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power of reaction models

Hongliang Lü,1, 2, ∗ David Boilley,1, 2, † Yasuhisa Abe,3 and Caiwan Shen4

1GANIL, CEA/DRF-CNRS/IN2P3, BP 55027, F-14076 Caen cedex 5, France
2Normandie Univ, UNICAEN, Caen, France

3Research Center for Nuclear Physics (RCNP), Osaka University,
10-1 Mihogaoka, Ibaraki, 567-0047 Osaka, Japan

4School of Science, Huzhou University, Huzhou, 313000 Zhejiang, People’s Republic of China
(Dated: September 21, 2016)

Background: Synthesis of super-heavy elements is performed by heavy-ion fusion-evaporation reactions. How-
ever, fusion is known to be hindered with respect to what can be observed with lighter ions. Thus some delicate
ambiguities remain on the fusion mechanism that eventually lead to severe discrepancies in the calculated forma-
tion probabilities coming from different fusion models.
Purpose: In the present work, we propose a general framework based upon uncertainty analysis in the hope of
constraining fusion models.
Method: To quantify uncertainty associated with the formation probability, we propose to propagate uncertain-
ties in data and parameters using the Monte-Carlo method in combination with a cascade code called KEWPIE2,
with the aim of determining the associated uncertainty, namely the 95% confidence interval. We also investigate
the impact of different models or options, which cannot be modeled by continuous probability distributions, on
the final results. An illustrative example is presented in detail and then a systematic study is carried out for a
selected set of cold-fusion reactions.
Results: It is rigorously shown that, at the 95% confidence level, the total uncertainty of the empirical formation
probability appears comparable to the discrepancy between calculated values.
Conclusions: The results obtained from the present study provide a direct evidence for predictive limitations
of the existing fusion-evaporation models. It is thus necessary to find other ways to assess such models for the
purpose of establishing a more reliable reaction theory, which is expected to guide future experiments on the
production of super-heavy elements.

PACS numbers: 25.70.Jj, 24.10.-i, 24.60.Dr, 06.20.-f

I. INTRODUCTION

Experimentally the synthesis of super-heavy elements
(SHE) is realized by means of the so-called fusion-
evaporation reaction which, from a theoretical viewpoint
based upon the Bohr independence hypothesis [1], is di-
vided into two separate phases:

• The fusion phase, during which a nucleus-nucleus
collision may lead to the formation of an excited
heavy nucleus.

• The de-excitation phase, where the newly-
formed heavy nucleus has to be chilled by evap-
oration of light particles, including γ-ray emission
against nuclear fission.

For the latter, it is often described using a cascade code.
In our case, we shall employ the KEWPIE2 code [2, 3].
Regarding the fusion process, it is decomposed into two
successive steps [4]:

∗ Current address: Neutron Metrology and Dosimetry Laboratory,
IRSN, BP 3, 13115 Saint-Paul-lez-Durance Cedex, France
† boilley@ganil.fr

• The capture step, corresponding to passing over
the Coulomb (or Bass [5]) barrier, after which two
colliding nuclei stick together.

• The formation step, from the contact configu-
ration to the compound nucleus (CN). During this
step, the system has to overcome an inner potential
barrier, which results in the creation of a compound
system, where the incident particle combines with
the target nucleus and the total energy is shared
among all the confined nucleons. Here, it should
be mentioned that the formation step was intro-
duced to explain the so-called fusion hindrance phe-
nomenon that only occurs in heavy reaction sys-
tems (with a charge product of the projectile-target
combination ZpZt & 1600 − 1800). Regarding
lighter systems, the inner barrier should no longer
exist and the colliding nuclei automatically fuse af-
ter the capture step.

It should be noted that the main contribution to the fu-
sion hindrance in heavy-ion collisions is due to the forma-
tion step, consisting of a diffusion process over an inner
potential barrier. Over the past two decades, qualita-
tive features of the formation dynamics have been well
understood within the framework of the Langevin equa-
tion [6–12]. This formalism is not unique and some se-
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rious ambiguities remain on the inner-barrier height and
the dissipation strength. Moreover, during an experi-
ment, fusion-fission events that have reached the com-
pound state and quasi-fission ones that re-separate after
crossing the Coulomb barrier are usually very difficult to
distinguish from each other. As a consequence, this leads
to a lack of reliable data on the fusion cross-sections or
formation probabilities that could be employed to assess
the fusion models. Another delicate issue is that, at the
present time, the two separate steps of the fusion process
cannot be treated within a unified framework. This re-
mains a severe problem that could eventually affect the
final results.

Precise theoretical predictions of evaporation-residue
(ER) cross-sections are crucially important for conduct-
ing experiments on the synthesis of SHE, because in most
cases production cross-sections are extremely low (of the
order of one picobarn). For a recent experimental re-
view, see Ref. [13]. A small change of the cross-section
could mean months of experiments. To this extent, the
first crucial question one might ask is, how exactly can
we predict evaporation-residue (ER) cross-sections with
current models?

Actually, there have been a number of theoretical cal-
culations on ER cross-sections, which appear to agree
remarkably well with the measured ER cross-sections.
This, of course, can be regarded as a significant theo-
retical achievement considering that the measured cross-
sections usually span at least six orders of magnitude. In
the present study, we only focus on the so-called cold-
fusion reaction, where only one neutron can be evapo-
rated from the compound nucleus. In this case, typical
calculations on the ER cross-sections for a selected set of
cold-fusion reactions are displayed in Fig. 1 taken from
Ref. [14]. The experimental measurements are nicely
fitted by almost all models within less than one order of
magnitude. This is also the case for other models not
included in this comparison such as the one based on a
previous version of the code used in this study [15]. Nev-
ertheless, if we take a closer look at the theoretical for-
mation probabilities, as shown in Fig. 2, the calculated
values can differ by two or three orders of magnitude,
even though all the fusion-evaporation models seem able
to reasonably fit the measured data. The large uncer-
tainty in the calculated formation probability is not a
surprise because of some serious ambiguities in the reac-
tion mechanism of fusion dynamics, as mentioned before.
However, the capture and de-excitation steps are both
considered to be better known from a theoretical view-
point and can be relatively well described on the basis of
knowledge about lighter reaction systems. How come the
better-known parts can accommodate large discrepancies
between the calculated formation probabilities and thus
reproduce the measured data? What if the experimental
data are not available? To this extent, the predictive ca-
pability of the fusion model appears to be quite limited.

To establish a reliable theory for guiding future exper-
iments on the synthesis of SHE, it is necessary to find

FIG. 1. [Color online] Theoretical calculations of ER cross-
sections for the one-neutron evaporation channel of cold-
fusion reactions. The calculated results can be found in
Refs. [10, 16–19]. The figure is taken from Ref. [14].

FIG. 2. [Color online] Calculated formation probabilities for
the selected set of cold-fusion reactions. The theoretical re-
sults can be found in Refs. [10, 16–20]. The figure is adapted
from Ref. [14].

new methods to constrain existing fusion models with a
special focus on the formation step. Thus, we perform an
uncertainty analysis of what are considered as the better-
known parts of the reaction, namely the capture and de-
excitation steps, to constrain the lesser-known part. In
this work we will include both experimental uncertain-
ties and uncertainties due to the remaining ambiguities
in modeling. For the latter, this includes input param-
eters and models or approximations. The main aim of
the present paper is to employ some state-of-the-art sta-
tistical methods to quantify different uncertainty sources
and look more closely at their impact on the formation
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probability.
Over the past few decades, the importance of uncer-

tainty analysis in modeling has been increasingly recog-
nized [21], especially with the enormous development of
computer simulation. It is mainly concerned with the
characterization and quantification of uncertainty in nu-
merical applications by running a great number of trials
to investigate the impact of minor differences in the input
on final outcomes. This kind of study is essential when
one has very poor information about the input. For in-
stance, both the free parameters and the various theoret-
ical models used for capture and evaporation phases are
usually not unambiguously determined [2, 3].

Before entering into details about uncertainty analysis,
let us first briefly present the theoretical models used in
this study.

II. THEORETICAL FRAMEWORK

It is commonly known that, based upon the Bohr in-
dependence hypothesis [1], the ER cross-section for a
fusion-evaporation reaction can be explicitly expressed
as

σER(Ecm) =

Jmax∑
JC≥0

σfus(Ecm, JC)Psur(E
∗
C , JC), (1)

recalling that the relationship between incident energy
in the center-of-mass frame Ecm and total excitation en-
ergy of the CN E∗C is simply given by E∗C = Ecm + Q
with Q being the Q-value evaluated from ground-state
masses. It should be noted that Eq. (1) takes into ac-
count all partial-wave contributions to the total cross-
section, ending up with an upper limit, say Jmax, which
can be approximately determined once the partial-wave
cross-section vanishes.

A. A simplified model

In the case of SHE, the maximum spin Jmax is es-
sentially related to the survival probability Psur(E

∗
C , JC)

which does not vanish only in the vicinity of JC '
0. Hence, one has Psur(E

∗
C , JC) ' Psur(E

∗
C), where

Psur(E
∗
C) can be estimated by means of the Weisskopf-

Ewing model, and the total ER cross-section can thus be
approximated as

σER(Ecm) ' σfus(Ecm)Psur(E
∗
C). (2)

Moreover, for heavy fusing systems leading to the forma-
tion of SHE, the fusion probability needs to be rewritten
as a product of the capture and formation probabilities.
Accordingly, the above approximate formula can be fur-
ther transformed into

σER(Ecm) ' σcap(Ecm)Pform(Ecm)Psur(E
∗
C), (3)

where Pform(Ecm) stands for the formation probability
due to the fusion hindrance. We should be aware that this
simplified version of Eq. (1) has been widely employed to
estimate ER cross-sections in many recent studies [10,
14, 19, 20] due to its simplicity.

As mentioned in the introduction, we only focus on
the one-neutron evaporation channel. In this case, the
ER cross-section is simply given by

σ1n
ER ' σcapPformP

1n
sur. (4)

It should be recalled that there is a huge discrepancy
between different theoretical results on Pform. On the
one hand, it is difficult to reliably measure this quantity
as the identification of quasi-fission events remains a del-
icate issue. On the other hand, as previously mentioned,
serious ambiguities in the fusion mechanism still persist.
Thus, the formation probability, which is very specific
to heavy systems, is considered to be the most poorly
known quantity in Eq. (4).

In the following we shall attempt to constrain the
formation probability by deducing it from experimental
data,

Pform '
σ1n

ER
σcapP 1n

sur
. (5)

In this study, we will estimate the uncertainty of Pform
and compare it to the theoretical values calculated with
various models as displayed in Fig. 2. Note that in
the r.h.s. of the above equation, the numerator directly
comes from experiments and the denominator from mod-
els. For the latter, we shall use the KEWPIE2 code spe-
cially dedicated to the synthesis of super-heavy elements
[3].

B. Capture cross section

The capture cross-section corresponds to the Coulomb
barrier crossing or to the sum of quasi-fission, fusion-
fission and ER cross-sections. There are several models
that can be tested against some measurements. Accord-
ing to a review by Loveland [22] these models are able
to describe the magnitudes of the capture cross sections
within 50%. However, the ratio of calculated to measured
cross sections for various systems and models spans from
0.55 to 2.24.

In this work we did not perform an extended analy-
sis of the capture cross-section but picked up two typi-
cal models that are widely used and implemented as de-
fault options in the KEWPIE2 code, namely the empir-
ical barrier-distribution (EBD) method [10, 23] and the
Wentzel-Kramers-Brillouin (WKB) approximation with
a proximity potential [24, 25]. In the former model, the
barrier distribution is supposed to be a Gaussian with a
mean value and width adjusted to reproduce a systemat-
ics of 48 reactions, whereas in the latter proximity poten-
tial parameters were adjusted to reproduce experimental
data without any coupling to other channels.
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C. Survival probability

The survival probability of an excited heavy nucleus re-
sults from the competition between neutron evaporation
and fission that are governed by the neutron-evaporation
width Γn and fission-decay width Γf , respectively.

On the one hand, the neutron-evaporation width is
estimated using the Weisskopf-Ewing theory [26–28]:

Γn(E∗C) =
(2sn + 1)µn

π2~2

∫ E∗
C−Sn

0

σninv(εn)ρB(E∗B)

ρC(E∗C)
εndεn,

(6)
where C denotes a compound nucleus at excitation en-
ergy E∗C and B the daughter nucleus at excitation energy
E∗B = E∗C − Sn − εn, where Sn is the binding energy of
neutrons in the compound nucleus and εn the kinetic en-
ergy of evaporated neutrons in the center-of-mass frame.
µn is the reduced mass of the reaction system. For neu-
trons, the cross section for the time-reversed reaction σninv
is given by

σninv(εn) = g0(1 +
g1
εn

)πR̃2, (7)

where g0 = 0.76 + 1.93A
−1/3
B , g0g1 = 1.66A

−2/3
B − 0.05

and R̃ = 1.7A
1/3
B fm [29].

On the other hand, the fission-decay width is usually
calculated within the Bohr-Wheeler (BW) transition-
state method [30]:

ΓBW
f (E∗C) =

1

2πρgs
C (E∗C)

∫ E∗
C−Bf

0

ρsd
C (E∗sd)dεf , (8)

where the excitation energy at the saddle point E∗sd is
equal to E∗C − Bf − εf with εf being the kinetic energy
of the collective motion. Here, Bf represents the fission
barrier that is known to have a great influence on the
stability of super-heavy elements. A recent review [31]
shows that this quantity is difficult to estimate and large
discrepancies that can reach up to several MeV still re-
main in the predicted values.

In this work, we first use a common approximation:
Bf w BLDM − ∆Esh with BLDM and ∆Esh being re-
spectively the liquid-drop fission barrier and the shell-
correction energy in the ground state. We also considered
a table based upon a so-called microscopic-macroscopic
theory [32]. Note that the shell-correction energy is the
same in both cases.

From a dynamical point of view, the fission-decay
width evaluated by Eq. (8) can actually be refined by
introducing the Kramers factor [33],

K =

√
1 +

(
β

2ωsd

)2

− β

2ωsd
, (9)

and the Strutinsky factor [34],

S =
~ωgs

Tgs
. (10)

In the above factors, β stands for the reduced friction
coefficient that takes into account the effect of viscosity
on the fission process. Its value is not well known. ~ωgs
and ~ωsd denote the potential curvature in the ground
state and at the saddle point respectively. They are both
fixed at 1.0 MeV. Finally, the total fission-decay width is
given by

Γf = K · S · ΓBW
f . (11)

In the following study, the product K ·S is referred to as
the Kramers-Strutinsky factor. Some models take it into
account; some others do not.

The state density ρ enters both decay widths in
Eqs. (6) and (8). In our model, the intrinsic state-density
formula for a nucleus comprising two kinds of particles,
namely protons and neutrons, is explicitly given by [35]

ρint(E
∗) =

√
π

12

exp(β0E
∗ + a/β0)√
β0E∗3

(
g20

4gngp

)1/2

× 1− exp(−a/β0)[
1− 1

2
E∗β0 exp(−a/β0)

]1/2 , (12)

where gn and gp are respectively the neutron and proton
single-particle state densities at the Fermi energy. Here,
g0 = gn+gp and typically, one has the following approxi-
mation: gn ' gp. In this study, we shall consider various
formulas for the level density parameter. In addition to
the Tōke-Świątecki model [36] chosen as default value,
we also selected Reisdorf and Pomorska et al.’s models
[24, 37].

Ignatyuk’s prescription was also taken into considera-
tion for the energy dependence of the level-density pa-
rameter a in the ground state [38]:

ags(E
∗) = ags

[
1 +

(
1− e−E

∗/Ed

) ∆Esh

E∗

]
, (13)

where Ed represents the shell-damping factor that char-
acterizes how fast the shell effect is disappearing with
excitation energy. Its value is not well established.

Moreover, the intrinsic state density should be en-
hanced by a certain factor as a function of excitation
energy E∗, namely

ρ(E∗) = ρint(E
∗)κcoll(E

∗). (14)

For more details on the collective enhancement factor
κcoll used in KEWPIE2, the reader is referred to Ref. [3].
This factor is not always implemented in models used to
study the survival probability of super-heavy elements.

D. Average values due to the loss of beam energy

Here, we only concentrate on the survival probability
with respect to the 1n-channel P 1n

sur, which can be written
in the following form:

P 1n
sur = P 1n

sur(E
∗, β, Ed). (15)
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FIG. 3. [Color online] Average of the survival probability
for the 1n-channel over different energy intervals to take into
account the loss of beam energy in the target. The solid
red curve indicates the calculated survival probability without
taking an average.

In practice, the measured production cross-sections are
usually obtained by averaging over a certain range of ex-
citation energy, due to the resolution of the detection
setup and the loss of beam energy in the target. When
the calculation is confronted with experimental data, this
dispersion effect would be crucially important in the case
of SHE formed via cold-fusion reactions, because the sur-
vival probability is rather peaked, as illustrated in Fig. 3.
Therefore, to be close to experimental observables, it is
common to take an average over a fixed energy width
δE∗, as proposed in Ref. [10]. Thus, the average survival
probability can be defined as

P
1n

sur =
1

δE∗

∫ E∗
C+δE∗/2

E∗
C−δE∗/2

P 1n
sur(E

∗, β, Ed)dE
∗, (16)

which is also dependent on the energy loss δE∗ in addi-
tion to the model parameters. To carry out the integral,
we employ the Gauss-Legendre quadrature method, with
a number of abscissas chosen to be 12 to get a numerical
precision of less than 1.0%.

III. UNCERTAINTY ANALYSIS

In this section, we concretely formulate the problem
we are dealing with and specify remaining ambiguities in
the input and options of the model.

A. Modeling the physical system

The main purpose of a numerical simulation is to es-
tablish an abstract mathematical model for describing
some basic features of the physical system under study.

In a general way, a physical system can be abstracted as
a set of multivariate real functions, namely

M : RN → RM

x→ y =M(x),
(17)

together with some constraints or restrictions so that
the subsequent derivations would make sense. Here, the
input parameters of the model can be represented by
a N -dimensional vector x ∈ D ⊂ RN , where D de-
notes the domain of a model function. The vector of
M output quantities (or response variables) is thus a M -
dimensional vector function. In rare cases, the model
might be a simple closed-form function. But more gener-
ally, it could correspond to a black-box function, such as
a computer program, which requires N input values and
then yields some numerical results. It should be men-
tioned that the model itself can also be changed so that
sometimes one has different model functions for the same
issue.

In our case, KEWPIE2 is employed to model the
better-known parts, namely the capture cross-section and
survival probability. The main input parameters for the
decay part are nothing else but the reduced friction pa-
rameter β and the shell-damping energy Ed. It should be
noted that the fission barrier has been considered to be
model-dependent, instead of a free parameter. In addi-
tion to the input parameters, we have also incorporated
several sub-models into the code [3].

The main objective here is to extract the empirical
formation probability which is simply a scalar-valued
model function. Based upon Eq. (5), the model func-
tion y = M(x) can be constructed. Accordingly, the
empirical formation probability is given as follows:

P form =
σ1n
exp

σcapP
1n

sur

= P form(δE∗, β, Ed, σ
1n
exp), (18)

where the measured data are assumed to be normally dis-
tributed. It should be noted that, sometimes, uncertainty
intervals associated with the experimental data can be
asymmetric. In this case, the method presented here is
still valid, provided that the corresponding distribution
function is available.

B. Identifying and quantifying uncertainty sources

The common uncertainty sources can be roughly sum-
marized as follows [39]:

• Parameter uncertainty, which comes from the input
parameters of the model whose values cannot be ex-
actly inferred, neither theoretically nor experimen-
tally. In our case, for example, the reduced friction
coefficient and the shell-damping energy cannot be
determined with certainty [38, 40–42]. Hence, one
needs to construct some input probability distribu-
tions for them.
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FIG. 4. Typical values of the reduced friction parameter that
can be found in the literature. The figure is adapted from
Ref. [41].

• Model uncertainty, which results from the lack
of knowledge about the underlying true physics.
Thus, it is dependent upon how accurately a model
describes the true system in a realistic situation,
knowing that models are only rough approxima-
tions of reality. In the present study, for exam-
ple, to estimate the capture cross-section, two ap-
proximate methods are employed. Here, to assess
model uncertainty, we simply investigate the effects
of changing models on the final outcomes.

• Experimental uncertainty, which is directly related
to the precision and accuracy of measurements. In
simple cases, experimental data can be described
by a Gaussian distribution.

• Numerical uncertainty, which arises because of er-
rors corresponding to the implementation of com-
putational methods. We should be aware that most
models are too complicated to be solved analyti-
cally, so that doing a certain approximation is often
necessary. This contribution should be negligible
whenever possible.

It should be noted that the first two uncertainty sources
are essentially related to theoretical modeling and the
distinction between them is sometimes blurred, since a
model can also comprise a set of parameters.

The next step consists in identifying different uncer-
tainty sources that might come up in various contexts
with the aim of quantifying them using probabilistic
methods.

Regarding parameters, a sensitivity analysis intro-
duced in our previous studies [2, 3] allowed us to extract
the most relevant ones, namely the friction coefficient β

and the shell-damping energy, Ed. Their typical ranges
of values can be determined by doing an exhaustive lit-
erature search. Since the choice of ranges is somewhat
subjective, we would like to introduce two kinds of cases,
namely the pessimistic and optimistic hypotheses. In the
former one, the ranges of values are summarized as fol-
lows:

• The reduced friction coefficient β ∼ 1.0− 9.0 zs−1.

• The shell-damping energy Ed ∼ 13.0− 25.0 MeV.

As its name indicates, such ranges are able to cover most
of values that can be found in the literature [38, 40–46],
but the associated uncertainties appear quite large. To
justify this choice, Fig. 4 illustrates typical values of β
according to previous studies. Here, the points or bars
indicate the values extracted from experimental data.
It can be seen that the chosen range of β can accom-
modate most of the extracted values. As regards the
shell-damping energy Ed, typical values can be found in
some recent papers [42, 47], which demonstrate the cho-
sen range of values. Accordingly, the default values of the
above two parameters are taken to be 5.0 zs−1 and 19.0
MeV, namely their mean values. By contrast, in the op-
timistic case, the above ranges are expected to be better
constrained so that they could become much narrower.
In view of this, some smaller ranges of values are worth
taking into account, say reduced by 50%, namely

• The reduced friction coefficient β ∼ 3.0− 7.0 zs−1.

• The shell-damping energy Ed ∼ 16.0− 22.0 MeV.

This optimistic hypothesis is also inspected in the follow-
ing study.

Regarding the energy loss in the target δE∗, it is as-
sumed to lie in the range 2 − 4 MeV [48]. Unlike the
excitation energy, uncertainty in the beam energy can be
safely neglected because the typical relative uncertainty
is only a few percents at most.

To specify the probability density function (PDF) as-
sociated with each parameter, one needs to take into ac-
count all available information. Here, it should be noted
that, in addition to the normalization condition, only
the lower and upper limits are available (not that ex-
actly). The maximum entropy principle [49, 50] would
give a complicated probability distribution as detailed in
Ref. [51]. However, for the sake of simplicity, we stick
here to the uniform probability distribution denoted as
U(lmin, lmax) in the following study.

In addition to the parameters, it should be recalled
that using different models can also have an impact on
the final results. This influence needs to be taken into
account during analysis.

The experimental data employed in this study are
mainly taken from Refs. [52–54] and are assumed to be
normally distributed, namely N(µ, σ2) with the mean
value µ and the variance σ2. Therefore, we are only inter-
ested in the ones with symmetric uncertainty bars, even
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TABLE I. Experimental data for the 1n-channel with the
optimum energy and the corresponding maximal ER cross-
section. The data are taken from Refs. [52–54].

Reaction ZC AC Ecm [MeV] max σ1n
exp [pb]

208Pb(50Ti,1n)257Rf 104 258 185.02 10 419+1 284
−1 284

209Bi(50Ti,1n)258Db 105 259 187.50 2 200+240
−240

208Pb(54Cr,1n)261Sg 106 262 202.01 2 520+253
−253

209Bi(54Cr,1n)262Bh 107 263 205.81 163+34
−34

208Pb(58Fe,1n)265Hs 108 266 219.27 69+12
−12

though there are more measured data in the literature.
Accordingly, the selected reaction systems and the cor-
responding maximum production cross-sections are sum-
marized in Tab. I.

As a whole, it is clearly demonstrated that the maximal
production cross-section drops considerably with increas-
ing atomic number from Z = 104 to Z = 108, whereas
the experimental uncertainty gradually rises due to in-
creasing difficulty in performing such measurements.

C. Uncertainty propagation

To propagate input uncertainties through the model so
as to quantify the output uncertainty, we use a Monte-
Carlo simulation as recommended in Ref. [51], for calcu-
lating the mean value µY and the standard deviation
u(Y ) associated with the model response. More con-
cretely, supposing that one has a set of samples for the
input random vector, namely {x1,x2, . . . ,xS}, the ran-
dom model function is then evaluated for each of them
as follows:

yr =M(xr), r = 1, ..., S. (19)

Thus, the usual statistical estimators of these quantities
are simply given by

µY =
1

S

S∑
r

M(xr), (20)

u2(Y ) =
1

S − 1

S∑
r

[M(xr)− µY ]
2
. (21)

As regards the sample size, it can be approximately de-
termined by checking the stability and convergence of the
calculated result. At a 95% confidence level, the value of
S is determined to be 40 000, which would give a relative
numerical uncertainty of less than 1%. In the following
study, the confidence level is kept fixed at 95% as usual.

To obtain the corresponding confidence interval, first,
one has to estimate the cumulative distribution function
(CDF) related to the output quantity, namely

FY (y) =

∫ y

−∞
fY (t)dt. (22)

The estimated CDF, denoted by F̂Y (y), can be obtained
as follows [51]:

• Sorting the values {yr} of the output quantity pro-
vided by the Monte-Carlo simulation into increas-
ing order. The sorted values are denoted by {y(r)}.

• Assigning uniform cumulative probabilities pr =
(r − 1/2)/S to the ordered values.

Finally, once the estimated CDF has been constructed,
it is possible to determine the endpoints that define the
required confidence interval. In the case of symmetric
output distributions, the 95% confidence interval is de-
termined by the 0.025- and 0.975-quantiles. If the output
distribution is asymmetric the shortest confidence inter-
val should be adopted. It generally does not match with
the 0.025- and 0.975-quantiles anymore and can be ob-
tained numerically from the estimated CDF. For details
on this approximation and the practical algorithm, the
reader is referred to Ref. [51].

D. Summary

In the following, we calculate the empirical formation
probability, P form(δE∗, β, Ed, σ

1n
exp) defined in Eq. (18),

and perform an uncertainty analysis that is essentially
based upon the recommendations given in Ref. [51] which
serves as the international standard for expression of un-
certainty.

Regarding the PDFs for input parameters, they are
summarized as follows:

• σ1n
exp is assumed to be normally distributed.

• δE∗ ∼ U(2, 4) in MeV. Note that over each value
of δE∗, the survival probability is averaged (cf.
Eq. (16)).

• β ∼ U(1.0, 9.0) in zs−1.

• Ed ∼ U(13.0, 25.0) in MeV.

As previously discussed, the above ranges of values of the
last two parameters are considered under the pessimistic
hypothesis, which simply means that they seem some-
what large but can cover most of the parameter values
that can be found in the literature. Moreover, it would
be instructive to take a look into the effects of using some
narrower ranges of values on the final results. This is the
optimistic case, where the values of β and Ed are sup-
posed to lie within the following ranges:

• β ∼ U(3.0, 7.0) in zs−1.

• Ed ∼ U(16.0, 22.0) in MeV.

In addition to the input parameters, the effects of
changing model functions on the calculated results should
also be examined. Here, we mainly focus on some the-
oretical corrections, namely the collective enhancement
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FIG. 5. [Color online] Estimated distribution of the empirical
formation probability for the reaction 208Pb(58Fe,1n)265Hs.
The solid line represents the mean value and the dotted lines
refer to the lower and upper bounds of the 95% confidence
interval, respectively. The cumulative distribution function
(CDF) of the empirical formation probability used to define
the confidence interval is indicated.

and the Kramers-Strutinsky factors, as well as the fission-
barrier models, the level-density parameters and two sim-
ple methods for estimating capture cross-sections, which
are considered to be the main physical ingredients in-
cluded in the model.

It should be recalled that the default parameter val-
ues and models were concretely presented in a recent
paper on the description of KEWPIE2 [3]. To briefly
summarize, in the present study, the empirical barrier-
distribution method [10, 55] for estimating the capture
cross-section, the Tōke-Świątecki model [36] for the level-
density parameter, the Thomas-Fermi model [56] for cal-
culating fission barriers, and the collective enhancement
and Kramers-Strutinsky factors [33, 34, 57, 58] have been
considered by default.

The Monte-Carlo approach is employed to propagate
input distributions through the model, as the uncertainty
associated with each of the input parameters is consid-
erably large. In the present work, the GSL scientific li-
brary [59] was employed to generate uniform and normal
random numbers for input distributions.

IV. RESULTS AND DISCUSSION

In this section, we start by showing an illustrative ex-
ample for the cold-fusion reaction leading to the forma-
tion of element Hs, namely 208Pb(58Fe,1n)265Hs, at its
optimum energy. Then, a systematic study is carried out
and discussed.
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FIG. 6. [Color online] Impact of input distributions on un-
certainty associated with the empirical formation probability.
The pessimistic case is considered in the upper panel and the
optimistic input distributions for β and Ed in the lower one.
See text for details.

A. Influence of input distributions

Fig. 5 illustrates the estimated distribution related to
the empirical formation probability obtained by means
of the KEWPIE2 code together with available produc-
tion cross-sections (cf. Eq. (18)). It should be mentioned
that all the input parameters were considered under the
pessimistic hypothesis. In this case, the shape of the dis-
tribution appears to be highly skewed to the left, that is,
it has a long tail on the right hand side of the distribution
and thus results in a quite asymmetric confidence inter-
val. The mean value is hence located on the right-hand
side of the peak value. Fig. 5 also displays the corre-
sponding CDF used to determine both lower and upper
bounds of the 95% confidence interval.

Separate uncertainty contributions coming from each
of the input distributions are displayed in Fig. 6. Each
point stands for the mean value of the empirical forma-
tion probability, together with its 95% confidence inter-
val. First, the contribution of the experimental uncer-
tainty is represented by the first point on the left. The
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upper bound of the confidence interval is higher than the
lower one by a factor of about 2. The following three
points are connected with the energy loss in the target,
the reduced friction parameter β and the shell-damping
energy Ed, respectively. Overall, it can be clearly no-
ticed that the theoretical contributions are dominant
compared to the experimental ones. This is simply due
to the fact that β and Ed are closely related to the fis-
sion process that is known to be the dominating decay
channel for SHE. It should also be mentioned that the rel-
ative uncertainty of β is about 46%, which appears to be
much larger than that of Ed estimated to be about 18%.
Put differently, this means that uncertainty related to the
empirical formation probability would be more sensitive
to the shell-damping energy. Finally, when including all
input distributions, the total confidence interval spans
slightly more than one order of magnitude.

When reducing the intervals of the two dominant pa-
rameter values by 50%, that is, under the optimistic hy-
pothesis, Fig. 6 clearly demonstrates that the total uncer-
tainty is also decreased by almost the same factor. This
result also indicates that further constraints on these two
critical model parameters would be able to reduce the to-
tal uncertainty connected with the empirical formation
probability.

B. Influence of models

10
−8

10
−7

10
−6

10
−5

10
−4

P−
fo

rm

Impact of correction factors

With all factors
Without Kramers−Strutinsky

Without Coll. Enh.
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FIG. 7. [Color online] Impact of correction factors on the
empirical formation probability. Note that the uncertainty
interval is due to all parameters under the pessimistic hy-
pothesis.

We then look into the impact of changing models on
the empirical formation probability.

Fig. 7 illustrates how correction factors, namely the
Kramers-Strutinsky and collective enhancement ones, af-
fect the mean value of the empirical formation probabil-
ity. Removing the Kramers-Strutinsky factor, it is read-
ily seen that the mean value slightly increases by a factor
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FIG. 8. [Color online] Impact of level-density parameters on
the empirical formation probability. Uncertainty interval is
due to all parameters under the pessimistic hypothesis.
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FIG. 9. [Color online] Impact of capture models on the em-
pirical formation probability. Uncertainty interval is due to
all parameters under the pessimistic hypothesis.

of about 2, whereas it becomes a bit lower after remov-
ing the collective enhancement factor. It should also be
noted that the uncertainty amplitudes do not remain the
same due to the fact that β is jointly removed along with
the Kramers-Strutinsky factor so that the output distri-
bution becomes narrower.

Fig. 8 shows the effects of changing level-density pa-
rameter formulas on the mean value of the empirical for-
mation probability and the associated confidence inter-
val. As already mentioned, in addition to the default
model of Tōke and Świątecki [36], we also selected the
Reisdorf [24] and Pomorska et al. models [37]. Here, one
can notice that the mean value of the empirical probabil-
ity decreases at most by a factor of around 2, which ap-
pears to be negligible compared to the total uncertainty
interval. As a whole, the lengths of their confidence in-
tervals seem to remain the same.

Fig. 9 tells us how capture models affect the mean value
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FIG. 10. [Color online] Impact of fission barriers on the em-
pirical formation probability. Uncertainty interval is due to
all parameters under the pessimistic hypothesis.

and confidence interval of the empirical formation prob-
ability. Here, the empirical barrier-distribution (EBD)
method [10, 23] and the WKB approximation [24, 25],
were considered. As can be seen in Fig. 9, the results
based upon these two simple capture models seem to dif-
fer by a factor of about 7, that is, less than one order
of magnitude. However, special attention should always
be drawn to the capture step because calculated cross-
sections could differ by one order of magnitude, especially
in the case of deformed colliding nuclei due to nuclear
structure effects.

Fig. 10 demonstrates how the mean value and the
confidence interval associated with the empirical forma-
tion probability evolve with various fission-barrier mod-
els. Here, three different models were considered. Two
of them are based on a commonly used approximation
with a macroscopic part calculated with the Thomas-
Fermi (TF) model [56] or the Lublin-Strasbourg Drop
(LSD) [60] to which a shell-correction table [61] is added.
The third model is Möller et al’s microscopic-macroscopic
model [32]. It is thus observed that the mean values can
differ by almost one order of magnitude that is compara-
ble to the total uncertainty interval. This is mainly due
to the fact that nuclear fission is known to be the domi-
nant decay channel for heavy nuclei. A small change in
fission barrier can give rise to a significant variation in the
calculated survival probability. It is worth noticing that
if we had taken into account all fission barriers available
in the scientific literature, the impact would have been
larger.

C. An extended comparison

So far, we have illustrated an uncertainty analysis for
a special cold-fusion reaction. In this subsection, an ex-
tended study is presented for the whole set of cold-fusion
reactions listed in Tab. I.
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FIG. 11. [Color online] Systematic comparison of the calcu-
lated mean values of the empirical formation probability for
the cold-fusion reactions leading to the synthesis of the ele-
ments from Z = 104 to Z = 108 (cf. Tab. I). The deduced
formation probabilities are based upon two simple capture
models (see text). Lines correspond to theoretical predictions
from Refs. [10, 16–20, 62] as in Fig. 2.
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FIG. 12. [Color online] Same as Fig. 11 but the deduced
formation probabilities are based upon two different fission-
barrier models (see text).

Two different cases related to the empirical formation
probabilities and the associated 95% confidence intervals
for the selected cold-fusion reactions leading to the syn-
thesis of SHE ranging from Z = 104 to Z = 108 are
shown in Figs. 11 and 12. The former displays calcu-
lated results with two simple capture models and the
latter shows those based upon two extreme fission-barrier
models. It should be kept in mind that the uncertainty
interval is always related to all input distributions within
the pessimistic hypothesis.

First, one can immediately notice that the discrepancy
due to the capture step can even reach two orders of mag-
nitude for the lightest reaction system, but it gradually
declines as the atomic number of the compound system
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FIG. 13. [Color online] Same as Fig. 11 but the extreme case is
presented for both capture and fission-barrier models so as to
have the largest discrepancy between the empirical formation
probabilities.

goes up. This is due to the fact that, as the system be-
comes heavier, the incident energy for the one-neutron
channel is approaching to the Coulomb barrier so that
uncertainty associated with the capture model because
of sub-barrier coupled-channels effects should be gradu-
ally reduced. To this extent, the uncertainty remaining
in the estimated capture cross-section could also have a
significant impact on the final results, but fortunately it
can be directly measured and thus be constrained. Here,
it should be kept in mind that we only considered two
simple capture models in our calculations, whereas many
other more sophisticated and accurate ones are currently
available. Accordingly, one would expect that uncer-
tainty associated with the capture model can be reduced
either theoretically or experimentally.

Regarding the impact of fission barriers, as displayed
in Fig. 12, the discrepancy practically seems to remain
the same. Overall, the mean values based upon two ex-
treme fission-barrier models with the same shell correc-
tion energy can differ by about one order of magnitude,
which is comparable to the lengths of their correspond-
ing uncertainty intervals. Unlike in the case of capture
models, since the fission-barrier height cannot be directly
measured, it is unlikely that uncertainty would be reason-
ably reduced. To this extent, other methods should to be
invented so as to constrain fission-barrier models. For in-
stance, we recently started to consider Bayesian inference
together with its possible application [63, 64].

Finally, it is also interesting to take a look into the ex-
treme cases, that is, with two capture models and two ex-
treme fission-barrier models. This is displayed in Fig. 13.
As for some lighter systems, the maximal discrepancy can
reach more than three orders of magnitude, whereas it
gradually diminishes to around two orders of magnitude
as the atomic number goes up. Considering the total un-
certainty interval, the discrepancy between the calculated
formation probabilities can be completely accommodated

and hence, it appears unlikely to discriminate the vari-
ous formation models. Put differently, as mentioned at
the beginning of this paper, all fusion-evaporation models
would be capable of reproducing the measured data, even
though there are still serious ambiguities in the reaction
mechanism for heavy-ion fusions.

V. CONCLUSION AND PERSPECTIVES

Although various models converge to experimental
data when estimating excitation function of ER cross-
sections of super-heavy nuclei, a closer look at interme-
diate steps shows large discrepancies between them. It is
especially the case for the formation step that is the lesser
known part of the reaction. Consequently, when exper-
imental data are not available, predictions diverge. The
results obtained from the uncertainty analysis presented
in this paper are helpful for comprehending the contradic-
tion between theoretical formation probabilities and ER
cross-sections. It was demonstrated that, although the
formation probability is not yet quantitatively known, by
somehow tuning the better-known factors, namely the
capture cross-section and survival probability, one can
still be able to obtain a reasonable fit to experimental
data.

In this sense, the predictive power of fusion-
evaporation models remains quite limited in the case of
super-heavy element synthesis. To assess them, it would
be necessary to refine both the capture and fission-barrier
models. In the former case, as previously mentioned,
this can be done with the help of more accurate data
as the capture cross-section can be directly measured, or
using some more sophisticated capture models. In the
latter case, however, there are still severe discrepancies
between various types of calculations [31] and moreover,
the fission-barrier height cannot be directly measured.
Its extraction from experimental data is model depen-
dent [63, 64].

How to constrain both formation models and fission
barriers simultaneously? There is a crucial need for ex-
periments dedicated to a better understanding of the fu-
sion hindrance. The synthesis of the same nucleus by hin-
dered and non-hindered reactions would be helpful as the
decay part would be the same. From a theoretical point
of view, there is a real need to decrease the number of free
parameters. Thus, fission barriers and inner fusion bar-
riers responsible for the fusion hindrance should be cal-
culated within the same model. This generally requires
microscopic or microscopic-macroscopic approaches [31].
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