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A B S T R A C T   

The analysis of ultrasonic NDE data has traditionally been addressed by a trained operator manually interpreting 
data with the support of rudimentary automation tools. Recently, many demonstrations of deep learning (DL) 
techniques that address individual NDE tasks (data pre-processing, defect detection, defect characterisation, and 
property measurement) have started to emerge in the research community. These methods have the potential to 
offer high flexibility, efficiency, and accuracy subject to the availability of sufficient training data. Moreover, 
they enable the automation of complex processes that span one or more NDE steps (e.g. detection, characteri
sation, and sizing). There is, however, a lack of consensus on the direction and requirements that these new 
methods should follow. These elements are critical to help achieve automation of ultrasonic NDE driven by 
artificial intelligence such that the research community, industry, and regulatory bodies embrace it. This paper 
reviews the state-of-the-art of autonomous ultrasonic NDE enabled by DL methodologies. The review is organised 
by the NDE tasks that are addressed by means of DL approaches. Key remaining challenges for each task are 
noted. Basic axiomatic principles for DL methods in NDE are identified based on the literature review, relevant 
international regulations, and current industrial needs. By placing DL methods in the context of general NDE 
automation levels, this paper aims to provide a roadmap for future research and development in the area.   

1. Introduction 

The automation of ultrasonic NDE processes has been typically 
restricted to rudimentary tools that give support to a trained operator 
manually interpreting NDE data. An exception can be found in some 
mass production systems where the NDE for simple inspections of parts 
with precisely known geometry is fully automated. Examples of the 
rudimentary tools include a thickness gauge, whereby the wall thickness 
is automatically calculated from ultrasonic A-scan data [1], or an 
automated flaw detector that identifies the presence of new echoes over 
a prescribed amplitude [2,3]. These methods only work on signals with 
well-defined characteristics; hence they are unable to deal with complex 
data variations resulting from environmental changes or manufacturing 
uncertainty and geometric and material complexities. It is in this context 
that machine learning (ML) methods show a great advantage as they are 
based on data and are able to model complex behaviour with high ef
ficiency. Within ML, deep learning (DL) techniques stand out for their 
capability to extract higher-level features from data using multiple in
ternal layers of processing. The move to increasingly digital working 

practices, in what is widely referred to as Industry 4.0, will produce 
major growth in the numbers of large datasets over the next few years. 
These data will be key for the development of new ML-based inspection 
processes that match the new opportunities that Industry 4.0 provides, 
including big data and autonomous systems [4,5]. Note that ML tech
nologies are nowadays relatively inexpensive to develop and easy to 
implement. Moreover, they potentially enable higher levels of automa
tion of repetitive NDE processes due to their enhanced ability to handle 
complex scenarios on their own. Nonetheless, this technology is still in 
early stages of development and application, especially for its applica
tion to NDE in safety-critical industrial environments. 

This paper reviews the current state-of-the-art of autonomous ul
trasonic NDE principally enabled by DL methods. The end goal of DL in 
NDE is twofold: to increase safety levels and to reduce inspection time 
and cost. These goals are arrived at through (i) the full automation of 
processes involving data, (ii) reduced human intervention in the 
decision-making chain, and (iii) the ultimate replacement of human 
inspectors. This paper provides a critical analysis of the most relevant 
and recent scientific contributions in the area of DL-based NDE. The 
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reviewed papers are organised around the NDE tasks addressed – i.e. 
data pre-processing, detection, characterisation, and property mea
surement. From the review and by comparison with other industrial 
sectors, a series of automation levels are proposed as a potential auto
mation roadmap, which are analogous to the automation levels used in 
other domains, such as autonomous aircraft [6,7]. To clearly differen
tiate the previous steps in the automation path, these levels also suggest 
the main responsibilities to be held by the NDE operator and the 
autonomous system as systems advance. It is expected that this differ
entiation will help industries and researchers to categorise their 
autonomous systems, providing a clearer path to higher automation 
levels. Note that the focus of this paper is on ultrasonic NDE and 
although the levels are generic for any NDE modality, DL contributions 
to non-ultrasonic NDE are out of the scope of this review. Therefore, 
different NDE modalities and technologies might currently be at 
different automation levels. 

Despite the large number of recent contributions in the area, there is 
still a lack of consensus about the basic properties that DL methods 
should have for NDE. These properties are different from traditional 
inspection methods as DL approaches are mostly driven by data rather 
than physics-based models. In the current paper, a set of axiomatic 
properties for NDE DL are proposed. Like the automation levels, these 
axioms have been arrived at after discussion with important industries 
from multiple sectors including aerospace, nuclear energy, renewable 
energies, and oil & gas from both manufacturing and operational in
spection perspectives. The current implementation level of DL-based 
automation technology in NDE is relatively low among most of the in
dustries; however, all of them are planning the future implementation of 
this technology. Moreover, industries are carrying out incipient tests to 
assess the benefits of DL to enable higher automation for inspection and 
manufacturing processes. 

The outline of this paper is as follows: Section 2 introduces some of 
the most well-known DL architectures. Section 3 reviews the most 
important contributions from the literature. Section 4 proposes an NDE 
automation path whereby different automation levels as well as their 

scopes and implications are discussed. It also identifies remaining 
challenges and proposes future work within each of the levels. Section 5 
proposes general axioms applicable for the development of NDE DL 
approaches for any level of automation. It also maps the proposed ax
ioms onto some of the reviewed papers to illustrate the current appli
cation of these properties and highlight gaps. Finally, Section 6 
summarises the paper and selects the most important findings and future 
directions identified from the literature review. 

2. Neural networks and models 

Some of the most-used neural networks and already-established DL 
models are briefly described and presented in this section. Note that the 
term network refers to the general architecture of the DL algorithm, 
while model refers to a specific architecture implementation that is fixed 
for a purpose. The aim of this section is to give a global view about the 
functioning of these networks to provide context for the literature re
view. The networks and models, graphically depicted in Fig. 1 and 
summarised in Table 1 (where general overview references are also 
listed), are as follows:  

● Fully-connected neural network (FCNN). This type of feed- 
forward network is formed by multiple layers that are composed of 
a number of artificial neurons. These neurons are interconnected 
with all the neurons in the next and previous layers. The neurons 
perform the data transformation operations whereby the data x is 
transformed by a matrix weight W multiplication and a bias b 
through an activation function σ(⋅), i.e. σ(W ⋅ x + b). Two types of 
FCNNs can be differentiated depending on the number of layers:  
– Shallow FCNNs that are comprised of three fully-connected layers 

(see Fig. 1a), namely an input layer with inputs {I1, I2, …}, a 
hidden layer with neurons {H1, H2, …}, and an output layer with 
cells {O1, O2, …}. Shallow FCNNs have been used for multiple 
purposes such as classification and regression [8]. However, the 
“shallowness” of its architecture makes them relatively limited 

Fig. 1. Graphical representation of the following DL architectures: (a) shallow FCNN, (b) deep FCNN, (c) CNN, (d) RNN, (e) LSTM cell, and (f) classical AE. In these 
diagrams, green represents input data, pink represents output data, and other colours represent internal data. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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when dealing with highly nonlinear data and extracting spatial 
patterns from structured data.  

– Deep FCNNs, also known as multilayer preceptrons (MLPs), are 
comprised of multiple fully-connected layers (see Fig. 1b). 
Compared to shallow FCNNs, they add more learning capability for 
the network to extract non-linear patterns from the data; none
theless, deep FCNNs are inefficient when dealing with structured 
data (e.g. 1D time-series, 2D or 3D images) as no account is taken 
of the relative position of the inputs relative to one another.  

● Convolutional neural network (CNN). This kind of network is 
especially well-suited for dealing with structured data; convolutional 
layers are able to extract multidimensional features by convolving 
generally 1D, 2D, and 3D input data into feature maps. Initially 
designed to deal with visual information, CNNs can be applied to any 
sort of structured data, such as 1D, 2D, 3D, and even 4D structures of 
data. They are comprised of convolutional layers that perform a 
convolution between a kernel and the input data, computing the dot 
product between the two as schematically shown in Fig. 1c. Note that 
the same kernel weights are used across the input data for each filter. 
The only requisite for a network to be labelled as a CNN is the in
clusion of at least one convolutional layer [9]. CNNs have been 
applied to semantic segmentation (i.e. classification of image pixels 
using different labels such as cats, grass or sky), object detection and 
image classification [10], among multiple applications. Due to their 
flexibility and good performance, generic families of CNN models are 
continuously being developed. Some of the most popular models are:  
– AlexNet [11] is a well-known deep CNN model that has achieved 

success in image recognition and classification.  
– Visual Geometry Group (VGG) [12] has been widely used for deep 

image classification and localisation problems.  
– ResNet [13] (standing for residual network) combines the input 

from the previous layer with the output of the current one. This 
shortcut reduces the vanishing gradient problem that very deep 
networks face (the gradient is so small that the weight coefficients 
cannot change), which enables relatively low prediction errors. 
ResNet generally has more hidden layers than AlexNet or VGG and 
has been widely applied to computer vision tasks.  

– Inception [14] contains “inception” modules which perform 
convolution to input data using multiple different kernel sizes to 
account for image features with large size variation. Note that 
there exists multiple version of Inception with enhanced perfor
mance achieving better results with less resources, including 
InceptionTime [15] for 1D processing; Inception-v4 [16] is the 
state-of-the-art.  

– DenseNet [17] was designed to tackle the vanishing gradient 
problem and builds on the concept of ResNet. It introduced the 
connection between multiple layers to improve the information 
transmission.  

– EfficientDet [18] is the state-of-the-art object detector model that 
has proven consistently good results in computer vision tasks.  

● Recurrent neural network (RNN). This type of network is designed 
to extract dynamic information about temporal sequential data. 
RNNs may have different modes depending on how many inputs and 
outputs make such as one-to-one, one-to-many, many-to-one, and 
many-to-many [19]. An example of a many-to-many RNN is shown in 
Fig. 1d, whereby the network makes predictions o(t) at the time t 
based on input data i(t) and the hidden states h(t− 1) and h(t); this type 
of RNN is therefore recurrent on the hidden layer. Note that RNNs 
can have any number of stacked hidden layers. The classical variants 
of these networks present some limitations in terms of the informa
tion they can store in their memory, which is short-term. This pre
vents them from making predictions of a quantity which has different 
frequencies of variation throughout the time, i.e. long-term 
dependencies.  

● Long short-term memory (LSTM) and gated recurrent unit 
(GRU) networks. These networks are variants of RNNs that effec
tively address the main issue (short-term memory) of the classical 
RNNs, and add functionality to model longer dependencies through a 
memory cell (C(t− 1)) and a series of additional gates, such as forget, 
input, and output gates; see Fig. 1e for a graphical description of 
LSTM cells. This enables better prediction when the temporal data 
evolves in a complex manner with multiple frequencies of variation 
taking place. Similarly, networks based on GRU, which are another 
variant of RNNs, use a single unit to control both the forget gate and 
the decision to update the state unit. LSTM and GRU networks have 
been applied to handwriting recognition, speech recognition and 
image captioning.  

● Autoencoder (AE). This is a particular term is used to describe a 
network comprised of two separate actors (see Fig. 1f): an encoder 
network that typically extracts representative information (latent 
representation) from the input data and decreases its dimensionality; 
and a decoder network that often needs to reconstruct the input (or a 
variation of the input) data from the latent variables. In such a 
manner, the network can be trained without supervision to extract 
representative features from the data. This architecture has also been 
used for denoising images and time series whereby the input is the 
noisy data and the output is the denoised data. Note that there is no 
constraint on the type of encoder and decoder network, so it can be 
formed by fully-connected, convolutional, and/or recurrent layers 
for that matter. Probably the most well-known AE model in the 
literature is the U-Net [20] which has been widely used for image 
segmentation and object classification. 

It is worth highlighting that any of these base network architectures 
can be mixed and matched to create other architectures that may pro
vide capacity above and beyond any one of the aforementioned. An 
example is the Convolutional LSTM network wherein the LSTM cell is 
converted to perform convolutions rather than modify its state using 
fully-connected subnetworks [21]. 

Table 1 
Summary of some of the most used DL architectures and models.  

Name Description Applications Refs 

Shallow FCNN Network comprised of one input, one hidden, and one output layers and an undetermined number of 
artificial neurons 

Classification, Data characterisation [8] 

Deep FCNN Deep network comprised of multiple hidden layers of artificial neurons Classification, regression [9] 
CNN Network specialised in extracting multidimensional information from structured data Computer vision, object detection, 

classification 
[9, 
10] 

RNN Recurrent network for sequential data whose prediction is based on the previous time step Prediction, machine translation, image 
labelling 

[9] 

LSTM Recurrent network with long-term memory to account for long dependencies in the data Prediction, machine translation, speech 
recognition 

[9] 

AE Network architecture comprised of an encoder and a decoder that extracts representative information 
from the data 

Denoising, feature extraction, image 
segmentation 

[9]  
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3. Review of the literature 

The main contributions and state-of-the-art of DL based NDE are 
thoroughly analysed in this section. These are organised considering the 
NDE task being addressed from data pre-processing (including denoising 
and imaging) to defect characterisation. The most common challenges 
faced when developing NDE-focused DL methodologies are identified 
and the solutions illustrated. Note that the categorisation of this section 
inevitably causes overlapping within ML tasks for a given NDE problem 
– e.g. defect detection can be addressed by binary classification or object 
detection. Nonetheless, an overall mapping between NDE tasks and the 
ML tasks found in the literature review is provided in Table 2. 

3.1. Data pre-processing 

Data pre-processing encompasses techniques that aim to improve the 
quality of data used for later processes that extract NDE information, but 
does not usually provide NDE information itself. In the case of ultra
sound data, pre-processing includes but is not limited to: denoising of A- 
scans (individual signals) and images; feature identification and 
extraction that allow data reduction; data compression to reduce the 
communication overhead in applications such as array imaging; and 
image creation and processing. 

3.1.1. Denoising of A-scans/images 
This section gathers different contributions aimed at suppressing 

noise, improving signal-to-noise ratio (SNR), and removing selected el
ements of ultrasonic signals such as boundary-originated echoes. In the 
context of A-scan data and denoising of raw data, Munir et al. [22] 
proposed a denoising AE in order to improve SNR while enhancing 
defect classification as a by-product. This DL architecture aims to extract 
basic noise-free features from ultrasonic signals and reconstruct almost 
noise-free data (see Fig. 2a). Two separate datasets were used for 
training and testing purposes with 3825 and 2100 signals in each 
dataset. A data augmentation strategy through time-shifting of experi
mental signals was applied to create more training data from smaller sets 
of experimental signals. In comparison with classical methods for sup
pressing high levels of noise such as bandpass filters and averaging, the 
proposed denoising AE provides a computationally efficient approach 
that is highly generalisable. The classification performance was 
improved between 1 and 10% depending on the defect type. Gao et al. 
[23] proposed a hybrid method for denoising ultrasonic signals using 
image-based AEs. The goal was to obtain a signal processing method for 
denoising without the need for input parameters, hence being less prone 
to human errors. The main idea was to map the signal from an array of 
values into a time-amplitude image of the signal, which is then fed into 
an AE that denoises the signal by correcting the location of pixels. The 
denoised image is then transferred back into a time domain signal with 
higher SNR. The training and testing datasets consisted of 500 and 100 
experimental signals from an ultrasonic phased-array configuration, 
respectively. In comparison with other denoising methods such as the 
empirical mode decomposition (EMD), principal component analysis 
(PCA) and singular value decomposition (SVD), the proposed approach 
adds independence on the definition of signal characteristics and makes 
no assumption about decomposition layers or wavelet basis functions. 
The denoising results demonstrated robustness across different SNR 
levels. 

Another type of denoising is the clean extraction of a value of interest 
(e.g. time of flight (ToF)). An example of this denoising type can be 
found in Ref. [24], where the authors proposed a method for improving 
the balance to be struck between penetration depth and axial resolution, 
especially when the frequency increases leading to higher attenuation 
and lower SNR. A CNN was designed for separating overlapping echoes 
from reflectors and boundaries, while estimating the ToF and amplitude 
of each echo as schematically shown in Fig. 2b. This has been typically 
addressed using cross-correlation or deconvolution. The proposed 
approach overcomes some limitations such as the need for prior 
knowledge of interface reflectivity and multiple reflection paths and the 
sensitivity to noise. The DL method was trained using 2000 simulated 
signals from a finite element model with defect and its performance was 
demonstrated using experimental data. The results reported a high 
success rate of detected reflectors and very low false detection rate up to 
a SNR of 20 dB, above which the accuracy degrades quite drastically. 
Cantero-Chinchilla et al. [25] proposed DL architecture for identifying 
and suppressing structural artefacts from full matrix capture (FMC) data, 
leading to clearer ultrasonic images obtained through the multi-view 
total focusing method (TFM). An AE-based approach was developed 
consisting of an encoder that extracts physical parameters (e.g. spec
imen thickness, probe angle, and probe stand-off) from the FMC data 
and a decoder that takes as input the encoder output and predicts the 
arrival times of the structural artefacts. The arrival time information is 
used to suppress the artefacts by applying masking windows in the 
original FMC data. Then, the masked data are used for ultrasonic 
multi-view imaging and compared with an approach to remove artefacts 
directly in the TFM views [26]. A simulated dataset of 4913 defect-free 
FMCs were used to train the DL models while the validation was per
formed on experimental data. The results demonstrate superior perfor
mance of the DL approach for removing artefacts without completely 
masking out areas of the image, hence letting through more information 
about possible defects. Gao et al. [27] developed an autonomous system 
for enhancing ultrasonic logging through (1) denoising raw pulse-echo 
data, and (2) ToF estimation. Compared to existing methods which 
include model-based methods (e.g. maximum likelihood estimation and 
expectation maximisation), prior knowledge deconvolution, and 
local-global window, the proposed DL framework proves to be more 
efficient, less knowledge-dependent, and more accurate in noisy envi
ronments. The proposed denoising method consists of two DL networks, 
a decoder-U-Net architecture and an AE for denoising and reconstruc
tion purposes. The encoded features are used as input for a FCNN for the 
ToF. The authors used transfer learning [28] from microseismic P-wave 
(labelled) signals to unlabelled pulse-echo data, which in turn improves 
the ToF detection accuracy due to the extraction of shared hidden fea
tures from both datasets. Transfer learning addresses the issue of 
insufficient training data by training a DL model on a source domain and 
transferring the knowledge to a different target domain. The source 
domain consisted of expert-labelled field microseismic data while the 
target domain was comprised of unlabelled samples obtained in labo
ratory and on the field. 

An example of image (C-scan) denoising can be found in Ref. [29], 
where the authors developed a DL approach for denoising air-coupled 
ultrasound data, which are well-known for having low SNR, that im
proves the performance of classical filters (e.g. Gaussian function-fitting 
or the Savitzky-Golay filter). In this context, C-san data were denoised in 
two steps: (1) a LSTM model combined with 1D convolutional layers to 
classify each pixel (or signal in the scan) in two states, i.e. damaged or 
undamaged; and (2) the binary image from (1) is then fed into a CNN 
model that removes most of the image noise leading to a cleaner and 
more accurate representation of the defect (see Fig. 2c). The training 
dataset for (1) consisted of 369,730 experimental data points (i.e. from 
individual signals in laboratory C-scans) and 109,370 for (2). The main 
expected benefit of this approach was to make air-coupled ultrasound 
more useful, improving the quality of the data. The method provided a 
high level of classification accuracy (over 90%) with misclassification 

Table 2 
Mapping between NDE tasks and ML tasks.  

NDE task ML tasks 

Data pre-processing Segmentation, detection, encoding, regression 
Defect detection Detection, classification, segmentation 
Defect characterisation Classification, regression 
Property measurement Regression  
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mainly located at the defect edges. 
From the reviewed papers, it is worth highlighting AEs for denoising 

applications. One of the main benefits of using AEs is that they do not 
require any prior assumptions and enable more accurate defect classi
fication. However, AEs can lose a certain degree of ultrasonic informa
tion, especially from low-amplitude echoes. This information loss may 
be critical for some applications such as defect characterisation. Alter
native training strategies (e.g. through generative adversarial networks 
[30]) and increased model complexities could be adopted to address this 
issue. Another issue is the lack of real training data, which has been 
addressed in many cases by simulation and in Ref. [27] through transfer 
learning. This is especially relevant to NDE applications, where large 
experimental databases are still lacking, particularly those with damage. 

3.1.2. Data reduction and compression 
A critical pre-processing step for many defect detection and/or 

classification techniques is the extraction of meaningful features. AE 
models have been used for data reduction purposes in applications other 
than ultrasonic NDE such as guided-wave and image-based structural 
health monitoring. The key idea is that, given the inherent structure of 
AEs, the input data can be compressed into a few latent features that 
represent the original data that are learned in an unsupervised manner 
by the DL model. These features can then be used for anomaly detection 
[31] by comparing the distance between the extracted features of the 
input measurements. In this work, the anomaly detection method was 
trained using 10,000 data samples (images from experimental acceler
ation time-series of a long-span bridge) and 7000 for testing purposes. In 
comparison with classical feature extraction based on statistical mea
sures such as cross-correlation, mean, standard deviation, and other 
statistics, DL-based autonomous feature extraction adds more flexibility, 
leaving the algorithm to decide how the feature is best described and 
what value should be assigned. The main shortcomings to this approach 
are (1) the relatively large amount of training data required and (2) the 
lack of physical meaning of the features which are difficult, if not 
impossible, to interpret. 

In the ultrasonic NDE realm, there are a relatively small number of 
publications dealing explicitly or implicitly with feature extraction. An 
example is the paper by Hong et al. [32], where the main aim is to detect 
liquid level in porcelain bushing type terminals (cylindrical pipe-like 
elements used for high voltage insulation). The guided-waves are ob
tained by attaching transducers to the wall of the insulating element and 

propagating through multi-path transmission in the multi-layered media 
comprised of air, ceramics, and oil. Here, guided-wave signals are 
divided into multiple segments which are wavelet-transformed into 
time-frequency representations. These data are then introduced into an 
AE for feature extraction (through the encoder). It is important to note 
that the main expected benefit of this approach is the reduction of expert 
dependency in interpreting complex data. The features are then used as 
input into a regressor neural network for inferring liquid level. The AE 
and regressor networks were trained using experimental guided-wave 
data from a porcelain bushing type terminal with different liquid 
levels. This type of DL-based feature extraction method is compared 
against principal component analysis (PCA), with the proposed AE 
model showing superiority in terms of accuracy. Note, however, that a 
fully-linear AE approximates PCA, and that the relative superiority of 
general AEs comes from the non-linearities typically used in deep net
works – i.e. non-linear activation functions such as sigmoid and ReLU. 
Therefore, once again the flexibility and suitability of AE models when 
dealing with ultrasonic data especially in the pre-processing stage is 
demonstrated. 

Data transmission may become a bottleneck in some data-intensive 
applications such as ultrasonic imaging through array probes with 
high numbers of elements. To alleviate this issue, a few contributions 
can be found on data compression. For instance, Pilikos et al. [33] 
proposed an AE structure for data compression of ultrasonic array sig
nals to later reconstruct them and create ultrasonic images. The method 
aims to enhance data transmission rates by enabling higher compression 
rates than classical approaches such as compressive sensing. The model 
comprises a 3D CNN encoder whose output is mapped into a series of 
discrete latent variables via nearest neighbour search. The training and 
testing databases consist of 700 and 70 sets of simulated data. The latent 
information is then decompressed using a 3D CNN decoder model and 
imaged using a delay and sum (DAS) algorithm. All the elements 
(encoder, decoder and imaging) are implemented together in the 
training strategy, which achieves a better performance than training the 
AE on its own. In 2015, Kesharaju et al. [34] proposed a feature selection 
methodology based on genetic algorithms (GA) and FCNNs whereby a 
few pre-selected features are used as input of the FCNN model for 
classifying ultrasound signals from defects in complex ceramic mate
rials. The training datasets for the DL method consisted of 132 experi
mental signals. A comparison with PCA was performed, showing faster 
and slightly improved performance in the GA and FCNN methodology. 

Fig. 2. Examples of different denoising types according to their objective: (a) denoising raw signals [22,23,27], (b) denoising while extracting signal features [24,25, 
27], and (c) denoising ultrasonic images [29]. 
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Both of these examples highlight the benefits of using DL for data 
compression, with the AE model structure being probably more appro
priate due to its inherent bottleneck architecture. 

3.1.3. More efficient/higher resolution image formation 
This area is one of the most prominent in ultrasonic NDE, given the 

inherent need for images to ease the interpretation of complex ultrasonic 
signals and because this is well-suited to existing DL image processing 
models (see Section 2). An example of the application of DL methods for 
imaging is the one provided by Pilikos et al. [35] where an end-to-end 
DL model for data pre-processing, image formation, and image 
post-processing was proposed. This method aims at reducing errors (e.g. 
from inaccurate physics modelling or noise in the data) that propagate 
and are possibly amplified during the imaging process. The raw data are 
filtered through a 3D CNN and then introduced into the DAS algorithm 
for image formation and lastly a 2D CNN is used for image segmentation. 
The networks are trained together by allowing the backpropagation 
algorithm to link and correct errors in both networks for the image 
segmentation objective. A total of 180 and 50 samples are simulated for 
training and validation purposes, respectively. Note also that in their 
work, the authors used the DAS algorithm as an intermediate layer of the 
DL network. The performance of the networks jointly trained was 
demonstrated to be higher than those trained independently. Alguri 
et al. [36] proposed an AE for the reconstruction of wavefield images 
from a reduced sample dataset from laser Doppler vibrometer (LDV). 
This work is motivated by the relatively large amount of time required to 
acquire full wavefield data from LDV scans, hence using a reduced 
subset of measurements can lead to a more efficient procedure. The 
proposed method applies a transfer learning strategy to adapt the model 
initially trained on comprehensive simulated data (2500 data samples) 
to then train the encoder part on sparse data, fixing the weights of the 
decoder. This strategy allows consistent behaviour of the encoder with 
both complete and sparse datasets, while ensuring optimal functioning 
of the imaging (the decoder) part of the network. As a result, the DL 
model was able to recover most of the wavefield images. Keshmiri et al. 
[37] developed a DL approach for reducing measurement points for 
wavefield imaging for high-resolution images. The expected benefits of 
this approach were to achieve higher compression rates while providing 
greater resolution than other methods such as compressive sensing [38]. 
The data are firstly compressed to reconstruct the image with an evident 
degradation of its resolution. The reconstructed image is then passed 
through the CNN model to achieve a higher resolution similar to the 
uncompressed image. A patch-based approach and a total of 326 full 
wavefield images (i.e. dividing them in smaller images to have 177,687 
images) are used for training, validation and testing of the proposed 
network. The results show better performance of the DL method than 
classical compressive sensing while being more consistent across 
different compression rates. Mei et al. [12] proposed a hybrid 
VGG-U-Net network for improving ultrasonic image resolution in cases 
where the surface is curved given the associated limitations such as 
refraction and multiple internal reflections. DL is used here to overcome 
the diffraction limit and automate the imaging of complex structures 
with less expert dependency. The idea of the model is based on a U-Net 
where the encoder is substituted by the VGG network, which is able to 
capture more details about the data. The input of the VGG-U-Net is an 
uncorrected image and the output is the corrected image. The results 
from simulated data show a clear superiority over track-scan imaging 
[39] (i.e. imaging method that uses ultrasonic data from a robot scan
ning a curved surface) with higher resolution. A total number of 1560 
simulated ultrasonic images are used for training, validation and testing. 
Experimental images show good approximates but with less accuracy. 
Note that these works are also linked by their motivation to obtain the 
same results with less data, hence optimising acquisition and processing 
resources. 

On a different imaging application, Song et al. [40] created a 
super-resolution DL model for overcoming the diffraction limit and 

achieving subwavelength resolution using guided waves. The model is 
expected to provide this super-resolution using phased-arrays and have 
more robustness to noise than the time-reversal MUSIC (multiple signal 
classification) algorithm. The proposed model is comprised of a first 
CNN network that detects defective areas from a TFM image and a 
second CNN network that locally resolves the fine details of the detected 
area. The number of simulated training, validation and testing samples 
is 6144 TFM images for both the detection and super-resolution net
works; the number of experimental TFM images is 19439 stemming from 
5 aluminium plates and multiple defect types. Note that data augmen
tation by image manipulation (e.g. rotation or mirroring) was applied to 
produce a large amount of images. The results evidence a good agree
ment between the output and ground truth while achieving a greater 
robustness to noise in comparison with the time-reversal MUSIC 
algorithm. 

It is evident that the use of DL for ultrasonic image processing has 
particularly benefited from the natural suitability of many DL networks 
and models for that purpose. The main common architectures are CNNs 
and AEs that are used for different purposes, such as increasing image 
resolution or image segmentation. They have proven effective through 
these papers, but it is worth highlighting the promising results in image 
super-resolution [40], being able to overcome physical limits (e.g. 
diffraction limit) and enhance the image resolution, thus promoting an 
easier and more precise defect characterisation and the need for less 
demanding hardware. 

3.2. Defect detection 

This NDE task provides binary information about whether or not a 
defect is present in the inspected structure. Defect detection in A-scans 
using DL approaches has been addressed by Guo et al. [41], who pro
posed an automated classification approach for ultrasonic signals. By 
using DL, it is possible to detect defects directly from A-scans instead of 
C-scan images, which gives a performance advantage as A-scans are 
faster to acquire and generally require cheaper equipment to obtain. The 
DL model consists of a parallel architecture of GRU and CNNs to process 
ultrasonic signals (extracting temporal and global features, respectively) 
and classify them into two classes: defect and no defect. The training, 
validation, and testing datasets consisted of 3600 ultrasonic signals 
experimentally acquired. The proposed model provides higher accuracy 
than other networks such as LSTM, GRU, or ResNet (refer to Section 2). 
Yan et al. [42] developed a CNN-SVM (support vector machine) 
framework for the automated identification of pipeline girth cracking 
through ultrasonic signals obtained from electromagnetic acoustic 
transducers (EMATs). The motivation for using DL in this work is to 
overcome the limitations of using EMATs, i.e. low transmission effi
ciency and lift-off leading to low SNR. This ultimately poses difficulties 
in interpreting data for pipeline girth weld cracks. In this approach, the 
CNN works as a feature extractor while the SVM is in charge of classi
fying the data as coming from defective or non-defective structures. The 
model receives as input the spectrogram of the filtered EMAT signal. A 
total of 2160 experimental signals were used to train the DL framework. 
The proposed approach outperforms others whereby the features are 
extracted with classical methods such as the discrete wavelet transform, 
the Shannon entropy, and other statistical features. It is then observed 
how both RNNs and 1D CNNs are used for defect detection through 
A-scan data as the two DL architectures are well suited to deal with 
temporal and array-structured data. 

DL has also been applied to ultrasonic B-scans for defect detection. 
For instance, Yuan et al. [43] proposed a FCNN framework to identify 
echoes from defects in B-scans from train wheels. ML is proposed here as 
a way to automate inspections and address data-related heterogeneity 
stemming from, for example, different background noise levels because 
of the wheel structure’s complexity. The model consists of two networks, 
the first one classifies defect and noisy signals, while the second one 
classifies echoes coming from defects or elsewhere. The networks 
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receive manually extracted features from the B-scan data (e.g. variance 
and peak SNR) as input. A total of 736 and 582 experimental data 
samples were used to train both networks. The results show a relatively 
high level of accuracy with the 92% defect recognition. Medak et al. 
[44] proposed an automated defect detection network through a Effi
cientDet network (originally developed for object detection) that takes 
as input ultrasonic B-scan images. The proposed approach uses an image 
processing DL architecture (EfficientDet) that outperforms other DL 
models (YOLOv3 [45] and RetinaNet [46]) having better performance in 
new data, while still automating the defect detection. B-scan images are 
fed into the model and the defect echoes are identified through a box 
overlapped in the defect location, effectively detecting defects. A total of 
6637 experimental images containing different defects were used to 
train the DL framework. The results show better detection accuracy 
compared to other DL models such as ResNet. Virkkunen et al. [47] 
performed an interesting study whereby the performance of a CNN 
model for detecting flaws from phased-array ultrasonic B-scan images is 
compared against the performance of three human operators. The CNN 
model is trained using data augmentation to overcome the problem of 
limited data and aid learning. Virtual flaw signals are modified to 
recreate flaws at different locations, depths, or lengths. A total of 20000 
data samples were generated by combining experimental defect-free and 
simulated defect data to train the CNN. The paper shows better perfor
mance of the CNN model than the operators with 0 and between 2 and 
36 false calls, respectively. 

Slonski et al. [48] studied the automation of flaw detection in con
crete through ultrasonic tomography images. DL is proposed to enable 
the automation on the basis that it will be more efficient, hence cheaper, 
yet less prone to error than operator inspection. The authors used a 
VGG-16 [49] network, which is pre-trained on a large database of im
ages (ImageNet [50]) and fine-tuned by training the last set of con
volutional layers using a set of 246 B-scan images taken in the lab (i.e. 
through transfer learning). The authors reported a validation accuracy 
of 97%. 

Lastly, it is worth highlighting the work by Ye et al. [51] whereby a 
comprehensive dataset of ultrasonic wavefield images and a benchmark 
of some of the most well-known DL models is provided. Although there 
is no new model proposed in this publication, this work can guide re
searchers and practitioners to choose the right model that suits their 
needs. A set of 7000 ultrasonic inspection images from a 
beamforming-laser emitter-receiver configuration was used in undam
aged and 17 different cases of damage forms in stainless steel plates. In 
particular, the following models are tested: AlexNet, VGGNet, 
ResNet-18, Inception-v3, Wide Resnet, DenseNet, and SE-ResNet-50 
[52]. Note that these DL models are well-suited for image processing, 
hence its application for defect detection based on ultrasonic images. 
The readers are directed to Ref. [51] for succinct but clear explanation 
about these networks. The models are used for detecting defects and 
they are compared based on the detection accuracy, model complexity, 
memory usage, and computational efficiency. The most accurate model 
was DenseNet closely followed by SE-ResNet-50, which is slightly less 
complex but also computationally efficient. 

Furthermore, transfer learning has also proven effective in pre- 
training DL models in large image databases to then be fine tuned in 
the smaller ultrasonic databases. In any case, DL methodologies have 
exceeded the performance of classical methods and even human oper
ators, suggesting that the potential automation of repetitive NDE tasks is 
plausible in the medium term. 

3.3. Defect characterisation 

Defect characterisation aims to extract NDE information from data 
and predict the type and numerical characteristics (e.g. crack length) of 
a defect. The reviewed DL contributions for defect characterisation have 
been organised depending on their ultimate goal: (1) to classify defects 
or (2) to quantify defect properties (e.g. crack length). 

3.3.1. Defect classification 
Steel plates and welded regions have been the subject of numerous 

investigations into DL classifiers that are able to differentiate types of 
defects, e.g. porosity, lack of fusion, lack of penetration, and cracks 
among other defects. Typically, FCNNs and CNNs are used as network 
architectures. An early example of the characterisation of defects is the 
one provided by Bettayeb et al. [53] in 2004, whereby the authors 
developed a FCNN for automating the classification of defects from 
A-scans. The proposed network takes as input a signal from defective 
material and gives as output a binary classification between planar and 
volumetric defects. A high classification accuracy (over 95% of recog
nition rate) was evidenced in their study. Sambath et al. [54] in 2011 
proposed a FCNN for automating and increasing sensitivity to the 
detection and classification of flaws from ultrasonic testing in welds. A 
wavelet transform was applied to the raw data to extract features that 
were fed to the FCNN in order to classify the data into four classes: 
porosity, lack of fusion, tungsten inclusion, and no defect. A total of 240 
ultrasonic A-scans were used for training and validating the FCNN. An 
accuracy of 94% was obtained proving it to be better than other ap
proaches without signal processing for the raw data. In Ref. [55], the 
authors addressed the detection and classification of flaws using ultra
sonic inspections of metallic samples with the ultimate goal of auto
mating this action which was previously performed manually. In this 
approach, a deeper architecture was proposed by using a B-scan 
image-driven CNN followed by fully-connected layers that predicted the 
defect type (e.g. side-drilled hole, flat bottom hole, etc.). The dataset 
contained 400 simulated B-scan images for all defect types. An accuracy 
of over 90% was obtained for all the defect types proving its potential. In 
a progression of three works, Munir et al. [22,56,57] addressed the 
classification of defects in welds to allow automation while obtaining 
high levels of precision. The authors started by using a FCNN in 2018 
[56] whereby the DL model classified the defective signal into a set of 
possible defects, such as cracks, porosity or slag inclusion. Later in 2019 
[57], the authors proposed a CNN followed by fully-connected layers 
along with data augmentation strategies for increasing the DL model 
capabilities. Lastly in 2020 [22], an AE was introduced as an initial step 
to denoise the ultrasonic signals and hence improve the performance of 
the CNN architecture. 

Different materials and structures have also been the subject of 
investigation for the application of DL methods to ultrasonic NDE data. 
For instance, Meng et al. [58] developed a CNN network for the auto
mation of ultrasonic signal classification from C-san signals in a carbon 
fibre reinforced polymer (CFRP) structure. The network uses as input the 
wavelet transform of the raw data and accurately gives as output a 
classification between two types of defects: void or delamination. A total 
of 6000 experimental A-scan signals were used for training and valida
tion purposes. The paper also shows evidence of this approach working 
on a CFRP sample with multiple inclusions and locating the different 
defects with high precision. Rodrigues et al. [59] studied the automation 
and enhancement of carburising level estimation for high pressure steel 
pipes using ultrasonic inspection. The model consists of a FCNN that 
takes as input the discrete Fourier coefficients of a raw signal and 
accurately classifies it into three different categories: high, low, or no 
carburisation. The number of experimental signals used for training was 
200. 

DL techniques, mostly comprised of convolutional and fully- 
connected layers, have been successfully able to classify defects in 
metallic components, and in particular in welds where the majority of 
defects are encountered. However, the application of DL to other more 
complex (anisotropic) materials such as composite plates has been 
scarcely addressed. These structures pose great challenges from the 
multiple internal reflections caused by different layers and their 
anisotropy. Nevertheless, there are DL architectures that are complex 
enough to extract targeted information from ultrasonic measurements in 
composite structures. Efficient physics-based models [60] for creating 
relatively large training databases as well as transfer learning will be 
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critical in the success of this application. 

3.3.2. Defect sizing 
Another type of defect characterisation is through the inference of a 

real number that quantitatively sizes defects, e.g. through crack length 
estimation. Pyle et al. [61] addressed this issue and also the lack of real 
(experimental) training data for DL models. The authors used a hybrid 
FE-ray-based to generate synthetic data (in the form of 25,625 simulated 
ultrasonic images) to train a DL model of crack characterisation (i.e. 
length and angle). The DL model is then applied to experimental data 
with more accurate estimation of both crack angle and length than the 
classical 6 dB drop method. This work demonstrates that the use of 
physics-based models can boost the performance of DL models. Miorelli 
et al. [62] proposed a CNN for automating the defect localisation and 
sizing from ultrasonic guided waves. The input data consist of DAS 
images from circular piezoelectric transducer layouts and the output of 
the model is the continuous values of the XY position and radius of the 
defects in aluminium plates. A total of 500 simulated images were used 
to train the CNN, while validation and testing were performed on both 
simulated and experimental images. The DL model was tested with both 
modelling and experimental data, showing a high correlation with the 
true values in either case. Bai et al. [63] has recently provided a 
comparative study between classical Bayesian inversion approaches and 
a CNN regressor model – i.e. the SMInvNet based on the model devel
oped by Miorelli [62]. Here, the input data consist of the scattering 
matrices (measured from FMC and TFM data) while the output is the size 
and angle of a surface notch. The size of the training and test sets was 
976 and 180 simulated samples, respectively. In this study, the classical 
Bayesian approach shows a higher degree of characterisation accuracy 
and less uncertainty, while SMInvNet gives comparable performance but 
with more dispersion stemming from the model’s epistemic uncertainty. 
It is worth highlighting that from this work, it was concluded that the 
uncertainty interpretation from the DL model remains an open chal
lenge. In contrast, the Bayesian approach provides a natural and explicit 
uncertainty map of the unknown defect parameters (at the cost of more 
expensive inverse problem evaluations). 

Interestingly, the use of DL for the regression of defect parameters 
has not yet been fully exploited. This application can potentially enable 
a higher automation of the NDE that can systematically evaluate the 
criticality of small defects. As in previous sections, transfer learning 
proves to be essential when the issue of lack of defect data are present. 
Pyle et al. [61] demonstrated that the use of modelling data can help in 
training DL models even if they are applied to experimental measure
ments with high-quality modelling. Notwithstanding this, multiple 
domain adaptation techniques (e.g. by mixing modelling and experi
mental databases with different weights in the loss function) need to be 
explored to ensure their suitability for different ultrasonic NDE 
applications. 

3.4. Property measurement 

Deep learning has also been used for material characterisation (other 
than defects), which include the direct or indirect measurement of ma
terial properties. For instance, the inference of porosity level (obtained 
by processing C-scan images) in additive manufacturing parts have been 
investigated by Park et al. [64,65]. Several DL models based on CNNs, 
and FCNNs, were designed and tested against real samples by taking as 
input the ultrasonic signal and as output the porosity level (through 
multiple classes). The size of the ultrasonic databases varied between 
1000 and 6000 experimental signals. Out of the different architectures 
proposed, the convolutional approach proves to be the most effective 
with less classification error between different porosity intervals. Ma 
et al. [66] proposed a DL-based approach for the estimation of the 
porosity level in thermal barrier coatings (widely used to protect hot 
section components of aircraft engines) from ultrasonic A-scans. Ultra
sonic reflection coefficients are used as input of the FCNN with three 

hidden layers and it predicts the porosity characteristics. An optimisa
tion procedure was proposed to achieve the optimum ultrasonic pa
rameters to estimate the porosity and then a Gaussian process is used for 
the regression of the actual porosity level from each A-scan. Therefore, 
DL is used here to substitute the classical approach of establishing a 
calibration curve that relates the ultrasonic parameters with the porosity 
level. DL provides a faster and more flexible approach to adapt to the 
nonlinearities of the data. The results show that the optimum set of ul
trasonic parameters provides the most accurate porosity estimation. 
Lähivaara et al. [67] studied the feasibility of using CNNs applied to 
ultrasound tomography for the property estimation of water-saturated 
porous materials. Given the large computational burden that solving 
the forward model of wave propagation in coupled 
poroviscoelastic-viscoelastic-acoustic media entails, the authors pro
posed a faster inverse problem through a CNN regressor of material 
properties. Input data are in the form of B-scan images while the output 
is comprised of material porosity and tortuosity of the inclusions. The 
total number of samples in the training set was 75,000 samples stem
ming from simulations and data augmentation by adding different levels 
of noise. Numerical results show an excellent correlation between pre
dictions and ground truth, while the efficiency of the DL method is 
higher than a classical inversion approach – i.e. performing thousands of 
forward model evaluations. 

The estimation of other material properties from ultrasonic data has 
also been the subject of study. For example, the estimation of the spatial 
distribution of grain size in metals was investigated in Ref. [68]. The 
authors proposed a DL architecture consisting of a CNN followed by 
several fully-connected layers. The input of the model is comprised of 
B-scan images while the output is the size of the material grain (given as 
the probability of the data belonging to three different classes based on 
grain size). The total number of experimental ultrasound signals used in 
this work was 302,400. The end goal of DL is to enable the estimation of 
a property difficult to obtain, which typically relies on structural noise 
distributions. Singh et al. [69] proposed two DL architectures for 
creating ultrasonic tomographic images with grain orientation infor
mation. The first model consists of multiple FCNNs (one per pixel) that 
take as input the ToF matrices from ultrasonic arrays and provide the 
grain orientation information as output. The resulting image and addi
tional prior information are then fed into a generative adversarial 
network to increase the image resolution. A total of 7500 and 6000 
simulated datasets were used to train the FCNN and generative adver
sarial network, respectively. DL is used as a tool that enables fast 
tomographic imaging with high resolution for an enhanced detection of 
flaws during manufacturing. The results show that the DL framework 
efficiently reconstructs the tomographic images from the ToF informa
tion and concludes that there is room to improve the high resolution 
reconstruction accuracy adopting advanced loss functions such as the 
Wasserstein distance [70]. Gopalakrishnan et al. [71] compared two 
different DL approaches for estimating elastic properties of composite 
laminates from ultrasonic guided wave data. The methods consisted of 
(1) a CNN followed by fully-connected layers, and (2) a LSTM recurrent 
network. The total number of data samples used for training was 2719 
simulated signals. DL is adopted here to substitute classical deterministic 
inversion schemes that are computationally slow and prone to 
noise-induced errors; they are also limited in terms of large-scale auto
mation. Their results suggests that, although both DL approaches are 
accurate in estimating the elastic properties of composite laminates, the 
LSTM network performs better with noisy data. 

A recent study has addressed the quantification of microstructure 
properties in polycrystalline Nickel using physics-informed neural net
works [72]. Few existing methods infer microstructure from full wave
field data from the displacement vector, and hence DL is used here as an 
accurate and efficient inversion method. The authors proposed three 
networks for the inference of three elements of the stiffness tensor (as 
polycrystalline Nickel exhibits a cubic symmetry) and uses ultrasonic 
wavefield data as training data. Hence, two networks are trained when 

S. Cantero-Chinchilla et al.                                                                                                                                                                                                                   



NDT and E International 131 (2022) 102703

9

new wavefield data are acquired: (1) a network to recover the wavefield 
measurements as a function of the spatial coordinates and the time, and 
(2) a network to infer the material properties having to satisfy the un
derlying governing equation along with the wavefield predicted by (1). 
Note that the physics part is introduced in the loss function by a com
bination of mean squared error of the wavefield displacement and the 
corresponding wave equation (in-plane and out-of-plane) that the pre
dicted stiffness element and displacement must satisfy. The results show 
a high accuracy predicting the values of the stiffness elements. This 
study shows the great potential of creating mixed physics- and 
data-based DL approaches that are able to handle complex problems in a 
highly efficient manner. Similarly, in a previous work from the same 
authors [73] a physics-informed neural network was proposed to char
acterise the spatial acoustic velocity distribution. Hence, by combining 
two networks inferring wavefield displacement and velocity, respec
tively, this approach proved to be capable of characterising possible 
defects by visually identifying areas with lesser wave velocity. Again, 
this work imposed the residual of the governing wave equation as an 
additional term of the loss function, hence educating the data-driven 
approach with physics. A relatively small database of 30 snapshots 
with about 20% of spatial information was used to train the model. 

3.5. Common challenges in the literature 

From the review of existing work, it is clear that there are multiple 
shared challenges that are continuously faced when developing DL 
models for NDE, regardless of end goal. Many of these challenges are 
ultimately related to the lack of training data. This issue is addressed 
through different techniques: (1) data augmentation, (2) generative 
models, and (3) transfer learning (including domain adaptation tech
niques). Data augmentation consists of creating additional data samples 
in the training data set by manipulating the original data [74]. This 
manipulation may be a simple rotation, scaling, or stretching of original 
data, which most of the times are images. Data augmentation of 1D 
signals has also been addressed through the addition of artificial 
tone-bursts acting as defect reflections for example. Domain adaptation 
techniques can be used to refine the performance of DL models in 
different domains to those for which they were originally trained [75, 
76]. The main example in the NDE context can be found in a scenario 
whereby a DL model is designed and trained with modelling data and 
then a small subset of experimental data are used for fine tuning – hence 
making the model more accurate in the experimental domain. This 
technique is particularly useful when a model is available but experi
mental data are limited as it capitalises on the strengths of well under
stood physics-based models. Generative models such as variational 
autoencoders [77] and generative adversarial networks [30] can also be 
used to generate data from multiple classes. Lastly, transfer learning is 
used to use the latent knowledge of a DL model that has extracted from a 
source domain to be applicable onto a target domain [28]. For example, 
an image segmentation DL model that has been trained on photographs 
of various objects can likely be used as a strong starting point to train a 
model which can segment ultrasonic images with defect inclusions. 
Related data issues are (1) acquiring and developing the corresponding 
labelled data for DL model training, especially in tasks like segmentation 
where extremely detailed labels are required; and (2) confirming ground 
truth involving complementary NDE techniques such as X-ray and 
computed tomography. These issues could be addressed using active 
learning [78] whereby the algorithm learns from small amounts of data 
and queries the user to label new data. 

Another important challenge that has not yet been addressed in the 
literature is the lack of a universally-accepted method (e.g. through 
standard metrics such as probability of detection) for performance 
quantification. This makes it inherently difficult to compare different DL 
works even on the same application. For instance, although some au
thors use direct error estimation from the training procedure to estimate 
the quality of a DL architecture, others are using distributions that 

characterise both error and dispersion. DL approaches can either be 
developed to adapt currently-existing standard metrics or be used to 
create new standards in places where they do not currently exists. 
Nonetheless, a unified methodology for the quantification of perfor
mance would make the DL contributions more meaningful and poten
tially more attractive to industries as they can be easily compared. 

Similarly, the quantification of uncertainties has been barely 
addressed for the estimation of output variance. A global methodology 
to estimate the uncertainties stemming from both the data and the 
models will be critical for the practical implementation of DL method
ologies. This challenging issue comprehends a topic currently under 
investigation in the DL community with no definitive answer. There are, 
however, multiple techniques that estimate uncertainty such as Monte 
Carlo dropout [79], deep ensembles, and variational inference [80]. 
This uncertainty quantification will provide answers to the degree of 
confidence to which a model is working during normal operation. This 
will also entail the possibility to raise flags when a model is working out 
of its confidence interval, hence making it more robust and safer. 

4. Levels of automation 

From the literature review, it can be seen that some works address 
single tasks (e.g. pre-processing or defect detection) while others 
encompass several (e.g. feature extraction and defect detection). How
ever, the level of automation that they enable is not thoroughly dis
cussed in these works (or any other), which can be detrimental for their 
practical implementation. This suggests that a clear automation path 
through different, well defined, levels can help categorise the DL con
tributions and establish the paths to increase the automation level in 
NDE. 

This section proposes and explores a series of levels of automation for 
any NDE modality, although the focus is primarily placed on ultrasound 
inspection. The levels are depicted in Fig. 3 and range from the classical 
NDE procedures, where the human operator is in charge of everything, 
to the ultimate future of full NDE automation with no human inter
vention. At Levels 3 and 4, operational NDE is completely automated 
and the output can feed directly into structural integrity (SI) decision 
making. This in turn enables novel data-driven methods for SI decision 
making (e.g. accept/reject, maintenance/repair decisions, remaining 
useful life (RUL) estimation), which can also become completely auto
mated. Note that the proposed levels are in accordance with the recently 
published automation levels by the European Union Aviation Safety 
Agency (EASA) [6,7], i.e. level 1 of assistance to human, level 2 of 
human-machine collaboration, and level 3 of more machine autonomy. 
In the current paper, the levels are extended to take into account a wider 
range of applications around ultrasonic NDE. 

One of the most important enabling factors of the transition from low 
to high automation levels is the development and implementation of DL- 
based approaches. These methods allow a higher degree of automation 
(i.e. dealing with increasingly complex scenarios in a highly-efficient 
and accurate manner) that potentially requires less operator input and 
eventually should enable decisions to be taken without human inter
vention. Moreover, these methods are enabled by Industry 4.0 through 
the development of big datasets that, along with modelling data, will be 
used to boost the NDE automation with high confidence. Note that the 
necessity of big datasets poses a challenge due to the lack of experi
mental data nowadays as evidenced in the literature review. This issue, 
although temporary, can be tackled through the use of modelling data 
that complements the available experimental data, as discussed later 
and in some of the literature review. Although the availability of real 
unlabelled data is temporary, the issue of big, labelled datasets would 
remain a problem. This could be tackled using rudimentary DL systems 
to coarsely label data – e.g. using object detection to coarsely label data 
for future segmentation model training [81]. The following subsections 
explain the scope of the proposed levels and identify future opportu
nities and challenges that must be tackled in the context of DL-based 
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NDE to achieve the potential of NDE automation. 

4.1. Level 0: classical NDE 

The basic level of automation covers the classical NDE procedures, 
whereby all maintenance steps are manually addressed by a trained 
operator with basic support from data acquisition equipment but 
without any autonomous system. Only basic automation through filters 
defined by humans are considered at this level. 

This level dates back to the early attempts at performing ultrasonic 
NDE. Initially, multiple researchers developed a range of techniques and 
methodologies to detect defects and flaws within solid materials. One of 
the first was by Firestone [82] in 1946 through the supersonic reflec
toscope, a device able to carry out ultrasonic measurements in solid 
parts. This was a landmark that arguably established the beginning of 
ultrasonic NDE. Additional contributions were made towards the 
improvement of quality assurance and detectability of defects, for 
instance, by detecting defects and measuring weld penetration lengths 
using wave propagation velocities obtained from pulse-echo tests [83]. 

It is worth highlighting that ultrasonic weld inspection was one of the 
most important topics for safety-critical industries and, as a result, a 
series of codes and recommendations were released [84] in the 1970s. 
The main idea of these codes and standards for SI was to pre-perform SI 
calculations for generic structures so the inspection and sentencing re
quirements were already defined by the code. Nonetheless, this was an 
open topic with no definite answer as to how the defect detection and 
characterisation should be performed to maximise reliability and accu
racy of the inspections [85,86]. To this end, several authors developed 
multiple contributions to better understand ultrasound-defect in
teractions and proposed mechanically-automated procedures to reduce 
the number of human errors. For instance, the automation of an ultra
sonic array probe to focus in different directions without operator 
intervention, with the directions having been pre-specified, was pro
posed in Ref. [87]; and the mechanisation of ultrasonic tests in pipeline 
weld inspections was also developed for more consistent results in 
Ref. [88]. As a result of this research effort, defects could be detected, 
but accurate defect characterisation was still not feasible, leading to 
conservative sentencing [89]. In general, ultrasonic NDE performance 
was limited by the operator’s ability and hence prone to error. Several 
failures during operation due to undetected flaws that caused some 
catastrophic consequences (e.g. train derailments [90] or engine failures 
due to undetected micro-fractures [91]) along with the surge in power 

and easy access to computational resources motivated a step forward in 
safety through the development of models and pre-processing algo
rithms. This enabled a substantial enhancement of the performance and 
a higher degree of automation, safety and reliability from ultrasonic 
NDE inspections. 

4.2. Level 1: operator assistance 

Level 1 covers most of the existing literature and practise on ultra
sonic NDE, especially on techniques and methods currently used by most 
industries for structural inspection. At this level, the operator is in 
charge of examining all NDE data, making all decisions and designing 
the inspections but with the assistance of computational/mechanical 
tools. If any autonomous system is used, it is to assist the operator (e.g. 
through image processing algorithms or computational inverse prob
lems) rather than to replace the operator. 

Multiple techniques that allowed more complex and informative 
experiments were proposed with the initial use of ultrasonic arrays by 
adopting different configurations such as 1D, 2D, or circular arrays [92]. 
Arrays enabled the use of focusing techniques such as the classical 
beamforming to increase the transmitted energy and hence reach larger 
inspection areas [93–95]. Alternatively, the arrays could be used to fire 
elements independently while the rest of array elements are acquiring 
information, thus enabling the FMC [96]. This can be arguably consid
ered as the only experimental technique that can extract all the ultra
sonic information from a probe array. Note that all these techniques deal 
with big volumes of data and intrinsically automate their processing to 
convey, through image formation, interpretable data to the operator. 

Data pre-processing is the ultrasonic NDE task that has arguably 
experienced the highest automation due, in part, to the fast computa
tional development and the ease with which high-fidelity digital data 
can be acquired. In this context, techniques for the time- and frequency- 
domain analysis of ultrasonic data showed a larger evolution with the 
appearance of fast Fourier transform techniques, wave decomposition 
methods, or filtering approaches to reduce experimental noise 
[97–101]. FMC opened up the possibility of higher performance imaging 
algorithms, including ones that could adapt to surface profiles, deal with 
anisotropy, and generate multiple views using different wave modes (i.e. 
longitudinal or transverse) [96,102–105]. More recently, the appear
ance of highly-capable CPUs, GPUs, TPUs (e.g. Google Coral), and 
edge-computing devices (e.g. NVIDIA Jetson) along with open-source 
software packages (e.g. TensorFlow [106], Tensorflow Lite, and 

Fig. 3. Diagram describing the proposed NDE automation levels and their associated responsibilities assumed by humans (in pink boxes) or autonomous systems (in 
blue boxes). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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PyTorch [107]) has facilitated the development and deployment of DL 
methods for NDE as evidenced in the review of Section 3.1. 

In the case of defect detection, several techniques have been typically 
applied, e.g. thresholding techniques in time and amplitude domains 
[97,99,105,108]; probabilistic approaches that consider and quantify 
certain sources of uncertainty, such as aleatory or epistemic, have been 
used for anomaly detection applications [109,110]; and even comparing 
dispersion characteristics of guided-waves [111]. The characterisation 
of the defects has usually been addressed by visual interpretation of 
images assisted by physics-based models [112–115]. Inverse problems 
have been used to extract defect-related information (e.g. residual 
strength of damaged material) from the raw data based on physics- or 
data-based models [116–118]. These methods offer accurate and robust 
results, at the cost of more computational time than direct image 
interpretation. This drawback could certainly be addressed and eased 
with the use of DL within the inversion frameworks. 

Despite being the most widespread automation level in practice, 
there is still scope to extend Level 1 automation to maximise the utility 
of DL-based operator-assisting techniques. These methods aim at 
enhancing the sentencing effectiveness of the NDE operator by 
providing more useful, easier-to-interpret NDE data. Three future op
portunities or challenges are identified:  

● Cleaning raw NDE data. This can encompass the suppression of 
random and coherent noise, including both micro-structural noise 
and signals from structural features such as such as reflections from 
the edges of the inspected part. It could enhance the defect detection 
rates given that false alarms due to artefacts present in the data 
would be minimised. In addition, the removal of non-defect data 
features could lead to more useable images with a larger useable area 
for both defect detection and characterisation. 

● Improving image interpretation. There is an opportunity for DL to in
crease image resolution so that more accurate direct visual inter
pretation from ultrasonic images is possible. Apart from the current 
contributions on image super-resolution, mainly focused on metallic 
parts, more types of defects and complex materials such as composite 
laminates could benefit from such a technique to provide accurate 
information about shape and extent of defects.  

● Materials. There are complex materials and structures, which are 
increasingly prevalent in some industries, and which pose unique 
data interpretation challenges – e.g. composite materials. DL 
methods could be applied to address such data-related challenges.  

● Operator-machine collaboration. Human-machine collaboration could 
also be investigated with the operator rewarding good performance 
and penalising errors from the autonomous system. Provided that the 
interactions are well-controlled and that the autonomous system is 
sufficiently transparent for the operator, reinforcement learning 
techniques [119] (i.e. training method based on rewarding desired 
outputs and punishing undesired ones) could also enhance the ca
pabilities of such a system, making it more effective even after its 
deployment. 

4.3. Level 2: partial automation 

In Level 2, the operator addresses some of the data examination, its 
associated decision-making, and the complete design of the inspections. 
At this level, some of the decisions are made autonomously, e.g. 
accepting inspected parts if the system is highly confident. The end point 
of this level is further enhanced sentencing capabilities for NDE in
spections enabled by the augmented performance of autonomous sys
tems that partially substitute the NDE operator in basic scenarios 
designed by the operator. 

The partial automation of NDE is another trending research topic in 
which powerful DL tools are exploited to detect and/or characterise 
defects from NDE data. However, their implementation in industrial 
applications is still limited to initial feasibility studies to understand the 

potential benefits and remaining challenges of this technology. For 
instance, Fujitsu developed and tested a DL approach for defect detec
tion using data fusion and CNNs to improve the effectiveness and effi
ciency of quality inspections for wind turbine blades [120]. Note that 
this type of automation approach needs to be scaled up and tested in 
fully-operational environments to ensure its accuracy and reliability in 
service. Nevertheless, a large number of contributions have been made 
from the research community demonstrating the potential of these 
techniques for achieving partially-automated NDE through defect 
detection and characterisation (see Sections 3.2 and 3.3). 

Relatively few DL methodologies have been proposed to combine 
multiple NDE steps, e.g., from data pre-processing to defect characteri
sation. The majority of the contributions that have been made are in the 
context of structural health monitoring and ultrasonic guided-waves. 
For instance, defect detection and characterisation were jointly 
addressed in a DL framework using a single convolutional network that 
gives all the defect-related output for ultrasonic guided-waves in 
aluminium plates [121]. Alternatively, the use of concatenated DL 
models have been explored for defect detection and characterisation 
using physical knowledge and ultrasonic guided-waves [122]. In gen
eral, having one or two separate networks for the automation of multiple 
steps has advantages and limitations. The training process and appli
cation of single DL models are more straightforward but at the cost of 
typically more complex model architectures, and hence large training 
databases. Alternatively, two independent, simpler, models provide a 
more controllable and interpretable/explainable scenario. The user can 
control and audit independently what the model is doing at any stage, 
which also makes this approach potentially better suited for regulated 
inspection qualifications. The intermediate output of this two-stage 
approach can allow a human to understand the decision-making pro
cess more easily [123]. Although both strategies can provide satisfactory 
results, it is recognised that the second approach (using different, 
concatenated, models) might have additional advantages from an in
dustrial perspective: faster inspection qualification by having more 
control over the system or enhanced traceability in the interface be
tween detection and characterisation models. 

Despite the great research effort, DL-based partially-automated sys
tems need improvement in terms of their generality, explainability, and 
overall adaptability to real-world structures outside laboratory envi
ronments. Therefore, the following points have been identified as po
tential future lines of work to enable and obtain the maximum 
performance from Level 2 of automation:  

● Explainability. Detection and classification methods within partially- 
automated systems need to provide clear information as to how the 
results have been obtained. This is indeed not an easy task due to the 
black-box nature of DL models. However, coupling physics-based 
models and heuristic approaches that have been classically applied 
with newer tools will produce a greater transparency and control 
over the results. For example, this has been demonstrated by 
including the wave equation as an element to be satisfied in the loss 
function of a physics-informed neural network [124]. Partitioning 
the models to address smaller tasks that are more controllable and 
explainable is another candidate approach. 
Another important aspect of explainability comes from the fact that 
the autonomous system is partially substituting the operator who 
needs to supervise and audit the model outputs. The models need to 
give transparent information at all times of the outputs along with 
labels that are easily understandable by the operator. To this end, 
clear application programming interfaces (APIs) are essential ele
ments of this automation level.  

● Generality. The autonomous system needs to work under many 
varying conditions, which will require it to be robust and applicable 
to similar structures under different conditions. This can be achieved 
by using accurate physics-based models to generate training data, 
long-term data series, or even domain adaptation techniques (e.g. 
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mixing model and experimental data for training). However, there is 
an evident limitation for some applications where only one type of 
data can be used for training (e.g. defect-free data). In these cases, 
unsupervised learning methods with thousands of measurements 
could be a viable option for autonomous defect detection as long as 
the model performance is demonstrated with data from multiple lab 
and industrial trials.  

● Uncertainty quantification. In line with the previous points of 
explainability and generality, new models should be accompanied by 
a thorough analysis of their associated parameter uncertainties in 
several circumstances, especially in the case of defect characterisa
tion DL models. The distinction between aleatoric and epistemic 
uncertainties will also provide an idea as to how accurate and gen
eral a DL model is and what are the associated difficulties.  

● Uncertainty propagation. Level 2 potentially entails the connection of 
independently designed models for the systematic functioning of the 
autonomous system. This has some challenges associated with it that 
need to be addressed, e.g. how the models are going to inherit in
formation from lower levels and how uncertainties are going to 
propagate through. This is an incipient area and one from which 
industries using complex structures (e.g. from aerospace or wind 
energy sectors) could benefit.  

● Traceability and auditability. It is important that any automation 
system enabled by DL is traceable and auditable. Even in the event 
that the output of the system is not fully explainable, the system 
should provide information to trace the model architectures, the 
implementation version, or the training data that was used for 
developing the DL model. In this context, joint collaboration between 
researchers and NDE industries is key to achieve a successful trace
able system, which can be audited at some point in the future. 

4.4. Level 3: operational automation 

The end objective of Level 3 is to achieve the full automation of the 
NDE process. To this end, the autonomous system examines all data and 
makes all decisions for a given inspection scenario, thus enabling a 
complete operational automation. The NDE process is sufficiently 
automated that it can be used to provide on-the-fly feedback for optimal 
placement of data acquisition systems. The human operator is needed to 
design the inspections carried out autonomously and supervise the 
system. The autonomy that Level 3 enables can create a direct link to SI 
assessments without human intervention, e.g. deciding fitness for ser
vice or the optimum moment for maintenance or repair actions based on 
RUL predictions. 

It is worth noting that very limited contributions have been made in 
the context of data-driven operational automation mainly due to the 
lack of data, technology, methodological developments, and updated 
regulatory frameworks. Another factor in this scarcity is that some of the 
elements needed for operational autonomous systems are not really 
amenable to scientific research (e.g. development of APIs). Nevertheless, 
a few examples that have the potential to allow complete operational 
automation can be found in the literature for techniques other than ul
trasound. For instance, Park et al. [125] have illustrated the automation 
of a laser-based system for the detection and characterisation of cracks 
in concrete structures. Unmanned aerial vehicles (UAVs) are used as a 
source of automated data acquisition, whose data are used for the 
detection of cracks with CNN-based DL models, while the characteri
sation of cracks are addressed using linear regression. Additionally, Xu 
et al. [126] have addressed the inspection of wind turbine blades 
through images taken by an UAV. In this case, a CNN-based model is 
used for both detection and characterisation simultaneously by creating 
different defect classes ranging from no defect to different types of defect 
(e.g. surface corrosion). However, no DL-based methodologies or ex
amples for this automation level have been provided for ultrasonic NDE 
inspection. 

The analysed works show the potential of DL techniques in 

automating the NDE process. However, a more integrated approach that 
includes all the elements in the context of ultrasonic NDE inspection 
using autonomous systems is not yet available either in industry or the 
research communities. In addition to the challenges identified for the 
previous levels, the following are proposed as future work needed to 
address in order to achieve maximum performance and reliability from 
an autonomous system in Level 3:  

● Outlier identification. The automation of the inspection system that is 
designed by an operator has to account for scenarios that are outside 
the model’s confidence intervals and be able to raise a flag. In this 
context, outlier identification techniques should be embedded within 
the autonomous system so the operator can take over the situation 
and override the autonomous system in order to keep high safety 
standards. 

● Modularity, integration, and communication. Level 3 may include ro
botic systems that are controlled by an autonomous system. This 
poses complex modularity, integration and communication issues 
stemming from the fact that information needs to be passed both 
ways – robotic to autonomous system and system to robot. For 
example, in robotic acquisition systems, the scanning paths can be 
based on the analysis of the data acquired. 
Another important element is the communication and interopera
bility of the autonomous system with its subelements (e.g. robots and 
submodels). This communication needs to be robust and unambig
uous, and should also be traceable at all times. Therefore, the 
development of APIs would need to extend and integrate the robot- 
autonomous system communications and the rationale by which 
the decisions are taken (e.g. stop taking measurements). 

● Optimal sensor/robot placement. The autonomous system is respon
sible of taking measurements in the inspected structure. In some 
scenarios this will include the decision on where to locate the robot 
to obtain the best data that minimises the uncertainty of the related 
defect detection and characterisation. In these cases, optimal sensor 
or robot placement approaches will have to be developed so that the 
autonomous system can correct the robot in real time and move it 
towards the optimal location. The development and integration of 
these optimisation techniques within DL frameworks is identified as 
a key element for successful operational automation. 

4.5. Level 4: full automation 

At this level, everything in the inspection-maintenance process is 
done by the autonomous system (inspection design, measurements, 
processing, NDE, and decision-making) in all scenarios. The NDE oper
ator or SI practitioner would not be needed anymore. Assistance to the 
autonomous system would be required if deemed necessary for main
tenance procedures of the system or to proceed with maintenance or 
manufacturing decisions taken by the system. 

Level 4 remains aspirational at this point in time, but the automation 
tools required are beginning to be reported [127,128] and the path 
already initiated points to the full automation of repetitive and pre
dictable processes. It is worth noting that despite the similarities with 
Level 3, the required certifications and qualifications of the autonomous 
system would be much stricter, with almost perfect levels of accuracy in 
all possible inspection scenarios with all the potential damage, mate
rials, and environmental and experimental conditions that can appear. 
Technology should provide, at this stage, even more accurate DL tech
niques which can be easily implemented in different devices. All the 
model outputs need to be extremely clear and saved carefully with 
appropriate labels so that future audits can be performed on the 
autonomous systems by trained operators or regulators. Maintenance- 
and manufacturing-related decisions are taken within the system with 
physics-informed data and the operator or other intelligent system 
should be able to address these tasks. 

There are, however, some remaining challenges that have not been 
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mentioned in the previous levels that concern the full automation of 
NDE processes:  

● Retaining know-how. A potential issue of fully-autonomous systems is 
that the industries may lose human-related know-how, leaving the 
autonomous systems with all the knowledge for NDE and structural 
health management. Despite no human operators being needed in 
the loop, the physics-based knowledge and the functioning principles 
of the autonomous system needs to be known by inspectors and 
regulators that interact with the autonomous system – e.g. to handle 
an alarm due to uncertainty. Therefore, new, standardised, proced
ures for stating the underlying physics and the DL models func
tioning will need to be developed.  

● Reliability. The quantification of the autonomous system reliability is 
a critical element of the full automation. The systems need to be 
completely autonomous and hence their confidence levels suffi
ciently high to be independent of human intervention. Methodolo
gies for quantifying reliability while considering diverse 
uncertainties are therefore key for this stage. 

4.6. Mapping of contributions into the proposed levels 

An approach to identifying the overall state of research is to map the 
DL and non-DL contributions onto the proposed levels of automation. As 
shown in Fig. 4, all DL-related contributions are at Levels 1 and 2. Note 
that the papers defined as Level 1 are those dealing with data pre- 
processing (Section 3.1), while the contributions in Level 2 are those 
stemming from defect detection (Section 3.2) and characterisation 
(Section 3.3) as well as property measurement (Section 3.4). Note that 
this review is not exhaustive but provides a global picture of the most 
important contributions in DL-based ultrasonic NDE. The rest of the grey 
columns in Fig. 4 accounts for the papers cited along the description of 
the levels of automation in the above sections; hence not directly related 
to DL or NDE. This analysis reveals that most of the effort on DL-based 

NDE is being put into enabling a partial automation through defect 
detection and characterisation as well as property measurement. This is 
possibly as a result of the large number of available DL models (exem
plified in Section 2) that are readily available to be implemented in 
multiple applications, especially dealing with images as input data. 
Nonetheless, there is still a long way to go until these two levels are fully 
addressed and exploited by the NDE community. Higher automation 
levels enabled by DL are aspirational at this point in time, with the 
methodology development in Levels 1 and 2 still in its infancy. 

5. Basic axioms for DL-based ultrasonic NDE 

Having reviewed the state-of-the-art and the contributions made at 
each automation level, it is easy to appreciate how heterogeneous the 
current DL methodologies are from paper to paper. For instance, some 
authors propose models that address different steps simultaneously 
[121] while others do it with independent models [122]. Explicit model 
limitations (e.g. range and sensitivity of hyper- and pre-processing pa
rameters) are typically left out of the papers, hence giving partial in
formation about the use and practicality of the DL models. These 
inconsistencies and lack of information cause slower advances in the 
automation path as industries and regulators may need to see a more 
unified approach. A series of axioms are proposed below to standardise 
the process of developing and applying a new DL model for NDE and 
bridge the current gap between the multiple DL contributions and the 
industrial realm, where regulations and inspection qualifications are 
essential. It is worth highlighting that the axioms have been discussed 
with multiple industrial contacts across a range of sectors including 
aerospace, nuclear and renewable energies and are in line with the 
current expectations of reports from the EASA [6,7] and the European 
methodology for qualification of NDE [129]. Moreover, these axioms 
(summarised in Table 3) build on the technical evidence found in the 
literature and the future challenges identified within each automation 
level. 

Axiom 1. Deep learning models need to be trained on a predefined 
domain of operation. 

DL models are expected to demonstrate high performance within a 
predefined domain of operation, from which training and validation 
data are obtained. It is currently unrealistic to try to design a model that 
works for all conditions, structures and techniques. Therefore, the DL 
models for NDE must have a clear scope depending on the NDE mo
dality, the types of structures and materials under inspection, and 
environmental changes expected. This axiom is also important for in
spection qualifications in order to assess the performance of a given DL 
model in the appropriate context. 

Axiom 2. Deep learning models need to have quantifiable perfor
mance across the predefined domain of operation. 

DL models need to be sufficiently performant depending on their 
application (e.g. detection, characterisation, pre-processing) so that the 
required levels of effectiveness informed by the norms and regulations 

Fig. 4. Scientific contributions accounted in this review mapped into the pro
posed automation levels. 

Table 3 
Summary of the DL-based NDE axioms along with their elements and proposed approaches to address them.  

Axiom Description Proposed techniques 

Axiom 1 Deep learning models need to be trained on a predefined domain of operation Assessing scope of application 
Axiom 2 Deep learning models need to have quantifiable performance across the predefined domain of operation ROC curves [130] 

Reliability diagrams [131] 
Axiom 3 The uncertainties related to the deep learning model, data, and hypotheses need to be quantified Monte Carlo dropout [79] 

Variational inference [137] 
Bayesian active learning [78] 

Axiom 4 The values of any adjustable deep learning model parameters must be specified Global sensitivity analysis [132] 
Model compression [136] 

Axiom 5 Deep learning based autonomous systems need to be self-aware of their own limitations Epistemic uncertainty [138] 
Axiom 6 Deep learning models within an automated autonomous system need to be traceable Logging DL model results 

Saving input data  

S. Cantero-Chinchilla et al.                                                                                                                                                                                                                   



NDT and E International 131 (2022) 102703

14

are satisfactorily met. To this end, their performance in addressing these 
tasks needs to be quantified across the entire domain of operation by 
appropriate means depending on the end objective of the DL model. For 
instance, models designed for detecting defects may have probability of 
detection, probability of false alarm, or receiver operating characteristic 
(ROC) curves [130] (see Fig. 5a as an example). If the characterisation of 
defects is the end point of the DL model, then continuous indices 
measuring the discrepancy between predicted and real properties may 
be adopted. In cases where the type of defect needs to be provided, 
classification indexes can be adopted such as confusion matrices (see 
Fig. 5b as an example) and reliability diagrams for Bayesian neural 
networks [131]. 

Axiom 3. The uncertainties related to the deep learning model, data, 
and hypotheses need to be quantified. 

The quantification of uncertainty is a critical element for DL models 
that are built to work autonomously. This will provide relevant infor
mation about the confidence levels of the models in their working 
environment. To this end, Bayesian techniques for the quantification of 
uncertainty can be used directly within the construction of DL models, e. 
g. through Monte Carlo dropout, Markov chain Monte Carlo, variational 
inference and Bayesian active learning [80]. If the models are designed 
for automation levels equal or higher than Level 2, the effect of the 
propagation of uncertainties through multiple chained models also 
needs to be quantified. This will be an essential element to quantify and 
possibly mitigate the effects of uncertainty amplification if errors are 
propagated from the initial stages of the NDE process. For Level 3 and 
up, this information will be required to let operators know when their 
input is required. 

Axiom 4. The values of any adjustable deep learning model parame
ters must be specified. 

Another critical element for the inspection qualification is the 
identification of influential and essential parameters of an inspection 
method [129]. When automation is enabled by autonomous systems, 
these parameters are likely to be related to model pre-processing pa
rameters that affect the performance of the trained models such as 
scaling or delaying parameters applied to the input data. To this end, 
parametric studies can be applied for the quantification of the output 
variations depending on the input variation, such as global sensitivity 
analysis [132]. The model hyper-parameters can also be adjustable in 
post-training use cases of model compression techniques (e.g. knowl
edge distillation [133], quantisation [134], and model pruning [135]) 
prior to model deployment – i.e. to develop efficient DL models from 
larger ones and enable them on edge devices [136]. 

Axiom 5. Deep learning based autonomous systems need to be self- 
aware of their own limitations. 

Autonomous systems in Levels 3 to 4 must be able to independently 
identify input data that is out of the designated domain of operation 
(see Axiom 1). This can be addressed by quantifying the epistemic 
uncertainty of the DL model output, e.g. if the model is uncertain about 
its prediction, then the input data are likely to fall out of the domain of 
operation. There are two immediate consequences of this axiom: (1) the 
system is more independent of the operator by needing less input in 
order to assess new data, and (2) the data that is flagged by the auton
omous system can be used for later analysis and enhancement of the DL 
models. Risk assessment of these scenarios and mitigation plans that 
foresee how the flagged data are going to be addressed (such as having 
the operator taking over the NDE process) should also be in place for the 
autonomous system to be approved by relevant regulatory bodies. 

Axiom 6. Deep learning models within an automated autonomous 
system need to be traceable. 

At high automation levels, especially when the autonomous system 
has the main responsibility in providing answers to each NDE step (and 
also to SI), the traceability of the results in the interface of models is 
essential. APIs could be designed to produce the appropriate log files 
with informative labels and pointers to the data location. This entails the 
possibility to trace back output data with explanatory labels and meta
data from the latest stages of health management and maintenance de
cisions, to the initial stages of data acquisition. Traceability will also be 
important for (1) industries to keep the know-how of autonomous sys
tems through informative metadata; and (2) regulators that conduct 
audits to ensure that the autonomous decisions are taken appropriately. 
Another potential scenario where the autonomous system could benefit 
from traceable information is to carry out corrections and/or internal 
optimisation of the NDE process. For instance, the system may be able to 
check that the final output is out of its confidence intervals and go back 
to try to optimise the location for acquiring NDE data so that the output 
is less uncertain. 

5.1. Illustrative examples 

The proposed axioms (summarised in Table 3) address the main 
technical areas of interest in order to make any newly developed DL- 
based inspection procedure realistic and industrially applicable in the 
near future. The authors expect that the proposed axioms become a 
pseudo-checklist against which the NDE practitioners and research 
community can quickly monitor the viability of a newly-developed DL 

Fig. 5. Examples of (a) ROC curve and (b) confusion matrix for the evaluation of detection and classification methods, respectively.  
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model. In this context, it is understandable that not all axioms have been 
addressed in the previously reviewed papers as most of them entail proof 
of concepts and small, yet important, advances to the technology. 
Nevertheless, it is desirable to explore the level of adherence of the latest 
papers to the proposed axioms. 

Let us analyse the evolution of the publications made by the 
Department of Mechanical Engineering in Sungkyunkwan University 
(South Korea) that have been authored by Munir et al. [22,56,57] as a 
case study. In all of them, the authors address the classification of defects 
in welds using DL methodologies. In the 2018 publication [56], a FCNN 
was proposed and Axiom 2 about quantifiable performance was 
addressed by giving the accuracy level of the trained model. No indi
cation about the domain of operation (Axiom 1) was provided, i.e. no 
information regarding the range of crack lengths and angles or porosity 
density, and this significantly limits the applicability of such an 
approach. Later, in the following works [22,57], the authors proposed 
the use of a CNN model for the classification of defects, whose archi
tecture is depicted in Fig. 6. In these papers, the authors addressed 
clearly the performance of the models (Axiom 2) through the quantifi
cation of accuracy levels, gave indication about the dispersion (or ex
pected variance given the selected hyper-parameters) of the accuracy 
based on the repetition of the training process (Axiom 3), and gave a 
brief description of the domain of operation (Axiom 1). This series of 
works show a progression in line with the first three proposed axioms. 

In the paper published by Song et al. [40], the authors addressed the 
formation of high-resolution ultrasonic images to characterise defects 
accurately. They included a description of the domain of operation 
(Axiom 1), whereby the different types of defects contained in the 
training dataset were provided. The performance of the model (Axiom 2) 
of the model was not quantified and only a qualitative comparison with 
the ground truth images are given (see Fig. 7), which significantly limits 
an objective analysis of the approach. In a similar situation, the works by 
Virkkunen et al. [47] and Park et al. [64] address the axioms related to 
the quantification of performance (Axiom 2), e.g. by probability of 
detection (PoD) curves and confidence matrices, as well as a description 
of the domain of operation (Axiom 1). However, there is no information 
about the uncertainty of the models (Axiom 3). Another interesting 
example is the defect (cracks) characterisation (length and angle) CNN 
model proposed by Pyle et al. [61] based on ultrasonic images. In this 
work, the performance of the model (Axiom 2) was quantified using the 
error between predicted and real data, the quantification of uncertainty 
(Axiom 3) was partially addressed by training the model 80 times using 
different initial points and obtaining the dispersion values, and the 

domain of operation (Axiom 1) was clearly defined by specifying the 
parameters used in the training database. In a recent work by Pyle et al. 
[139], the authors addressed the notion of uncertainty quantification 
(Axiom 3) in DL-based NDE. The epistemic uncertainty of a CNN for 
sizing pipe cracks from ultrasonic images (initially proposed in 
Ref. [61]) was quantified through different methods, namely, deep en
sembles and Monte Carlo dropout. The success of these methods was 
evaluated through their calibration and anomaly detection perfor
mance. Deep ensembles provide the best results although the quantified 
uncertainty tends to underestimate error. 

Most of the reviewed works address the quantification of the per
formance and the description of the domain of operation, with some 
considerations of uncertainty quantification, i.e. Axioms 1, 2, and 3. 
However, there is no clear consensus on the methods used to satisfy 
these axioms, especially axioms 2 and 3. For Axiom 2, many works rely 
on the direct estimation of model accuracy or error levels, but do not 
directly evaluate the DL model in an inspection environment, e.g. 
through PoD curves and ROCs. The quantification of uncertainty (Axiom 
3) is also heterogeneously addressed with some authors training the 
model multiple times while others quantify probability density functions 
of the inferred parameters. 

In this context, it can be observed that there are some important 
factors that are not addressed in most of the reviewed papers (due to the 
current, early, stage of this technology) that must be in order for them to 
be applicable to industrial settings. These are related to (1) the 
description and identification of influential and essential parameters – 
Axiom 4; (2) the definition of standardised procedures to make the 
autonomous systems self-aware when they are working outside the 
domain of operation – Axiom 5; and (3) the traceability of multiple 
models assembled in autonomous systems – Axiom 6. These elements are 
essential for the real-world application of this technology and are critical 
for DL methods to adopted in industrial applications; but they still 
require a response from the scientific community. These three additional 
axioms have partially been identified thanks to the feedback provided by 
industries from multiple sectors (e.g. aerospace, oil&gas, or nuclear). It 
is worth highlighting that Axiom 6 is more related to the implementa
tion and development end, whereby the DL models are developed and an 
assembly software platform is needed. In this sense, addressing this 
axiom is more in the domain of software engineering, systems integra
tion, and operational procedures than scientific research, but it should 
be considered at development stages in any case. 

Fig. 6. Classification network architecture for weld defects developed by Munir et al. [22].  
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6. Conclusions and future directions 

This paper has reviewed the current state of research of DL-based 
NDE. DL has been successfully used in many applications, such as 
computer vision or natural language processing. For NDE, DL is princi
pally being used as a way to: (1) perform data processing tasks that were 
either too slow or not possible with classical approaches; (2) create in
spection procedures that are more independent of the operator’s expe
rience (hence less prone to errors) – e.g. for damage characterisation; 
and (3) to automate repetitive NDE tasks such as defect detection from 
complex data and structures. However, these works show a great het
erogeneity in the process of developing the DL models, possibly posing 
practical limitations on their applicability to real (industrial) settings. 

A NDE automation roadmap has been proposed that presents a series 
of levels of automation ranging from fully operator-driven NDE to fully- 
automated NDE and SI. The levels, which are based on those from other 
industries such as the aviation sector, delimit the expected obligations of 
both human operator and autonomous system at different stages. It has 
been found that the current state of research is mostly concentrated 
around Levels 1 and 2, i.e. operator assistance and partial automation 
respectively. A series of open challenges associated with each level are 
also identified and described. Note that the aim of this roadmap is to set 
a horizon to both researchers and NDE industries so that the objectives 
for stepping up to a higher level of automation can be more easily set; 
hence standardising the automation journey. 

In this context, the most immediate future opportunities associated 
with challenges that remain open for the research community have been 
identified:  

● Focused data denoising. Most research is currently focused on 
denoising raw ultrasonic signals, but the focused identification of 
elements of interest (e.g. ToF of defect echoes or separation of 
overlapping echoes) remains only vaguely explored. This type of 
data manipulation could drastically improve the PoD while 
providing fewer false alarms. Another potential advantage of using 
cleaner data are easier and more accurate defect characterisation by 
NDE operators. DL could help through methods that automatically 
separate echoes, provide ToF information, even in the presence of 
heavy noise.  

● Image interpretation. While there are many existing methods to create 
and interpret ultrasonic images available in the scientific literature, 
these can be limited for an accurate characterisation of small defects. 
DL super resolution algorithms are being explored with remarkably 
accurate results. The further development of these methodologies for 

materials with complex inner structures (e.g. composite materials) 
could certainly be a game changer by providing accurate images that 
are more easily interpretable for NDE operators.  

● Uncertainty quantification. The use of DL in real inspection scenarios 
is subject to the evaluation of the confidence intervals of the used 
models. To this end, a critical step is to quantify uncertainties in DL 
models that specifically measure both errors related to (1) the alea
tory nature of experimental measurements and (2) the irreducible 
uncertainty associated with the models themselves. This information 
will be critical for the refinement of models until they are both ac
curate yet reliable (i.e. avoiding large output variation). Despite the 
criticality of uncertainty quantification, it remains scarcely 
addressed in the literature, and hence it is anticipated that it will 
become one of the most researched in the future in the field of DL- 
based NDE.  

● Automated system self-awareness. DL-based autonomous systems that 
are intended to automate tasks, must also be able to identify sce
narios that are outliers to their pre-defined domain of operations. 
When an outlier is identified, the system should raise a flag either for 
the operator to take over or the designer to re-train or re-design the 
DL models. To this end, one possible approach is through the quan
tification of epistemic uncertainty, whereby the system can tell itself 
that it is not confident enough in the recent prediction. It is also 
anticipated that the development of self-awareness methodologies 
for DL-based NDE models will be an essential research topic in the 
foreseeable future. 

Lastly, to homogenise the development of DL-based inspection 
methods, this paper also identifies for the first time the axioms that DL 
methods should satisfy to be fully applicable to NDE. The proposed 
fundamental properties are focused not only on the definition and 
evaluation of the DL models (e.g. quantifiable performance or uncer
tainty quantification), but also include implementation aspects such as 
the traceability. It is important to highlight that these axioms are derived 
from the literature review with input from diverse industries. 
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