “Greener is better”, thus facilitating intuitive

optimisation over two parameters at once.

192



Aim: Represent the data point (performance= 70%,bandwidth= 45%) with colour.

Step 1: Calculate magnitude and angular offset. Note that a gamma correction
of γ = 1 is used here for simplicity. Different presentation media should use
appropriate gamma correction values.

θ =
(
1−

p
0.72 +0.452

p
2

)
= 0.41157

φ= arctan
(

0.7
0.45

)
= 0.99946

Step 2: Calculate exponents for each colour component.

φr = 1

φg = 1+max
(
0, 0.99946− π

4

)
= 1.21406

φb = 1+max
(
0,

π

4
−0.99946

)
= 1

Step 3: Let w = 8 and calculate colour components.

colorR = ⌊
255×0.411571⌋ = 104

colorG = ⌊
255×0.411571.21406⌋ = 86

colorB = ⌊
255×0.411571⌋ = 104

Step 4: Convert to hexadecimal RGB format and display.

(104,86,104)= (0x68,0x56,0x68)→ #685668

Figure I.2: Worked example of colour calculation.

193



APPENDIX I. COLOURSPACE FOR BOUNDED 2D DATA

100 75 50 25 0 25 50 75 100

60

40

20

0

20

40

60

(a) Variants of algorithm, parameterised by α and β. The sweet-spot (most purple area)
appears around α= 30, β=−40.

AHB AXI OCP Wishbone
Interconnect Protocol

8

32

64Ca
ch

e 
Lin

e 
By

te
s

(b) Variants of SoC configuration with different interconnect protocols and cache-line
widths. The sweet-spot (darkest area) appears as either AXI/64 or Wishbone/64.

Figure I.3: Example SoC optimisation problem assisted by use of this colourspace.
Colors are used to represent a = performance vs b = bandwidth utilisation over
many variants of algorithm and interconnect configuration. Firstly, interconnect
configuration is fixed and many variations of the algorithm are tested, where
the system designer aims for best performance with least bandwidth utilisation,
i.e. purple is best. Secondly, the algorithm parameters are fixed, and various
interconnect configurations are tested where the system designer makes the trade-
off between performance and cache width to reduce hardware cost, i.e. black is
best.

194



BIBLIOGRAPHY

[1] E. H. Lee, M. M. Krell, A. Tsyplikhin, V. Rege, E. Colak, and K. W. Yeom,

“NanoBatch DPSGD: Exploring Differentially Private Learning on Ima-

geNet with Low Batch Sizes on the IPU,” arXiv Computer Science, Sep

2021. doi: arXiv:2109.12191

[2] P. A. Buitrago, J. Uran, and N. A. Nystrom, “System Integration of Neo-

cortex, a Unique, Scalable AI Platform,” in Practice and Experience

in Advanced Research Computing (PEARC), no. 37, Jul 2021. doi:

10.1145/3437359.3465604

[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,

Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale Machine

Learning,” in Proceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation, Nov 2016. ISBN 978-1-931971-33-1

[4] M. Morris and Icera Inc, “Data Transmission,” Great Britain Patent

091 038.8, 2009, A method of transmitting data from a first module

to addressable storage devices in a second module.

[5] nRF52832 Product Specification, Nordic Semiconductor), 2021, Section 22

PPI - Programmable Peripheral Interconnect.

[6] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall, 1985.

ISBN 0-13-153271-5

[7] UL-000566-TR-4-An Introduction to the UltraSoC Architecture, UltraSoC

Technologies Ltd, Dec 2018.

[8] D. McEwan and J. Nunez-Yanez, “Relationship estimation metrics in binary

SoC data,” in Proceedings of 5th International Conference on Machine

Learning, Optimization, and Data Science (LOD2019), Sep 2019. doi:

10.1007/978-3-030-37599-7_11

195



BIBLIOGRAPHY

[9] E. T. Hvannberg, E. L.-C. Law, and M. K. Larusdottir, “Heuristic Eval-

uation: Comparing Ways of Finding and Reporting Usability Prob-

lems,” Interacting With Computers, vol. 19, pp. 225–240, 2007. doi:

10.1016/j.intcom.2006.10.001

[10] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to

Knowledge Discovery in Databases,” AI Magazine, vol. 17, pp. 37–54,

1996.

[11] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, From Data Mining to

Knowledge Discovery: An Overview. American Association for Artificial

Intelligence, 1996, pp. 1–34. ISBN 0262560976

[12] Z. W. Ellerby and R. J. Tunney, “The Effects of Heuristics and Apophenia on

Probabilistic Choice,” Advances in Cognitive Psychology, vol. 13, no. 4,

pp. 280–294, 2017. doi: 10.5709/acp-0228-9

[13] R. J. Hilderman and H. J. Hamilton, “Knowledge Discovery and Interesting-

ness Measures: A Survey,” University of Regina, Tech. Rep., 1999. doi:

10.1.1.588.4570

[14] J. F. Roddick and S. Rice, “What’s Interesting About Cricket? - On Thresholds

and Anticipation in Discovered Rules,” SIGKDD Explorations, vol. 3, pp.

1–5, 2001. doi: 10.1145/507533.507535

[15] J. Y. Chen, “Transformation of VLSI Technologies, Systems and Applications;

The Rise of Foundry and its Ecosystem,” in International Symposium on

VLSI Technology, Systems and Application (VLSI-TSA), 2013, pp. 1–2.

doi: 10.1109/VLSI-TSA.2013.6545604

[16] W.-S. Liao and P.-A. Hsiung, “FVP: a formal verification platform for SoC,”

in IEEE International [Systems-on-Chip] SoC Conference Proceedings,

2003, pp. 21–24. doi: 10.1109/SOC.2003.1241454

[17] C. Cummings, “Clock Domain Crossing (CDC) Design and

Verification Techniques using SystemVerilog,” SNUG2008,

2008. [Online]. Available: http://www.sunburst-design.com/papers/

CummingsSNUG2008Boston_CDC.pdf

[18] L. Cao, “In-depth behavior understanding and use: The behavior informatics

approach,” Information Sciences, vol. 180, no. 17, pp. 3067–3085, 2010.

doi: https://doi.org/10.1016/j.ins.2010.03.025

[19] C. Wang, L. Cao, and C.-H. Chi, “Formalization and Verification of

Group Behavior Interactions,” IEEE Transactions on Systems, Man,

196

http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2008Boston_CDC.pdf


BIBLIOGRAPHY

and Cybernetics: Systems, vol. 45, no. 8, pp. 1109–1124, 2015. doi:

10.1109/TSMC.2015.2399862

[20] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed.

Pearson, 2013. ISBN 978-93-325-3503-9

[21] B. Sklar, Digital Communications Fundamentals and Applications, 2nd ed.

Pearson Education, 2016. ISBN 978-0-13-4724058

[22] K. Pearson, “Note on Regression and Inheritance in the Case of Two Parents,”

Proceedings of the Royal Society of London, vol. 58, pp. 240–242, Jun

1895. doi: 10.1098/rspl.1895.0041

[23] M. C. Abounaima, F. Z. el Mazouri, L. Lamrini, N. Nfissi, N. el Makhfi,

and M. Ouzarf, “The Pearson Correlation Coefficient Applied to Com-

pare Multi-Criteria Methods: Case the Ranking Problematic,” in In-

ternational Conference on Innovative Research in Applied Science, En-

gineering and Technology (IRASET), 2020, pp. 1–6. doi: 10.1109/I-

RASET48871.2020.9092242

[24] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms.

Cambridge University Press, 2002. ISBN 0521642981

[25] J. L. Rodgers and W. A. Nicewander, “Thirteen Ways to Look at the Correla-

tion Coefficient,” The American Statistitian, vol. 42, no. 1, pp. 59–66, Feb

1988. doi: 10.1080/00031305.1988.10475524

[26] A. Krizhevsky, “Learning multiple layers of features from tiny

images,” University of Toronto, 2009. [Online]. Available: https:

//www.cs.toronto.edu/~kriz/cifar.html

[27] D. Rossi, I. Loi, A. Pullini, C. Muller, A. Burg, F. Conti, L. Benini, and

P. Flatresse, “A Self-Aware Architecture for PVT Compensation and

Power Nap in Near Threshold Processors,” IEEE Design And Test, vol. 34,

no. 6, pp. 46–53, 2017. doi: 10.1109/MDAT.2017.2750907

[28] F. Zaruba and L. Benini, “The Cost of Application-Class Processing: Energy

and Performance Analysis of a Linux-ready 1.7GHz 64bit RISC-V Core

in 22nm FDSOI Technology,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, Nov 2019. doi:

10.1109/TVLSI.2019.2926114

[29] A. Waterman and K. Asanovic, The RISC-V Instruction Set Manual Volume

I: Unpriviliged ISA, 20191213th ed., RISC-V Foundation, Dec 2019.

[Online]. Available: https://riscv.org/specifications/

197

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://riscv.org/specifications/


BIBLIOGRAPHY

[30] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and M. Milanovic,

“Yosys+nextpnr: an Open Source Framework from Verilog to Bitstream

for Commercial FPGAs,” IEEE Annual International Symposium on

Field-Programmable Custom Computing Machines, no. 27, pp. 1–4, Apr

2019.

[31] A. Torralba and A. A. Efros, “Unbiased Look at Dataset Bias,” in CVPR 2011,

2011, pp. 1521–1528. doi: 10.1109/CVPR.2011.5995347

[32] L. Fei-Fei, R. Fergus, and P. Perona, “Learning Generative Visual Models

from Few Training Examples: An Incremental Bayesian Approach Tested

on 101 Object Categories,” in Conference on Computer Vision and Pattern

Recognition Workshop, 2004, pp. 178–178. doi: 10.1109/CVPR.2004.383

[33] ARM Limited, AMBA AXI and ACE Protocol Specification, 2011. [Online].

Available: http://arm.com

[34] Accellera, Open Core Protocol Specification 3.0, 2013. [Online]. Available:

http://www.eda.org/downloads/standards/ocp

[35] N. Frohlich, B. M. Riess, U. A. Wever, and Q. Zheng, “A New Approach for

Parallel Simulation of VLSI Circuits on a Transistor Level,” IEEE Trans-

actions on Circuits and Systems I: Fundamental Theory and Applications,

vol. 45, no. 6, pp. 601–613, 1998. doi: 10.1109/81.678468

[36] J. Djigbenou, T. V. Nguyen, C. W. Ren, and D. S. Ha, “Development of TSMC

0.25 µm standard cell library,” in IEEE Proceedings of International

Conference on Sensing, Communication and Networking, Jun 2007, pp.

566–568. doi: 10.1109/SECON.2007.342966

[37] IEEE 1800-2017 Standard for SystemVerilog – Unified Hardware De-

sign, Specification, and Verification Language, Design Automa-

tion Standards Commitee of the IEEE Computer Society. doi:

10.1109/IEEESTD.2018.8299595

[38] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,

H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,

B. Keller, D. Kim, and J. Koenig, “The Rocket Chip Generator,” Electrical

Engineering and Computer Sciences, University of California at Berkeley,

Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online]. Available: http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[39] IEEE 1364-1995 Standard Hardware Description Language Based on the

Verilog Hardware Description Language, IEEE Computer Society. doi:

10.1109/IEEESTD.1996.81542

198

http://arm.com
http://www.eda.org/downloads/standards/ocp
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html


BIBLIOGRAPHY

[40] S. Lagraa, “New MP-SoC Profiling Tools Based on Data Mining Techniques,”

Ph.D. dissertation, L’Université de Grenoble, 2014. [Online]. Available:

https://tel.archives-ouvertes.fr/tel-01548913

[41] UL-001174-TR-3B-Static Instrumentation User Guide, UltraSoC Technolo-

gies Ltd, Dec 2018.

[42] E. Edgar and T. Newman, RISC-V External Debug Support, 1st ed., SiFive

Inc, 2021. [Online]. Available: https://riscv.org/specifications/

[43] IEEE The Nexus 5001 Forum Standard for a Global Embedded Processor

Debug Interface, IEEE Industry Standards and Technology Organization,

2012.

[44] G. Zellweger, D. Lin, and T. Roscoe, “So many performance events, so little

time,” in APSys16 Proceedings of the 7th ACM SIGOPS Workshop on

Systems, Aug 2016. doi: 10.1145/2967360.2967375. [Online]. Available:

https://people.inf.ethz.ch/troscoe/pubs/zellweger_apsys_2016.pdf

[45] ChipScope Pro Software and Cores User Guide, Xilinx), 2012, UG029.

[46] Quartus Programmable Logic Development Software SignalTap User’s Guide,

Altera Corporation (Intel Corporation), 1999, P25-04733-01.

[47] UL-000247-TR-19I-Bus Monitor User Guide, UltraSoC Technologies Ltd,

Dec 2018.

[48] S. K. Roy, “Top Level SOC Interconnectivity Verification using Formal Tech-

niques,” in IEEE Eighth International Workshop on Microprocessor Test

and Verification, 2008, pp. 63–70. doi: 10.1109/MTV.2007.22

[49] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges and

Trends in Modern SoC Design Verification,” IEEE Design And Test,

vol. 34, no. 5, pp. 7–22, 2017. doi: 10.1109/MDAT.2017.2735383

[50] R. S. Mitra, “Strategies for Mainstream Usage of Formal Verifica-

tion,” in Proceedings of the 45th Annual Design Automation Confer-

ence. Association for Computing Machinery, 2008, pp. 800–805. doi:

10.1145/1391469.1391674. ISBN 9781605581156

[51] D. Gentner and K. J. Holyoak, “Reasoning and Learning by Analogy,” Ameri-

can Psychologist, vol. 52, no. 1, pp. 32–34, Jan 1997. doi: 10.1037/0003-

066x.52.1.32

[52] D. Gentner and A. B. Markman, “Structure Mapping in Analogy and Sim-

ilarity,” American Psychologist, vol. 52, no. 1, pp. 45–56, Jan 1997. doi:

10.1037//0003-066x.52.1.45

199

https://tel.archives-ouvertes.fr/tel-01548913
https://riscv.org/specifications/
https://people.inf.ethz.ch/troscoe/pubs/zellweger_apsys_2016.pdf


BIBLIOGRAPHY

[53] J. Nielsen, Usability Engineering. Academic Press, 1993. ISBN 978-

0125184069

[54] ——, “Enhancing The Exploratory Power of Usability Heuristics,” in Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems,

Apr 1994, pp. 152–158. doi: 10.1145/191666.191729

[55] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations,” in Proceedings IEEE Symposium on Visual

Languages, 1996, pp. 336–343. doi: 10.1109/VL.1996.545307

[56] J. Gerhardt-Powals, “Cognitive Engineering Principles for Enhancing

Human-Computer Performance,” International Journal of Human-

Computer Interaction, vol. 8, no. 2, pp. 189–211, 1996. doi:

10.1080/10447319609526147

[57] R. Amar and J. Stasko, “A Knowledge Task-Based Framework for Design and

Evaluation of Information Visualizations,” in IEEE Symposium on Infor-

mation Visualization, 2004, pp. 143–150. doi: 10.1109/INFVIS.2004.10

[58] T. Zuk, L. Schlesier, P. Neumann, M. S. Hancock, and S. Carpendale,

“Heuristics for Information Visualization Evaluation,” in Proceedings

of the 2006 AVI Workshop on BEyond Time and Errors: Novel Evalu-

ation Methods for Information Visualization, May 2006, pp. 1–6. doi:

10.1145/1168149.1168162. ISBN 1595935622

[59] A. Tarell, A. Fruhling, R. Borgo, C. Forsell, G. Grinstein, and J. Scholtz,

“Toward Visualization-Specific Heuristic Evaluation,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 57, no. 9, pp. 110–125,

Nov 2014. doi: 10.1145/2669557.2669580

[60] C. Forsell and J. Johansson, “An Heuristic Set for Evaluation in In-

formation Visualization,” in ACM Proceedings of the International

Conference on Advanced Visual Interfaces, 2010, pp. 199–206. doi:

10.1145/1842993.1843029. ISBN 9781450300766

[61] T. Bybell, GTKWave 3.3 Wave Analyzer User’s Guide, GTKWave project, Jul

2018. [Online]. Available: http://gtkwave.sourceforge.net/gtkwave.pdf

[62] Synopsys, “VCS.” [Online]. Available: https://www.synopsys.com/verification/

simulation/vcs.html

[63] J. Gautier, P.-A. Davoine, and C. Cunty, “Helical Time Representation to

Visualize Return-Periods of Spatio-Temporal Events,” in 19th AGILE

200

http://gtkwave.sourceforge.net/gtkwave.pdf
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html


BIBLIOGRAPHY

International Conference on Geographic Information Science, no. hal-

01609156, Jun 2016.

[64] D. Loudon and M. H. Granat, “Visualization of Sedentary Behaviour

Using an Event Based Approach,” Measurement in Physical Ed-

ucation and Exercise Science, vol. 19, pp. 148–157, 2015. doi:

10.1080/1091367X.2015.1048342

[65] M. Desnoyers and EfficiOS Inc, “Common Trace Format (CTF) Specification

(v1.8.3),” https://diamon.org/ctf/v1.8.3/, May 2020.

[66] Eclipse Foundation, “Trace compass.” [Online]. Available: https:

//www.eclipse.org/tracecompass/

[67] M. Friendly, “Corrgrams: Exploratory Displays for Correlation Matrices,”

The American Statistician, vol. 56, no. 4, pp. 316–324, Aug 2002. doi:

10.1198/000313002533

[68] M. Friendly and E. Kwan, “Effect Ordering for Data Displays,” Compu-

tational Statistics and Data Analysis, vol. 43, pp. 509–530, 2003. doi:

10.1016/S0167-9473(02)00290-6

[69] S. Zapf and C. Krausharr, “Solar Correlation Map: A New Visualization

to Beautifully Explore Correlations,” Jan 2017. [Online]. Available:

https://github.com/Zapf-Consulting/solar-correlation-map

[70] S.-T. Yeh and GlaxoSmithKline, “Exploratory Visualization of Correlation

Matrices,” in NESUG 2007, 2007.

[71] E. R. Gansner and S. C. North, “An Open Graph Visualization System

and its Applications to Software Engineering,” Software - Practice and

Experience, vol. 30, no. 11, pp. 1203–1233, 2000.

[72] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,

Graphviz and Dynagraph - Static and Dynamic Graph Drawing Tools.

Springer, 2004, pp. 127–148. doi: 10.1007/978-3-642-18638-7_6. ISBN

978-3-642-18638-7

[73] E. R. Gansner and Y. Koren, “Improved Circular Layouts,” Graph Drawing,

vol. 30, pp. 386–398, 2007. doi: 10.1007/978-3-540-70904-6_37

[74] G. V. Loo, BCM2836 ARM Quad-A7, 2014. [Online]. Avail-

able: https://www.raspberrypi.org/documentation/hardware/raspberrypi/

bcm2836/QA7_rev3.4.pdf

201

https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://github.com/Zapf-Consulting/solar-correlation-map
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/QA7_rev3.4.pdf


BIBLIOGRAPHY

[75] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A Survey of Binary Similarity and

Distance Measures,” Systems, Cybernetics and Informatics, vol. 8, no. 1,

pp. 43–48, 2010.

[76] G. Maggiora, M. Vogt, D. Stumpfe, and J. Bajorath, “Molecular Similarity

in Medicinal Chemistry,” Journal of Medicinal Chemistry, vol. 57, pp.

3186–3204, Oct 2013. doi: 10.1021/jm401411z

[77] M. Gheradi and P. Rotondo, “Measuring Logic Complexity can Guide Pattern

Discovery in Empirical Systems,” Complexity, vol. 21, no. S2, pp. 397–408,

Sep 2018. doi: 10.1002/cplx.21819

[78] D. Lo, S.-C. Khoo, and C. Liu, “Mining past-time temporal rules from execu-

tion traces,” ACM Workshop On Dynamic Analysis, pp. 50–56, Jul 2008.

doi: 10.1145/1401827.1401838

[79] G. Tkacik and W. Bialek, “Information Processing in Living Systems,” An-

nual Review of Condensed Matter Physics, vol. 7, pp. 89–117, Dec 2014.

doi: 10.1146/annurev-conmatphys-031214-014803

[80] R. W. Hamming, “Error detecting and error correcting codes,” The Bell

System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[81] P. Jaccard, “The Distribution of the Flora in the Alpine Zone,” The New

Phytologist, vol. 11, no. 2, pp. 37–50, Feb 1919. doi: 10.1111/j.1469-

8137.1912.tb05611.x

[82] D. J. Rogers and T. T. Tanimoto, “A Computer Program for Classifying

Plants,” Science, vol. 132, no. 3434, pp. 1115–1118, Oct 1960. doi:

10.1126/science.132.3434.1115

[83] B. J. Frey and D. Dueck, “Clustering by Passing Messages Be-

tween Data Points,” Science, vol. 315, pp. 972–976, 1950. doi:

10.1126/science.1136800

[84] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation

of word representations in vector space,” International Conference

on Learning Representations, Jan 2013. [Online]. Available: https:

//arxiv.org/abs/1301.3781

[85] F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Semantic Cosine Similarity,” in

Proceedings of the 7th ICAST Seoul, Oct 2012.

[86] J. P. Mower, “PREP-Mt: Predictive RNA Editor for Plant Mitochondrial

Genes,” BMC Bioinformatics, vol. 6, no. 96, Apr 2005. doi: 10.1186/1471-

2105-6-96

202

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781


BIBLIOGRAPHY

[87] B. C. Csaji, “Approximation with artificial neural networks,” Ph.D.

dissertation, Faculty of Sciences, Eotvos Lorand University, 2001.

[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.101.2647&rep=rep1&type=pdf

[88] D. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” in

The 3rd International Conference on Learning Representations, 2015. doi:

arXiv/1412.6980

[89] L. Lu, Y. Shin, Y. Su, and G. Karniadakis, “Dying ReLU and Initialization:

Theory and Numerical Examples,” Communications in Computational

Physics, vol. 28, no. 5, pp. 1671–1706, 11 2020. doi: 10.4208/cicp.OA-

2020-0165

[90] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips, Uni-

versal Serial Bus Specification 2.0, Apr 2000.

[91] D. Lyon, “The Discrete Fourier Transform, Part 6: Cross-Correlation,”

Journal of Object Technology, vol. 9, no. 2, pp. 17–22, Apr 2010. doi:

10.5381/jot.2010.9.2.c2

[92] UL-000238-TR-27C-Status Monitor User Guide, UltraSoC Technologies Ltd,

Dec 2020.

[93] W. J. Dally and J. W. Poulton, Digital Systems Engineering. Cambridge

University Press, 1998. ISBN 0-521-59292-5

[94] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. doi: 10.1002/j.1538-

7305.1948.tb01338.x

[95] D. P. Mitchel and A. N. Netravali, “Reconstruction Filters in Computer-

Graphics,” in 15th Annual Conference on Computer Graphics and In-

teractive Techniques. Association for Computing Machinery, 1988, pp.

221–228. doi: 10.1145/54852.378514

[96] J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principles, Algo-

rithms and Applications, 4th ed. Pearson, 2007. ISBN 978-0131873742

[97] K. Buchanan, T. Adeyemi, C. Flores-Molina, S. Wheeland, and D. Over-

turf, “Sidelobe Behavior and Bandwidth Characteristics of Distributed

Antenna Arrays,” in 2018 United States National Committee of URSI

National Radio Science Meeting, Jan 2018, pp. 1–2. ISBN 978-1-5386-

5031-8

203

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.2647&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.2647&rep=rep1&type=pdf


BIBLIOGRAPHY

[98] G. Marsaglia and W. W. Tsang, “The Ziggurat Method for Generating Ran-

dom Variables,” Journal of Statistical Software, vol. 5, no. i08, 2000. doi:

10.18637/jss.v005.i08

[99] R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd ed.

Dover, 1973. ISBN 978-0-486-65241-6

[100] A. H. Nuttall, “Some Windows with Very Good Sidelobe Behavior,” IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29,

no. 1, pp. 84–91, Feb 1981. doi: 10.1109/tassp.1981.1163506

[101] D. R. Bull, Communicating Pictures, A Course in Image and Video Coding.

Academic Press, 2014. ISBN 978-0-12-405906-1

[102] L. C. Loschky and G. S. Wolverton, “How Late Can You Update Gaze-

contingent Multi-resolutional Displays Without Detection,” ACM Trans-

actions on Multimedia Computing, Communications, and Applications,

vol. 3(4), no. 7, pp. 1–10, Dec 2007. doi: 10.1145/1314303.1314310

[103] ARM Architecture Registers Armv8, ARM Ltd, 2020.

[104] L. Semiconductor, Lattice Semiconductor iCE40 LP/HX Family Data Sheet,

Lattice Semiconductor Corporation, Sep 2018.

[105] Xilinx, Xilinx 7 Series FPGAs Data Sheet DS180, Xilinx Inc, Sep 2020.

[106] I. Corporation, “Intel tick tock model,” https://www.intel.com/content/www/us/en/silicon-

innovations/intel-tick-tock-model-general.html.

[107] K. Vorwerk, A. Kennings, and J. W. Greene, “Improving Simulated

Annealing-Based FPGA Placement With Directed Moves,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 28, no. 2, pp. 179–192, Jan 2009. doi: 10.1109/TCAD.2008.2009167

[108] R. Shi, L. Ma, and T. Watanabe, “Efficient Simulated Annealing-Based

Placement Algorithm for Island Style FPGAs,” International Journal of

Machine Learning and Computing, vol. 8, no. 6, pp. 542–548, Dec 2018.

doi: 10.18178/ijmlc.2018.8.6.743

[109] J. A. Espejo, L. Entrena, E. S. Millan, and E. Olias, “Logic Restructuring

for MUX-Based FPGAs,” in Proceedings 25th EUROMICRO Conference.

Informatics: Theory and Practice for the New Millennium, 1999, pp.

161–168. doi: 10.1109/EURMIC.1999.794462

[110] X. Shen, X. Wu, J. Lu, and L. Qin, “Hybrid DPWM with Analog Delay Locked

Loop,” Lecture Notes in Engineering and Computer Science, vol. 2181, pp.

1279–1281, 2010.

204



BIBLIOGRAPHY

[111] T.-L. Chu, S.-H. Yu, and C.-S. Hwang, “High-Accuracy Programmable Timing

Generator with Wide-Range Tuning Capability,” Advanced VLSI Design

Methodologies for Emerging Industrial Multimedia and Communication

Applications, no. 803616, 2013. doi: 10.1155/2013/803616

[112] V. Yousefzadeh, T. Takayama, and D. Maksimovi, “Hybrid DPWM with Digi-

tal Delay-Locked Loop,” in 2006 IEEE Workshops on Computers in Power

Electronics, 2006, pp. 142–148. doi: 10.1109/COMPEL.2006.305666

[113] M. Kumm, H. Klingbeil, and P. Zipf, “An FPGA-Based Linear All-

Digital Phase-Locked Loop,” IEEE Transactions on Circuits and Sys-

tems I: Regular Papers, vol. 57, no. 9, pp. 2487–2497, 2010. doi:

10.1109/TCSI.2010.2046237

[114] D. Blackman and S. Vigna, “Scrambled Linear Pseudorandom Number

Generators,” ACM Transactions on Mathematical Software, 2019.

[Online]. Available: http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.

pdf

[115] G. F. Lawler and V. Limic, Random Walk: A Modern Introduction, 1st ed.

Cambridge University Press, Jun 2010. doi: 10.1017/CBO9780511750854.

ISBN 978-0511750854

[116] A. E. Hughes, R. V. Southwell, R. V. Gilchrist, and D. J. Tolhurst, “Quan-

tifying Peripheral and Foveal Perceived Differences in Natural Image

Patches to Predict Visual Search Performance,” Journal of Vision, vol.

16(10), no. 10, pp. 1–17, Aug 2016. doi: 10.1167/16.10.18

[117] IEEE 754-2019 Standard for Floating-Point Arithmetic, IEEE Microproces-

sor Standards Committee. doi: 10.1109/IEEESTD.2019.8766229

[118] D. Monnaiux, “The Pitfalls of Verifying Floating-Point Computations,” ACM

Transactions on Programming Languages and Systems, vol. 30, no. 3, pp.

1–41, May 2008. doi: 10.1145/1353445.1353446

[119] J. L. Gustafson and I. Yonemoto, “Beating Floating Point at its Own Game:

Posit Arithmetic,” Supercomputing Frontiers and Innovations, vol. 4,

no. 2, pp. 71–86, Jun 2017. doi: 10.14529/jsfi170206

[120] V. Gohil, W. Sumit, M. Joycee, and A. Manu, “Fixed-Posit: A Floating-Point

Representation for Error-Resilient Applications,” IEEE Transactions on

Circuits and Systems II: Express Briefs, p. 1, 2021. doi: 10.1109/TC-

SII.2021.3072217

205

http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
http://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf


BIBLIOGRAPHY

[121] V. Mansur and R. B. Shettar, “Design and Development of Interval Arith-

metic Library Using Q Format Data Representation: A FPGA Approach,”

in 2015 International Conference on Computing, Communication and

Security (ICCCS), 2015, pp. 1–7. doi: 10.1109/CCCS.2015.7374176

[122] E. L. Oberstar, “Fixed-Point Representation and Fractional Math,” Oberstar

Consulting, Aug 2007.

[123] J. E. Volder, “The Birth of CORDIC,” Journal of VLSI Signal Processing,

vol. 25, pp. 101–105, Jun 2000. doi: 10.1023/A:1008110704586

[124] G. E. Walters, “Array Multipliers for High Throughput in Xilinx

FPGAs with 6-Input LUTs,” MDPI Computers, vol. 5, no. 20,

Sep 2016. doi: 10.3390/computers5040020. [Online]. Available:

https://www.mdpi.com/2073-431X/5/4/20

[125] M. Langhammer and G. Baeckler, “High Density and Performance Multi-

plication for FPGA,” in IEEE 25th Symposium on Computer Arithmetic

(ARITH), 2018, pp. 5–12. doi: 10.1109/ARITH.2018.8464695

[126] D. Yeager, D. Chiu, and G. Lemieux, “Congestion Estimation and Localization

in Fpgas: A Visual Tool for Interconnect Prediction,” in ACM Interna-

tional Workshop on System Level Interconnect Prediction (SLIP07), 2007,

pp. 33–40. doi: 10.1145/1231956.1231963. ISBN 9781595936226

[127] C. Yu and Z. Zhang, “Painting on Placement: Forecasting Routing Congestion

using Conditional Generative Adversarial Nets,” in ACM Proceedings

of the 56th Annual Design Automation Conference (DAC19), 2019. doi:

10.1145/3316781.3317876. ISBN 978-1-4503-6725-7

[128] C. Seed, “Arachne-PnR,” 2015. [Online]. Available: https://github.com/

YosysHQ/arachne-pnr

[129] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov, M. Shahrad,

A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Wentzlaff, “OpenPiton:

An Open Source Manycore Research Framework,” in Proceedings of

the 21st International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 2016, pp. 217–232. doi:

10.1145/2872362.2872414. ISBN 978-1-4503-4091-5

[130] K. Lim, J. Balkind, and D. Wentzlaff, “JuxtaPiton: Enabling Heterogeneous-

ISA Research with RISC-V and SPARC FPGA Soft-cores,” Princeton

University, Nov 2018. doi: arXiv/1811.08091

206

https://www.mdpi.com/2073-431X/5/4/20
https://github.com/YosysHQ/arachne-pnr
https://github.com/YosysHQ/arachne-pnr


BIBLIOGRAPHY

[131] D. Wentzlaff, OpenPiton Microarchitecture Specification, Princeton

University, 2016. [Online]. Available: https://parallel.princeton.edu/

openpiton/docs/micro_arch.pdf

[132] D. McEwan, M. Hlond, and J. Nunez-Yanez, “Visualizations for Under-

standing SoC Behaviour,” in Proceedings of 15th Conference on Ph.D

Research in Microelectronics and Electronics (PRIME2019), Jul 2019. doi:

10.1109/PRIME.2019.8787837

[133] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of Test Informa-

tion to Assist Fault Localization,” in Proceedings of the 24th Interna-

tional Conference on Software Engineering, May 2002, pp. 467–477. doi:

10.1145/581339.581397

[134] B. S. Santos, B. Q. Ferreira, and P. Dias, “Using Heuristic Evalua-

tion to Foster Visualization Analysis and Design Skills,” IEEE Com-

puter Graphics and Applications, vol. 36, no. 1, pp. 86–90, 2016. doi:

10.1109/MCG.2016.7

[135] B. Shneiderman, “Design Lessons From AI’s Two Grand Goals: Human

Emulation and Useful Applications,” IEEE Transactions on Technology

and Society, vol. 1, no. 2, pp. 73–82, 2020. doi: 10.1109/TTS.2020.2992669

[136] D. Park, “Visual Security: 9-block IP Identification,”

http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-

block-ip-identification, Jan 2007.

[137] L. Sirovich and M. Kirkby, “Low-Dimensional Procedure for the Characteri-

zation of Human Faces,” Journal of the Optical Society of America, vol. 4,

no. 3, pp. 519–524, Mar 1987. doi: 10.1364/josaa.4.000519

[138] UL-00231-TC-F-Taygete Prototype, UltraSoC Technologies Ltd, Dec 2018.

[139] G. Louw, “Tinn the tiny neural network library,”

https://github.com/glouw/tinn.

[140] Semeion Research Center of Sciences of Communication and Tattile

Srl, “Semeion handwritten digit data set.” [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit

[141] M. Buscema, “MetaNet: The theory of independent judges,” Sub-

stance Use and Misuse, vol. 33, no. 2, pp. 439–461, Feb 1998. doi:

10.3109/10826089809115875

207

https://parallel.princeton.edu/openpiton/docs/micro_arch.pdf
https://parallel.princeton.edu/openpiton/docs/micro_arch.pdf
https://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit


BIBLIOGRAPHY

[142] P. Rodgers, G. Stapleton, and P. Chapman, “Visualizing sets with linear dia-

grams,” ACM Transactions on Computer-Human Interaction, vol. 22(6),

no. 27, pp. 1–39, Sep 2015. doi: 10.1145/2810012

[143] IEEE 1076-2019 Standard VHDL Language Reference Manual, IEEE Design

Automation Standards Commitee. doi: 10.1109/IEEESTD.2019.8938196

[144] N. Drakos and R. Moore, Berkeley Logic Interchange Format, University of

California Berkeley, 1992. [Online]. Available: http://www.cs.columbia.

edu/~cs6861/sis/blif/index.html

[145] H. Kahn, D. Systems, M. Graphics, Motorola, N. Semiconductor, Tektronix,

T. Instruments, U. of California Berkeley, and U. of Manchester, Elec-

tronic Design Interchange Format, EDIF Standards Organization, 1983.

[146] D. Shah, “NextPnR,” 2018. [Online]. Available: https://github.com/YosysHQ/

nextpnr

[147] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software, vol. 8,

no. 14, pp. 1–6, 2003. doi: 10.18637/jss.v008.i14. [Online]. Available:

https://www.jstatsoft.org/v008/i14

[148] R. Brent, “Note on Marsaglia’s Xorshift Random Number Generators,”

Journal of Statistical Software, vol. 11, no. 5, pp. 1–5, Aug 2004. doi:

10.18637/jss.v011.i05

[149] P. L’Ecuyer and R. Simard, “TestU01: A C Library for Empirical Testing

of Random Number Generators,” ACM Transactions on Mathematical

Software, vol. 33, no. 4, p. 22, 2007. doi: 10.1145/1268776.1268777.

[Online]. Available: http://simul.iro.umontreal.ca/testu01/tu01.html

[150] S. Vigna, “An Experimental Exploration of Marsaglia’s Xorshift Generators,

Scrambled,” ACM Transactions on Mathematical Software, vol. 42, no. 4,

2016. [Online]. Available: https://arxiv.org/abs/1402.6246

[151] ——, “Further Scramblings of Marsaglia’s Xorshift Generators,” Journal of

Computational and Applied Mathematics, vol. 315, pp. 175–181, 2016.

doi: 10.1016/j.cam.2016.11.006

[152] D. Williams, L. Griffiths, and L. Valenty, “tinyfpga_bx_usbserial,”

2019. [Online]. Available: https://github.com/davidthings/tinyfpga_bx_

usbserial

[153] J.-P. Charras, “KiCad EDA,” 1992. [Online]. Available: https://www.kicad.org/

[154] S. Ishihara, Tests for Colour-Blindness. Kanehara Shuppan Co, 1972.

208

http://www.cs.columbia.edu/~cs6861/sis/blif/index.html
http://www.cs.columbia.edu/~cs6861/sis/blif/index.html
https://github.com/YosysHQ/nextpnr
https://github.com/YosysHQ/nextpnr
https://www.jstatsoft.org/v008/i14
http://simul.iro.umontreal.ca/testu01/tu01.html
https://arxiv.org/abs/1402.6246
https://github.com/davidthings/tinyfpga_bx_usbserial
https://github.com/davidthings/tinyfpga_bx_usbserial
https://www.kicad.org/


BIBLIOGRAPHY

[155] A. D. Logvinenko, “The Geometric Structure of Color,” Journal of Vision,

vol. 15, no. 1, pp. 1–9, January 2015. doi: 10.1167/15.1.16

209





GLOSSARY

AXI Advanced/ARM eXtensible Interface. 10, 13, 56, 91, 99, 122, 124, 132, 180

ASIC Application Specific Integrated Circuit. 15, 53, 55, 61, 141, 167

CDF Cumulative Density Function. 175

CMF Cumulative Mass Function. 176

CPU Central Processing Unit. 1, 2, 14, 47, 61, 84, 89, 91, 97, 102, 113, 127, 168

CSV Comma Separated Values. 19

CTF Common Trace Format. 21

DFF D-Type Flip-Flop. 13, 56, 60, 64, 78, 84, 97, 141

DSP Digital Signal Processing. 57, 167

DVFS Dynamic Voltage and Frequency Scaling. 167

FFNN Feed-Forward Neural Network. 43, 45, 46, 47, 48, 47, 51, 92, 94, 95, 127,

134, 137

flit Flow Control Digit. 179

FIFO First In First Out. 179, 180

fmax maximum operating clock frequency. 79, 80, 84, 89, 91, 168, 169, 170, 172,

173, 174

FSM Finite State Machine. 77, 78, 180

FOSS Free Open Source Software. 12, 127, 168

FPGA Field Programmable Gate Array. 12, 14, 15, 53, 55, 59, 60, 61, 63, 64, 66,

67, 68, 71, 77, 78, 79, 80, 85, 89, 91, 95, 122, 127, 134, 141, 167, 169, 170,

172, 173, 185

211



GLOSSARY

GPIO General Purpose Input Output. 14, 77, 85, 91, 95, 185

HCI Human-Computer Interaction. 16, 98, 99

HDL Hardware Description Language. 142

IP Intellectual Property. 54

ISA Instruction Set Architecture. 12

JTAG Joint Test Action Group. 15

KDD Knowledge Discovery in Databases. 7, 9

KDE Kernel Density Estimation. 34, 39, 143

ML Machine Learning. 43

Multi-PnR Multiple Place-and-Route. 168, 169, 170, 172, 173

MSB Most Significant Bit. 75

NoC Network-on-Chip. 22, 85, 84

LED Light Emitting Diode. 62, 63, 77, 85

LFSR Linear Feedback Shift Register. 172

LHA Left Hand Associative. 34, 36

LPF Low-Pass Filter. 77, 84, 85

LUT Look Up Table. 60, 79, 89, 167, 170, 172, 173, 174

NN Neural Network. 29, 30, 43, 45, 134

OCP Open Core Protocol. 13, 91

OS Operating System. 76, 84, 85, 87

PCB Printed Circuit Board. 185

PDF Probability Density Function. 34, 36, 39, 65, 67, 68, 133, 143, 176

PMF Probability Mass Function. 36, 67, 79, 168, 169, 170, 174, 176

212



GLOSSARY

DLL Delay-Locked Loop. 66

PLL Phase-Locked Loop. 66

PnR Place and Route. 59, 61, 79, 80, 84, 167, 168, 169, 170, 172, 173, 174

PRNG Pseudo-Random Number Generator. 67, 172, 173, 175

RAM Random Access Memory. 179

ReLU Rectified Linear Unit. 77

RGB Red/Green/Blue. 190

RTL Register Transfer Language. 13, 15, 53, 54, 55, 59, 60, 61, 62, 63, 64, 70, 72,

78, 80, 84, 91, 94, 95, 94, 97, 135, 141, 167, 168, 185

SMP Symmetric Multi-Processor. 134

SoC System-on-Chip. i, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 22, 23, 25,

27, 28, 29, 30, 31, 32, 33, 34, 36, 39, 41, 42, 43, 45, 51, 52, 53, 54, 55, 56, 57,

56, 59, 61, 62, 69, 77, 78, 84, 85, 87, 91, 94, 95, 97, 98, 99, 100, 101, 106, 112,

114, 116, 120, 121, 122, 127, 132, 133, 134, 135, 136, 137, 141, 167, 179, 189,

192

SVD Singular Value Decomposition. 22, 120

SVM Support Vector Machine. 12

URL Uniform Resource Locator. 100, 108, 111, 113, 114, 115, 116, 118

USB Universal Serial Bus. 54, 62, 76, 185

USB-FS USB Full Speed (12Mb/s). 55, 62, 79, 84, 85, 91, 169, 170, 172, 173, 185

USB-HS USB High Speed (480Mb/s). 91

VCD Value Change Dump. 12, 13, 19, 100

TP True-Positive. 36, 37, 38

TN True-Negative. 36, 37, 38

FP False-Positive. 36, 37

213



GLOSSARY

FN False-Negative. 36, 37

TPR True Positive Rate (Sensitivity). 37, 39, 143

TNR True Negative Rate (Specificity). 37, 39, 143

PPV Positive Predictive Value (Precision). 38, 39, 143

NPV Negative Predictive Value. 38, 39, 143

ACC Accuracy. 38, 39, 143

BACC Balanced Accuracy. 38, 39, 143

MCC Matthews Correlation Coefficient. 38, 39, 143

BMI Book-Maker’s Informedness. 38, 39, 45, 47, 51, 143

214


	List of Tables
	List of Figures
	Introduction
	General Problem Description
	Objectives
	Thesis Outline
	Notation Summary

	Background and Literature Review
	Abstract Hypothesis
	Knowledge Discovery and Interestingness
	Behaviour and Function
	Correlation

	Data Collection
	Pre-existing Datasets
	Collecting SoC Data

	Visualisations for Behaviour
	Heuristic Evaluation
	Existing Tools and Techniques

	Summary and Direction

	Correlation Metrics in Binary SoC Data
	Aim
	Problem Description
	Objective
	Approach

	Definition of Metrics
	Binary Sets
	Geometric Vectors
	Probabilistic Metrics

	Experimental Procedure
	Probabilistic Assumptions
	Further Description of System Construction
	Methods of Scoring

	Metric Scoring Results
	Learning New Metrics
	Calculating Metrics with Counters
	Neural Network Parameters and Setup
	Metric Learning Results

	Conclusion

	Hardware for SoC Correlation Analysis
	Aim
	Problem Description
	Objective
	Approach

	Background
	Sampling
	Window Functions
	Synthesis, Layout, and Characterisation

	Correlator Device
	Sampling Mechanism
	Introducing Variance to the Sample Period
	Jittery Sample Strobe Mechanism

	Windowing Counters
	Rectangular
	Logdrop

	Consuming Correlation Results
	Real-time Results via  and Low-Pass Filter
	Calculating Correlation Using Counters

	Synthesis Characterisation on FPGAs

	Integration Case Studies
	Case Study 1: Slow Datalink
	Case Study 2: Fast Datalink

	Conclusion

	Visualizing Pairwise Correlations
	Aim
	Problem Description
	Objective
	Approach

	Visualisations for Binary SoC Data
	Statistics on Binary Signals
	Netgraph View
	Statistics on Individual Signals
	Identicons as Aids for Orientation
	Circular Graphical Layout
	Interactive Features

	Tabdelta View

	Gestalt Evaluation Against Heuristics
	Nielsen's Usability Heuristics
	Shneiderman's Visual-Information-Seeking Tasks
	Gerhardt-Powals' Cognitive Engineering Principles
	Forsell and Johansson's Visualisation Heuristics
	Direct Comparison with State of the Art

	Demonstration Case Studies
	Case Study 1: Static Behaviours
	Description of praxi System
	Behaviour Overview in Netgraph View
	Behaviour Overview in Tabdelta View

	Case Study 2: Changing Behaviours
	Description of tinn System
	Behaviour Changes in Netgraph View
	Behaviour Changes in Tabdelta View


	Conclusion

	Conclusions
	Summary of Thesis
	Achieved Objectives and Contributions
	Future Work

	Appendices
	List of Publications
	Parameter Sets
	Results From Section 3.4 By System Type
	Model Summaries for FFNN-based Metrics
	Counter Inputs Combination perfCntrs
	Counter Inputs Combination withAssist
	Counter Inputs Combination fullAssist
	Counter Inputs Combination withIsect
	Counter Inputs Combination withSymdiff
	Counter Inputs Combination withIsectSymdiff

	Quantified Confidence in fmax Robustness
	Confidence In A Single Design
	Comparison of Competing Designs
	Comparing Similar Configurations

	Modelling the Jittery Strobe Counter Circuit
	BytePipe Protocol
	USB-FS Electrical Interface Over Five Pins
	Colourspace for Bounded 2D Data
	Bibliography
	Glossary

