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Summary

Many partial identification problems can be characterized by the optimal value of a function
over a set where both the function and set need to be estimated by empirical data. Despite some
progress for convex problems, statistical inference in this general setting remains to be developed.
To address this, we derive an asymptotically valid confidence interval for the optimal value through
an appropriate relaxation of the estimated set. We then apply this general result to the problem
of selection bias in population-based cohort studies. We show that existing sensitivity analyses,
which are often conservative and difficult to implement, can be formulated in our framework and
made significantly more informative via auxiliary information on the population. We conduct
a simulation study to evaluate the finite sample performance of our inference procedure, and
conclude with a substantive motivating example on the causal effect of education on income in
the highly selected UK Biobank cohort. We demonstrate that our method can produce informative
bounds using plausible population-level auxiliary constraints. We implement this method in the
R package selectioninterval.
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2 M. J. Tudball et al.

1. Introduction

1.1. General problem

Partial identification problems arise when the observable data are only sufficient to identify a
set or interval in which a parameter of interest is contained. A classical example from Manski
(2003) is the missing data problem, where Y is a discrete random variable and S is a binary
random variable indicating whether Y is observed (S = 1) or not (S = 0). The distribution of Y
can be decomposed into

pr(Y = y) = pr(Y = y | S = 1) pr(S = 1) + pr(Y = y | S = 0) pr(S = 0)

for any y in the support of Y . Given that pr(Y = y | S = 0) is unobserved, the smallest
value that pr(Y = y) could take is pr(Y = y | S = 1) pr(S = 1) and the largest value is
pr(Y = y | S = 1) pr(S = 1) + pr(S = 0). Therefore, although pr(Y = y) itself cannot be point
identified, it can be partially identified via the interval corresponding to the smallest and largest
possible values.

Many partial identification problems can be formulated as the optimal value of a population
objective function, which we write as

ν = inf {Q(θ) : θ ∈ �}, (1)

where Q : R
p → R and � ⊆ R

p. In the missing data example, Q(θ) = pr(Y = y | S = 1) pr(S =
1) + θ pr(S = 0) and � = [0, 1].

The field of stochastic optimization also considers problems of the form in (1) and has built a
large literature on estimation of, and inference to, ν when a sample analogue Qn is observed instead
of Q, where n denotes the sample size. We demonstrate that framing the partial identification
problem as a stochastic optimization problem will allow us to draw upon these existing results.

Specifically, in this article we are concerned with the difficult setting where � must also be
estimated empirically. We consider a setting where � is characterized by inequality constraints
of the form � = {θ : hj(θ) � 0, j = 1, . . . , J }, where we may only observe corresponding
estimators hnj(θ). Within this setting, our goal is to find a lower confidence bound Cn for any
0 < α < 1 such that

lim
n→∞ pr(Cn � ν) � 1 − α, (2)

which will suffice to provide useful statistical inference in a wide set of applications.

1.2. Motivating application

Our investigation is motivated by an applied question: how will selection bias affect the con-
clusions of population-based cohort studies? Many statistical analyses begin by selecting a study
sample from some population of interest. When the sample is drawn nonrandomly, then valid
inference for the population is no longer guaranteed (Bareinboim et al., 2014). Inverse probability
weighting could be used to correct this selection bias (Horvitz & Thompson, 1952; Stuart et al.,
2011), but data on nonselected observations may be limited or unavailable altogether, such that
the weights cannot be estimated. In such settings, there exist approaches to assess the sensitivity
of estimates to a range of plausible inverse probability weights (Aronow & Lee, 2013; Thompson
& Arah, 2014). However, these approaches could be made more informative via a principled
procedure for conducting statistical inference and the inclusion of relevant auxiliary information
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Sample-constrained partial identification 3

about the population. We demonstrate that such improvements can be made by casting these
sensitivity analyses within the general framework described in § 1.1.

We are specifically motivated by studies conducted in the UK Biobank, which is a large
population-based cohort study widely analysed by health researchers. Studies of this cohort are
potentially biased since recruited participants are known to differ systematically from the rest of
the U.K. population on measures such as education, health status, age and geographical location
(Fry et al., 2017; Hughes et al., 2019).

1.3. Existing literature

Statistical inference procedures have been developed for some special cases of our general
problem in (2). An area of particular focus is the so-called ‘sample average approximation’
(Shapiro et al., 2009). In this case, Q is the expected value Q(θ) = E{f (θ , X )} of some function
f and Qn is a sample average Qn(θ) = n−1 ∑n

i=1 f (θ , Xi), where X is some random variable and
X1, . . . , Xn are independent draws of X .

Statistical inference in the presence of �n has been developed for convex sample average
approximations, such that f is convex in θ and � = {θ : hj(θ) � 0, j = 1, . . . , J }, where
hj(θ) = E{gj(θ , X )} and gj(θ , X ) is convex in θ for all j. Shapiro (1991) showed that the plug-in
estimator

νp
n = inf {Qn(θ) : θ ∈ �n} (3)

satisfies a central limit theorem under these convexity assumptions, and some additional regularity
conditions, where �n = {θ :

∑n
i=1 gj(θ , Xi) � 0, j = 1, . . . , J }.

Moving away from convex problems, Wang & Ahmed (2008) considered the special case
of minimizing a known function Q subject to a single expected value constraint � =
{θ : E{g(θ , X )} � 0}. They proposed an approach for calculating a sample size n so that �n
is feasible to some small relaxation of the true problem with high probability.

Our work also overlaps with the partial identification literature in econometrics, much of which
considers inference for identified sets characterized by conditional or unconditional moment
inequalities, commonly interpreted as the set of minimizers of some criterion function (Cher-
nozhukov et al., 2007; Andrews & Soares, 2010; Andrews & Shi, 2013). A related literature
provides inference for parameters lying within partially identified sets, as opposed to inference
for the set itself (Imbens & Manski, 2004; Stoye, 2009). For a more comprehensive review of the
partial identification literature, see Molinari (2020).

2. Confidence intervals for sample-constrained partial identification

2.1. Confidence intervals under known constraints

In this section, we briefly summarize existing results on statistical inference for stochastic
optimization when the set � is observed, which forms the basis of our generalization to situations
where an estimate �n of � is observed instead. Suppose that the parameter space is defined by
a set of inequality constraints

� = {θ : hj(θ) � 0, j = 1, . . . , J },

where an equality constraint for some hj(θ) can be introduced by taking the inequality constraints
of both hj(θ) and −hj(θ). Recall that our goal is to provide inference about the infimum ν =
inf {Q(θ) : θ ∈ �}.
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4 M. J. Tudball et al.

Much of the literature in stochastic optimization is centred on the statistical properties of the
estimator

νn = inf {Qn(θ) : θ ∈ �}. (4)

Consistency of optimal values and optimal solutions to such stochastic optimization problems
is typically achieved by imposing uniform convergence of Qn(θ) to Q(θ). First-order asymptotic
properties are obtained via the functional delta method. The key conditions are that the infimum,
viewed as a function of Q, satisfies some notion of differentiability at Q and that n−1/2(Q − Qn)

converges to a Gaussian process; see Shapiro (1991) for further details.
To make the previous discussion more concrete, consider the following four assumptions

commonly placed on the stochastic optimization problem described above.

Assumption 1. The set of solutions to (1) is a singleton {θ ∈ � : Q(θ) = ν} = {ϑ}.
Assumption 2. Let B ⊆ R

p denote a compact set and C(B) denote the space of continuous
functions on domain B. Then � ⊆ B, Q ∈ C(B) and Qn ∈ C(B) with probability 1.

Assumption 3. It holds that Qn(θ) converges to Q(θ) with probability 1 as n → ∞ uniformly
on B.

Assumption 4. As n → ∞, the sequence Vn(θ) = n1/2{Q(θ)−Qn(θ)} converges in distribution
to a random element V (θ) ∈ C(B), where V (θ) is a Gaussian process with mean 0 and variance
σ 2(θ) ∈ C(B).

These assumptions are jointly sufficient to achieve consistency and asymptotic normality of
νn, which we state formally in the following two propositions.

Proposition 1. Let ϑn ∈ arg min{Qn(θ) : θ ∈ �} be a sample solution, and let νn be defined
as in (4). Under Assumptions 1, 2 and 3, νn → ν and ϑn → ϑ with probability 1.

Proposition 1 is identical to Theorem 5.3 of Shapiro et al. (2009) under the condition that ϑ is
unique.

Proposition 2. Under Assumptions 1, 2 and 4,

n1/2(νn − ν) → N {0, σ 2(ϑ)}
in distribution, where σ 2(ϑ) is the asymptotic variance of νn defined in Assumption 4.

Proposition 2 is an immediate consequence of Theorem 3.2 of Shapiro (1991). Although
we do not restate the proof here, the intuition is that Assumptions 1 and 2 allow a notion of
differentiability of the infimum, and Assumption 4 provides weak convergence of n1/2(Q − Qn)

to a Gaussian process, thus providing the conditions needed for an application of the delta method.
To use Proposition 2 to construct a valid confidence interval, we must take into consideration

that both σ 2 and ϑ are unknown. To this end, we state an additional assumption followed by a
proposition.

Assumption 5. There exists a uniformly strongly consistent estimator σ 2
n (θ) ∈ C(B) for σ 2(θ)

such that supθ∈� |σ 2
n (θ) − σ 2(θ)| → 0 with probability 1.
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Sample-constrained partial identification 5

Proposition 3. Under Assumptions 1, 2, 3 and 5, σ 2
n (ϑn) → σ 2(ϑ) with probability 1.

Assumption 5 applies uniform convergence to an estimator for the asymptotic variance of
Qn(θ). This strong notion of convergence for σ 2

n (ϑn) allows us to construct a confidence bound
of the form

Cn = νn − Zασn(ϑn)n
−1/2, (5)

where Zα is the upper α-quantile of the standard normal distribution. This choice of Cn has
asymptotically exact nominal coverage 1 − α by Proposition 2, Proposition 3 and Slutsky’s
theorem.

2.2. Confidence intervals under sample constraints

We now consider the more difficult setting where the constraint functions hj(θ) need to be
estimated as well.We instead observe an estimator �n = {θ : hnj(θ) � 0, j = 1, . . . , J } comprised
of estimators of the constraint functions hnj(θ). We discuss what properties �n must have to allow
valid statistical inference for ν.

It is tempting to follow the approach of the previous section and construct a plug-in estimator
for ν by simply replacing Q with Qn, and � with �n, and finding the corresponding infimum.
This is the approach taken by Shapiro et al. (2009), given by ν

p
n in (3). A problem with this

approach is that it is possible that � ∩ �n = 0 with probability 1 even as n becomes large. This
means that the true solution ϑ will almost never lie inside �n, prohibiting the construction of a
valid confidence interval for ν, as illustrated by the contrived example below.

Example 1. Consider a problem of the form Q(θ) = θ2 + E(X ) and � = {θ : θ = E(X )},
where X ∼ N (1, 1) is a normally distributed random variable. The plug-in estimators are Qn(θ) =
θ2 +X̄n and �n = {θ : θ = X̄n}, where X̄n is the mean of n independent and identically distributed
draws of X . It follows that ν = 2 and ν

p
n = X̄ 2

n + X̄n, where ν
p
n is the plug-in estimator in (3).

The asymptotic variance of Qn(θ) is σ 2(θ) = 1, which we assume is known. The confidence
bound in (2) is Cn = X̄ 2

n + X̄n − Zαn−1/2. A simple Monte Carlo simulation demonstrates
that the corresponding 95% confidence interval for n = 100 exhibits subnominal coverage of
around 70%.

Existing approaches in stochastic optimization address the problem in Example 1 by restricting
to sample average approximations, and imposing convexity of both Q and h. To allow inference
for a broader class of problems, we propose an intuitive but conservative approach that replaces
�n with an appropriate relaxation. In particular, we propose to use the relaxed set

�r
n = {θ : hnj(θ) � εnj(θ), j = 1, . . . , J }, (6)

where εn(θ) = {εn1(θ), . . . , εnJ (θ)}T is some J -dimensional sequence such that εnj(θ) � 0 for
all θ ∈ B, chosen so that

lim
n→∞ pr(� ⊆ �r

n) � 1 − α1 (7)

for some 0 < α1 < 1. The exact forms of �r
n and εn(θ) are not crucial for our main results,

provided (7) holds, which we discuss in more detail toward the end of this section.
Our proposed confidence bound is of the form Cn(θ) = Qn(θ) − Zα2σn(θ)n−1/2 for some

0 < α2 < 1, where Zα2 is the upper α2-quantile of the standard normal distribution. We need to
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6 M. J. Tudball et al.

select a θ so that (2) is satisfied. This is accomplished by finding the optimal value and solution
over the relaxed constraint set,

νr
n = inf {Qn(θ) : θ ∈ �r

n} and ϑ r
n ∈ arg min{Qn(θ) : θ ∈ �r

n}, (8)

and constructing a confidence bound of the form

Cn = Cn(ϑ
r
n) = νr

n − Zα2σn(ϑ
r
n)n−1/2. (9)

We now need to demonstrate that Cn covers ν with known probability in the limit. To this end,
we need an additional technical assumption to hold.

Assumption 6. Let ζ r
n ∈ arg min{Cn(θ) : θ ∈ �r

n} be the optimal solution of Cn(θ) over �r
n.

Then |ζ r
n − ϑ r

n| converges to 0 in probability.

Assumption 6 is imposed so that two important quantities become asymptotically close. The
first quantity is Cn(ζ

r
n ), which is the infimum over all confidence bounds in �r

n. This confidence
bound is important because it provides a lower bound for other quantities with known coverage
probabilities, which is a fact we utilize in our main result in Theorem 1. The second quantity is
Cn(ϑ

r
n), which is our main confidence bound proposed in (9).

We argue that Assumption 6 is reasonable in the sense that ζ r
n and ϑ r

n are solutions over
two objective functions that converge uniformly to the same limit. To make this intuition more
concrete, we provide some sufficient conditions for Assumption 6 in the Supplementary Material.
Essentially, if Assumption 3 is satisfied, and hnj(θ) and εnj(θ) converge to hj(θ) and 0 for all
j = 1, . . . , J uniformly on B with probability 1, then we can show that both ϑ r

n and ζ r
n converge

to ϑ with probability 1.
We claim that Cn provides an asymptotically valid lower confidence bound.

Theorem 1. Suppose that we select a relaxed constraint set �r
n as in (6) and significance level

0 < α1 < 1 such that limn→∞ pr(� ⊆ �r
n) � 1 −α1. Suppose that we also select a significance

level 0 < α2 < 1. Then, under Assumptions 1–6,

lim
n→∞ pr(Cn � ν) � 1 − α1 − α2.

Here we outline the key steps in the proof. We begin by defining a deterministic sequence δn =
Zα2εn−1/2, where ε > 0 is some small constant. We then show that pr(Cn � ν) is bounded from
below by the sum of two quantities: pr{Cn(ζ

r
n ) � ν −δn} and pr{|σn(ζ

r
n )−σn(ϑ

r
n)| � ε}−1. The

second quantity converges to 0 under Assumption 6. The remainder of the proof follows a similar
argument to the main lemma of Berger & Boos (1994). Whenever � ⊆ �r

n, we know that Cn(ζ
r
n ),

which is the infimum over all confidence bounds in �r
n, will cover ν at least as often as Cn(ϑn),

which is confidence bound (5). Therefore, pr{Cn(ζ
r
n ) � ν, � ⊆ �r

n} � pr{Cn(ϑn) � ν, � ⊆ �r
n}.

We also know that pr{Cn(ϑn) � ν, � ⊆ �r
n} = pr{Cn(ϑn) � ν} − pr{Cn(ϑn) � ν, � �⊆ �r

n}
by the law of total probability. In the limit, the first probability on the right-hand side is equal to
1 − α2 by Proposition 2 and the second probability is at most α1 by assumption. This allows us
to arrive at our main result.

The proof sketch also provides some insight into why the naive plug-in estimator ν
p
n defined

in (3) may fail to yield a valid confidence interval. A crucial quantity is pr(� ⊆ �r
n), which is

known under an appropriate choice of εn(θ). The corresponding quantity for the plug-in estimator
is pr(� ⊆ �n), which could be arbitrarily small. In Example 1, this probability is zero.
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Sample-constrained partial identification 7

It remains to discuss how to construct a relaxed set �r
n. Whenever � can be characterized

by a set of moment inequalities, such that hj(θ) = E{mj(θ)}, the moment inequalities literature
summarized in § 1.3 could be used to construct �r

n. A more conservative relaxed set could be
constructed via an application of the intersection bound. Suppose that the following assumption
holds on the constraint functions.

Assumption 7. For all θ ∈ � and j = 1, . . . , J , n1/2{hnj(θ) − hj(θ)} → N {0, σ 2
j (θ)} in

distribution and σ 2
nj(θ) is a consistent estimator for σ 2

j (θ).

This fairly weak assumption means that hnj(θ) is pointwise asymptotically normally distributed
and that there is a consistent estimator for the variance. This assumption allows us to select

εn(θ) = Zα1jσnj(θ)n−1/2,

where α1 = α11 +α12 +· · ·+α1J . It is straightforward to show that this choice of εn(θ) satisfies
(7). We could shrink the size of �r

n by assuming that hn(θ) = {h1,n(θ), . . . , hnj(θ)}T converges
pointwise to a multivariate Gaussian with covariance matrix � and consistent estimator �n. This
would allow us to construct �r

n as an ellipsoid confidence region.

Remark 1. It remains to discuss how one would select α1 and α2. As a rule of thumb, we
typically choose the midpoint α1 = α2 = α/2. It is tempting to select α = α1 + α2 and choose
Cn as the largest confidence bound over all α1 and α2 satisfying this equality. This would mean that
α1 and α2 are sample-dependent quantities and so Theorem 1 will not directly apply. However,
we can reason heuristically that the best choice of α1 and α2 should lie at an interior point α1 > 0
and α2 > 0. For a fixed sample, as α1 → 0 and α2 → α, �r

n → B, and thus Cn approaches
the 100(1 − α)% confidence interval over the unconstrained problem. As α1 → α and α2 → 0,
Cn → −∞, and thus the confidence interval becomes arbitrarily wide.

Remark 2. So far, we have focused on inference for the infimum; however, partial identification
problems are often characterized by an identified set of the form I = [νl , νu], where νl =
inf {Q(θ) : θ ∈ �} and νu = sup{Q(θ) : θ ∈ �} (Imbens & Manski, 2004; Chernozhukov
et al., 2013). Suppose that �r

n is chosen so that pr(� ⊆ �r
n) � 1 − α1/2. Moreover, let ν

r,l
n =

inf {Qn(θ) : θ ∈ �r
n} and ν

r,u
n = sup{Qn(θ) : θ ∈ �r

n} denote the optimal values, and let ϑ
r,l
n

and ϑ
r,u
n denote the corresponding optimal solutions. The estimated interval can be written as

[νr,l
n , νr,u

n ], and we can construct a confidence interval by combining the lower confidence bound
for νl and the upper confidence bound for νu, so that

[νr,l
n − Zα2/2σn(ϑ

r,l
n )n−1/2, νr,u

n + Zα2/2σn(ϑ
r,u
n )n−1/2]

will cover I with probability at least 1 −α1 −α2. This is the two-sided analogue of the one-sided
confidence interval proposed in (9) and Theorem 1.

3. Sensitivity analysis via a logistic model

3.1. Set-up

We now return to the motivating example of selection bias in population-based cohort stud-
ies briefly described in § 1.2. Specifically, we generalize the sensitivity analysis proposed by
Thompson & Arah (2014), who defined a logistic model for the probability of sample selection
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8 M. J. Tudball et al.

and proposed to select parameters based on domain knowledge, or enumerate a large number of
possible parameters. This approach is challenging to implement in the presence of complicated
selection mechanisms with many parameters. Plausible sets of parameters that introduce bias
in estimates of interest may be overlooked. Therefore, we begin by framing Thompson & Arah
(2014) as an optimization problem over a space of plausible parameters, and describe how rele-
vant auxiliary information could be introduced to further restrict the parameter space and provide
more informative bounds, such as survey response rates, population means and negative controls.
An additional sensitivity analysis, Aronow & Lee (2013), is generalized in the Supplementary
Material.

Consider an independent and identically distributed draw of size N from an infinite population.
For concreteness, we can think of this finite draw as the set of individuals who are eligible to
enter the sample. Let Si ∈ {0, 1} be a selection indicator for whether individual i enrols in
the sample, where Si = 1 indicates sample participation, and let the observed sample size be
denoted by n = ∑N

i=1 Si. For notational convenience, we assume that S1 = · · · = Sn = 1 and
Sn+1 = · · · = SN = 0.

Within the observed sample, we observe a vector of variables related to sample selection
Wi ∈ R

K . As in Thompson & Arah (2014), we assume that the probability of sample selection
admits a logistic form,

e(Wi; θ) = pr(Si = 1 | Wi) = exp(θ0 + θ1Wi1 + · · · + θkWiK )

1 + exp(θ0 + θ1Wi1 + · · · + θkWiK )
, (10)

where θ = (θ0, θ1, θ2, . . . , θK )T. We further assume that the sample is generated by some true
selection probabilities e(Wi; θ∗) parameterized by θ∗.

For illustration, suppose that our object of interest is the population mean of a random variable
Xi. We can write the population mean, and corresponding sample mean, in terms of θ∗ as

β(θ∗) = E(Xi) = E{Xi/e(Wi; θ∗) | Si = 1}
E{1/e(Wi; θ∗) | Si = 1} , βn(θ

∗) =
∑n

i=1 Xi/e(Wi; θ∗)∑n
i=1 1/e(Wi; θ∗)

. (11)

The expression in (11) relies on Xi ⊥ Si | Wi, which we assume throughout.
Since we only observe Xi when Si = 1, the true parameter θ∗ cannot be estimated. Thompson

& Arah (2014) proposed to consider a space of plausible values for θ∗, and identified a worst-case
lower bound and worst-case upper bound for βn(θ

∗). Inference to β(θ∗) itself was not considered.
Formally, we select a parameter space � in which we are confident that θ∗ resides. We then take
the infimum and supremum of βn(θ) over the space �.

3.2. Sensitivity parameters

Since we have assumed a logistic form for the selection probabilities (10), we can select
sensitivity parameters that have a natural interpretation in terms of odds ratios.

Without loss of generality, suppose that each Wik has mean zero and standard deviation one
within the sample. We can then choose a parameter 1 � 1 such that

−1
1 � exp(θk) � 1 (k = 1, . . . , K). (12)

We can interpret 1 as the change in the conditional odds of sample selection from a one standard
deviation increase in Wik , holding all else fixed. When 1 = 1, sample selection is completely
random. Of course, we could select sensitivity parameters 1k on a variable-by-variable basis
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for k = 1, . . . , K , although choosing a single 1 = maxk 1k simplifies the interpretation of the
sensitivity analysis.

The intercept term θ0 also needs to be bounded. We can choose two parameters l
0, u

0 ∈ (0, 1)

such that

l
0 � exp(θ0) � u

0, (13)

which can be interpreted as the odds of sample selection among those for whom Wik = 0
for all k .

Rearranging (12) and (13) shows that the sensitivity parameters (l
0, u

0, 1) characterize a
compact subset of R

K+1:

θ ∈ � = [log(l
0), log(u

0)] × [log(1/1), log(1)]K . (14)

From here, the estimand and estimator can be respectively defined for the worst-case lower
bound of β(θ) as

ν = inf {β(θ) : θ ∈ �}, νn = inf {βn(θ) : θ ∈ �}.

We could of course estimate the worst-case upper bound for β(θ) by taking the supremum of
βn(θ) over �; see Remark 2. Naturally, we can also consider estimators other than sample means,
such as ordinary least squares or two-stage least squares.

3.3. Auxiliary information constraints

We now introduce several common examples, where there may be discordance between known
population quantities and quantities implied by the inverse probability weights. In general, pro-
vided we can formulate the constraints as a statistical test with a known null distribution, they
can be placed within our framework.

Example 2. Suppose that we know the response rate for a survey-based sample r =
E{e(Wi; θ∗)}. It is straightforward to show that E{1/e(Wi; θ∗) | Si = 1} = 1/r. This means that
the within-sample expectation of the true inverse selection probabilities is equal to the inverse
response rate. We therefore only want to consider parameters θ that imply this inverse response
rate. The corresponding constraint can be written as

hnj(θ) = 1

n

n∑

i=1

{1/e(Wi; θ) − 1/r} � Zα1j/2σnj(θ)/n1/2,

where σnj(θ) is the sample standard deviation of 1/e(Wi; θ).

Example 3. Suppose that we know the population mean E(Wik) of some Wik ∈ Wi. The
inverse-probability-weighted sample mean of Wik should therefore equal this mean in expectation,
since

E{Wik/e(Wi; θ∗) | Si = 1}
E{1/e(Wi; θ∗) | Si = 1} = E(Wik).
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10 M. J. Tudball et al.

This is conceptually similar to the raking procedure in survey sampling (Deming & Stephan,
1940), which adjusts sampling weights to match known marginal totals. The covariate mean
constraint can be written as

hnj(θ) = 1

n

n∑

i=1

{Wik − E(Wik)}/e(Wi; θ) � Zα1j/2σnj(θ)/n1/2,

where σnj(θ) is the sample standard deviation of {Wik − E(Wik)}/e(Wi; θ).

Example 4. Suppose that we are confident that higher values of Wik are associated with an
increased probability of sample selection. For example, Wik could be years of education and
we might know from comparisons with representative samples, such as the census, that better
educated individuals are more likely to select into the sample, conditional on other selection
variables, so that θj � 0 a priori.

Example 5. Suppose we know that two variables Wik and Wik ′ are uncorrelated in the popu-
lation. The inverse-probability-weighted correlation between Wik and Wik ′ should therefore be
zero. For example, due to the independent assortment of chromosomes, biological sex and auto-
somal genetic variants should be independent in the population; however, Pirastu et al. (2021)
demonstrated that there is significant correlation within the UK Biobank. This constraint can be
formulated in several ways, for example by fixing the regression coefficient of Wik on Wik ′ to be
zero.

Examples 2, 3 and 5 are two-sided constraints such that we also want these inequalities to hold
for −hnj(θ).

Remark 3. In the population means setting, Miratrix et al. (2018) demonstrated how to place
shape constraints on the weighted empirical distribution of the response. Their approach involves
constructing the worst-case weighted distribution given the Aronow & Lee (2013) bounding
assumptions; see the Supplementary Material. This results in a set that contains the oracle
weighted distribution with probability approaching 1. Provided we have a valid test, we can
implement shape constraints within our framework without the need to characterize the worst-
case weighted distribution. In the simplest case, we might want a variable to follow a known
distribution in the population. For example, the distribution of IQ scores should be normal with
mean 100 and standard deviation 15, which is a stronger constraint than Example 3. This could
be formulated as a Kolmogorov–Smirnov test, and the relaxed constraint set could be constructed
via the null distribution of that test.

4. Simulations

The aim of these simulations is to provide a brief assessment of the finite sample and lim-
iting properties of the inference procedure described in § 2. For concreteness, we simulate the
sensitivity analysis for selection bias described in § 3. Our parameter β(θ) and estimator βn(θ)

are both the coefficient of a weighted linear regression. In particular, a regression of Yi on Xi
for (Xi, Yi) ∼ N (0, I2), where I2 is the identity matrix. The weights take the form in (10) with
variables Wi = (Xi, Yi).

We consider three distinct scenarios for the constraints. In the first scenario, we impose only
sensitivity parameters l

0 = 0.11, u
0 = 0.25 and 1 = 3. In the second scenario, we also

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asac042/6649721 by U

niversity of Bristol Library user on 29 N
ovem

ber 2022

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asac042#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asac042#supplementary-data


Sample-constrained partial identification 11

Table 1. Coverage frequency for the three scenarios over 5000 Monte Carlo replications
Sample size

Scenario 10 25 50 100 200 500 1000

1 0.972 0.992 0.995 0.997 0.998 0.996 0.995
2 0.936 0.974 0.981 0.983 0.979 0.966 0.947
3 0.953 0.985 0.991 0.991 0.987 0.986 0.979

impose a direction constraint θ1 � 0 as in Example 4. In the third scenario, we impose both the
previous direction constraint, and set the response rate equal to 0.15 as in Example 2. In each
scenario, we use the discussion in Remark 2 to construct a two-sided 95% confidence interval
for the identified set I = [νl , νu], where νl = inf {β(θ) : θ ∈ �}, νu = sup{β(θ) : θ ∈ �} and
� takes the form in (14). The first and second scenarios have no sample constraints and so the
confidence interval corresponds to that in (5). The third scenario employs the confidence interval
proposed in (9) and Theorem 1.

Each scenario has distinct properties. In the first scenario, there are two solutions to the
population optimization problems, thus violating Assumption 1. In the second scenario, the
addition of a direction constraint rules out one of the two solutions and satisfies Assumption 1.
In the third scenario, the introduction of a sample constraint necessitates the use of our relaxed
confidence bound. In this scenario, we use our rule of thumb from Remark 1 to select α1 = α2 =
0.025 for both the upper and lower bounds of the two-sided confidence interval.

Table 1 summarizes the results and broadly aligns with our theoretical predictions. The first
scenario violates Assumption 1 and the impact of this violation is substantial overcoverage of
the confidence interval. Intuitively, this occurs because the sample solution will occur at, or near,
the population solution that happens to minimize βn(θ) in any given sample, which will result
in a systematically wider confidence interval. The second scenario satisfies all assumptions for
Proposition 2 and therefore converges to exact nominal coverage. The third scenario imposes
a sample constraint and exhibits some overcoverage. This overcoverage can occur because our
confidence bound in Theorem 1 sidesteps the covariance between the constraints hnj(θ) and
objective function Qn(θ), instead imposing a worst-case intersection bound.

In this simulation exercise, the weight model is comprised of two variables. The Supplementary
Material contains an additional simulation exploring the computation time of our R package
selectioninterval (R Development Core Team, 2022) as the number of variables in the
weight model increases.

5. Applied example: effect of education on income

We consider an instrumental variable design looking at the effect of education on income in
the UK Biobank cohort. Our instrument is exposure to an educational reform taking place in
England in 1972. Our exposure is whether an individual remained in school until at least age 16,
and our outcome is whether an individual earned more than £31 000 per year in 2006. We restrict
our sample to individuals who turned 15 within 12 months of September 1972, and we control
for sex and month-of-birth indicators. The unweighted estimate is 0.18 (95% confidence interval
0.08–0.28). An in-depth exposition of this design can be found in Davies et al. (2018) and the
Supplementary Material.

We first apply the sensitivity analysis described in § 3.2 without auxiliary constraints, where
the probability weights contain sex, years of education, income, age, days of physical activity per
week, and an interaction term between education and income. We choose sensitivity parameters
l

0 = 0.02, u
0 = 0.25 and 1 = 2, so that the average individual in the sample has an odds of
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−1 10
Intervals for the effect estimate

Constraints

None
1
2
3
4
Point

Fig. 1. Estimated intervals (thick lines) and corresponding confidence intervals (thin lines) for effect estimates in the
applied example. Point represents the unweighted point estimate. Each constraint is added sequentially. No constraint
means that only the sensitivity parameters l

0 = 0.02, u
0 = 0.25 and 1 = 2 are imposed. Constraint 1 sets the

response rate equal to 5.5%. Constraint 2 sets the proportion of males in the population to be 49.5%. Constraint 3 sets
the proportion of households earning more than £31 000 to be 21%. Constraint 4 sets the average age of individuals

to be 48.98 years.

sample selection between 0.02 and 0.25, and each variable in the model can induce a marginal
odds of sample selection between 0.5 and 2. Our sensitivity analysis suggests that the effect
estimate lies in the interval [−1.34, 0.94] (95% confidence interval [−1.84, 1.29]). This interval
is completely uninformative as it spans the full range of possible estimates.

One explanation for this conservativeness is that this simple sensitivity analysis does not utilize
all of the information available to us on the target population and the sample selection mechanism.
The minimizing (maximizing) weights corresponding to this interval imply that the proportion of
males in the population is 38.52% (46.6%), and the proportion of households with a gross income
greater than £31 000 is 95.84% (95.66%), all of which are inconsistent with known characteristics
of the U.K. population.

To address this incongruence, we consider four constraints that are typical of the information
available to applied researchers using datasets such as the UK Biobank. The first constraint is the
response rate of the UK Biobank (5.5%), which is the proportion of individuals who entered the
cohort after receiving an invitation. The second constraint is the proportion of males in the U.K.
population within the UK Biobank age range of 40–69 (49.5%). The third is the proportion of U.K.
households earning more than £31 000 per year at the date of UK Biobank recruitment in 2006
(21%).The fourth is the average age of individuals within our two-year age bracket (48.98).All sta-
tistics were obtained from publicly available records from the U.K.’s Office of National Statistics.

Figure 1 shows the resulting estimated intervals (thicker lines) and their corresponding confi-
dence intervals (thinner lines) where each constraint is added sequentially. The estimated intervals
and confidence intervals correspond to those described in Remark 2. We can see that each addi-
tional constraint reduces the width of the interval, with constraints 3 and 4, the household income

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asac042/6649721 by U

niversity of Bristol Library user on 29 N
ovem

ber 2022



Sample-constrained partial identification 13

and age constraints, respectively, seemingly having the largest marginal impact. The top inter-
val includes all constraints, and is quite informative for the desired effect, rejecting the null
and suggesting an effect estimate in the range 0.08–0.22 (95% confidence interval 0.04–0.38).
The unweighted estimate still lies within this interval, but our sensitivity analysis suggests some
increased uncertainty in the range of effect estimates. These results also suggest that, despite the
potential conservativeness of the confidence interval in Theorem 1, it can still produce informative
bounds in practice.

6. Discussion

There has been some existing work on bootstrap inference for Rosenbaum-type sensitivity
analyses (Zhao et al., 2019). This approach considers a fixed parameter space �. It is unclear
how to select the relaxation parameter εn(θ) in a bootstrap analogue of our method under estimated
constraints. Simple approaches, such as constructing �r

n via asymptotic approximations and then
bootstrapping the distribution of νr

n, are plausible, but their statistical properties remain to be
explored.

In some instances, including our selection bias application in § 3, the target of inference is
Q(θ∗), where θ∗ is some true parameter lying within �, rather than ν. Suppose that � is known
and that we have a two-sided identified set [inf θ∈� Q(θ), supθ∈� Q(θ)] as in Remark 2; then
if Q(θ∗) lies near the boundary of this set, and the set has positive width, the noncoverage
probability of the corresponding confidence interval is effectively one-sided in the limit. A naive
two-sided confidence interval constructed around the identified set may be too conservative.
Imbens & Manski (2004) discussed approaches for maintaining uniform coverage of Q(θ∗). The
central limit theorem established by Shapiro (1991) for known � is amenable to their framework,
although, to our knowledge, has not been formally used in this setting; extending this result to
sample-constrained problems would be a valuable contribution. Stoye (2009) further extended
the work of Imbens & Manski (2004) by developing confidence intervals that exhibit uniform
coverage for Q(θ∗), without relying on assumed superefficiency of the estimated interval width.

A final consideration is the computational burden of our approach. Our general inference
procedure in § 2 relies on the optimization problems in (8) being solvable, but the computa-
tional complexity of these problems will vary, depending on the application. Our R package
selectioninterval relies on out-of-the-box global and local optimization algorithms.
There are no theoretical guarantees of convergence to the global optimum; however, we have
not observed a failure of convergence in our simulations.
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Supplementary material

Supplementary Material includes proofs for the results in § 2, further details for the applied
example in § 5 and an extension of Aronow & Lee (2013). An R package to implement
the sensitivity analysis described in § 3 is available at https://github.com/matt-
tudball/selectioninterval.
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