
                          Vizzaccaro, A., Opreni, A., Salles, L., Frangi, A., & Touzé, C. (2022).
High order direct parametrisation of invariant manifolds for model
order reduction of finite element structures: application to large
amplitude vibrations and uncovering of a folding point. Nonlinear
Dynamics, 110(1), 525-571. https://doi.org/10.1007/s11071-022-
07651-9

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1007/s11071-022-07651-9

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Springer at
https://doi.org/10.1007/s11071-022-07651-9 .Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1007/s11071-022-07651-9
https://doi.org/10.1007/s11071-022-07651-9
https://doi.org/10.1007/s11071-022-07651-9
https://research-information.bris.ac.uk/en/publications/fbcc506c-a4e3-40d5-8ff3-2ddcae66533a
https://research-information.bris.ac.uk/en/publications/fbcc506c-a4e3-40d5-8ff3-2ddcae66533a


Nonlinear Dyn
https://doi.org/10.1007/s11071-022-07651-9

ORIGINAL PAPER

High order direct parametrisation of invariant manifolds
for model order reduction of finite element structures:
application to large amplitude vibrations and uncovering
of a folding point

Alessandra Vizzaccaro · Andrea Opreni ·
Loïc Salles · Attilio Frangi · Cyril Touzé

Received: 9 September 2021 / Accepted: 9 May 2022
© The Author(s) 2022

Abstract This paper investigates model-order reduc-
tion methods for geometrically nonlinear structures.
The parametrisation method of invariant manifolds is
used and adapted to the case of mechanical systems in
oscillatory form expressed in the physical basis, so that
the technique is directly applicable tomechanical prob-
lems discretised by thefinite elementmethod. Twonon-
linear mappings, respectively related to displacement
and velocity, are introduced, and the link between the
two is made explicit at arbitrary order of expansion,
under the assumption that the damping matrix is diag-
onalised by the conservative linear eigenvectors. The
same development is performed on the reduced-order
dynamicswhich is computed at generic order following
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different styles of parametrisation. More specifically,
three different styles are introduced and commented:
the graph style, the complex normal form style and the
real normal form style. These developments allowmak-
ing better connections with earlier works using these
parametrisationmethods. The technique is then applied
to three different examples. A clamped-clamped arch
with increasing curvature is first used to show an exam-
ple of a system with a softening behaviour turning to
hardening at larger amplitudes, which can be replicated
with a single mode reduction. Secondly, the case of a
cantilever beam is investigated. It is shown that invari-
ant manifold of the first mode shows a folding point
at large amplitudes. This exemplifies the failure of the
graph style due to the folding point on a real structure,
whereas the normal form style is able to pass over the
folding. Finally, a MEMS (Micro Electro Mechanical
System)micromirror undergoing large rotations is used
to show the importance of using high-order expansions
on an industrial example.

Keywords Finite element method · Geometric
nonlinearities · Model order reduction · Normal form ·
Manifold folding

1 Introduction

This work is concerned with model-order reduction
techniques for nonlinear vibrations of structures featur-
ing geometric nonlinearity, with a particular emphasis
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on problems using the finite element (FE) procedure as
space discretisation method. In this context, numerous
methods have been proposed in the past in the FE com-
munity: stiffness evaluation procedure (STEP) [1–4],
implicit condensation [5–8], E-STEP [9] and M-STEP
[10,11],modal derivatives (MD) [12–14] and quadratic
manifold built from modal derivatives [15,16].

On the other hand, reduction methods for geomet-
rically nonlinear systems have also been studied in the
dynamical systems community, leading to important
theoretical developments with methods which were
mostly applied to partial differential equations (PDEs),
and not to FE problems with large dimensions. In this
direction, important contributions led to the definition
of Nonlinear NormalModes (NNMs) as invariant man-
ifolds of the system, tangent to the linear eigenspaces
[17,18]. As emphasised in numerous papers, the invari-
ance property is key in order to derive accurate ROMs,
for the simple reason that reduction to a non-invariant
set leads to simulate trajectories with the reduced mod-
els that do not exist for the full system, hence imme-
diately questioning the validity of the ROM. The idea
has then been pushed forward, using either computa-
tionalmethods for the solution phase [19], or a different
methodology for the theoretical settings, i.e. by using
the normal form approach [20–22].

Some steps have been recently taken in order to com-
pare and assess the methods developed in the FE com-
munity against those relying on invariant manifold the-
ory. In particular, it has been clearly demonstrated that
most of the methods such as implicit condensation or
quadratic manifold with MD, need a slow/fast assump-
tion in order to deliver accurate predictions [23–27]. By
slow/fast assumption, it is meant that a clear frequency
gap between the eigenfrequencies of the slave and of
the master modes, needs to be fulfilled.

In the mathematical community, a major advance-
ment in the understanding and formalisation of the
reduction to invariant manifolds has been made thanks
to the parametrisation method, first introduced by
Cabré, Fontich and de la Llave [28–30], and then
rewritten in a more computational framework, easier
to understand for engineering applications, in the book
byHaro et al. [31]. This important formalisation allows
unifying different developments in the same frame-
work. While previous works relied either on invari-
ant manifold computation proposed e.g. by [32,33]
(assuming a functional relationship between slave and
master coordinates), or on the normal form theory

[20,34], the parametrisationmethod allows one to show
that both solutions can be derived from the invariance
equation, which can be solved either with a graph style
or a normal form style.

The parametrisation method has then been first
adapted to the case of vibratory systems by Haller
and Ponsioen [35]. Also, whereas most of the previ-
ous studies on NNMs took advantage of existence and
uniqueness of Lyapunov subcentre manifolds (LSM)
[36,37] to settle down the definitions in a correct math-
ematical framework, the situation for dissipative sys-
tems were less clear, as underlined by different inves-
tigations [38,39]. One of the main contribution of
Haller and Ponsioen has thus also been to provide
existence and uniqueness theorems for such invariant
manifolds defined as spectral submanifolds (SSMs).
In the damped case, the smoothest nonlinear continu-
ation of a spectral subspace of the linearised system
is the SSM, and is unique under general persistence
and non-resonance conditions provided in [35,40]. The
link between the conservative case, with LSMs densely
filled with periodic orbits, and the dissipative case, has
been further investigated in [41]. Elaborating on the
parametrisation method, automated reduction methods
up to arbitrary order and arbitrary polynomial nonlin-
earities for two-dimensional manifolds with damping
included (SSM) have been derived and implemented in
[40].

One important drawback of the methods using
invariant manifolds with regard to applications to large
FE models was their need to express the equations of
motion in the modal basis as a starting point. How-
ever, recent developments tackled this limitation and
proposed direct computations in order to pass from
the physical space to ROMs expressed with coordi-
nates linked to invariant manifolds. The computation
of invariant manifolds directly from physical coordi-
nates has been proposed for the first time in [42],
where 2D finite elements are used to discretise nonlin-
ear parabolic PDEs and a variety of problems having
both polynomial and non-polynomial nonlinearities are
tackled. In the field of mechanical systems, elaborating
on previous results on normal forms, a direct approach
has been proposed in [43] and further developed in
[27,44], allowing one to express the reduced dynamics
with normal coordinates in an invariant-based span of
the phase space. Leveraging on SSM, a direct approach
has also been presented in [45–47], taking into account
the damping and proposing arbitrary order approxima-
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tions in an automated framework. All these develop-
ments have been made publicly available in the code
SSMtool 2.0, which embeds all the proposed fea-
ture to compute automatically high order approxima-
tions of the SSM [48].

An overview of the nonlinear reduction methods
has been proposed in [49], allowing one to put all
the developments using nonlinear techniques in per-
spective, with a special emphasis on applications to
FE models. In particular, SSM as defined in [35] are
unique only when the order of the asymptotic develop-
ment reaches the spectral quotient defined as the ratio
between the maximal damping ratio of the slave modes
divided by the smallest of the masters. In practice, for
largeFEmodels, this number canbevery large such that
all asymptotic developments are just approximations of
the unique SSM. Consequently, prior developments led
in [17,18,21] with damping included were low-order
approximations of the SSM, either with a graph style
or a normal form style. Along the same lines, and
as remarked in [49], the computations proposed in this
contribution aswell as those shown for example in [45–
47], are approximations of the unique SSM, which is
reached at a very high order only. Importantly, all lower
order approximations of the SSM share the invariance
property, up to the selected order, and can be thus used
safely to provide accurate ROMs.

This paper elaborates on the previous analysis led
in [43,44], with the aim of pushing the developments
further to propose an arbitrary order expansion. As a
main difference, the parametrisation method [30,31] is
used instead of starting from the normal form trans-
formation. In short, whereas normal form expansion,
as proposed in [20,21,43,44], gives the expressions of
the complete nonlinear mapping, and then reduces by
selecting a few master normal coordinates in order to
compute an effectiveROM; theparametrisationmethod
first reduces by selecting the master coordinates, and
then computes the expansions, with the added value
that different solutions are possible, thus offering the
possibility of using either a graph style or a normal form
style.As noted in [45,49], thefirst introduction ofNNM
as invariantmanifold given in [17] is equivalent to using
the parametrisation method with graph style. The point
of view developed here is thus to show that the normal
form approach proposed by Touzé at al. in [20,21], the
direct normal form (DNF) proposed in [43,44], and the
real normal form introduced in [50], can also be unified

in the same parametrisation framework, by introducing
the real normal form style of parametrisation.

Under the parametrisation method framework, the
theoretical foundations used in this contribution are
equivalent to those already reported in [45–47], where
arbitrary order expansions have already been shown,
together with the possibility of using either graph or
normal form style. The main differences can be listed
as follows: (i) the focus here is on large FE mod-
els of mechanical systems discretised with 3D ele-
ments, in contrary to [45,48] where beam and plate ele-
ments are treated togetherwith the possibility of includ-
ing generic nonlinearities; (ii) the damping matrix is
assumed to be diagonalised by the eigenvectors of
the conservative system, which is a needed assump-
tion when working with large FE models where differ-
ent choices than proportional damping needs specific
developments at the elementary level; (iii) thanks to the
inherently second-order nature of the original equation
of motion, displacement and velocity mappings can
be treated separately allowing to show the relationship
between the two at generic order and to retrieve homo-
logical equations in the sole displacementmapping; (iv)
a number of implementation differences in the treat-
ment of the direct computation are reported (e.g. treat-
ment of the nonlinear tensors as functions to reduce the
memory consumption, derivation of homological equa-
tions in the sole displacement to halve the size of the
linear systems to solve, aggregation of right hand sides
corresponding to the same monomial to exponentially
reduce the number of linear systems to solve, solution
of bordered matrices in presence of resonances instead
of a norm-minimisation); (v) two different versions of
the normal form style are investigated: a complex and a
real normal form style, a necessary step tomake the link
with the direct normal form (DNF) approach proposed
in [43,44].

Thanks to the computational developments, specific
applications are then reported to underline the qual-
ity of the ROMs obtained. First, a clamped-clamped
arch with increasing curvature is investigated in order
to demonstrate that higher-order expansions are able to
capture a behaviour in the backbone curve that is first
softening then hardening, with a single mode reduc-
tion. Then, the fundamental mode of a cantilever beam
is studied, putting in evidence a folding of the com-
puted invariant manifold. Such a folding has already
been reported in [40] for a two-degree-of-freedom sys-
tem. Here we show that a folding occurs for the fun-
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damental mode of a cantilever beam, also giving theo-
retical explanations to some failures reported in ear-
lier works for this case. Due to this very particular
behaviour, it is then shown that the graph style is
not able to provide a correct ROM up to very large
displacements. On the other hand, normal form style
passes through the folding point and allows obtain-
ing accurate results. Finally, a MEMS (Micro-Electro-
Mechanical System) micromirror is used to demon-
strate how the method can handle large FE struc-
tures of interest for industrial applications. The algo-
rithm detailed in this work, together with the testcases
presented are publicly available in the julia package
MORFEInvariantManifold.jl [51].

2 Equations of motion and parametrisation
method

2.1 Equations of motion and eigenproblem

We consider large-amplitude, geometrically nonlinear
vibrations of an elasticmechanical structure discretised
with three-dimensional finite elements. It is assumed
that the constitutive law is linear elastic so that the only
nonlinearity comes from the strain-displacement rela-
tionship which, once mapped into the reference con-
figuration, generates polynomial nonlinearities up to
cubic order. In this framework, the equations of motion
contain quadratic and cubic nonlinearities in the sole
displacement, and can be written in a general formula-
tion as [10,52–54]:

MÜ + CU̇ + KU + G(U,U) + H(U,U,U) = 0, (1)

where U is the N -dimensional time-dependent dis-
placement vector, gathering all the degrees of free-
dom of the model, M and K are respectively the
mass and stiffness matrix, C stands for the damp-
ing matrix. Quadratic and cubic polynomial nonlin-
earities are expressed through the terms G(U,U) and
H(U,U,U) which can be written as

G(U,U) =
N∑

r=1

N∑

s=1

GrsUrUs, (2a)

H(U,U,U) =
N∑

r=1

N∑

s=1

N∑

t=1

HrstUrUsUt , (2b)

whereGrs stands for the N -dimensional vector of coef-
ficients Gp

rs , for p = 1, ..., N , and similarly Hrst is a
vector of coefficients H p

rst . The individual coefficients
are defined from integrals over the domain of the elas-
tic energy, see e.g. [44,54] for detailed expressions. It
is worth mentioning that, in the present case of three-
dimensional finite elements, such a formulation with
cubic polynomial nonlinearities is exact for any vibra-
tion amplitude; this is not the case for beam and shell
elements, where the presence of the rotational degrees
of freedom renders cubic nonlinearities an approxima-
tion limited to the case of small rotations.

The eigenproblem of the corresponding conserva-
tive linear system reads

(−ω2
jM + K)� j = 0, (3)

where � j is the eigenmode shape and ω j the cor-
responding eigenfrequency. Assuming normalisation
with respect to mass, the family of eigenmodes fulfils
the following relationships:

�T
jM� j = 1, �T

jK� j = ω2
j . (4)

Moreover, the modal displacement for a given mode
j is obtained by projection:

u j = �T
jMU. (5)

Defining V = U̇ as the vector of nodal velocities, the
modal velocity is also obtained by projection:

v j = �T
jMV. (6)

In the remainder of the article, it is assumed that
the damping formulation is such that the modes of the
conservative system diagonalise the damping matrixC
as well. The Rayleigh proportional damping law, com-
monly used in FE formulation, which imposes C to
be a summation of mass and stiffness matrices with
two independent parameters, is known to be compat-
ible with this assumption. Since we are interested in
underdamped vibrational problems for industrial appli-
cations, it is legitimate to assume the damping matrix
to be in the simplest possible form. Moreover, unless
a refined damping model is directly implemented at
the level of the finite element, in industrial practice it
is normal to assume Rayleigh proportional damping.
More generally, the reader is referred to [55–57] for
discussions on the formulation of C such that the sys-
tem possesses classical normal modes. As we are also
mostly interested in lightly damped systems, it is also
assumed that the damping of themastermodes is small.
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By introducing the modal damping ratio ξ j of the j-th
mode as

�T
jC� j = 2ξ jω j , (7)

the assumption of light damping (ξ j � 1) for the first
modes will be generally made in the rest of the paper.
The eigenproblem of the non-conservative linear sys-
tem can then be written as

(Λ2
jM + Λ jC + K)� j = 0, (8)

whose eigenvalues are the complex conjugate pairs

Λ j = −ξ jω j + iω j

√
1 − ξ2j ,

Λ̄ j = −ξ jω j − iω j

√
1 − ξ2j . (9)

A first-order, state-space formulation, is introduced
for deriving themain part of the calculations.As a direct
consequence, the size of the problem will double and
become 2N . As shown for example in [45,58], numer-
ous different formulations can be used to write Eq. (1),
leading to different properties in terms of the symme-
try of the resulting matrices. In this contribution, M
is assumed to be non-singular and the following first-
order non-symmetric formulation is selected:

MV̇ + CV + KU + G(U,U) + H(U,U,U) = 0,
(10a)

MU̇ = MV. (10b)

In Eq. (10b), the mass matrix has been added for sym-
metry reasons in the upcoming formula. Other choices,
leading to symmetric formulations, could have been
used. This choice is justified by the following argu-
ments. First, as it will be shown in the next devel-
opments, the state-space formulation is used essen-
tially for readability and to recover important sym-
metry properties. However, a special emphasis will be
put throughout the calculations in order to solve N -
dimensional problems rather than 2N , by exploiting the
relationship between displacement and velocity arising
from the fact that the initial problem is second-order.
Second, further extensions of the methods will finally
lead to a non-symmetric formulation when including
forces that will break this property. Thus, for the sake
of generality, it has been found more convenient to
directlywork in such a setting,whichwill involve defin-
ing two projection basis with right and left eigenvec-
tors.

In vibration theory, eigenvalues are complex con-
jugate and come by pairs following Eq. (9), and two
of them are needed to form a vibration mode. In
state-space form, one can sort them either one next to
the other, or put the first N (e.g. with positive sign
on the imaginary part) and complete the sorting by
the last N complex conjugates. This second choice
is here retained such that the j-th vibration mode of
the second-order system, is now split into two com-
plex conjugate modes, corresponding to the j-th and
( j + N )-th lines. Consequently the eigenspectrum is
sorted according to the following order, ∀ j ∈ [1, N ]:

Λ j = −ξ jω j + iω j

√
1 − ξ2j , (11a)

Λ j+N = Λ̄ j = −ξ jω j − iω j

√
1 − ξ2j . (11b)

This choice is appealing since the second half of the
complex problem is simply given by the complex con-
jugate of the first. This has consequences in all the
upcoming expressions as, in most of the derivations,
the index j can span only the first half, j ∈ [1, N ], the
second half being implicitly verified using the conju-
gation operation without extra work. In order to come
back to the real j-th vibration mode, one needs to pick
the pair ( j, j + N ) in the complex eigenproblem. The
corresponding right complex eigenvectors Y j of the
first-order problem, following the same classification,
read, for j ∈ [1, N ]:

Y j =
[
� jΛ j

� j

]
, (12a)

Y j+N = Ȳ j =
[
� j Λ̄ j

� j

]
. (12b)

Again, the second half for index ranging from N +1 to
2N is simply given by the complex conjugate. Note that
the right eigenvectors are expressed directly in terms of
the realmodes� j of the second-order system.The right
eigenvectors Y j are solution of the following eigen-
problem:
(

Λs

[
M 0
0 M

]
+
[

C K
−M 0

])
Ys = 0. (13)

This eigenvalue problem is valid for all s, nevertheless
it is sufficient to span s ∈ [1, N ] since the second half
is the complex conjugate, thanks to the relationships
Λs+N = Λ̄s and Ys+N = Ȳs . Since the retained first-
order system is not symmetric, one also needs to define
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the complex left eigenvectors X j as

X j = 1

Λ j − Λ̄ j

[
� j

−� j Λ̄ j

]
, (14a)

X j+N = X̄ j = 1

Λ̄ j − Λ j

[
� j

−� jΛ j

]
, (14b)

where j ∈ [1, N ] spans the real modes of the second-
order system.

The left eigenmodes are solutions of the linear prob-
lem:

X
T
s

(
Λs

[
M 0
0 M

]
+
[

C K
−M 0

])
= 0, (15)

where, as before, it is sufficient to write Eq.(15) for
s ∈ [1, N ].

As usual in vibration theory, the left and right eigen-
vectors share important orthogonality properties. For
real vibration modes, both orthogonality with respect
to mass and stiffness matrices are fulfilled. For the
first-order non-symmetric system considered herein,
the equivalent of the mass orthonormalisation reads

X
T
r

[
M 0
0 M

]
Ys = δsr , (16)

with s, r ∈ [1, 2N ] and δsr the Kroneker delta. The
equivalent of the orthogonality condition with respect
to stiffness reads

X
T
r

[
C K

−M 0

]
Ys = −Λrδsr , (17)

with s, r ∈ [1, 2N ]. Due to the first-order formula-
tion and the complex conjugate eigenfrequencies (11),
a complexification of the problem is used to conduct
most of the calculations. Coming back to real coordi-
nates using a realification will be addressed in Sect. 5
to close the developments.

Before moving to the next section, it is important
to stress that the whole spectrum of 2N eigenvalues
and eigenvectors is never computed. This is the main
improvement of direct methods, where only a small
portion of the modes of the system, those selected as
master, is needed. To distinguish the master eigenval-
ues and eigenvectors from the original ones, it is impor-
tant to introduce a different notation. Let us define the
set of modes selected as master as:

M = {m1, m2, . . . , mn}, (18)

where n � N for large systems. The following matri-
ces, related to the master eigenvalues and eigenvectors,

are introduced as:

X = [Xm1 Xm2 . . . Xmn X̄m1 X̄m2 . . . X̄mn

]
, (19a)

Y = [Ym1 Ym2 . . . Ymn Ȳm1 Ȳm2 . . . Ȳmn

]
, (19b)

λ = diag[Λm1, Λm2 , . . . , Λmn Λ̄m1 , Λ̄m2 ,

. . . , Λ̄mn ], (19c)

φφφ = [�m1 �m2 . . . �mn �m1 �m2 . . . �mn

]
, (19d)

withX andY the 2N×2nmatrices of left and rightmas-
ter eigenvectors (whose j-th columns will be denoted
asX j andY j ), λ the 2n×2n matrix of complex master
eigenvalues (whose j-th diagonal entry will be denoted
asλ j ), andφφφ the N×2nmatrix ofmastermodes (whose
j-th column will be denoted as φφφ j ). It follows that the
newly introduced matrices can be also written as:

X = [X1 X2 . . . Xn X̄1 X̄2 . . . X̄n
]
, (20a)

Y = [Y1 Y2 . . . Yn Ȳ1 Ȳ2 . . . Ȳn
]
, (20b)

λ = diag[λ1, λ2, . . . , λn, λ̄1, λ̄2, . . . , λ̄n], (20c)

φφφ = [φφφ1 φφφ2 . . . φφφn φφφ1 φφφ2 . . . φφφn
]
, (20d)

which makes clear that in the sorting of the master
quantities, the j-th master index correspond to them j -
th index in the sorting of the original system and the
( j + n)-th to the (m j + N )-th, with j ∈ (1, n). Also,
the properties listed for the generic eigenvectors of the
full problems still hold for the master ones.

As a last consideration, we want to point out that,
in general, when dealing with second-order real prob-
lems, the master modes matrix φφφ, which allows one
to go directly from physical to modal space, has only
n columns. Here, due to the use of first-order formula-
tion, this matrix needs to have 2n columns by repeating
the master eigenvectors.

2.2 Parametrisation method and invariance equations

In this section, the definitions needed for the nonlinear
mapping and the reduced dynamics are introduced. The
method relies on the parametrisation method of invari-
ant manifolds, first introduced by Cabré, Fontich and
de la Llave in [28–30]. The book by Haro et al. [31]
details the method with the aim of developing effective
computations for physical problems. The parametri-
sation method has been introduced in the engineer-
ing community by Haller and coworkers and it has
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been applied in vibration theory for systems in modal
space in [35,40], where the denomination SSM has
been firstly introduced. The existence and uniqueness
of these sought invariant manifolds under appropriate
smoothness and non-resonance conditions have been
demonstrated in [28,35]. More recent progress focuses
on working directly in the physical space, with in view
application to structures modelled with the FEM. This
has been realised using either a normal form approach
[27,43,44], or the parametrisation method [45–47].
Here, we elaborate on the parametrisation method and
introduce a different implementation to the approach
in [45–47].

The general idea is to reduce the dynamics to an
invariant manifold that is tangent to the eigenvectors
selected as master, this invariant manifold being an
approximation of the SSM tangent to the linear mas-
ter subspace. Since an invariant manifold is a curved
subset in phase space, a nonlinear mapping is defined.
Let us assume that n master coordinates are selected,
with n � N . These master coordinates are linked to
their corresponding vibration modes and the searched
invariant manifold is the nonlinear continuation of
the subspace spanned by the n second-order vibration
modes. In phase space, this invariant manifold is 2n-
dimensional due to the fact that two coordinates (basi-
cally displacements and velocity) are needed. In order
to describe the reduced dynamics on this manifold,
we introduce 2n normal coordinates z, following the
denomination introduced in [20,21]. The 2N original
coordinates U and V are then expressed as a function
of the new normal coordinates z as

U = Ψ (z), (21a)

V = Υ (z), (21b)

where the two nonlinear mapping functions Ψ and Υ

are the unknowns to be computed. Note that, in contrast
to [45–47] where the system is handled in first-order
form, such that a single mapping is needed for both U
andV, here, the samemapping is split into two, a feature
that will be key to reduce numerous computations, by
making explicit the link between them, and recovering
whenever possible a N -dimensional problem.

The reduced dynamics governs the evolution onto
the corresponding invariant manifold. At this stage it is
also unknown and is assumed to write

ż = f (z). (22)

The aim of the method is to compute Ψ , Υ and f . The
reduced-order dynamics is then given by f , while the
nonlinearmappingsΨ andΥ allowone to pass from the
physical space to the phase space spanned by the com-
puted invariant manifolds, specifying the link between
the normal and original (physical) coordinates.

In order to solve for the unknowns, the key is to
derive the so-called invariance equation [30,31] which
states that the computed manifold is indeed invari-
ant. The general formulation of the invariance equation
given in [30,31] is here adapted to the mechanical con-
text. Note that the invariance equation is also used in
[35] for mechanical problems. In this contribution, the
distinctive feature relies in the fact that both lines of the
mappings, related to displacement and velocities, are
followedduring the calculations throughΨ andΥ . This
allows one in particular to keep track of the mechanical
characteristic features (mass matrix, linear and nonlin-
ear stiffness) throughout the calculations, express more
closely the relationships existingbetweenΨ andΥ , and
make a clear connections to earlier works. Finally, it
will also allowus to provide numerous expressionswith
N -dimensional matrices instead of 2N . The procedure
to derive the invariance equation consists in differenti-
ating Eq. (21) with respect to time, and then replace
all time dependencies thanks to Eq. (22) to eventu-
ally arrive at a time-independent equation. Deriving
Eq. (21) with respect to time and using Eq. (22) leads
to

U̇ = ∇zΨ (z) ż = ∇zΨ (z) f (z) =
2n∑

s=1

∂Ψ (z)
∂zs

fs(z),

(23a)

V̇ = ∇zϒ(z) ż = ∇zΥ (z) f (z) =
2n∑

s=1

∂Υ (z)
∂zs

fs(z).

(23b)
Substituting in the first-order equations of motion

(10), one arrives at the invariance equationwhich reads,
for the mechanical problem with geometric nonlinear-
ities

M ∇zΥ (z) f (z) + CΥ (z) + KΨ (z) + G(Ψ (z),Ψ (z))

+ H(Ψ (z),Ψ (z),Ψ (z)) = 0, (24a)

M∇zΨ (z) f (z) = MΥ (z). (24b)

These nonlinear equations can be solved locally by
using asymptotic expansions in the unknown (the nor-
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mal coordinate z), as proposed in [30,31]. The remain-
der of the paper details how this procedure can be
written for an arbitrary order such that high-order con-
verged solutions can be computed. One of themain dif-
ficulty resides in tracking all the terms having the same
order, since they can originate from different sources.
This process is handled step by step in the next sections.

2.3 Asymptotic expansions and homological
equations

Let us assume that n master modes have been selected
for the analysis. In the first-order form, this corresponds
to 2n complex conjugatemodesYs such that the index s
will span from 1 to 2n. The choice of the master modes
is left to the user and is guided by physical reasoning
and the dynamics one wants to simulate with the ROM,
see e.g. [49] for a discussion.

Both unknown nonlinear mappings and reduced
dynamics can be expressed as polynomial expansions
of the 2n normal coordinates. Let us denote as o the
maximum order reached by the expansion, which is
arbitrary at the moment and will be seen as a conver-
gence parameter for the solution. The unknown func-
tions are thus expanded as

Ψ (z) =
o∑

p=1

[Ψ (z)]p, Υ (z) =
o∑

p=1

[Υ (z)]p,

f (z) =
o∑

p=1

[
f (z)

]
p, (25)

where the shortcut notation [.]p is used to indicate a
polynomial term of order p. Detailed expressions of the
polynomial expansions will be given when needed in
the remainder of the paper, but here this simple notation
is used to underline the main points of the method. The
constant terms for p = 0 are not taken into account
in all the expansions since it is assumed that the fixed
point of the system (10), which represents the structure
at rest, is at the origin of the phase space.

The order-p homological equations correspond to
selecting all the terms of order p from the invariance
equation (24). Using the notation [.]p they can be sim-
ply written as

M
[∇zΥ (z) f (z)

]
p + C[Υ (z)]p + K[Ψ (z)]p

+ [G(Ψ (z),Ψ (z))]p + [H(Ψ (z),Ψ (z),Ψ (z))]p = 0,
(26a)

M
[∇zΨ (z) f (z)

]
p = M[Υ (z)]p. (26b)

2.4 First-order solution: tangency to linear
eigenspaces

The process of solving the order-p homological equa-
tions is sequential in nature since orders lower than p
will create new order-p terms, due to the presence of
the nonlinearity. In this section, the first-order is solved
to initiate the process, showing that the linear solution
is retrieved. In terms of geometry in phase space, this
means that the searched manifold is tangent at origin
to the linear space spanned by the master modes.

Rewriting Eq. (26) for p = 1 yields

M
[∇zΥ (z) f (z)

]
1 + C[Υ (z)]1 + K[Ψ (z)]1 = 0,

(27a)

M
[∇zΨ (z) f (z)

]
1 = M[Υ (z)]1. (27b)

Since only linear terms are here retained by application
of the operation [·]1, the nonlinear quadratic and cubic
terms G and H are simply discarded at this order. The
linear terms of the three unknowns can be rewritten as
matrix-vector products as

[Υ (z)]1 = ϒ(1)z, (28a)

[Ψ (z)]1 = �(1)z, (28b)
[
f (z)

]
1 = f (1)z, (28c)

where ϒ(1) and �(1) are matrices of size N × 2n and
f (1) is a square matrix 2n × 2n. Using the fact that the
gradient of linear functions are simple, one can then
rewrite (27) as

Mϒ(1) f (1)z + Cϒ(1)z + K�(1)z = 0, (29a)

M�(1) f (1)z = Mϒ(1)z. (29b)

Collecting into 2N×2N matrices, and using the fact
that the previous equations must be fulfilled for any z,
leads to
[
M 0
0 M

] [
ϒ(1)

�(1)

]
f (1) +

[
C K

−M 0

] [
ϒ(1)

�(1)

]
= 0. (30)

One recognises the linear eigenproblem as stated in
Eq. (13). Then the solution to Eq. (30) is given by the
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linear master eigenvectors and eigenvalues:

[
ϒ(1)

�(1)

]
=
[
φφφλ

φφφ

]
= Y, (31a)

f (1) = λ. (31b)

This result shows that the linear part of the map-
ping is simply given by the eigenfunction of the
selected master modes. The higher-order terms will
bring corrections to the mappings, by taking into
account the non-resonant nonlinear couplings between
the modes. The linear part of the reduced dynamics
is left unchanged since the eigenvalues are retrieved,
meaning that at the linear level, the dynamics is gov-
erned by the modal uncoupled linear oscillator equa-
tions. Nonlinear terms will then introduce the needed
corrections.

3 Arbitrary order expansion

In this Section, the detailed expressions of the order-
p homological equations are derived for an arbitrary
order p. To that purpose, the asymptotic expansions
need to be emphasised.

3.1 Nonlinear mappings and reduced dynamics

Now that the first-order solutions are known, the
asymptotic expansions of the unknown nonlinear map-
pings Ψ and Υ can be rewritten up to the maximum
order of the expansion o as

Ψ (z) = φφφz +
o∑

p=2

[Ψ (z)]p, (32a)

Υ (z) = φφφλz +
o∑

p=2

[Υ (z)]p. (32b)

The generic order p term for each of the two mappings
is a polynomial of order p in the normal coordinate z.
By making appear the different monomials of order p,
one can formally write,:

[Ψ (z)]p =
2n∑

i1=1

2n∑

i2=1

. . .

2n∑

i p=1

�
(p)
{i1i2...i p} zi1 zi2 . . . zi p ,

(33a)

[Υ (z)]p =
2n∑

i1=1

2n∑

i2=1

. . .

2n∑

i p=1

ϒ
(p)
{i1i2...i p} zi1 zi2 . . . zi p .

(33b)
In these expressions, zi1 zi2 . . . zi p represents a

generic order-p monomial having as coefficient a vec-
tor �

(p)
{i1i2...i p} (and similarly for ϒ(p)). Each index ik

spans all themastermodes from 1 to 2n so that the sum-
mations span all the possible combinations of order-p
monomials.

To introduce a more compact notation, let us define
I as the generic set of indices of order p:

I = {i1i2 . . . i p}, (34)

which gathers all indices involved in a givenmonomial.
The monomial associated to I, i.e. the order-p product
of normal coordinates, will be denoted as π

(p)
I , with

π
(p)
I = zi1 zi2 . . . zi p . (35)

It is important to notice that the way the set I is con-
structed, does not involve grouping of repeated indices
nor specification of their multiplicity. For instance, let
us take the order-pmonomial z2z25z

p−3
6 ; for this mono-

mial the set would be I = {2 5 5 6 . . .}. This shows that
the cardinal number of I is always p, so indices with
multiplicity higher than one are simply repeated mul-
tiple times inside I.

Substituting in (33) allowswriting the generic order-
p of the nonlinear mappings in the form

[Ψ (z)]p =
∑

I
�

(p)
I π

(p)
I , (36a)

[Υ (z)]p =
∑

I
ϒ

(p)
I π

(p)
I , (36b)

where the summation spans all possible I of order p.
The same expansions are needed for the reduced

dynamics which intervenes in the order-p homologi-
cal equations. Following the same notations, one can
expand f (z) as a polynomial function of the normal
coordinates, the linear term being known thanks to
Eq. (31b), as

f (z) = λz +
o∑

p=2

[
f (z)

]
p. (37)

Similarly, the generic order-p writes

[
f (z)

]
p =

2n∑

i1=1

2n∑

i2=1

. . .

2n∑

i p=1

f (p){i1i2...i p}
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zi1 zi2 . . . zi p =
∑

I
f (p)I π

(p)
I . (38)

Using Eq. (22), one can rewrite explicitly the reduced
dynamics for each s normal coordinate, where s ∈
[1, 2n] spans the master modes, as the following order-
o approximation

żs = λs zs +
o∑

p=2

∑

I
f (p)
s I π

(p)
I + O(|z|(o+1)) (39)

At this stage, all the unknowns have been expressed
with asymptotic expansions. The solutions at arbitrary
order are given by replacing all the developments into
the order-p homological equation.

3.2 Order-p homological equations

This sections aims at providing explicit expressions for
the order-p homological Eq. (26) by using the expan-
sions derived in the previous section and considering
that, starting from the second-order, the nonlinear poly-
nomial terms G and H will generate contributions. In
order to collect all terms of order p in (26), it is impor-
tant to make the distinction between the terms that are
directly of order p, from those that are created by prod-
ucts of terms with a lower order. It is also important
to understand the sequential nature of the procedure.
When arriving at order p, all the lower order mappings
and reduced dynamics functions are already known
and are denoted by [Ψ (z)]<p, [Υ (z)]<p,

[
f (z)

]
<p,

where we used the shortcut notation [.]<p to describe
all terms of order strictly lower than p. Consequently,
the unknowns are [Ψ (z)]p, [Υ (z)]p,

[
f (z)

]
p.

Let us examine how each term in Eq. (26) can be
made explicit. The two terms coming from the non-
linear polynomial restoring force G and H obviously
depend on previously calculated mappings at order
< p, so that one can write

[G(Ψ (z),Ψ (z))]p = [G([Ψ (z)]<p, [Ψ (z)]<p)
]
p,

(40a)

[H(Ψ (z),Ψ (z),Ψ (z))]p
= [H([Ψ (z)]<p, [Ψ (z)]<p, [Ψ (z)]<p)

]
p. (40b)

Using the same notation as in the previous section
and introducing π

(p)
I given by Eq. (35) as the generic

order-p monomial, one can now simply expand the

nonlinear terms as polynomials of order p with given
tensor of coefficients G(p)

I and H(p)
I as

[G(Ψ (z),Ψ (z))]p =
∑

I
G(p)
I π

(p)
I , (41a)

[H(Ψ (z),Ψ (z),Ψ (z))]p =
∑

I
H(p)
I π

(p)
I . (41b)

With algebraic manipulations of polynomial represen-
tations, and using the set of indices I = {i1 i2 . . . i p}
already introduced, explicit expressions of G(p)

I and

H(p)
I can be derived. One needs just to notice that since

G groups the quadratic terms, a term of order p is nec-
essarily the product of two terms of orders k and p−k,
with k ranging from 1 to p − 1. The same can be writ-
ten for H , being a cubic term and involving products
of three lower order terms, such that

G(p)
I =

p−1∑

k=1

G(�
(k)
{i1...ik },�

(p−k)
{ik+1...i p}), (42a)

H(p)
I =

p−2∑

k=1

p−k−1∑

l=1

H(�
(k)
{i1...ik }, �

(l)
{ik+1...ik+l }, �

(p−k−l)
{ik+l+1...i p}).

(42b)

Themost cumbersome terms to handle fromEq. (26)
are those composed by the gradient of the mapping
functions contracted with the reduced dynamics:

[∇zΨ (z) f (z)
]
p =

[
2n∑

s=1

∂Ψ (z)
∂zs

fs(z)

]

p

, (43a)

[∇zΥ (z) f (z)
]
p =

[
2n∑

s=1

∂Υ (z)
∂zs

fs(z)

]

p

. (43b)

In order to keep track of the different contributions
and collect termsof the sameorder by separatingknown
fromunknownquantities, a simple formulation consists
in dividing both the mapping functions and the reduced
dynamics in Eq. (43) into three terms: a linear term,
an order p term, and the intermediate ones, of order
lower than p but larger than 1 that we will denote using
the shortcut notation [·]> 1

< p . Using these notations, one
arrives at

[∇zΨ (z) f (z)
]
p

=
[

2n∑

s=1

(
φφφs +

∂[Ψ (z)]> 1
< p

∂zs
+ ∂[Ψ (z)]p

∂zs

)

123



High order direct parametrisation of invariant manifolds for model order reduction of finite element structures

×
(
λs zs + [ fs(z)]> 1

< p
+ [ fs(z)]p

)
,
]

(44a)
[∇zΥ (z) f (z)

]
p

=
[

2n∑

s=1

(
φφφsλs +

∂[Υ (z)]> 1
< p

∂zs
+ ∂[Υ (z)]p

∂zs

)

×
(
λs zs + [ fs(z)]> 1

< p
+ [ fs(z)]p

)]
. (44b)

This separation is meaningful since the operator [·]p
solely selects the terms of order p; consequently the
terms from the linear mapping, φφφs , create an order p
only when multiplied with the order p reduced dynam-
ics [ fs(z)]p. The same applies for the linear term of the
reduced dynamics, λs zs , with the last term of the first
parenthesis of order p − 1. One can then write

[∇zΨ (z) f (z)
]
p =

2n∑

s=1

(
∂[Ψ (z)]p

∂zs
λs zs + φφφs[ fs(z)]p

+
[

∂[Ψ (z)]> 1
< p

∂zs
[ fs(z)]> 1

< p

]

p

⎞

⎠ ,

(45a)

[∇zΥ (z) f (z)
]
p =

2n∑

s=1

(
∂[Υ (z)]p

∂zs
λs zs + φφφsλs[ fs(z)]p

+
[

∂[Υ (z)]> 1
< p

∂zs
[ fs(z)]> 1

< p

]

p

⎞

⎠ .

(45b)

In these two expressions, the only unknowns are the
order p mapping terms [Ψ (z)]p and [Υ (z)]p, as well
as the reduced dynamics [ fs(z)]p. All other quantities
are known, coming from lower order mappings and
reduced dynamics. They have been collected into the
last term of the summation. Let us now focus on this
last known term and expand its expression. Since it is
a product, the order p term is the product of two terms
such that the sum of their orders equals p. Hence one
can write

2n∑

s=1

[
∂[Ψ (z)]> 1

< p

∂zs
[ fs(z)]> 1

< p

]

p

=
2n∑

s=1

p−1∑

k=2

∂[Ψ (z)]p−k+1

∂zs
[ fs(z)]k, (46a)

2n∑

s=1

[
∂[Υ (z)]> 1

< p

∂zs
[ fs(z)]> 1

< p

]

p

=
2n∑

s=1

p−1∑

k=2

∂[Υ (z)]p−k+1

∂zs
[ fs(z)]k . (46b)

These terms are also polynomials of order p, so they can
be written in compact form by introducing the tensors
of coefficients μ

(p)
I and ν

(p)
I :

2n∑

s=1

[
∂[Ψ (z)]> 1

< p

∂zs
[ fs(z)]> 1

< p

]

p

=
∑

I
μ

(p)
I π

(p)
I , (47a)

2n∑

s=1

[
∂[Υ (z)]> 1

< p

∂zs
[ fs(z)]> 1

< p

]

p

=
∑

I
ν

(p)
I π

(p)
I . (47b)

Comparing the last two expressions and recalling the
definition of the generic set I = {i1 i2 . . . i p}, one can
arrive at the following expressions for the newly intro-
duced coefficients μ

(p)
I and ν

(p)
I :

μ
(p)
I =

2n∑

s=1

p−1∑

k=2

p−k∑

l=0

�
(p−k+1)
{i1...il s il+k+1...i p} f

(k)
s{il+1...il+k },

(48a)

ν
(p)
I =

2n∑

s=1

p−1∑

k=2

p−k∑

l=0

ϒ
(p−k+1)
{i1...il s il+k+1...i p} f

(k)
s{il+1...il+k }.

(48b)

The unknown nonlinear mappings have been expanded
into their polynomial form through compact expres-
sions given in Eq. (36), which can be used to rewrite
the first term in the right-hand side (RHS) of Eq. (45)
as

2n∑

s=1

∂[Ψ (z)]p
∂zs

λs zs =
2n∑

s=1

∂

∂zs

(
∑

I
�

(p)
I π

(p)
I

)
λs zs,

(49a)
2n∑

s=1

∂[Υ (z)]p
∂zs

λs zs =
2n∑

s=1

∂

∂zs

(
∑

I
ϒ

(p)
I π

(p)
I

)
λs zs .

(49b)
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These terms can be simplified by noticing that the
derivative with respect to zs is different from zero only
if zs is contained inside π

(p)
I = zi1 zi2 . . . zi p . Hence

(49) can be rewritten explicitly as

2n∑

s=1

∂

∂zs

(
∑

I
�

(p)
I π

(p)
I

)
λs zs

=
∑

I
�

(p)
I (λi1 + λi2 + . . . + λi p )π

(p)
I , (50a)

2n∑

s=1

∂

∂zs

(
∑

I
ϒ

(p)
I π

(p)
I

)
λs zs

=
∑

I
ϒ

(p)
I (λi1 + λi2 + . . . + λi p )π

(p)
I . (50b)

Indeed, if we consider for instance s = ik in the sum-
mation on the left, for each set I a non-vanishing con-
tribution is obtained only if ik ∈ I, because of the
derivative ofπ(p)

I with respect to zik which is then equal

to π
(p)
I /zik . Since this term is multiplied by λik zik , the

whole process makes reappear π
(p)
I , multiplied by the

sum of all the λik with ik ∈ I in the RHS term. This
process is not influenced by a possible repetition of
index in I. Indeed, if one has for instance ik = ik+1,
the derivative of π

(p)
I with respect to zik can be still

seen as the summation of multiple derivatives of the
same variable1.

The appearance of the summation of eigenvalues is
of crucial importance for the rest of the development.
Let us denote this term by σI :

σI = λi1 + λi2 + . . . + λi p , (51)

with I = {i1 i2 . . . i p}. This term is responsible for
the nonlinear resonance and the different solutions (or
styles) one can select to solve for the homological equa-
tions. Thiswill be further explained in the next sections.
Setting the different contributions together, the terms
composed by the gradient of the mapping functions
contracted with the reduced dynamics, introduced in
Eq. (43), can finally be rewritten as

[∇zΨ (z) f (z)
]
p

1 This is a simple application of the fact that ∂(x2)/∂x = 2x
can be seen as ∂(x1x2)/∂x1 +∂(x1x2)/∂x2 = x2 + x1 also when
x1 = x2.

=
∑

I

(
�

(p)
I σI +

2n∑

s=1

(φφφs f (p)
s I ) + μ

(p)
I

)
π

(p)
I ,

(52a)
[∇zΥ (z) f (z)

]
p

=
∑

I

(
ϒ

(p)
I σI +

2n∑

s=1

(φφφsλs f (p)
s I ) + ν

(p)
I

)
π

(p)
I ,

(52b)

where the terms [ fs(z)]p have also been expressed in

terms of the monomials π
(p)
I using Eq. (38).

We are now in position of giving a detailed expres-
sion of the order-p homological Eq. (26). Thanks to the
previous developments, all terms have been rewritten,
and using Eqs. (41) and (52) allows one to expand (26)
as

∑

I

⎛

⎝Mϒ
(p)
I σI +

2n∑

s=1

(
Mφφφsλs f (p)

s I
)

+Mν
(p)
I + Cϒ

(p)
I + K�

(p)
I + G(p)

I + H(p)
I
)

π
(p)
I = 0,

(53a)

∑

I

⎛

⎝M�
(p)
I σI +

2n∑

s=1

(
Mφφφs f

(p)
s I
)

+Mμ
(p)
I − Mϒ

(p)
I
)

π
(p)
I = 0. (53b)

These equations have to be verified for any monomial
term π

(p)
I , i.e. for any value of z, meaning that each

term of the summation over all possible sets I needs to
be equal to zero. This allows one to rewrite a general
equation for the unknowns of the problem at this stage.
By keeping the unknowns on the left-hand side and
moving the known terms on the right-hand side, one
has:

(
σI
[
M 0
0 M

]
+
[

C K
−M 0

])[
ϒ

(p)
I

�
(p)
I

]

+
2n∑

s=1

f (p)
s I
[
M 0
0 M

]
Ys =

[
−Mν

(p)
I − G(p)

I − H(p)
I

−Mμ
(p)
I

]
,

(54)

where the eigenvectors Ys are made appear for com-
pactness. In short, Eq. (54) details the order-p homo-
logical equation for a given monomial π(p)

I defined by
a given set of indices I. This vectorial equation is 2N -
dimensional and must be solved for any set of indices
I = {i1 i2 . . . i p}, with ik ∈ [1, 2n].
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The system (54) is underdetermined because both
the mappings ϒ

(p)
I ,�

(p)
I and the reduced dynamics

f (p)
s I are unknown; therefore there are different solu-

tion strategies which give rise to different styles of
parametrisation [31]. This will be emphasised in the
next development. Before proceeding, it is important
to remark that one could project this equation on each
eigenvector of the system, and obtain 2n lines corre-
sponding to the master coordinates and 2(N − n) lines
corresponding to the slave ones. This would give rise
to the so-called tangent and normal part of the order-p
homological Eq. [31], which are obtained by projecting
respectively onto the subspace spanned by the master
and the slavemodes, respectively. Separating these two
contributions is crucial in order to provide general solu-
tions for the unknown mappings and reduced dynam-
ics. However, to have a direct method, the projection
onto the 2(N −n) slave modes must be avoided. Luck-
ily, the projection on the slave modes (normal part)
does not generate terms from the reduced dynamics,
because the Ys contains only master modes such that
their projection on the slave modes vanishes. Conse-
quently, the normal part of the homological equation
is not underdetermined, as opposed to the tangent part.
For this reason, only the tangent part is derived here-
after in order to focus the discussion on the choice of
the styles.

The idea being of projecting Eq. (54) onto the set of
master modes, one can define θ

(p)
rI as the projection of

the twomappings�
(p)
I andϒ

(p)
I on the left eigenvector

Xr as

θ
(p)
rI

.= XT
r

[
M 0
0 M

][
ϒ

(p)
I

�
(p)
I

]
. (55)

Here, the index r spans only the master modes, r ∈
[1, 2n], such that the size of the tangent part is very
small as compared to the complete problem. In short,
θ

(p)
rI coincideswith the r -th componentmappings in the
modal basis. Indeed, recalling that we are using com-
plex modes, it is logical that this component involves
both parts of the mapping �

(p)
I and ϒ

(p)
I .

In light of the orthogonality properties (16) and (17),
one can easily demonstrate that:

XT
r

[
C K

−M 0

][
ϒ

(p)
I

�
(p)
I

]
= −λrθ

(p)
rI . (56)

Let us finally denote as g(p)
rI the projection of the right-

hand side of Eq. (54) on the left eigenvector Xr :

g(p)
rI

.= XT
r

[
−Mν

(p)
I − G(p)

I − H(p)
I

−Mμ
(p)
I

]
. (57)

With these quantities, one can arrive at a compact
expressionof the tangent homological equation, obtained
by projecting Eq. (54) on each of the master mode Xr .
A generic rowof the tangent homological equation then
reads, ∀r ∈ [1, 2n],
(σI − λr )θ

(p)
rI + f (p)

rI = g(p)
rI . (58)

In (58), g(p)
rI is known, the two unknowns being

θ
(p)
rI , which is related to the coefficients of the nonlin-

ear mappings, and f (p)
rI , which is the term describing

the reduced-order dynamics. The underdeterminacy is
now obvious and one can see that different solutions
for either θ

(p)
rI or f (p)

rI are possible. These solutions

will be discussed in Sect. 4.1. However, since θ
(p)
rI is

multiplied by σI − λr , a first discussion is needed to
treat the case when this factor vanishes or tends to very
small values. This defines the well-known resonance
conditions that are a cornerstone of dynamical systems
[33], and appear explicitly in the normal form theory
[59,60]. The next section is devoted to the analysis of
nonlinear resonances and, most importantly for vibra-
tory systems, the appearance of trivial resonances will
be underlined and separated from internal resonances,
following the terminology used for example in [20–22].

3.3 Resonances

The emergence of nonlinear resonances as in Eq. (58)
is a well-known fact in dynamical system theory. It
has been underlined since the pioneering works by
Poincaré and Dulac on normal form theory [61,62]
and is discussed in all classical mathematical textbooks
[63,64]. In this contribution, since we are interested in
vibratory systems, real and imaginary parts do not play
the same role. In nonlinear vibration theory, one is gen-
erally interested in lightly damped systems since the
presence of large damping mostly inhibits the appear-
ance of peculiar nonlinear phenomena and enforces the
predominance of linear behaviour with strong tempo-
ral decays. Even though the damping ratios are usu-
ally increasing with the frequency, it is thus very com-
mon to assume lightly damped master modes such that
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∀ s ∈ [1, n], ξms � 1. In this case the predominant
part of the spectrum is driven by the pairs of complex
conjugate terms such that one can assumeλs � ±iωms .
It is also important to understand that, even though the
resonances are not exactly fulfilled with the presence
of the real parts due to damping, the closeness of the
resonance is enough to make appear the problem of
small divisors. The writing of resonance relationships
must thus be written for exact and close fulfilment of
the condition in order to have a uniform treatment.

This simplification of the eigenspectrum comeswith
two consequences. First, the appearance of trivial res-
onances at each odd order p. Second, the definition of
internal resonances as commensurability relationships
between the eigenfrequencies only, a common feature
in nonlinear vibration theory [65,66]. Let us first dis-
cuss the trivial resonances2.

Trivial resonances are present for vibratory systems
at each odd order. The first ones appear at the third-
order due to the fulfilment of the trivial relationship
+iωp = +iω j − iω j + iωp, ∀( j, p). Since we are
working here at arbitrary order, one needs to take care
of all trivial resonances appearing at all odd orders. This
remark also explains why odd and even orders play two
very different roles in nonlinear vibration and reduction
methods. In order to select all the trivial resonances for
any order p, one has to group together pairs of complex
conjugates eigenvalues (λs, λ̄s) � (iωms ,−iωms ) to
cancel them two-by-two. Let us define the upper aster-
isk ∗ as the operator that selects the conjugate of a
generic index, that is to say:

i∗k =
{
ik + n if ik ≤ n,

ik − n if ik > n,
(59)

where this choice is related to our initial ordering of
eigenvalues, seeEq. (11) and the discussion inSect. 2.1.
Then with this notation one can easily select all the sets
of indices I that are related to a trivial resonance of
order p, for p odd only. A set I is trivially resonant
with the index ir if and only if it writes as

I = {i1 i2 . . . i p−1
2

i∗1 i∗2 . . . i∗p−1
2

ir }. (60)

which simply states that the complex conjugates just
need to cancel two-by-two in the summation defining
σI , and only one remaining index is needed. In an arbi-
trary order framework, one then needs to track all these

2 The wording trivial resonance has been introduced in [20,21],
following [67].

sets, for all odd order p, and for all indices ir ∈ (1, n)

spanning the master modes.
The second case is that of internal resonances,

which are defined in vibration theory as a commensu-
rability relationship between eigenfrequencies [65,66].
The low-order internal resonances are the most well
known and have given rise to a vast literature inves-
tigating their solutions, see e.g. [68–72] to cite only
a few entries. Second-order internal resonances are
related to quadratic nonlinearities, and give rise to the
1:2 case where ω j � 2ωp, as well as combination of
resonance such as ωp � ωk ± ωl . Third-order inter-
nal resonances encompass the 1:1 case (ω j � ωk),
the 1:3 case (ωl � 3ω j ) as well as combinations
(ωl = 2ω j ± ωs , ωp = ωk ± ω j ± ωr ). For deriv-
ing a method which tracks all the possible high-order
resonances at a generic order, one needs to identify all
the sets I associated to such resonances. This is more
involved than for trivial resonances where the explicit
writing of all sets I giving rise to a trivial resonance
gives directly Eq. (60). Indeed, internal resonance will
encompass all the cases where there is more than a sin-
gle index remaining in the summation. One can then
rewrite the summation of eigenvalues σI defined in
Eq. (51) by dividing the sets of indices I into two parts:
a first subset containing all the indices whose conjugate
pair is not included in the set and a second subset con-
taining the pairs of two conjugate indices. We can then
rewrite the generic σI as the sum of these two subsets:

σI =
∑

ik∈I: i∗k /∈I
λik +

∑

il∈I: i∗l ∈I
λil ≈

∑

ik∈I: i∗k /∈I
λik , (61)

where the last simplification stems from our assump-
tion of small damping. Indeed, when λs � ±iωms , if
both an eigenvalue and its conjugate are in the sum-
mation, then their sum is close to zero. An internal
resonance then occurs if this summation is close to an
eigenfrequency of the full system:
∑

ik∈I: i∗k /∈I
λik ≈ Λr (62)

In such case, the associated σI is resonant with the
r -th eigenvalue. Finally two different cases can be dis-
tinguished, depending if the resonance is in between
master modes, or between a slave and a master. This
fact is known and has been reported in the mathemat-
ical development of the parametrisation method, see
e.g. [31] where the two cases are named internal reso-
nance and cross resonance. However since in nonlinear
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vibration theory, the wording “internal resonance” has
a well-established meaning that is different, Haller et
al. introduce the names inner and outer resonances,
that we will keep here. If r is included in the list of
master modes, then, an inner resonance occurs, since
the internal resonance relationship concerns only the
set of master modes. On the other hand, if r belongs
to the set of slave modes, then an outer resonance is
at hand. In this second case, an ill-conditioning of the
system to be solved will appear in the subsequent cal-
culations, since a strong coupling exists between one
slave mode and some of the master modes. This means
that the set of master modes is not complete as they are
strongly coupled with a slave mode. Consequently the
only possible strategy is to include mode r in the set of
master modes such that the outer resonance becomes
an inner one. In the case of inner resonance, then no
ill-conditioning appears and the solution strategy is dis-
cussed in the next section where the different styles of
parametrisation are detailed. Theoretically speaking,
the maximum order of σI to check for possible reso-
nances should exceed the spectral quotient as under-
lined in [35]; however, being the spectral quotient the
ratio between the real part of the most damped mode
and that of the least damped one, in the case of large
FE models it can reach very high values, thus mak-
ing such check unfeasible. Checking for resonances of
order higher than the spectral quotient is needed from
a mathematical viewpoint to ensure uniqueness but in
real-world engineering applications, very high order
internal resonances are difficult to appear. In the prac-
tice, it is not uncommon to a priori assume the absence
of outer resonances of order higher than the parametri-
sation order. This is the assumption retained in this
paper as well as in previous similar works dealing with
FE models ( [43–47]).

4 Solutions at arbitrary order: styles of
parametrisation

This Section is devoted to detailing the different possi-
ble solutions of homological equations and thus the dif-
ferent styles of parametrisation. The wording adopted
here follows the book by Haro et al. [31] and also pre-
vious discussions, see e.g. [60] or [73] where the word-
ing free functions is used. As shown in [31], there are
two main styles of solution, namely the graph style and
the normal form style. Here the discussion is adapted

to the specific case of vibratory systems, as already
proposed in [35]. Taking the peculiarity of nonlinear
vibrations into account will also lead to distinguish
between complex and real normal form styles. These
particular developments allow unifying the approached
proposed in earlier publications, using either the cen-
ter manifold technique [17], or different versions of
normal form. Indeed whereas complex normal form is
used in [34,35], two real versions have been derived
in [20,74]. In this section we will show how one can
recover all these solutions from the selection of differ-
ent parametrisations.

4.1 Styles of parametrisation

The two different styles of parametrisation can be sim-
ply understood by looking at the tangent order-p homo-
logical equation expressed in (58). Indeed a first possi-
bility to unfold the underdeterminacy consists in setting
θ

(p)
rI to zero and let as only unknown f (p)

rI . The reason
for this choice is to select the tangent part of the nonlin-
ear mapping as simple as possible (by just cancelling
it) and leave all the complexity to the nonlinear reduced
dynamics f (p)

rI . This option is that of the graph style.
On the other hand, one could choose to cancel as many
nonlinear terms as possible in the reduced dynamics
in order to derive its simplest expression. This is com-
mon to the idea of normal transformation and it leads
to the normal form style. The main idea is to cancel
f (p)
rI in (58), but this can be done only in case of no

resonance. In fact, recalling Eq. (58), when the factor
(σI − λr ) is very small, i.e. when a resonance occurs,
one must set θ

(p)
rI to zero or the problem will be ill-

conditioned.
As discussed in the previous section, resonances are

of great importance and play a specific role in nonlinear
vibration theory when small damping is assumed. As a
matter of fact, resonances cannot be avoided due to the
occurrence of numerous trivial resonances. For the next
developments, let us introduce R as the set of indices
such that the choice of setting θ

(p)
rI to zero is done; for

each set I, a set R must be defined, and the generic
solutions of Eq. (58) can be rewritten as
{
f (p)
rI = 0, (σI − λr )θ

(p)
rI = g(p)

rI , if r /∈ R,

θ
(p)
rI = 0, f (p)

rI = g(p)
rI , if r ∈ R.

(63)

As previously discussed, the second line can be selected
for two different reasons. The former, which corre-
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sponds to the graph style choice, consists in stating
that one does not want to track all the complicated
resonance relationships throughout the calculations.
The latter is that of an existing resonance relationship.
Indeed in this specific case, σI − λr vanishes and no
other option is viable.

Let us now discuss in greater detail the different
solutions, starting with the graph style. In this case,
the second line of Eq. (63) is selected for every mas-
ter coordinate, ∀r ∈ [1, 2n] and for each set I. As a
consequence all the associated monomials f (p)

rI can be
solved for and are kept in the reduced dynamics, and
all the master modal projections θ

(p)
rI are set to zero.

In terms of the set R, the graph style corresponds to
selecting, for each I,RGraph as

RGraph = {1 2 . . . 2n}. (64)

A first remark is that the nonlinear terms of the change
of coordinates are selected as simple as possible, but the
price to pay is the maximal complexity of the reduced
dynamics. As we will see later, this choice has for con-
sequence that a functional relationship can be deduced
between slave and master coordinates such that the
master coordinates are equal to the modal ones, hence
defining a graph relationship, which gives the name to
this style of solution.

Turning now to the normal form style, we distin-
guish between two solutions, namely the complex and
the real normal form. In vibration theory, complex and
real normal forms have already been used in different
contexts, see e.g. [20,21,34,38,50,74,75]. It appears
meaningful to discuss these two different strategies in
the present context of the parametrisation of invariant
manifold in order to synthetically present the origin of
their difference.

The general choice of the normal form style con-
sists in selecting the first line in Eq. (63) as long as no
resonance occurs. In case of resonance, then the sec-
ond line is selected. The main advantage resides in the
fact that the simplest form of the reduced dynamics is
found since all non-resonant terms are cancelled. Also,
a complete nonlinear mapping is retrieved at the end of
the process, including the master modes, as opposed to
the graph style. The only difference between complex
and real normal form resides in the indices retained
in the set R. Since Eq. (63) must be solved for each
monomial and thus for each set I, it is also important
to understand here that for the normal form style, there
is a differentR for each I. In case I is not associated to

a resonance relationship then R is empty and the first
line of (63) is selected ∀r ∈ [1, 2n]. Let us discuss now
the choice when there is a resonance, be it a trivial or an
internal one, for both complex and real normal form.

The complex normal form (CNF) is the choice
made in mathematical textbooks [31,60,76] and is also
retained for example in [34,35,45]. For a given set I,
it consists in finding all the r eigenvalues such that
σI ≈ λr is fulfilled. Assuming a set I such that r has a
resonance relationship, then the associated R denoted
asRCNF (for complex normal form) contains only this
r :

RCNF = {r} with r : σI ≈ λr . (65)

On the other hand, the real normal form (RNF) imposes
onemore condition. Since the two complex eigenvalues
are related to the same real normal mode with eigenfre-
quency ωmr , one would like to treat similarly the two
conjugates. In terms of the resonance condition, one
can select both complex conjugate terms by imposing
the fulfilment of its square:

σ 2
I ≈ λ2r . (66)

Indeed, one can notice that for each value of σI , both λr
and its conjugate λ̄r satisfy the condition. For a given
I, such that r is resonant, the set of resonant indicesR
is composed, for the real normal form style, of both r
and r∗

RRNF = {r r∗} with r, r∗ : σ 2
I ≈ λ2r ≈ λ2r∗ . (67)

In other words, the CNF style separates the two conju-
gates eigenvalues +iωmr and −iωmr , and treats them
distinctly to track the resonances. This leads to the sim-
plest and most symmetric normal form. On the other
hand, RNF groups the two eigenvalues±iωmr through-
out the process. One justification comes from the fact
that with RNF, it is easier to go back to second-order,
oscillatory-like equations. Indeed, in the case of no
internal resonance, calculations show that, with RNF
up to third-order, the derivative of the normal displace-
ment is equal to the normal velocity, without extra non-
linear terms as those appearing for the CNF. The same
property holds for the graph style at any order of the
expansion. The link with Cartesian coordinates is then
simpler and more direct to write.

At this point it is important to emphasise that the real
normal form introduced here is different from the one
derived in [20,21,43], and appears to be closer to the
one introduced in [38,74]. Indeed, the real normal form

123



High order direct parametrisation of invariant manifolds for model order reduction of finite element structures

used in our previous derivations [20,21,43] has more
non-empty sets I, meaning that more terms are consid-
ered as resonant and kept in the reduced dynamics. This
development was meaningful in [20] since it allowed
to keep oscillator-like equations with real modes and
coordinates throughout the calculations. However for
the purpose of arbitrary order expansion, it has been
chosen to discard this choice which induces an impor-
tant loss of symmetry. Appendix A gives more details
on how this third normal form style could be recovered
from the present analysis and makes a link with other
works to better unify the different approaches available
in the literature.

4.2 Solutions of the homological equation

In this Section, we explain how to write down the gen-
eral solutions directly from the physical space, for each
of the three styles discussed before. As a matter of fact,
all the developments starting from Eq. (55) used a pro-
jection to the master modal space in order to shed light
on the different possible solutions to the tangent order-
p homological equation, as also derived for example in
[31]. This is meaningful since it allows to foresee the
different styles, understand the appearance of the reso-
nances, and figure out that the matrices multiplying the
terms of the nonlinear mappings in Eq. (54) might in
fact be ill-conditioned because of the presence of reso-
nance. As per the normal part of the homological that
would stem from the projection of (54) onto the slave
modes, an efficient computational strategy cannot rely
on the projected equations since the numerical burden
would increase dramatically, losing all the advantages
of a direct approach. The projection on the slave modes
must then be avoided and a way to include the solutions
identified for the tangent part into (54) without resort-
ing to the projection must be found.

The main problem originates from the resonances,
since such a relationship renders the problem (54) ill-
conditioned and the matrix multiplying the nonlinear
mapping terms not invertible. One needs thus to rewrite
the problem in such a way that it can be solved. To that
purpose, let us use the solutions given in the previous
sections in modal space. For a resonant index r ∈ R,
according to the second line of Eq. (63), θ(p)

rI must be
set to zero, which implies, by using (55):

θ
(p)
rI = [Xr

]T
[
M 0
0 M

][
ϒ

(p)
I

�
(p)
I

]
= 0. (68)

By expanding the products and simplifying, one easily
arrives at

φφφT
r Mϒ

(p)
I = λ̄rφφφ

T
r M�

(p)
I . (69)

This condition can now be used in order to rewrite
Eq. (54) in a solvable way, by concatenating all the
unknowns in a single vector and by adding Eq. (69) to
the system. Assuming for the moment a generic case
where the set R of resonant indices contains q terms:
R = {r1 r2 . . . , rq}; one can rewrite Eq. (54) as
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σIM + C K Mφφφr1λr1 Mφφφr2λr2 . . . Mφφφrq λrq
−M σIM Mφφφr1 Mφφφr2 . . . Mφφφrq

φφφT
r1M −φφφT

r1Mλ̄r1 0 0 . . . 0

φφφT
r2M −φφφT

r2Mλ̄r2 0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

φφφT
rqM −φφφT

rqMλ̄rq 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒ
(p)
I

�
(p)
I

f (p)
r1I
f (p)
r2I
.
.
.

f (p)
rqI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Mν
(p)
I − G(p)

I − H(p)
I

−Mμ
(p)
I

0

0

.

.

.

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (70)

This system leverages on the knowledge of the solution
types and rewrites the order-p homological equation
directly from the physical space in an augmented way,
by adding the last q lines corresponding to resonances,
such that the whole problem is now well defined. It is
interesting to notice that the singular matrix is bordered
by the right and left eigenvectors of its kernel, thus
the invertibility of the whole system is automatically
fulfilled.

The size of system (70) is (2N + q) × (2N + q),
with q the number of indices in R, which can be up
to 2n, the number of master modes in the worst case
(graph style). Thanks to the splitting between displace-
ment and velocity mappings selected at the beginning,
Eq. (21), it is however possible to make this system
symmetric and of size (N + q) × (N + q), which
has very important computational consequences as it
halves the size of the problem being q < 2n � N . To
this purpose, one can notice that in the second row (cor-
responding to lines N + 1 to 2N ), the unknown vector
is everywhere multiplied by the mass matrix. Conse-
quently, rewriting the equation corresponding to that
row alone, allows one tomake explicit the link between
displacement and velocity mappings �

(p)
I and ϒ

(p)
I .
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The link between these two has already been under-
lined in numerous studies, see e.g. [43,77,78], but has
never been presented at arbitrary order. It reads:

ϒ
(p)
I = σI�

(p)
I +

∑

r j∈R

(
φφφr j f

(p)
r jI
)

+ μ
(p)
I . (71)

This important property is intimately related to the fact
that the original system is second-order in time. Even if
it has been rewritten as a first-order problem, important
features of the initial formulation are preserved, such
as the relationship between displacement and velocity.
Also, the choice retained to make the problem first-
order has important consequence at this stage of the
procedure. Indeed, other choices might lead to a differ-
ent form of the second line in (70) and Eq. (71) might
not be easily accessible, thus also preventing fromhalv-
ing the size of (70).

Using Eq. (71) allows rewriting the first row of (70)
(lines 1 to N ) as

(σ 2
IM + σIC + K)�

(p)
I

+
∑

r j∈R

(
(σI + λr j )M + C

)
φφφr j f

(p)
r jI = 	

(p)
I , (72)

where the vector	(p)
I has been introduced to collect all

known terms into a single right-hand side; it is defined
as:

	
(p)
I = −G(p)

I − H(p)
I − Mν

(p)
I − (σIM + C)μ

(p)
I .

(73)

Eq. (72) can be further simplified thanks to the follow-
ing equation:
(
(σI + λr j )M + C

)
φφφr j = (σI − λ̄r j )Mφφφr j . (74)

This property stems naturally from the eigenproblem
and is shown inAppendixB. Finally the system derived
from the order-p homological equation, the solutions
of which will give the unknown mappings and reduced
dynamics at order p, can be rewritten as

(σ 2
IM + σIC + K)�

(p)
I

+
∑

r j∈R
(σI − λ̄r j )Mφφφr j f

(p)
r jI = 	

(p)
I . (75)

In order to make the system complete, a final simplifi-
cation on the last q rows of (70) can be performed. Let
us write one of these rows with generic index rk :

φφφT
rkM

⎛

⎝σI�
(p)
I +

∑

r j∈R

(
φφφr j f

(p)
r jI
)

+ μ
(p)
I

⎞

⎠

−φφφT
rkMλ̄rk�

(p)
I = 0. (76)

Thanks to the orthonormality property of the eigen-
modes, φφφT

rkMφφφr j = 1 if rk is equal to r j or to r∗
j , and

φφφT
rkMφφφr j = 0 otherwise. Using this property, the row

associated to rk finally reads:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(σI − λ̄rk )φφφ
T
rkM�

(p)
I + f (p)

rkI = −φφφT
rkMμ

(p)
I ,

if r∗
k /∈ R,

(σI − λ̄rk )φφφ
T
rkM�

(p)
I + f (p)

rkI + f (p)
r∗
k I

= −φφφT
rkMμ

(p)
I ,

if r∗
k ∈ R.

(77)

To conclude, the order-p homological equation can be
rewritten as a (N + q) × (N + q) symmetric problem
given by both Eqs. (75) and (77), where q is the cardinal
number ofR. As compared to Eq. (70), the size of the
system has been divided by two which has important
consequences for computational speed-up. In order to
derive the explicit solutions, onemust now discuss, as a
final step, how each style of parametrisation will affect
the problem to solve. In order to make this last discus-
sion easier, we focus on the simple case of a system
free of internal resonances. Consequently, only trivial
resonances are present in the system and need to be
tracked by the method.

4.3 Systems free of internal resonances

To better understand this simplified case, let us recall
Eq. (61), where, under the small damping assumption,
the sum of two complex conjugate eigenvalues was
neglected; if both indices of a complex conjugate pair
are included in the generic set I then σI simplifies to
the sum of the sole eigenvalues whose conjugate is not
included in I:
σI ≈

∑

ik∈I: i∗k /∈I
λik . (78)

In the case of internally resonant systems, not only
σI can be close to an eigenvalue for a larger number
of sets I but also it can be close to multiple eigen-
values. Let us suppose for example that a two-modes
system is investigated and their frequencies satisfy the
relationship ω1 ≈ ω2. Then the set I = {11∗1} is
not only trivially resonant with r = 1 but also with
r = 2, due to the presence of a 1:1 internal resonance
between the two modes. The resonant sets for the nor-
mal form styles will be in this case RCNF = {1, 2}
and RRNF = {1, 1∗, 2, 2∗}; only the graph style will
not be affected by the presence of internal resonances.
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Moreover, the number of sets I that will be resonant is
obviously larger when internal resonances occur. In the
scenario of 1:1 internal resonance between two modes,
not only the set I = {11∗1} is resonant with the indices
r = 1 and r = 2, but also the sets I = {11∗2},
I = {22∗1}, I = {22∗2}, I = {12∗1}, I = {12∗2},
I = {21∗1}, and I = {21∗2}.

Conversely, if there are no internal resonances, the
distinction between resonant and non-resonant sets I,
together with the individuation of the eigenvalues they
resonate with, is much simpler, thus allowing to give
explicit expressions. In the case of two-modes reduc-
tion at third order, only the set I = {11∗1} would res-
onate with r = 1 and the set I = {22∗2} with r = 2.
In fact, any set I is either non-resonant or resonant
with one eigenvalue because the value

∑
ik∈I: i∗k /∈I λik

is either zero or equal to a single eigenvalue λik . It fol-
lows that, the normal form styles will have either an
empty set R or a set composed of a single index in
the case of CNF, and two indices in the case of RNF.
Furthermore, only the odd order sets can be resonant,
whereas any even order set will not be.

Beforemoving to the expressions of the homological
solutions for the different styles in the case of systems
with no internal resonances, it is worth highlighting
that, from a computational point of view, the treatment
of the resonances is the same for both internally reso-
nant and non-internally resonant systems, the only dif-
ference being the individuation of the setR for each I.
However, from a presentation point of view, it is much
easier to restrict ourselves to the case of systems free
of internal resonances, as the expressions provided in
the following are much more readable than those of the
general case.

Now the solutions to Eqs. (75) and (77) are detailed
for each style of parametrisation. Indeed, according to
the discussion led in Sect. 4.1, the set R is differently
filled out for each style. Let us begin with the complex
normal form style which leads to the smallest setR.

In the normal form style, one needs to distinguish
the resonant case from the non-resonant one. In the
non-resonant case, the set I is not resonant with any r .
Consequently, f (p)

rI = 0 and the system reduces to
(
σ 2
IM + σIC + K

)
�

(p)
I = 	

(p)
I . (79)

Solving (79) allows finding the nonlinearmapping term
�

(p)
I , which, togetherwith f (p)

rI = 0 andEq. (71), gives
the full solutions for the monomial associated to I in
the complex normal form style.

Otherwise, if the set I is resonant with r , then the
correspondingmonomial of the reduced dynamics can-
not be cancelled. The system is composed of two terms,
stemming respectively from (75) and (77), and reads:
[
σ 2
IM + σIC + K (σI − λ̄r )Mφφφr

(σI − λ̄r )φφφ
T
r M 1

][
�

(p)
I

f (p)
rI

]

=
[

	
(p)
I

−φφφT
r Mμ

(p)
I

]
. (80)

As mentioned before, the matrix σ 2
IM + σIC + K

is singular because in this case σI ≈ λr ; however, the
whole system is invertible thanks to the bordering of the
singular matrix with the eigenvector of its kernel φφφr .
In the case of internally resonant systems, some sets
I could be resonant with more than one eigenvalue,
and in that case the bordering would consists in more
columns and rows instead of just one.

The coefficient of the reduced dynamics can bemade
explicit thanks to the relationship f (p)

rI = g(p)
rI , see

Eq. (63). Using Eqs. (57) together with the definition
of the complex left eigenvectors X j given in Eq. (14)
leads to:

f (p)
rI = φφφT

r (−Mν
(p)
I − G(p)

I − H(p)
I + λr∗Mμ

(p)
I )

λr − λr∗
,

(81)

which is an explicit expression of the coefficient of the
resonant monomial at arbitrary order in the complex
normal form style.

We now turn to the real normal form style where the
setR, when not empty, is composed of two conjugated
indices, see Eq. (67). Since it is also a normal form
style, one still needs to distinguish between resonant
and non-resonant cases. If the set I is not a resonant
one, then the same solution as for the CNF style applies
and the system reduces to the same equation:
(
σ 2
IM + σIC + K

)
�

(p)
I = 	

(p)
I . (82)

Let us consider the case of a set I which is resonant
with r . Since RRNF = {r r∗}, then two lines needs to
be considered in Eq. (70), which can be now rewritten
as:⎡

⎣
σ 2
IM + σIC + K (σI − λ̄r )Mφφφr (σI − λr )Mφφφr

(σI − λ̄r )φφφ
T
r M 1 1

(σI − λr )φφφ
T
r M 1 1

⎤

⎦

⎡

⎢⎣
�

(p)
I

f (p)
rI
f (p)
r∗I

⎤

⎥⎦ =
⎡

⎢⎣
	

(p)
I

−φφφT
r Mμ

(p)
I

−φφφT
r Mμ

(p)
I

⎤

⎥⎦ . (83)
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The main difference with the complex normal form
style can be highlighted by properly interpreting the
last two rows of Eq. (83) in the case of a resonant I.
Indeed, thanks to the last row and the presence of the
conjugate, not taken into account in the complexnormal
form, the last two rows are equivalent to imposing the
orthogonality of the mapping with the r -th real mode:
φφφT
r M�

(p)
I = 0.Todemonstrate this property, oneneeds

to take the difference and the sum of the last two lines
of (83), yielding:

(2σI − λ̄r − λr )φφφ
T
r M�

(p)
I + 2 f (p)

rI + 2 f (p)
r∗I

= −2φφφT
r Mμ

(p)
I , (84a)

(λ̄r − λr )φφφ
T
r M�

(p)
I = 0, (84b)

which simplifies to:

f (p)
rI + f (p)

r∗I = −φφφT
r Mμ

(p)
I , (85a)

φφφT
r M�

(p)
I = 0, (85b)

hence showing the property for the displacement map-
ping�

(p)
I . The same orthogonality condition holds also

for the velocity mapping; using Eq. (71), one obtains:

φφφT
r Mϒ

(p)
I = 0. (86)

To conclude with the real normal form style, we now
provide the explicit expressions for the coefficients of
the resonant monomials. In the real normal form style,
since two indices are contained in R, two coefficients
are kept for each resonant monomial. Using f (p)

rI =
g(p)
rI and f (p)

r∗I = g(p)
r∗I together with Eq. (57) leads to:

f (p)
rI = φφφT

r (−Mν
(p)
I − G(p)

I − H(p)
I + λr∗Mμ

(p)
I )

λr − λr∗
,

(87a)

f (p)
r∗I = φφφT

r (−Mν
(p)
I − G(p)

I − H(p)
I + λrMμ

(p)
I )

λr∗ − λr
.

(87b)

Importantly, the reduced dynamics term f (p)
rI has the

same expression as in the complex style but its value
is different since G(p)

I , H(p)
I , ν(p)

I , and μ
(p)
I are differ-

ent for complex and real normal form styles, as they
depends on lower order mappings and reduced dynam-
ics coefficients.

Let us now conclude the Section by giving the solu-
tions in the case of the graph style, where the second
line in Eq. (63) is always taken. For every set I related
to each monomial, R is fully populated with all the
indices of the master modes, as stated in Eq. (64). So,
for every set I, the system to be solved, composed of
Eq. (70) with its subsequent simplifications, now reads:
⎡

⎢⎣
σ 2
IM + σIC + K Mφφφ (I[2n]σI − λ̄)

(
Mφφφ (I[2n]σI − λ̄)

)T
[
I[n] I[n]
I[n] I[n]

]

⎤

⎥⎦

[
�

(p)
I

f (p)I

]

=
[

	
(p)
I

− φφφTMμ
(p)
I

]
, (88)

where the matrix of master eigenvectors φφφ defined
in Eq. (19c) and the matrix of master eigenvalues λ

defined in Eq. (19d) have been used for compactness;
also the 2n × 2n and n × n identity matrices, I[2n] and
I[n] respectively, have been introduced.

A further development is needed to understand an
important property of the graph style, which gives the
name to the solution. Let us first remark that both map-
ping vectors, for displacement and velocity �

(p)
I and

ϒ
(p)
I , are orthogonal to each of the real master modes

φφφr , for r ∈ [1, n]. The proof of this property strictly
follows the same lines as in the real normal form case,
since it is the grouping of the two conjugate indices that
allows fulfilling the property. Unlike the real normal
form style, in this case the property holds ∀r ∈ [1, n].
One can then write:

φφφTM�
(p)
I = 0, (89a)

φφφTMϒ
(p)
I = 0. (89b)

Thismeans that the nonlinear terms of themappings are
orthogonal to the linear subspace spanned by the mas-
ter eigenvectors. Due to the cancellation of the nonlin-
ear terms of the mappings that stems from the choice
made in Eq. (63), θ

(p)
rI = 0, the nonlinear mappings

defined inEq. (32) have no nonlinear terms in themodal
space for the master coordinates. This is easily demon-
strated by projecting the whole change of coordinates
U = Ψ (z) andV = Υ (z) on a given real master mode,
say the r -th master mode which corresponds to themr -
th mode of the full spectrum, thus retrieving the modal
displacement umr and modal velocity vmr of the r -th
master mode defined in Eq.(5) and Eq. (6), which sim-
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ply writes:

umr = φφφT
r MU = φφφT

r M(φφφz) = zr + z̄r , (90a)

vmr = φφφT
r MV = φφφT

r M(φφφλz) = λr zr + λ̄r z̄r . (90b)

Due to the orthogonality property of Eq. (89a), all
the nonlinear mappings are orthogonal to the master
modes, and only the linear terms are not. Interestingly,
the left-hand side of these equations, which represents
the modal coordinates, is linearly related to the right-
hand side, which represents the normal coordinates.
In other words, Eq. (90) shows that with the graph
style parametrisation, zr + z̄r represents the modal dis-
placement of the r -th master mode, and λr zr + λ̄r z̄r
its velocity. Consequently the nonlinear mapping actu-
ally operates solely on the slave modes, whereas the
modal coordinates are left unchanged. Note that this
result does not hold with the normal form styles, where
the projections to modal space using left-hand sides of
(90) would show a nonlinear relationship. Finally, the
last lines of the nonlinear mapping (21), correspond-
ing to the slave modal coordinates, can be interpreted
as a functional relationship, or a graph, between slave
and master modal coordinates. This explains the name
selected for the graph style, and allows one to under-
stand that thismethod is exactly equivalent to the choice
proposed by Shaw and Pierre in their first derivations of
nonlinear normalmodes as invariantmanifolds, see e.g.
[17,18,49]. Since a graph relationship is assumed, the
graph style is theoretically limited up to a point where
an invariant manifold folds. This is in contrast with the
normal form style, which proposes a completely non-
linear relationship and is thus a priori able to pass over
the folding. This propertywill be illustrated in Sect. 7.2.

5 Complex to real coordinates

In the previous Section important improvements in
terms of computational efficiency have been achieved
recalling that the initial system is of second-order
in time. Consequently the velocity mapping can be
expressed directly as a function of the displacement
mapping, Eq. (71), which has been used to halve the
size of system (70). In the same spirit, the fact that the
initial problem is real can also be used in order to gain
computational time and memory, and efficacy in the
output processing. Indeed, since the initial problem is

real, the final problems should also be real. The intro-
duction of the complex number is an important tool
which is helpful in order to better highlight the sym-
metries of the underlying problem, but at the end of
the process, one should be able to come back to real
quantities and see the complexification as a side help
for conducting the inner calculations. This process is
called complexification/realification and is commented
in a general framework for example in [31]. Note that
realification is also used in the calculations reported in
[45,46].

Let us first begin by noticing that the initial dis-
placement and velocity vectors U and V are real, they
thus must fulfil the relationships Ū = U, and V̄ = V.
Using the asymptotic expansion defining the mappings
as given in Eq. (36), one can write:

U =
o∑

p=1

∑

I
�

(p)
I π

(p)
I = Ū =

o∑

p=1

∑

I
�̄

(p)
I π̄

(p)
I

=
o∑

p=1

∑

I∗
�̄

(p)
I∗ π

(p)
I , (91a)

V =
o∑

p=1

∑

I
ϒ

(p)
I π

(p)
I = V̄ =

o∑

p=1

∑

I
ϒ̄

(p)
I π̄

(p)
I

=
o∑

p=1

∑

I∗
ϒ̄

(p)
I∗ π

(p)
I . (91b)

In these equations, I∗ has been introduced as the con-
jugate of the set of indices I, which is simply obtained
by conjugating each of the indices of I following the
rule defined in Eq. (59). The last identity has been writ-
ten by using the fact that since the summation over the
monomials spans all possible sets I, it can be equiva-
lently interpreted as a sum over I∗. Using the definition
of the generic monomial π

(p)
I in Eq. (35), one imme-

diately has π̄
(p)
I∗ = π

(p)
I . Term-by-term identification

of the first and last summations in (91) shows that the
following relationship must hold for the coefficients of
the mappings:

�̄
(p)
I∗ = �

(p)
I , (92a)

ϒ̄
(p)
I∗ = ϒ

(p)
I . (92b)

A similar property can also be deduced for each of
the coefficients of the monomial terms in the reduced
dynamics. Indeed, the normal coordinates being com-

123



A. Vizzaccaro et al.

plex conjugate, they have of course to verify z̄s∗ = zs ,
but also ˙̄zs∗ = żs . Using the asymptotic expansion used
for the reduced dynamics, one can thus write the fol-
lowing equalities:

˙̄zs∗ =
o∑

p=1

∑

I∗
f̄ (p)
s∗I∗ π̄

(p)
I∗

= żs =
o∑

p=1

∑

I
f (p)
sI π

(p)
I . (93)

Term-by-term identification then leads to the following
property:

f̄ (p)
s∗I∗ = f (p)

sI . (94)

It could be shown that both Eqs. (92) and (94) are
verified ifR(I) = (R(I∗))∗, which means that the set
of indices considered resonant with the set I is equal
to the conjugate of the set of indices considered reso-
nant with the set I∗. Since a symmetric treatment of
resonances with respect to their conjugate is logical,
this is a very general case and it holds for all the styles
mentioned here.

Thanks to the above properties, one is now in the
position to write all the needed quantities, nonlinear
mappings and reduced dynamics, in real coordinates.
This will have some implications on the computational
aspects in terms of burden and memory requirements,
but also on the post-processing of the results. Indeed,
providing real results for the reduced-order dynamics
is much more comfortable since ROMs are generally
aimed at being used for either direct time integration
or more generally for interfacing with a numerical con-
tinuation method for analysing the bifurcation scenario
and predict the vibratory solutions of the structure. In
this context, real quantities are needed as input to con-
tinuation codes.

Since complex quantities are still included inside
π

(p)
I , new real variables have tobe introduced: (a j , a j+n),

which correspond the Cartesian representation of the
normal coordinates z.

We define these purely real coordinates as twice the
real and imaginary part of the complex conjugate pair
(z j , z j+n):

a j = z j + z j+n = 2 Re[z j ], (95a)

a j+n = z j − z j+n

i
= 2 Im[z j ], (95b)

with j ∈ [1, n].

Since the expression of Re[π(p)
I ] and Im[π(p)

I ] as a
function of a are cumbersome, they are not reported
here. They are however easy to compute automatically.
Both the reduced model and the change of coordinates
can be written in terms of a, which is what we output
and solve for. Let us define the generic p order product
of the Cartesian normal coordinates as:

π̃
(p)
I = ai1ai2 . . . aip , I = {i1i2 . . . i p}, (96)

then it is easy to see that thismonomial π̃ (p)
I in ai can be

expressed as a linear combination of some monomials
π

(p)
I in zi and vice versa. For the nonlinear change of

coordinates, realification is obtained by

U =
o∑

p=1

∑

I
�

(p)
I π

(p)
I =

o∑

p=1

∑

I
�̃

(p)
I π̃

(p)
I , (97a)

V =
o∑

p=1

∑

I
ϒ

(p)
I π

(p)
I =

o∑

p=1

∑

I
ϒ̃

(p)
I π̃

(p)
I , (97b)

where the nonlinearmapping tensors in Cartesian coor-

dinates, �̃
(p)
I and ϒ̃

(p)
I , are now purely real quantities.

Onemust also notice that other implementation choices
such as that of [45,48] could lead to real valued map-
pings instead of complex ones.

Similarly, for the reduced dynamics, realification
leads to

ȧs =
o∑

p=1

∑

I
f̃ (p)
sI π̃

(p)
I , s ∈ [1, 2n], (98)

where the reduced dynamics coefficients in Cartesian
coordinates, f̃ (p)

sI , are purely real and are obtained by
imposing the following equalities:

Re[ż j ] =
o∑

p=1

∑

I
Re[ f (p)

sI π
(p)
I ] = 1

2
ȧ j

=
o∑

p=1

∑

I

1

2
f̃ (p)
jI π̃

(p)
I , j ∈ [1, n], (99a)

Im[żs] =
o∑

p=1

∑

I
Im[ f (p)

sI π
(p)
I ] = 1

2
ȧ j+n

=
o∑

p=1

∑

I

1

2
f̃ (p)
j+nI π̃

(p)
I , j ∈ [1, n]. (99b)

It is worth mentioning that another possible choice
for realification consists in polar coordinates; one could
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in fact express the complex normal coordinates as:

z j = 1

2
ρ j e

+iα j , (100a)

z j+n = 1

2
ρ j e

−iα j , ∀ j ∈ [1, n]. (100b)

where the scaling factor 1/2 has been chosen coher-
ently with the choice made for the Cartesian coordi-
nates that have been defined to be twice the real and
imaginary part of the complex coordinates. With this
choice of the scaling factor, the relationship between
polar and Cartesian coordinates would read:

a j = ρ j cos(α j ) (101a)

a j+n = ρ j sin(α j ), ∀ j ∈ [1, n] (101b)

In the case of single mode reduction, the polar form
can be particularly attractive if the complex normal
form style is used because the nonlinear frequency
would be directly given by the reduced dynamics
expressed in polar coordinates, as it will be shown
in the next section; however, this advantage does not
extend to the general case of internally resonant sys-
tems. For the sake of generality, we choose here to
express the reduced dynamics inCartesian coordinates;
in fact, in the general case of internally resonant sys-
tems, the reduced dynamics given by Eq. (98) is better
suited for continuation algorithms than its equivalent
polar form.Moreover, Cartesian coordinates bear more
resemblance with the choice made in previous works
[20,21,43,44].

6 Summary of the main results and illustrative
examples

The parametrisation method, in one of the three dif-
ferent styles presented, allows one to compute both the
nonlinear mappings and the reduced-order dynamics at
a generic order of expansion o. The main difficulty lies
in the tracking of all monomials of order p and of the
resonance conditions that need to be treated with care.

The coefficients of the unknowns at order p depend
only on previous calculations at lower order, such that
the computation needs to keep track of these incoming
terms, which takes the main part of the analysis.

To better understand the workflow of the method we
now provide a summary of the previously presented
developments, represented also in Fig. 1. Starting from
the equation of motion of the full FE model, Eq. (1),
the displacement U and velocity V variables in phys-
ical coordinates are expressed as functions Ψ (z) and
Υ (z) of the normal coordinates z (see Eq. (21)). Sim-
ilarly, the reduced dynamics f (z), which constitutes
the reduced order model, is written as a first order
ODE in z (Eq. (22)). Both functions are assumed to be
polynomials in z up to an arbitrary order o (Eq. (25)),
giving rise to two mapping tensors � and ϒ, and a
reduced dynamics tensor f that have to be calculated.
To compute these tensors, Eqs. (25) are plugged into
the equation of motion (1) and each monomial πI is
treated separately. In fact, these tensors have to verify
the equation of motion for any z up to a desired order
o. In this way, a homological equation for each order p
and each set of indexes I is derived, giving rise to the
under-determined system of Eq. (26). The normal part
of such equation, which corresponds to its projection
on the slave modes, is fully determined whereas the
tangent part, which corresponds to the projection on
the master modes, is not. The tangent part of the homo-
logical is given in Eq. (58). The under-determinacy of
the tangent part allows for different styles of parametri-
sation and once a style is selected the tangent homolog-
ical becomes fully determined (Eq. (63)) provided that
there are no outer resonance conditions. In this way
the full system becomes solvable (Eq. (70)). Finally,
by exploiting the intrinsic symmetric and second-order
nature of the original problem, it is possible to trans-
form the non-symmetric (2N + q) × (2N + q) sys-
tem of Eq. (58), into a symmetric (N + q) × (N + q)

one. Such system is the one composed by the combi-
nation of Eqs. (75) and (77), given in a generic form
that fits each parametrisation style. The algorithmic
implementation of the method is then based on a pro-

Equation of
motion (1)

Change of coordi-
nates and reduced
dynamics (25)

Homological for
each monomial

Eqs. (75) and (77)

Realification of
complex tensors

Eq. (97) and Eq. (98)

Fig. 1 Flowchart of the parametrisation procedure
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gressive solution of Eqs. (75) and (77) starting from
order 2 and going up to arbitrary order o, thanks to
the fact that the right hand side of the system always
depends onquantities calculated at lower orders. Lastly,
once the complex parametrisation is obtained for each
order, the realification procedure permits to obtain both
mapping tensors and reduced dynamics as real quan-
tities (see Eq. (97) and Eq. (98) respectively) that
can then be exported and solved in any continuation
solver. For more details on the algorithmic procedure,
the interested reader is referred to the julia package
MORFEInvariantManifold.jl publicly avail-
able from [51].

Previous works already considered similar devel-
opments. For example, in [77] the invariant manifold
approach was used to propose order-3 developments
that are here recovered with the graph style subcase.
Third-order expansions [20,21] or even higher-order
[75,79,80] were also obtained applying the normal
form approach [34]. The complex versions [34,79] are
recovered by the CNF, while the RNF allows retriev-
ing the real approach developed in [38,74]. The real
formulation proposed in [20,21] represents a different
parametrisation which is not further investigated in this
article, but Appendix A collects some computations
allowing to retrieve this style. The approach derived in
this article generalises these prior developments, using
the same framework and offering arbitrary order expan-
sions. Whereas previous contributions focused on giv-
ing analytical expressions for all the coefficients as
function of the input (see e.g. [20,34,77]), this objective
is left aside here for the sake of efficiency. Instead, the
arbitrary order expansion provides an automatic rea-
soning in order to compute numerically all the coeffi-
cients while never searching for their analytical expres-
sions. This is a purely numerical approach, different
from previous developments, relying on a more sym-
bolic representation.

The technique as presented in this paper uses the
parametrisation method for invariant manifolds and is
thus very close to the developments shown in [45–47].
However, we here tailored the formulation to vibration
problems whose equation of motion is a second-order
ODE. Exploiting the second-order nature of the equa-
tions, we provided explicit expressions for the homo-
logical equation in the sole mapping displacement and
explicit expressions for the velocity one. This is an
interesting development and a meaningful result for
mechanical systems. Moreover, we detailed three dif-

ferent parametrisation styles, one ofwhich, the real nor-
mal form style, allowed to unify the parametrisation
method with previous developments by the authors,
i.e. the direct normal form method (DNF) proposed
in [43,44].

To give more insight into this last point, let us show
how the three different styles are treating differently the
reduced dynamics for a simple case: a generic system
with a single master mode with development only up to
order three. For the sake of simplicity, we here assume
that the master mode coincides with the first mode of
the system so that m1 = 1. In the case of the complex
normal form style, the reduced dynamics reads:

ż1 = λ1z1 + f (3)
1{111∗}z

2
1 z̄1, (102a)

˙̄z1 = λ̄1 z̄1 + f (3)
1∗{11∗1∗}z1 z̄

2
1. (102b)

In fact, as mentioned in Sect. 4.1, the only resonant sets
are I = {111∗}, which resonates withR = {1} and the
set I = {11∗1∗}, which resonates with R = {1∗}. It
follows that the only nonzero coefficients frI of the
reduced dynamics are those appearing in Eq. (102).
A very peculiar property of this style can be deduced
by noticing that in the equation for ż1 only odd order
terms in the form z1(z1 z̄1)q withq integerwill appear at
the generic order; similarly, in the equation for ˙̄z1 only
odd order terms in the form z̄1(z1 z̄1)q will appear. This
property has an important consequence that holds in the
case of single mode reduction and that can be observed
by expressing the normal coordinates in polar form, as
shown in [35,40].

Plugging Eq. (100) into Eq. (102) yields:

(ρ̇ + iα̇ρ) e+iα = (λ1ρ + 1

4
f (3)
1{111∗}ρ

3) e+iα, (103a)

(ρ̇ − iα̇ρ) e−iα = (λ̄1ρ + 1

4
f (3)
1∗{11∗1∗}ρ

3) e−iα .

(103b)

Due to the form of the monomials in the reduced
dynamics, z1(z1 z̄1)q in the equation for ż1 and z̄1(z1 z̄1)q

in the equation for ˙̄z1, the exponential terms e+iα and
e−iα can be collected and therefore eliminated from
the equations. As anticipated, one could then directly
obtain the values of ρ̇ and α̇, which represent the decay
ratio and frequency of the normal coordinates dynam-
ics, as a function of the sole amplitude ρ. They read:
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ρ̇ = λ1 + λ̄1

2
ρ + f (3)

1{111∗} + f (3)
1∗{11∗1∗}

8
ρ3, (104a)

α̇ = λ1 − λ̄1

2i
+ f (3)

1{111∗} − f (3)
1∗{11∗1∗}

8i
ρ2. (104b)

This result implies that, in the case of a single
mode reduction, no numerical solution of the reduced
dynamics is needed for the complex normal form style
because, thanks to the symmetry of the formulation,
the solution is available in explicit form. This property
holds for generic order but does not extend to the case
of multiple modes reduction.

We now move to the case of real normal form style.
The reduced dynamics in the complex coordinates for
a single mode case up to order three reads:

ż1 = λ1z1 + f (3)
1{111∗}z

2
1 z̄1 + f (3)

1{11∗1∗}z1 z̄
2
1 , (105a)

˙̄z1 = λ̄1 z̄1 + f (3)
1∗{111∗}z

2
1 z̄1 + f (3)

1∗{11∗1∗}z1 z̄
2
1 . (105b)

Two third-order monomials appear in both equa-
tions due to the fact that the resonant sets I = {111∗}
and I = {11∗1∗} are both considered resonant with
R = {11∗}. An explicit expression of the solution is
not available in this case due to the extra terms present
in the equations. However, it can be shown that it is
possible to write such system in a single oscillator form
when Cartesian coordinates are used. Let us recall that,
in the case of normal form style, the following property
holds (see Eqs. (85a)):

f (p)
rI + f (p)

r∗I = −φφφT
r Mμ

(p)
I . (106a)

At order three, the right-hand side of the equation
is equal to zero because all the lower order dynamic
coefficients, only quadratic in this case, are zero; so the
tensor μ

(p)
I for I = {111∗} and I = {11∗1∗} vanishes.

It follows that:

f (3)
1{111∗} + f (3)

1∗{111∗} = 0, (107a)

f (3)
1{11∗1∗} + f (3)

1∗{11∗1∗} = 0. (107b)

By summing Eq. (105) and using this property, all
the nonlinear monomials in the equation vanish, lead-
ing to:

ż1 +˙̄z1 = λ1z1 + λ̄1 z̄1 = Re[λ1](z1 + z̄1)

+iIm[λ1](z1 − z̄1). (108)

Using Eq. (95), one can then write a linear equation
for ȧ1:

ȧ1 = Re[λ1]a1 − Im[λ1]a1∗ . (109)

As per the equation for ȧ∗
1 , it can be derived from

the difference between Eq. (105) and it reads:

ȧ1∗ = Re[λ1]a1∗ + Im[λ1]a1 +
∑

I
f̃ (3)
sI π̃

(3)
I , (110)

where the third order monomials have been collected
in their generic form due to their lengthy expressions.

Finally, by differentiating Eq. (109) with respect to
time and using Eq. (110), the oscillator-like reduced
dynamics can be obtained as

ä1 + 2ξ1ω1 ȧ1 +ω2
1 a1 +

(
ω1

√
1 − ξ21

)

(
∑

I
f̃ (3)
sI π̃

(3)
I

)
= 0, (111)

where the expressions for real and imaginary parts of
the eigenvalues have been used. It is worth remark-
ing that this oscillator-like form of the equations can
be obtained without approximations only if there is a
linear differential relationships like Eq. (109) between
the Cartesian coordinates. Otherwise, during the last
substitution operation, terms of order higher than three
would be generated. In such case, in order not to lose
important coefficients, it is advisable to solve the equa-
tions for the Cartesian coordinates in first-order form.

It has been shown that the real normal form style
reduced dynamics equations can be easily transformed
into second-order oscillator-like equations in the case
of a single mode reduction up to order three. In the
general case of multiple modes reduction, this is still
possible with no approximations, provided that there
are no second-order internal resonances between the
modes. On the contrary, for the graph style, the lin-
ear relationship between the Cartesian coordinates is
always verified. In fact, the following property holds in
general:

f (p)
rI + f (p)

r∗I = 0, ∀r ∈ [1, 2n],∀I . (112a)

In the case of graph style, this does not come from
the fact that the reduced dynamics coefficients inside
Mμ

(p)
I are zero, but rather from the fact that the map-

ping tensors inside Mμ
(p)
I are always orthogonal to

the master modes, as shown in Eq. (89a), thus their
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projection on φφφr is zero. Moreover, in the case of the
graph style the modal displacement ui coincides with
the Cartesian coordinate ai for each i ∈ [1, n]; so not
only an oscillator-like equation can always be obtained,
but it would even coincide with the dynamics of the
master modes. In the case of single mode reduction up
to third order, the reduced dynamics would then read:

ü1 + 2ξ1ω1 u̇1 + ω2
1 u1 + (ω1

√
1 − ξ21 )

(
∑

I
f̃ (2)
sI π̃

(2)
I +

∑

I
f̃ (3)
sI π̃

(3)
I

)
= 0, (113)

where now themonomials π̃I are both second and third
order and they are expressed in terms of u1 in place of
a1.

In this Section, the reduced-order dynamics pro-
duced by the presented styles have been derived for a
simple case of single mode reduction, up to third order.
It is important to highlight that, although the reduced
dynamics in the normal coordinates are different, once
the original coordinates are reconstructed through the
nonlinearmappings, their expressionwill be equivalent
up to a certain order of expansion, as shown for exam-
ple in [49]. This point will also be further discussed
with numerical results in the next Section.

7 Numerical results

In this section we discuss a series of applications
of both academic and industrial interest that can be
addressed with the direct parametrisation method. The
first example, reported in Sect. 7.1, concerns curved
arches where the increase in curvature yields a tran-
sition of the response from softening to hardening.
Interestingly, a softening behaviour is obtained at small
amplitude, then a hardening behaviour is recovered at
larger amplitudes. This example has been selected to
show that such softening-hardening transition can be
captured with a single-mode reduction and a develop-
ment at least to order five. The second structure, anal-
ysed in Sect. 7.2, is a cantilever beam. This example is
challenging since inertia nonlinearities play an impor-
tant role. Besides, preliminary results reported in [27]
show that the second-order direct normal form (DNF)
as implemented in [43] was not able to capture the
hardening behaviour up to very large amplitudes. Elab-
orating on this example, we show that the first mode
manifold shows a folding point at large amplitudes.

As a consequence, graph style parametrisation is not
able to recover the correct behaviour, whereas normal
form styles can. Finallywe investigate an application of
industrial interest, namely a MEMS micromirror sub-
jected to large rotations, which highlights the potential
impact of the presented method. Remarks on the com-
putational performance of the approach are presented
in Sect. 7.4. All the tests are run using the julia pack-
age MORFEInvariantManifold.jl [51]. All the
examples are benchmarked against full-order harmonic
balance finite elements (HBFEM) solutions computed
using a custom fortran code [81]. On the other hand,
the reduced models are integrated using the numeri-
cal collocation and continuation package MATCONT
[82].

7.1 Transition from softening to hardening behaviour:
the case of a shallow arch

The development of ROMs is known to be easier for
flat symmetric structures such as beams andplates since
nonlinear quadratic couplings occur between bending
and in-plane modes only and the slow/fast assumption
is well fulfilled [10,27]. On the other hand, arches and
shells are known to integrate more couplings due to
the loss of symmetry of the centre line and represent
a challenge for reduction methods since the slow/fast
assumption generally fails [21,83,84]. The aim of the
present Section is to consider an arch with increas-
ing curvature such that the small amplitude response
is softening, and then turns back to hardening at larger
amplitudes. Even though this kind of behaviour is typ-
ical of a single-mode model, it cannot be captured with
third-order approximations as those used for example
in [43,44], since the change from softening to harden-
ing requires at least the fifth-order term. The higher-
order expansion is thus expected to solve this problem
and proposes a single-mode ROMcapable of reproduc-
ing such feature.

A schematic representation of the layout is depicted
in Fig. 2(a). The systems are curved clamped-clamped
beams of length 640 μm with an in-plane thickness of
6.4 μm and an out-of-plane thickness of 32 μm. The
structures differ by their rise value R andwedenote as I,
II and III the arches with R = 2.40μm, R = 2.88μm
and R = 3.36μm, respectively. A solution obtained
on a flat beam with a purely hardening response is pre-
sented as well for reference. The selected curvatures
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are small, thus corresponding to shallow arches, since
the rise value R is in the worst case close to half the
thickness of the beam.

The reference flat beam structure (denoted as Ref in
the first column of Table 1) has the same geometry as
the arches, but the rise is set to zero. All the structures
are made of polycrystalline silicon, which is modelled
as isotropic with a Young’s modulus of 160 GPa, a
Poisson’s ratio of 0.22 and a density of 2320 kg/m3.

Geometries are discretised using finite elements
with 15-nodes (quadratic wedge elements). The total
number of nodes is equal to 1161 for all geometries,
corresponding to 3483 degrees of freedom.

The values of the first six eigenfrequencies of the
structures are collected in Table 1 to highlight the
absence of low-order resonances between eigenmodes.
Single-mode reduction is used and the fundamen-
tal mode is selected as master. This corresponds, for
the four cases, to the symmetric first bending mode.
A schematic representation of the displacement field
associated to the mode is depicted in Fig. 2(b) for illus-
tration.

The parametrisation order is spanned from 3 to
15 to analyse the convergence of the method. Both
forced-damped and undamped solutions reported in the
remainder of the section are verified using the HBFEM
[81] applied to the full-order system and a Fourier
expansion order equal to 7, which corresponds to a total
of 52245 nodal unknowns.

7.1.1 Undamped response: backbone curves

We first focus on the analysis of the backbone curves.
The results obtained for the structures under consider-

Table 1 Shallow arches examples: rise of the different structures
analysed and list of the first eigenfrequencies

Geometry Ref. I II III

Rise (μm) 0.00 2.4 2.88 3.36

ω1 (rad/μs) 0.8418 0.9223 0.9551 0.9923

ω2 (rad/μs) 2.3194 2.3191 2.3189 2.3188

ω3 (rad/μs) 4.1418 4.1359 4.1333 4.1303

ω4 (rad/μs) 4.5446 4.5607 4.5678 4.5763

ω5 (rad/μs) 7.5083 7.5067 7.5060 7.5052

ω6 (rad/μs) 10.252 10.267 10.274 10.282

ation are reported in Fig. 3, where a real normal form
(RNF) is used as parametrisation style.

The referenceflat beamstructure reported inFig. 3(a)
displays a hardening behaviour, typical of flat, sym-
metric structures. The third-order expansion already
gives an excellent prediction in this case, and con-
vergence up to half the beam’s thickness is obtained
with an order 5. On the other hand, third-order expan-
sions fail for all the arch-structures under considera-
tion. For instance, even for the purely hardening arch I,
whose backbone curve is reported in Fig. 3(b), the pres-
ence of large quadratic terms make low-order expan-
sions deviate from the reference HBFEM solution.
Indeed, third-order expansions start to become unac-
ceptable for oscillation amplitudes equal to 0.2 of the
normalised modal displacement, which corresponds to
20% of the arches thickness, being the motion domi-
nated by the master mode. The effectiveness of low-
order expansions is further reduced for arches with
higher rise values. Indeed, arches II and III actually
show an initially softening behaviour, followed by a
hardening response at higher amplitudes, a behaviour
that is totally missed by a third-order parametrisation,
which diverges towards smaller frequency values. On
the other hand, higher order parametrisations are able to
correctly capture this transition and a very good agree-
ment with the reference HBFEM solution is achieved
with asymptotic expansions of order 13-15.

7.1.2 Forced-damped response

The forced-damped response of the system is analysed
by selecting mass-proportional damping and modal
forcing as proposed in [44]:

MÜ + CU̇ + KU + G(U,U) + H(U,U,U)

= κM�m cos (Ωt), (114)

with C = ωm/QM. A complete treatment of the forc-
ing is challenging and generally leads to increasing the
computational burden dramatically since the manifold
reduction depends directly on the forcing frequencyΩ ,
as shown for example in [85,86]. Nevertheless, the pro-
cedure has been derived and used for producing effi-
cient ROMs in [87], producing time-dependent man-
ifolds for systems expressed in the modal basis. On
the other hand, modal forcing as proposed in [20,21]
is a viable assumption that offers versatile ROMs for
numerical continuation. The treatment of damping-
forcing is also further commented in [43]. The treat-
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(a)

(b)

Fig. 2 a Schematic representation of the shallow arch geometry,
with thickness h = 6.4 μm, and length L = 640 μm. The rise of
the arch R for the three configurations is RI = 2.40 μm, RI I

= 2.88 μm, RI I I = 3.36 μm. The out-of-plane thickness of the
arch is 32 μm for all geometries. bMagnified displacement field
associated to the first eigenmode of the structure

ment of forcing proposed in [20,21], can be seen as
a zero-order truncation of the perturbation procedure
detailed in [86] for the case of RNF and graph style
parametrisation; it does not apply to the CNF style
which would produce a time dependent manifold even
at zero-order truncation due to the different treatment of
resonant terms. Here, onlymass-proportional Rayleigh
damping is considered. The master mode coincides
with the first bending mode of each structure, and
m = 1. Q = 500 is the quality factor of the system, κ
is a load multiplier and �1 is the linear master mode.
The value of κ for the reference flat beam is chosen
equal to 0.06ω2

1, while for the three curved structures
κ = 0.09ω2

1. The load multiplier for the reference flat
beam is lower in order to avoid internal resonances that
could be induced by the strongly hardening response
of the structure.

The reduced models are again obtained using a real
normal form parametrisation on a single master mode.
Fig. 4 shows the result for the four cases under inves-
tigation. For the sake of simplicity, only three orders
of asymptotic expansions are reported: orders 5, 9 and
15.As expected from the previous analysis on the back-
bone curves, the order-five solution is accurate enough
only for the flat beam, but slightly departs from the
reference solution as soon as a very small curvature is
considered in case I. On the other hand, orders 9 and
15 gives excellent results up to the amplitudes shown
in Fig. 4, which corresponds to almost three fourth of
the arch thickness.

The only minor discrepancies are observed at the
peak of the frequency response curves and can be
attributed to the treatment of the forcing term in the
ROM. Indeed, if the parametrisation procedure was

initially applied to the forced system, it would yield a
reduced dynamics with coefficients that depend on the
frequency and amplitude of the applied forcing, hence
making standard continuation approaches not applica-
ble and the final results less appealing in terms of versa-
tility and post-processing for design purposes. It is also
worth remarking that zero-order treatments of the forc-
ing are reported also in [45,46] where the more general
case of a non-modal forcing is included. However, as
underlined for example in [43,85], even in presence
of general forcing types, not accounting for the time
dependence of the manifold does not seem to yield a
sensible loss of accuracy, at least for moderate loads.

As a short conclusion on this example, it has been
demonstrated that the difficult case of an arch struc-
ture showing transition from softening to hardening
behaviour can be finely predicted thanks to the arbitrary
order expansions proposed in this article. As expected,
the minimal order needed to retrieve the change in
behaviour is 5, and to obtain convergence, higher-
orders around 7 to 9 are needed. Shallow arch structures
have been used in a number of contexts as a bench-
mark example to highlight the difficulties that ROMs
can encounter for retrieving this behaviour, see e.g.
[25,69,88–90]. In general, the fact that the slow/fast
assumption is not fulfilled is a strong obstacle for using
single mode reduction. As an example, a very simi-
lar arch structure as the one studied here is detailed in
[90]with a linear reductionmethod combining selected
vibrationmodes plus theirmodal derivatives. Softening
behaviour returning to hardening at higher amplitudes
has also been successfully reported, with a reduction
basis composed of 5 linear modes and 15modal deriva-
tives.Herewe demonstrate that, with a nonlinear reduc-
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(a) (b)

(d)(c)

Fig. 3 Backbone curves predicted for the arched structures, for
the fundamental mode selected as master coordinate. Compari-
son between full-order HBFEM simulations and ROMs obtained
from RNF style parametrisation. a Reference flat beam. b Arch
I. cArch II. dArch III. The modal displacement u1 is normalised

by the maximum of the first eigenvector �1 (equivalent to the
first master eigenvector φφφ1) and the thickness h; the nonlinear
frequency ω is normalised by the linear frequency ω1 of the first
mode

tion method, a single-mode ROM is sufficient, but it
needs an expansion order that is at least larger than five.
For the sake of comparison, we want to highlight that,
in the case of single mode reduction, at each order p,
p+1 nonlinear mapping vectors have to be calculated.
Therefore, the expansion up to order 5 of this example

required the computation of 18 nonlinear mapping ten-
sors plus the linear mode; however, the advantage of
the method is that the mappings evaluation is an offline
cost and the produced reduced-order model is a single
degree of freedom oscillator.
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(a) (b)

(d)(c)

Fig. 4 Frequency-response curves for the arched structures.
Comparison between full-order HBFEM simulations and ROMs
obtained fromRNF style parametrisation. a Reference flat beam,
b Arch I. c Arch II. d Arch III. The modal displacement u1 is

normalised by the maximum of the first eigenvector �1 (equiv-
alent to the first master eigenvector φφφ1) and the thickness h; the
forcing frequency Ω is normalised by the linear frequency ω1 of
the first mode

7.2 Manifold folding in presence of large
transformations: the case of a cantilever beam

The freedom to choose the parametrisation style, as
long as the homological equations are satisfied, intro-
duces several options. As discussed in previous sec-
tions, if one adopts a graph style parametrisation, then
modal displacement and velocity are in a one-to-one

relation with the coordinates of the reduced dynam-
ics. That is, a graph is built between the modal coordi-
nates of the master and the slave. On the other hand, a
normal form style implies that master coordinates are
only identity tangent to the modal coordinates of the
master mode. Theoretically speaking, the difference
between these two parametrisation styles is assumed
to be negligible until the manifold encounters a fold-
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ing point. In the present section we report an exam-
ple of a folding manifold, corresponding to the fun-
damental bending mode of a cantilever beam experi-
encing very large transformations. We assume that the
Saint-Venant Kirchhoff constitutive model holds for
arbitrary large transformations, such that only geomet-
ric nonlinearities are at hand up to very large ampli-
tudes. Modelling cantilever beams has always been
challenging for both model derivation and reduction
methods, see e.g. [27,91–95]. In particular, the motion
of the structure becomes qualitatively different from
that of the first bending mode and the displacement
field changes in such a way that the modal coordinate
of thefirst eigenmode is not a goodmeasure of the oscil-
lation amplitude. Indeed, when the vibration amplitude
becomes comparable with the length of the structure,
themodal amplitude of the bendingmode tends to satu-
rate, hence the modal amplitude does not increase any-
more with the oscillation amplitude. It is worth stress-
ing that this saturation is not associated to internal res-
onances between modes, thus leaving the computed
invariant manifold two-dimensional. The aim of this
Section is to clearly underline the failure of the graph
style parametrisation in a case where associated mani-
folds present a folding point.

The geometry of the cantilever under consideration
is reported in Fig. 5(a). The structure is made of tita-
niumwith aYoungmodulus of 104GPa, a Poisson ratio
of 0.3, and a density of 4400 kg/m3. The total length
of the beam is 1 m and its thickness along the bend-
ing direction is 0.02 m. The out-of-plane thickness is
0.05 m. As for the arches, the geometry of the system is
discretised using a FE procedure with 15 nodes wedge
elements. The total number of nodes of the full order
model is equal to 621, corresponding to 1863 degrees
of freedom.

The first eigenmode of the structure corresponds to
the typical bending mode represented in Fig. 5(b). The
eigenfrequency associated to themode is equal to 99.18
rad/s.

7.2.1 Folding of the fundamental mode’s manifold

The investigations are here focused on the conservative
system in order to highlight the behaviour of the first
mode up to very large amplitudes in terms of geome-
try of its associated manifold and corresponding back-
bone curves. The three parametrisation styles discussed
in previous sections are used for reducing the system
to its fundamental mode. The parametrisation order is
spanned between 3 and 25 to verify the convergence of
the methods.

The convergence results for the different parametri-
sation styles are reported in Fig. 6 from which it
emerges that, while the results obtained for the two
normal form styles are comparable within the consid-
ered frequency range, the graph style parametrisation
shows an abrupt transition from hardening to softening
behaviour. Focusing on the graph style’s result shown
in Fig. 6(a), one clearly observes a convergence along
the hardening behaviour with the expansion order, until
a plateau is reached as a limit when increasing the
orders up to 25. This abrupt behaviour appears to be a
non-physical effect which needs further investigations
and highlights the breaking of the graph style solu-
tion to a normalised vibration amplitude around 0.85,
which corresponds to a physical displacement equal to
0.85 of the beam length L . On the other hand, normal
form styles yield hardening curveswithin the frequency
ranges investigated and convergence is achieved at low
orders.

It is worth mentioning that previous investigations
reported in [27], using a second-order DNF with a real

(a)

(b)

Fig. 5 a Schematic representation of the cantilever geometry. L = 1 m, t = 0.02 m. The out-of-plane thickness is 0.05 m. b magnified
displacement field of the eigenmode of interest
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(a) (b)

(c)

Fig. 6 Backbone curves of the fundamental mode of the can-
tilever beam. Convergence of the asymptotic expansion upon a
change in order for different parametrisations: a graph style, b
RNF style, and c CNF style. Data are reported for expansions
from order 3 to order 25. The modal displacement u1 is nor-

malised by the maximum of the first eigenvector �1 (equivalent
to the first master eigenvectorφφφ1) and the length L; the nonlinear
frequency ω is normalised by the linear frequency ω1 of the first
mode

normal form style not adopted in this study, showed the
same behaviour as the graph style solution of order-
three reported in Fig. 6(a), with a correct hardening
behaviour at the beginning followed by a strong depar-
ture to softening. This is explained by the fact that
reduced-order dynamics of second-orderDNF is equiv-
alent to that of the graph style at third-order. Inter-

estingly, the two normal form styles adopted in this
study do not encounter this problem and show a cor-
rect behaviour from the very first orders. Further ana-
lytical investigations on the different styles and the
failure of the first orders are reported in Sect. 7.2.2.
Using multiple scales method up to the second-order
(in time scale, corresponding to reduced dynamics to
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order five) are analysed in order to highlight how the
different solutions depart one from another, from the
analytical expressions of the coefficients.

The results obtained with the reduced-order mod-
els are next compared with full-order HBFEM sim-
ulations. The Fourier expansion order is set to 7 in
order to provide sufficient accuracy while filtering
potential internal resonances with high order modes
which are typically observed in undamped systems
[43]. The comparison between order 25 expansions
provided by the different parametrisation styles and the
reference HBFEM solution is presented in Fig. 7. The
response predicted by the reference HBFEM solution
is always hardening and it is perfectly reproduced by
the reduced model parametrised with the normal form
styles. Furthermore, the reliability of the ROMcan also
be inspected from the displacement field reconstructed
from the reduced model. As shown from the physi-
cal reconstruction of the structure response at point
A using a complex normal form style, the displace-
ment field remains qualitatively similar to that of the
first eigenmode. On the other hand, by reconstructing
the displacement of the graph-style parametrisation at
point B in Fig. 7, it is possible to observe that nonphys-
ical effects are present, especially close to the points of
maximum normal velocity of the system.

In order to understand the origin of the failure of the
graph style parametrisation, Fig. 8 reports the shape
of invariant manifolds obtained with the different solu-
tions. Three-dimensional representations are shown in
the left column by using three modal coordinates, the
first two being those of the master mode (u1, v1), u1
being the modal displacement and v1 the associated
modal velocity defined in Eqs. (5) and (6). As third
coordinate, the 10-thmode has been selected, u10 being
the associated modal displacement. Mode 10 corre-
sponds to the first axial mode of this cantilever. It is
strongly coupled to the first bending mode due to the
classical axial-bending coupling, and one can see that
the range of amplitudes reached along this coordinate
u10 is very important. Finally, axial-bending coupling
being quadratic allows recovering a symmetric shape
for the projection of the manifolds into this 3D repre-
sentation. In the right column of Fig. 8, a set of five
trajectories computed for different initial conditions of
the reduced dynamics coordinates are reported. They
are computed for increasing values of the real-valued
normal coordinate a1 of the reduced dynamics. The ini-
tial condition is set with zero velocity corresponding to

a1∗ = 0. More specifically, these trajectories are com-
puted with the ROM (single mode reduction), and then
back-projected to the original coordinates thanks to the
nonlinear mappings. All manifolds are computed on a
cantilever beam having the same geometry but with a
more refined mesh of 2515 nodes in order to avoid any
mesh effect on the shape of the computed manifold.

The manifolds represented in Fig. 8 undoubtedly
show that the failure of the graph style is due to a fold-
ing of the manifold in phase space. By its definition,
the graph style parametrisation imposes an injective
relation between the modal coordinates of the master
mode and the slaves, and is thus unable to follow a
folding in phase space, as already commented in [40].
This in turn causes a divergence of themanifold at fold-
ing points, as highlighted in Fig. 8(a). The trajectories
sampled with different initial conditions of the normal
coordinates in Fig. 8(b) show a similar result. In partic-
ular, trajectories initiated over the folding point diverge,
which is in contrast with the nature of the stable fixed
point of the system. On the other hand, the two normal
form style parametrisations do not diverge in presence
of a folding, as a benefit of the non-injective relation
between modal and normal coordinates which allows
capturing such processes. This is evidenced also by
the trajectories reported in Figs. 8(d–e) showing inter-
sections along the (u1, v1) plane, which would not be
possible using a graph-style parametrisation since pla-
nar systems develop trajectories that do not intersect.
It is worth stressing that over the folding point the two
normal form styles show a small difference in the com-
puted solutions, that can be seen from the loops having
a slight amplitude difference. This is in line with the
fact that the two methods treats differently the reso-
nant terms, however the deviations between the two
methods are very small and can be appreciated only in
very large amplitude, after the folding point, which is
a critical case. A folding point for a two-dofs system
has already been shown in [40], where the folding was
observed at order of expansion 15. Here the folding is
instead shown for a continuous structure, allowing for
physical interpretations of it. In fact, a cantilever beam
in large amplitude would tend to roll over itself [95]; in
such deformation state, the linear modeshape would no
longer be the main contributor to the nonlinear mode-
shape of the structure. In turn, its amplitude would not
grow indefinitely, but rather would start decreasing at
one point. Such decrease is represented by the folding
of the manifold with respect to the linear modal ampli-
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Fig. 7 Backbone curve of fundamental mode of the cantilever
beam.Comparisonbetween full-ordermodel solution (reference)
computed with an HBFEMmethod (black points) and ROMs up
to order 25 (converged solution) for graph (dotted blue), RNF
and CNF (orange and dashed red) styles. The modal displace-
ment u1 is normalised by the maximum of the first eigenvector

�1 (equivalent to the first master eigenvector φφφ1) and the length
L; the nonlinear frequency ω is normalised by the linear fre-
quency ω1 of the first mode. Panels A and B show snapshots of
the deformation field of the structure at points A and B shown in
the left (A: normal form style, B: graph style)

tude and it is the reasonwhy themanifold obtainedwith
graph style displays an nonphysical growth.

7.2.2 Multiple scales expansion

This Section is devoted to analyse the failure of the
backbone obtained with graph style, to highlight the
intimate relation between the geometry of the mani-
fold and the dynamics on it; in fact, it will be shown
that the lack of terms in the nonlinear mappings that
caused the failure of the manifold in graph style comes
with an excess of terms in the reduced dynamics that
causes a failure of the backbone. To this purpose, the
backbone of the different ROMs are analysed with a
multiple scales solution. The aim is to show how the
departure of the different methods can be analysed in
terms of the first developments of the backbone curve
(amplitude-frequency relationship), by showing how
the coefficients of the different styles intervene in the
solution. Since the backbone curves of Fig. 6 show
qualitatively similar results with the order of expan-
sion for all the styles, we will focus our attention here
on the reduced dynamics equations provided by each
style up to the third-order.

Recalling Eq. (102), the reduced dynamics in com-
plex form for the CNF style reads:

ż1 = iω1z1 + f z21z1∗ , (115a)

ż1∗ = −iω1z1∗ − f z1z
2
1∗ , (115b)

where we denoted as f = f (3)
1{111∗} the only nonlin-

ear coefficient appearing in the dynamics, since, for a
conservative system, one has f (3)

1∗{11∗1∗} = − f (3)
1{111∗}.

Note that f is purely imaginary in the considered case
of a conservative system. Recalling Eq. (104), which
rewrites the reduced dynamics in polar form, the decay
ratio is thus vanishing: ρ̇ = 0, and the dynamical equa-
tion on the phasemakes appear the nonlinear oscillation
frequency ω such that α̇ = ω. Finally, the amplitude-
frequency relationship simply reads:

ω = ω1(1 − i f

4ω1
ρ2) , (116)

which is real since f is purely imaginary.
In the case of the RNF style, the reduced dynamics

has two additional terms, due to the treatment of res-
onances in real formulation, as shown in Eq. (105). It
reads:
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(a) (b)

(d)
(c)

(e) (f)

Fig. 8 Cantilever beam. Left column: 3d representation of
invariant manifolds in space (u1, v1, u10), where (u1, v1) are
the modal displacement and velocity of the fundamental mas-
ter mode while u10 is the modal displacement of mode 10, the
first axial mode of the structure. The modal displacements uk are
normalised by the maximum of their corresponding eigenvector
�k and the length L; the modal velocity v1 is normalised by
the maximum of the first eigenvector �1 (equivalent to the first

master eigenvector φφφ1) and the length L . Right column: 2d pro-
jections of representative trajectories on the master mode plane.
First row: graph style, second row: real normal form style, third
row: complex normal form.The 5 trajectories depicted in pictures
b, d, and e are also drawn on the manifolds as black lines, and
are obtained for increasing normal amplitudes a. The arrow in
figure (b) highlights that the trajectory initiated using as starting
condition a1 = 1.15 and a1∗ = 0 diverges
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ż1 = iω1z1 + f z21z1∗ + f z1z
2
1∗ , (117a)

ż1∗ = −iω1z1∗ − f z1z
2
1∗ − f z21z1∗ . (117b)

Indeed, in light of Eq. (107), the additional reduced
dynamics coefficients f (3)

1{11∗1∗} and f (3)
1∗{111∗} are equal

to− f (3)
1∗{11∗1∗} and− f (3)

1{111∗}, respectively. As shown in
Eq. (111), the second-order oscillator-like dynamics in
the Cartesian normal coordinates simply reads:

ä1 + ω2
1 a1 + ω2

1a1

(
− i f

2ω1
a21 − i f

2ω1

(
ȧ1
ω1

)2
)

= 0.

(118)

An analytical expression of the amplitude-frequency
relationship of such a system can be derived by means
of the multiple scales method, which will allow one to
compare the coefficients with those of the CNF. Before
showing the multiple scales solution of this system, we
give the expressions of the graph style dynamics. The
reduced dynamics in complex coordinates reads:

ż1 = iω1z1 + f z21z1∗ + f z1z
2
1∗ + f̂ z31 + f̂ z31∗ ,

(119a)

ż1∗ = −iω1z1∗ − f z1z
2
1∗ − f z21z1∗ − f̂ z31 − f̂ z31∗ .

(119b)

One can remark that, in this case, no quadratic terms
are present, simply because the original system rep-
resenting the dynamics of the flexural mode of a flat
cantilever does not display such self-quadratic terms
for symmetry reason, see e.g. [10,96]. Concerning the
cubic terms, four additional monomials appear. A new
coefficient f̂ has been added to replace the values of
f (3)
1{1111} and f (3)

1{11∗1∗1∗} which can be shown to be equal.
The symmetry between the first and second equation
stems instead from Eq. (112).

The second-order oscillator-like equation in the
graph style case reads:

ä1 + ω2
1 a1 + ω2

1a1(
− i( f + f̂ )

2ω1
a21 − i( f − 3 f̂ )

2ω1

(
ȧ1
ω1

)2
)

= 0. (120)

In order to give an explicit expression for the back-
bone curve for both RNF and graph styles, a multi-
ple scales expansion can be performed on third-order

oscillator-like equations. Let us consider a generic form
for the equation fitting to both styles:

ä1 + ω2
1 a1 + ω2

1a1

(
c30a

2
1 + c12

(
ȧ1
ω1

)2
)

= 0,

(121)

where the coefficient c30 represent the coefficient mul-
tiplying a31 and the coefficient c12 that multiplying
a1ȧ21 . The amplitude-frequency relationship in this case
would read:

ω = ω1(1 + Γ (2)ρ2 + Γ (4)ρ4), (122)

with:

Γ (2) = 3c30 + c12
8

, (123a)

Γ (4) = −15c230 + 14c30c12 + c212
256

. (123b)

Replacing the coefficients c30 and c12 of the RNF
and graph styles by their values, both methods yield a
Γ (2) value that matches that of the CNF and reads:

Γ (2) = − i f

4ω1
(124)

However, the value of Γ (4) is different between the
two. In the RNF case it is simply zero because c30 =
c12, thus matching the backbone predicted by the CNF
which, by definition of developments up to third-order,
has no fourth-order frequency dependence. In the case
of the graph style, it reads:

Γ
(4)
Graph = (4 f + 3 f̂ ) f̂

64ω2
1

. (125)

The numerical value for f and f̂ for the present can-
tilever case are 6.81662i and −66.9832i, respectively.
At low amplitudes, the frequency amplitude curve is
dominated by the Γ (2) contribution of ρ2, so the three
methods are in perfect agreement. The numerical value
of Γ (2) for the three styles is positive, as shown by
the hardening effect at low amplitudes. Conversely, the
numerical value of Γ

(4)
Graph is negative, therefore when

the amplitude reaches a certain level, the backbone
curve obtained with the graph style will make a tran-
sition from hardening to softening when the ρ4 term
becomes more important than the ρ2 one. This effect
is however nonphysical, as shown in the comparison
with the full model results of Fig. 7.
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In this perspective, not only the simpler form of the
mappings obtained with graph style is unable to repli-
cate the occurrence of a folding of the manifold, but
also the additional reduced dynamics coefficients of
the graph style cause an nonphysical softening effect
in the backbone curve.

Figure 9 illustrates the analytical developments by
comparing the backbone provided by the multiple
scales expansions to those numerically obtained with
the HBM on the reduced dynamics up to order three.
It can be observed that a very good agreement is
found, showing that multiple scales solutions indeed
closely follows the numerical one up to large ampli-
tudes, stressing that the discussion on the different val-
ues of Γ (4) given by each method is meaningful. It
must be underlined that the expansion order of the
perturbation method (up to power four in terms of
amplitude: Γ (4)ρ4) is larger than the expansion order
of the reduced dynamics (limited at order three). This
has been deliberately selected in order to account for
using high-order numerical solutions (as HBM with
numerous harmonics) on reduced dynamics having
lower order, thus replicating the effect of accurate
numerical methods such as HBM or collocation. The
present development shows that, the sudden change of
behaviour of the graph style backbone when approach-
ing the folding point can be explained by the incorrect
sign of the the next-order term of the expansion.

7.3 MEMS micromirror

In the present section we apply the reduction method
to a case of remarkable industrial interest. MEMS
micromirrors are core components in many high-end
industrial applications and their performance require-
ments are steadily increasing. Therefore, accurate
estimation of the structure nonlinear response is of
paramount importance during the design stage of the
device.

An example of MEMS micromirror is reported in
Fig. 10(a). The device is developed by STMicroelec-
tronics®. It is made of monocrystalline silicon, which
is here modelled as isotropic with a Young’s modu-
lus of 167 GPa, a Poisson raio of 0.22 and a den-
sity of 2.33·10−3 ng/μm3. The real structure is actu-
ated using eight lead-zirconate-titanate (PZT) patches
and an extensive study of their effect on the dynamic
response of the system is detailed in [81]. Since this sec-

Fig. 9 Comparison of numerical and analytical backbone curves
for the reduced dynamics up to order three for the three styles
under study (CNF, RNF and graph). Amplitude of the first har-
monic of a1, which coincides with ρ for the analytical solu-
tions, plotted against the nondimensional nonlinear frequency.
For graph style and normal form styles numerical solutions are
obtained with HBM including 30 harmonics and multiple scales
development are obtained up to Γ (4). For complex normal form
style numerical and analytical backbones coincide

tion aims at showing the model-order reduction tech-
nique only, the piezoelectric force is replaced by a
modal loading following the procedure used for the
arch-structures in Sect. 7.1. To reproduce the operat-
ing conditions of the real device, a quality factor Q of
1000 is selected, together with a loadmultiplier κ equal
to 1, 1.5, 2.00, 2.50, and 3.00 μm/μs2. The highest κ

value allows reaching a rotation of approximately 12◦,
which corresponds to the maximum operating range of
the device.

Thegeometryof the structure, illustrated inFig. 10(a),
is discretised as before using quadratic elements with
15 nodes. The number of nodes of the final geometry is
3244, which corresponds to 9732 degrees of freedom.
The structure is parametrised along its third eigenmode,
corresponding to a torsion of the central reflective sur-
face. The associated resonance frequency is 0.1839
rad/μs2, which is larger than the one reported in [81]
since a coarser mesh is used within the present work.
The displacement field corresponding to the eigenmode
is illustrated in Fig. 10(b).

Reduction is computed with the graph style and
the convergence of the result is measured by span-
ning the parametrisation order from 3 to 9. The result-
ing frequency-response functions (FRFs) for κ equal
to 3.00 μm/μs2 are plotted in Fig. 11(a) and com-
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Fig. 10 a MEMS
micromirror geometry. b
Magnified displacement
field associated to the third
eigenmode of the structure

(a)

(b)

pared to the full-order reference solution obtained by
direct HBFEMmethod. At this level of amplitudes, the
third-order expansion clearly deviates from the refer-
ence solution, and a satisfactory convergence is reached
fromorder 7, hence highlighting howhigh order expan-
sions are essential to cover a wide range of industrial
applications.

The data obtained from the ROM with an order
9 graph style parametrisation and the HBFEM solu-
tion for all κ values are collected in Fig. 11(b). The
comparison highlights the excellent performance of
the reduction procedure for any forcing level, which
proves its ability to model structures of arbitrary geo-
metrical complexity. For this case, the different styles
of parametrisations gave similar results, justifying the
choice of showing only the graph solution. Interest-
ingly, a very slight departure from the full-order solu-
tion can be observed at the maximal amplitude of the
FRF, for the largest values of the forcing. Since the only
remaining approximation in the method is on the treat-
ment of the forcing, this slight departure is attributed to
the assumption of a time-varyingmanifold which is not
dependent on the normal coordinate. Nevertheless, the
results of the computations reported clearly shows that
this effect is small and might be neglected with good
reason.

The computational gain obtained in this example is
remarkable. The time required to derive the reduced

model is equal to 2 minutes and 39 seconds, and
less than one minute was necessary to compute all
the frequency response functions. On the other hand,
over three days were required to obtain the full order
HBFEM solutions. The next Section investigates fur-
ther this aspect by detailing the computational burden
involved by scaling to large models composed of mil-
lions of dofs.

7.4 Remarks on computational performance

The cost ofmodel-order reduction comprises the offline
phase of the reduction procedure and the computing
time required to solve the reduced model itself. In the
present framework, the latter is negligible, since the
reduced model contains only a single master mode,
regardless of the size of the original system. There-
fore, in this section we consider the parametrisation
of a benchmark testcase to investigate the offline com-
putational performance of the method. The testcase is
a FE model of a fan blade studied in [43] where the
first mode is of interest. For reference, all the analy-
ses were performed on a desktop workstation with an
AMD®Ryzen 5950X processor at 4.9 GHz and 128
GBRAM.The time andmemory consumption reported
in Fig. 12 have been obtained with the julia package
MORFEInvariantManifold.jl available from
[51].
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Fig. 11 Frequency-response functions for theMEMsmicromir-
ror. The modal displacement u3 is normalised by the maximum
of the third eigenvector �3 and the radius r ; the nonlinear fre-
quency ω is normalised by the linear frequency ω3 of the third
mode. aConvergence of a graph style parametrisation by varying

the expansion order for κ = 3μm/μs2 and comparison with ref-
erence HBFEM. b Comparison between HBFEM solution and
order 9 expansion for load multiplier κ values equal to 1.0, 1.5,
2.0, 2.5, and 3.0 μm/μs2. Tags report the physical rotation angle
reached by the device at the peak of the FRF

First, we report the computing time required to
obtain the reduced model for a fixed mesh size and for
different parametrisation orders, to highlight the time
required to achieve high-order expansions on structures
with a moderate number of nodes. Secondly, we show
how the computing performance changes for a given
expansion order, by varying the mesh refinement. All
the analyses are performed on the same model detailed
in Sect. 7.3.

The computing times obtained by varying the expan-
sion order for a mesh of 11727 degrees of freedom are
collected in Fig. 12(a). The number of linear systems
to be solved at each order scales as p2n−1, with p the
expansion order, and n the number of master modes,
which in the present contribution is equal to one. For
a single master mode reduction, the number of linear
systems to be solved at each order p scales linearly
with the order, so the total number of linear systems
that need to be solved for an expansion up to order
p, scales quadratically with p. However, the number
of operations required to compute the right hand side
of each homological equation does not scale quadrati-
cally, hence the trend is slightly less than quadratic. The
peak memory consumption required by the parametri-

sation procedure for this example was less than 400
MB.

The computing times and memory requirements to
obtain an order 5 parametrisation for different mesh
refinements are reported in Fig. 12(b). As highlighted
from the charts on a log-log scale, the memory use is
almost linear and the same is observed for the analysis
time. We stress that, in order to obtain an order-5 ROM
for a system having 3 millions degrees of freedom, the
method as implemented requires approximately 6hours
and only 70 GB of peak memory.

In Fig. 12(c), the 3 millions degrees of freedom sys-
tem is solved for increasing orders of expansion; the
full order solution for this case cannot be computed
due to the too high computational burden. However,
the convergence of the backbone with the order shows
the reliability of the obtained solution.

8 Conclusion

In this contribution, an arbitrary order expansion allow-
ing to compute accurate ROMs relying on invari-
ant manifold theory has been proposed. The theoret-
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Fig. 12 a Computing times required to reach a given parametri-
sation order, for the 11727 degrees of freedom mesh. b Comput-
ing times required to perform an order 5 parametrisation with
RNF style, for meshes of increasing refinement. c Convergence

of the forced response curve and backbone with the order, for the
3 millions degrees of freedom mesh. All the analyses were per-
formed on a desktop workstation with an AMD®Ryzen 5950X
processor at 4.9 GHz and 128GB RAM

ical foundations are to be found in the parametrisa-
tion method of invariant manifolds [30,31], which has
already been used in the vibration theory by Haller and
coworkers [35,45]. In essence, the method provides
a nonlinear mapping that relates directly the physical
space (nodes of the FE model) to an invariant-based
span of the phase space, and the resulting reduced
dynamics on themanifold. Both expansions of themap-
ping and the reduced dynamics can be computed up
to a generic order of expansion, hence reaching con-
vergence in numerous test cases. In the solving of the
parametrisation method, three different styles of solu-
tions have been developed, and numerous computa-
tional details have been highlighted in order to decrease
the computational burden.

A special emphasis has been put on initial problems
provided by a structural FE discretisation. In particu-
lar, the framework provided by the mechanics of non-
linear structure encompassing geometric nonlinearity,
has been used, with a damping matrix diagonalised by
the linear modes of the conservative problem. Since
damping is taken into account in the developments, the
invariant manifold computations presented in this con-
tribution are thus truncated expansions of the unique
SSM, such submanifold being reached only if the order
of the expansion is larger than the spectral quotient, a
number that is very large in practical applications.

An algorithmic implementation of the presented
method is made public as the julia package
MORFEInvariantManifold.jl, available from

[51]. The method has been applied to three cases with
different complexities. The first case is an arch with
increasing curvature, and it has been demonstrated that
backbone curves, that are initially softening and then
turning back to hardening behaviour at larger ampli-
tudes, can be reproduced accurately with a single-
mode reduction and an expansion order of at least 5. A
detailed study of the fundamental bending mode of a
cantilever beam has been investigated, and it has been
found that the associated invariant manifold encounters
a folding point at large amplitudes. As a consequence,
the graph style parametrisation is not able to repro-
duce the behaviour. On the other hand, the two nor-
mal form styles are able to pass this folding point and
accurately follow the full-order solution up to extreme
amplitudes. Finally, the case of a MEMS micromir-
ror of industrial relevance has been selected. In the
operating range of the device, third-order expansions
were clearly not sufficient, such that the previously pro-
posed methods based on DNF in [43,44] are not accu-
rate enough. Reaching an order seven in the expansion
shows a perfect convergence.

As a matter of fact, one assumption is still remain-
ing in the derivation of the ROM presented here, now
that higher-orders have been included: the treatment of
the forcing. Taking the forcing directly into account
from the beginning of the derivation, as shown in
[45,86,87] for instance, would lead to a time-varying
manifold. The calculations would then require an addi-
tional parametrisation to account for said variations,
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having as a main consequence that the ROM needs to
be recomputed for each value of the external excita-
tion frequency, as shown for example in [46,85]. This
is a severe drawback in that the ROM loses a number
of appealing features as compared to those used in the
present study where continuation solutions are easily
accessible to compute FRFs. The remedy is to make
the classical assumptions of small forcing as the one
already used in [20,21,24,35,40]. The computations
on the test cases considered in this paper shows that
the assumption is responsible for a very slight depar-
ture of the ROM to the reference solution, and only
at very large amplitude values. On the other hand, full
expansion developments accounting for the forcing, as
reported for example in [87], might be used for specific
cases with very large forcing values.

As already emphasised for example in [49], the
parametrisation method and invariant manifold theory
offers a sound theoretical background to derive accu-
rateROMs for nonlinear structures. Invariance property
is key and enforcing its fulfilment from the beginning
is a guarantee to produce ROMs with powerful pre-
dictive capacities. Strong results from dynamical sys-
tems theory ensures that the long-time behaviour of
the solutions lies in the vicinity of these manifolds,
consequently approximating them is the best solution
to produce effective ROMs. As underlined for example
in [97], linear methods like POD (Proper Orthogonal
Decomposition) are necessarily approximating invari-
antmanifolds by adding new basis vectors to capture its
curvature, such that spatial features retrieved by proper
orthogonal modes are here directly computed from the
model and can be traced back in the nonlinear map-
pings.
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A Real normal form styles

This section is devoted to the presentation of the real
normal form style derived in [20,21,43], which is dif-
ferent from the real normal form style introduced in
this contribution. In order to explain clearly the differ-
ence between these two real styles, let us call RNF the
real normal style used in the present contribution, and
FRNF for full real normal form, the one that has been
used in [20,21,43]. TheFRNFmainly differs fromRNF
by the fact that more monomials are considered as res-
onant, which can be simply understood by interpreting
the resonance condition differently. Indeed, in FRNF,
the resonance condition used can be rewritten as:
⎛

⎝
∑

ik∈I
±λik

⎞

⎠
2

≈ (±λr )
2 (126)

for any value of ±. The fact that any value of the sign
is included in the condition, makes this style differ-
ent from the RNF style presented in this article; for
instance, the set I = {1, 1, 1} is not considered reso-
nantwithλ1 norλ1∗ in theRNF, but it is in the condition
of Eq. (126). This choice have two main effects: all the
calculations can be realised in a complete real formal-
ism, without the need of any complex at any stage of
the development (see e.g. [20,21]); on the other hand,
many symmetries are lost and more terms are present
in the reduced dynamics.

Moreprecisely, theRNF requires a complexparametri-
sation in z, whereas the real coordinates used in FRNF
can be seen as the Cartesian normal coordinates a. In
fact, each monomial in a is composed of several mono-
mials in z; for instance, the monomial a31 is a linear
combination of z31, z

2
1z1∗ , z1z21∗ , and z31∗ . If we denote

by �̃ the coefficients of the nonlinear mappings written
with Cartesian coordinates to differ them from those of
the mappings written with complex coordinates�, one

has that the mapping �̃
(3)
{111} that multiplies the mono-

mial a31 in the reconstruction, is a linear combination

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A. Vizzaccaro et al.

of �
(3)
{111}, �

(3)
{111∗}, �

(3)
{11∗1∗}, and �

(3)
{1∗1∗1∗}. The same

reasoning holds for the reduced dynamics. A fully real
development is then only possible if the treatment of
the sets {111∗}, {11∗1∗}, {111}, and {1∗1∗1∗}, is iden-
tical, which is what the condition given by Eq. (126)
imposes. It is possible to show the same would apply
in the presence of multiple modes and internal reso-
nances.

To better understand the differences between the
three normal form styles presented (CNF, RNF and
FRNF), let us present the results of the different
parametrisation styles on a simple Duffing oscillator,
with an asymptotic expansion up to third order. The
starting point is the equation of motion written as:

ü + ω2
0u + γ u3 = 0. (127)

To make the developments and explanations as simple
as possible, no quadratic terms have been considered
such that no second-order terms will be present neither
in the mapping, nor in the reduced dynamics.

The mappings for each of the styles, written with
complex normal coordinates, generically writes, up to
the third-order, as:

u = z + z̄ +
∑

i1=1,1∗

∑

i2=1,1∗

∑

i3=1,1∗
Ψ

(3)
{i1i2i3} zi1 zi2 zi3 ,

(128)

following the general formula of the expansions intro-
duced in the main text. In this simple case, u is now
a scalar such that Ψ (3)

{i1i2i3} is also scalar. Using the fact
that in this simple case one has z1 = z and z1∗ = z̄,
and thanks to the property of Eq. (92) together with the
fact that all coefficients Ψ are purely real in the present
case with no damping, the nonlinear mapping can be
simply rewritten for the case of the Duffing equation as

u = z + z̄ + Ψ0 (z3 + z̄3) + Ψ2 (z2 z̄ + zz̄2), (129)

where only two coefficients, simply rewritten asΨ0 and
Ψ2, are needed to incorporate all the Ψ

(3)
{i1i2i3}.

In order to fully compare all the different possible
representations, let us also introduce the samemapping
but with Cartesian coordinates, which reads:

u = a +
∑

i1=1,1∗

∑

i2=1,1∗

∑

i3=1,1∗
Ψ̃

(3)
{i1i2i3} ai1ai2ai3 , (130)

where the coefficients are, as well, noted as scalars and
with a tilde in order to distinguish them from the com-
plex formulation. If one sets a1 = a and a1∗ = b, the
mapping in this case can be simply rewritten as:

u = a + Ψ̃0 a
3 + Ψ̃2 ab

2, (131)

where the remaining coefficients have been noted Ψ̃0

and Ψ̃2, also using the fact that dissipative monomials
a2b and b3 are vanishing in the case of a conservative
system [20].

For the sake of completeness and in order to show an
important property of the real normal form styles (both
RNF and FRNF), let us also introduce the mapping
in polar coordinates. Using Eq. (100), one can easily
pass from complex to polar coordinates, such that the
mapping in polar form reads:

u = ρ cos(α) + 1

4
Ψ2 ρ3 cos(α) + 1

4
Ψ0 ρ3 cos(3α),

(132)

where the coefficients Ψ0 and Ψ0 are the same as those
introduced in Eq. (129)

The general formulation for the reduced dynamics
up to the third-order and with complex normal coordi-
nates writes:

ż = +iω0 z + f0 z3 + f1 z2 z̄ + f2 zz̄2 + f3 z̄3,
(133a)

ż = −iω0 z̄ − f3 z3 − f2 z2 z̄ − f1 zz̄2 − f0 z̄3,
(133b)

where the property of Eq. (94) has been used together
with the fact that all f p coefficients are purely imagi-
nary in the case of conservative systems.

If one uses now Cartesian coordinates, the general
form of the reduced dynamics writes:

ȧ = −ω0 b + f̃1 a
2b + f̃3 b

3, (134a)

ḃ = +ω0 a + f̃0 a
3 + f̃2 ab

2. (134b)

Now that the general formof the equations have been
established for the simple case of a Duffing oscillator,
let us specify the values of all the coefficients (mapping
and reduced dynamics) depending on the different nor-
mal form style used: complex normal form CNF, as
well as the two real normal styles: RNF and FRNF.
The analytical values of the coefficients are reported in
Tables 2 and 3.

From the values of the coefficients, one can draw the
following interesting conclusions when comparing the
different normal form styles:

– Since f̃1 = f̃3 = 0 for both real normal form
styles, Eq. (134a) reduces to ȧ = −ω0 b. Thanks
to this important simplification, one is then able to
express the reduced dynamics as a single oscillator
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Table 2 Analytical expression of the coefficients of the different
normal styles in complex coordinates

Ψ0 Ψ2 f0 f1 f2 f3

CNF + γ

8ω2
0

− 3γ

4ω2
0

0 i
3γ

2ω0
0 0

RNF + γ

8ω2
0

0 0 i
3γ

2ω0
i
3γ

2ω0
0

FRNF 0 0 i
γ

2ω0
i
3γ

2ω0
i
3γ

2ω0
i

γ

2ω0

Table 3 Analytical expression of the coefficients of the different
normal styles in Cartesian coordinates

Ψ̃0 Ψ̃2 f̃0 f̃1 f̃2 f̃3

CNF − 5γ

32ω2
0

− 9γ

32ω2
0

+ 3γ

8ω0
− 3γ

8ω0
+ 3γ

8ω0
− 3γ

8ω0

RNF + γ

32ω2
0

− 3γ

32ω2
0

+ 3γ

4ω0
0 + 3γ

4ω0
0

FRNF 0 0 + γ

ω0
0 0 0

in second-order form without approximations, thus
explaining the name of real normal form styles.

– Both real normal forms RNF and FRNF haveΨ2 =
0. This has an important consequence which can be
easily interpreted thanks toEq. (132): the amplitude
of the fundamental harmonics does not depends
on the nonlinearity and does not change with the
asymptotic expansion. This important property has
already been remarked for example in [38,74] for
the RNF and in [25] for the FRNF style. It has also
been named as killing the fundamental in [98] and it
is a general property of the real normal form styles
that contrasts with CNF.

– Since only f̃0 is not vanishing in FRNF style with
Cartesian coordinates (see Table 3), this simply
means that the FRNF of a Duffing oscillator is
left unchanged, and all the mappings coefficients
are simply vanishing. This is also a direct conse-
quence of the interpretation of the resonance condi-
tion as Eq. (126). As stated in the general comment,
the formulation is fully real in this case. Impor-
tantly, at this order and without quadratic nonlin-
earity, FRNF is thus equivalent to the graph style
in terms of reduced-order dynamics. This remark
also explains why the backbone of the cantilever
computed in [27] with DNF (direct normal form,
which uses FRNF style) shows the same folding

point as the one found here with the graph style.
Importantly, using either CNF or RNF corrects this
behaviour from the third-order and allows retriev-
ing a better solution for the backbone of the can-
tilever.

B Complex eigenproblem properties

The aim of this section is to detail the derivation of the
complex eigenproblem properties given in the text.

Wecanwrite the complex right eigenvector in amore
compact form as:

Ys =
[
�sΛs

�s

]
(135)

with s ∈ [1, 2N ]. As for the complex left eigenvector:

Xr = 1

Λr − Λ̄r

[
�r

−�r Λ̄r

]
(136)

with r ∈ [1, 2N ].
The derivation of the first orthogonality property of

Eq. (16) reads:

X
T
r

[
M 0
0 M

]
Ys = �T

r M�sΛs − Λ̄r�
T
r M�s

Λr − Λ̄r

= Λr − Λ̄r

Λr − Λ̄r
δsr = δsr (137)

where the mass orthogonality property of real eigen-
vectors �T

r M�s = δsr has been used.
The derivation of the second orthogonality property

of Eq. (17) reads:

X
T
r

[
C K

−M 0

]
Ys

= �T
r (C�sΛs + K�s) − Λ̄r�

T
r (−M�sΛs)

Λr − Λ̄r

= 2ξrωrΛr + ω2
r + Λ̄rΛr

Λr − Λ̄r
δsr (138)

where the stiffness orthogonality property of real eigen-
vectors �T

r C�s = 2ξrωrδsr and the damping orthog-
onality property of real eigenvectors �T

r K�s = ω2
r δsr

have been used. Recalling Eqs. (11), one has that:

Λ̄rΛr

=
(

−ξrωr + iωr

√
1 − ξ2r

)(
−ξrωr − iωr

√
1 − ξ2r

)

= ξ2r ω2
r + ω2

r (1 − ξ2r ) = ω2
r (139)

and that:

− (Λ̄r + Λr ) = 2ξrωr . (140)
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By plugging the last two into Eq. (138), writes:

X
T
r

[
C K

−M 0

]
Ys

= −(Λ̄r + Λr )Λr + 2Λ̄rΛr

Λr − Λ̄r
δsr

= −(Λr − Λ̄r )Λr

Λr − Λ̄r
δsr = −Λrδsr (141)

which coincides with Eq. (17).
The derivation of the right eigenproblem reads:
(

Λs

[
M 0
0 M

]
+
[

C K
−M 0

])
Ys

=
[
(MΛ2

s + CΛs + K)�s

M�sΛs − M�sΛs

]
= 0 (142)

where the top rows correspond to the second order
eigenproblem of Eq. (8) and the bottom ones are iden-
tical.

The derivation of the left eigenproblem reads:

X
T
r

(
Λr

[
M 0
0 M

]
+
[

C K
−M 0

])

= 1

Λr − Λ̄r

[
�T

r (M(Λr + Λ̄r ) + C)

�T
r (K − Λ̄rΛrM)

]
(143)

that is verified by noticing that the matrices are sym-
metric and that:

(M(Λr + Λ̄r ) + C)�r = (−2ξrωrM + C)�r = 0
(144a)

(K − Λ̄rΛrM)�r = (K − ω2
rM)�r = 0 (144b)

Finally, we demonstrate Eq. (74) in the present case
of damping matrix C diagonalised by the eigenvec-
tors of the conservative system. One has to demonstrate
that:

((Λr )M + C)�r = (−Λ̄r )M�r (145)

If both sides are premultiplied by any �T
s �=r they are

both zero so they are equal. If both sides are premulti-
plied by �T

r they read:

Λr + 2ζrωr = −Λ̄r (146)

which leads to:

Λr + Λ̄r = −2ζrωr (147)

which is true by definition of the complex eigenvalues.
Being the matrix of all eigenvectors an isomorphism,
this is a general result.
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