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Ruairi Fox1 and Seth Bullock1

Abstract
Referential communication is central to social and collective behaviour, for example honey bees communicating nectar
locations to each other or co-workers gossiping about a colleague. Since such behaviour typically is considered to be
‘representation hungry’, it is often assumed to require the possession of complex cognitive machinery capable of ma-
nipulating symbolic representations of the world. However, a series of simulation studies have shown that it can be
achieved by very simple embodied artificial agents controlled by evolved recurrent artificial neural networks that are
challenging to interpret in symbol-processing terms. In this paper, we extend this paradigm to explore scenarios in which a
pair of agents, each of which is privy to a different piece of private information, must jointly solve a task that requires both
pieces of information to be communicated, compared and acted upon, i.e., each agent must simultaneously play the role of
both signaller and receiver during an unstructured referential communication interaction that is bidirectional. We dem-
onstrate evolved agents that are able to solve this task, and analyse the extent to which their situated, embedded and
embodied communicative behaviour can be considered to be a step towards understanding the minimal cognitive basis for
human language.
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Introduction

It is commonplace, or arguably even ubiquitous, for people
and other animals to use signalling behaviours to convey
referential information. That is, signallers often use signals
to inform observers about hidden, private or remote states of
affairs that the observers would otherwise be ignorant of.

One classic example is the behaviour of group-living
honey bees, which communicate the location of resources
such as nectar-rich flowers and potential nest sites by
performing a ‘waggle dance’ for their nest-mates (von
Frisch, 1965). During this dance, a bee will waggle back
and forth energetically whilst repeatedly tracing a charac-
teristic figure-of-eight path on a ‘dance floor’ within the
hive. Watching bees are able to infer the direction, distance
and quality of the signalled resource by attending to the
orientation, duration and vigour of the figure-of-eight dance.

Whilst the complexity of this bee communication system
is extremely impressive given their relatively small brains,
human language stands as the most sophisticated vehicle for
referential communication so far discovered. Human lan-
guages differ from the honey bee Tanzsprache in many
ways. Perhaps most distinctively, they exhibit complex,
compositional syntax and can be used to achieve a very

wide range of functions, from giving orders and making
promises to reciting poems and telling jokes. However, like
the bee waggle dance, the primary function of human
language is referential communication, allowing one indi-
vidual to inform another of something that they did not
already know.

Whether in humans or less sophisticated creatures, ref-
erential communication is often assumed to involve com-
plex cognitive machinery capable of building and
processing internal symbolic representations of the world,
and translating these structure-sensitive, quasi-linguistic
representations into external, meaningful symbols that
can be decoded by a suitably sophisticated observer (Fodor
& Pylyshyn, 1988). However, a series of studies have
demonstrated that this type of communication can in fact be
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achieved in the absence of any recognisable ‘language of
thought’ (Fodor, 1975) by very simple simulated agents that
possess no pre-defined language, no pre-established lexicon
of available symbols, no pre-arranged, dedicated signalling
channel, and no pre-set notion of turn taking or shared
attention (Campos & Froese, 2017, 2019; Quinn, 2001;
Williams et al., 2008). These agents are situated in simple
environments and are typically controlled by small Con-
tinuous Time Recurrent Neural Networks (CTRNNs; Beer,
1995) that are not easy to interpret in symbol-processing
terms (Manicka, 2012).

To date, these studies have tended to consider scenarios
in which one signaller agent is tasked with informing one
receiver agent about one aspect of the environment. Either
the first agent employs a dedicated signaller strategy whilst
the second employs a separate dedicated receiver strategy
(Williams et al., 2008), or both agents use the same strategy
but are each primed to play either the signaller role or the
receiver role during a particular signalling episode (Campos
& Froese, 2017, 2019). By contrast, real-world referential
communication is often bidirectional, with each agent at-
tempting to both inform and be informed by the other during
the same signalling episode. A pair of competing stags
might each communicate their resource holding potential
(fighting ability) to the other in advance of fighting (Parker,
1974), or two friends might debate which pub to visit.

In this paper, we extend the paradigm employed in the
studies mentioned above in order to explore scenarios in
which a pair of agents, each of which is privy to a different
piece of private information, must jointly solve a task that
requires both pieces of information to be shared, compared
and acted on, i.e., each agent must play the role of both
signaller and receiver in an unstructured bidirectional ref-
erential communication interaction. We demonstrate con-
ditions under which evolved agents are able to solve this
task, and analyse the extent to which their situated, em-
bedded and embodied communicative behaviour can be
considered to be truly ‘symbolic’, before considering the
extent to which this line of research has the potential to shed
light on the minimal cognitive basis for communication that
is as complex as human language.

Previous Studies

Defining Referential Communication

Communication has proven somewhat difficult to define
within the animal behaviour community and also the
adaptive behaviour community. On the one hand, defining
communication as any episode in which one agent influ-
ences another one is too loose, allowing pushing and
shoving to count as communication. On the other hand,
requiring that communication must involve signallers en-
coding conceptual content in syntactically structured signals

composed from meaningful symbols that are then decoded
by an observer in order to create or update their internal
representation of the world presupposes too much about the
symbolic nature of communication and allows no room
within the category for proto-languages and other precur-
sors to full-blown human language.

Moreover, whilst requiring that a signalling interaction
must increase the fitness of the signal receiver (Johnstone,
1997) excludes interactions that are malicious, deceptive or
manipulative, it also rules out genuine efforts at commu-
nication that happen to be mistaken, redundant or inef-
fective in some way. Similarly, requiring that the signal
producer gains a direct fitness benefit from signalling may
exclude self-sacrificing communications that benefit the
receiver(s) to the detriment of the signaller, for example
deliberate admissions of guilt, as when a criminal admits to
their crime.

Even requiring, as Maynard Smith and Harper (2003,
p.15) do that a signal is ‘an act or structure that alters the
behavior of another organism, which evolved because of
that effect, and which is effective because the receiver’s
response has also evolved’ leaves unspecified what the
receiver’s signal consuming behaviour evolved for, opening
the door to the inclusion of passive mimesis and masquerade
behaviours as types of communication (as when an insect
species has evolved to resemble a twig in order to avoid
being predated).

For the purposes of this paper, we will propose and
employ the following definition:

Referential communication occurs when the signal-producing
behaviour of one agent (the signaller) has the proper function to
adapt a second agent (the receiver), via its sense organs, to
some state of affairs, and when this second agent’s signal-
consuming behaviour has the proper function to be so adapted.

Here, the ‘proper function’ of an agent behaviour should
be understood in the historical (teleosemantic) sense es-
tablished by Millikan (1989b): roughly, the proper function
of an evolved device, D, is to perform the function that,
when performed by D’s ancestors, led to proliferation of the
genes responsible for D’s existence. Thus, the function of a
heart is to pump blood, because it was by pumping blood,
rather than being red and wet, or making a bumpety-bump
noise, that ancestral hearts contributed to the proliferation of
genes for hearts.

Proper functions are normative. For example an injured
heart that cannot pump blood is malfunctioning – it has the
function to pump blood (by virtue of its evolutionary his-
tory), but is currently unable to carry out this function. Note
also that proper functions are not straightforwardly statis-
tical or causal dispositions: a sperm has the function of
fertilising an egg (by virtue of the evolutionary history of
sperm) regardless of the fact that the vast majority of sperm

2 Adaptive Behavior 0(0)



that have existed have not managed to carry out this
function.

Notice that whilst key signalling scenarios fall within the
definition presented above, some other superficially similar
types of interaction do not. According to the above defi-
nition, for example, when one agent makes an alarm call in
order to alert another agent to the fact that a predator is
approaching, and, in response, the second agent instinc-
tively hides or flees, this is a canonical example of suc-
cessful referential communication. However, since the
definition does not specify that communication behaviours
must succeed, it also allows failed signalling attempts to
count as referential communication. For example the fol-
lowing would all count as faulty, defective or malfunc-
tioning signalling behaviours: if no receivers are present or
able to hear the signaller’s alarm call, or the signaller makes
the alarm call in error when their belief that a predator is
approaching is mistaken, or the signaller tries to make the
alarm call but makes a different call by mistake, or a gust of
wind blowing through a hollow log sounds to a receiver like
an alarm call and causes them to run and hide unnecessarily.

By contrast, the definition rules out scenarios that re-
semble signalling but, upon closer examination, are more
accurately described in terms of ‘mind-reading’ or ‘ma-
nipulation’ (Krebs & Dawkins, 1984) in which one agent
exploits the ‘tacit suppositions’ or ‘behavioural biases’ of
another (e.g. Bullock, 1998). For instance if one agent gives
away some information to another agent accidentally, as
when a poker player reveals that they are bluffing by
subconsciously making an involuntary ‘tell’ such as rubbing
their nose, this will not count as referential communication
because the unfortunate player’s informative behaviour
does not have the proper function of adapting the observer’s
behaviour to the fact that they have a weak poker hand
(Millikan, 1984). Conversely, if one agent deliberately
misleads another by, for example giving the alarm call that
triggers in receivers an instinctive flee response associated
with predator attack, when it knows that there is in fact no
predator, this will also not count as referential communi-
cation (although this behaviour is parasitic on an existing
referential communication system) since, although the
signaller’s behaviour functions to adapt the behaviour of the
listening agent to a state of affairs (that a predator is ap-
proaching), the deceived receiver’s behaviour does not have
the proper function of being so adapted under circumstances
in which there is in fact no predator approaching (Artiga,
2014; Bullock, 1997; Noble et al., 2001).

Note that the above definition does not require that the
state of affairs being communicated about needs to be re-
mote in space or time from either the signaller or the re-
ceiver. A courtroom witness indicating the identity of one
criminal by pointing at them with her finger and then
naming a second criminal who was still on the run would
count as engaging in two instances of referential

communication. However, the displaced reference that is
employed in the second example is a powerful feature of
human communication and is understood to otherwise be
rare throughout natural signalling systems. For example,
whilst the honey bee dance language can handle spatial
displacement to some extent, it is not clear that honey bees
can communicate about temporally displaced states of af-
fairs in the past or future.

Finally, note that whilst this framing of signalling is
consistent with the notion that referential communication
involves the exchange of quasi-linguistic symbolic repre-
sentations within which signallers encode information about
the state of the world that can subsequently be decoded by
receivers, this is not an explicit requirement of the definition
(or of the teleosemantic approach to language and mental
content in general) which remains neutral about the exact
nature of the signal producing and consuming devices and
the precise mechanisms by which agents use communica-
tion to adapt each other to states of affairs. Consequently, a
dynamical systems theoretic interpretation of cognitive
behaviour (Beer, 2000) is equally consistent with this model
of communication.

Evolving Referential Communication

Perhaps the most seminal paper in this area was published
by Quinn (2001), who demonstrated the evolution of
successful communication behaviour in a pair of simulated
model agents that were not already provided with a dedi-
cated communication channel or a set of symbols with
which to communicate. The context for Quinn’s work was a
number of prior papers that claimed to have demonstrated
the evolution of language in simple simulated agents (e.g.
Maclennan & Burghardt, 1993; Werner & Dyer, 1992).

One study that exemplifies this style of work is due to
Werner and Dyer (1992) who evolved a pair of simulated
agents to solve a ‘mating’ problem within a 200-by-200 grid
world. In this scenario, one agent was mobile and capable of
receiving ‘acoustic’ signals but was otherwise ‘blind’,
whilst a second agent was ‘sighted’ and capable of pro-
ducing ‘auditory’ signals but remained stationary. The joint
task of the pair of agents was to successfully navigate the
mobile agent to the cell occupied by the stationary agent. At
each time step, the stationary agent used its evolved rule-set
and its visual appraisal of the current location of the mobile
agent to determine which of its repertoire of auditory signals
it should produce. Each signal was represented by a three-bit
string, allowing for eight distinct sounds to be employed.
Simultaneously, at each time step the mobile agent used its
evolved rule-set plus the auditory signal that it received
from the stationary agent to determine in which direction it
should move. After many generations of evolution, the
agents co-ordinated on rule-sets that allowed the mobile
agent to consistently navigate to the location of the
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stationary agent – despite the relationship between the
available sounds and the available movement behaviours
being entirely arbitrary, initially random and evolutionarily
unconstrained. The results of the paper showed that a
successful communication scheme could arise spontane-
ously within a simple agent system, and that agents capable
of communication were able to solve the mating problem in
half as many moves as agents that were evolved without the
ability to communicate.

However, whilst this style of work was extremely in-
fluential, the extent to which it could claim to shed light on
the evolution of language was limited by the existence
within the model of dedicated communication channels and
discrete sets of pre-defined symbols (e.g. eight different
sounds) and pre-defined actions (e.g. taking a step in one of
eight different directions), which ensured that the challenge
facing agents was not to evolve a language from scratch
(whatever that might mean) but rather to simply co-ordinate
on an appropriate lexicon that maps eight different symbols
to eight different behaviours (Steels, 1997). A different
approach would be needed if models were to help explain
either the dynamics of truly grammatical languages (Kirby,
2002) or the cognitive basis for communication itself
(Quinn, 2001).

In response, Quinn (2001) introduced an evolutionary
simulation model (Bullock, 1997) in which the commu-
nicating agents were idealised versions of small, wheeled
Khepera robots, possessing eight infra-red sensors (each
with a 5 cm range) and two independently motor-driven
wheels capable of achieving a maximum speed of 8 cm per
simulated second (see Figure 1). Pairs of these agents, each
controlled by the same evolved artificial neural network,
were initially placed close to each other but oriented at
random, within a continuous infinite 2D space, and were
jointly tasked with travelling at least 25 cm (i.e., 10 agent
radii) from their starting location in any direction within
10 simulated seconds whilst remaining within sensor range
of each other and without colliding. This task was designed
such that, in order to succeed, both agents needed to agree
on the same direction of travel without recourse to any
compass, landmarks, etc.

A successful strategy was evolved in which the pair of
agents dynamically co-allocate the roles of ‘leader’ and
‘follower’ (Figure 2). This is achieved by each agent first
rotating until its infra-red sensors indicate that it is facing its
partner. The agent that manages to do so first takes the role
of follower and moves back and forth until the other agent
has turned to face it. At this point, the follower approaches
the leader and the leader retreats backwards (whilst both
maintain a fixed separation distance), resulting in both
moving off together in an arbitrary but consistent direction.

By contrast with previous papers, in this case the agents
could not be described as having solved the communication
task by agreeing on how to use a pre-defined vocabulary of

symbols. It was not even clear that the communication
strategy involved any symbol use at all, or relied on the use
of any internal representations of aspects of the world. In
fact, the evolutionary history of the strategy reveals that
initially non-communicative behaviours that allowed one
agent to find and move towards the other agent without
colliding with it had become ritualised into a dance-like
behaviour that allowed the agents to co-ordinate their
movement in order to solve the task. Rather than lending
itself to a quasi-linguistic symbol-processing interpretation,
the evolved behaviour was more readily explicable in terms
of dynamical systems ideas of coupling and
synchronisation.

However, this aspect of the work can also be considered a
shortcoming. Was the evolved behaviour in fact non-
communicative, being an example of mere coordination?
Even if the evolved behaviour could be classed as com-
munication, what exactly was being communicated? The
evolved behaviour was not a clear example of referential
communication, and was certainly not displaced referential
communication, as the task did not require that the agents
engage with anything beyond their immediate sensor
readings.

In an attempt to demonstrate the evolution of artificial
communication conclusively,Williams et al. (2008) evolved
successful agent communication in the context of a more
complex task – one that could only be solved by displaced
referential communication. Here, one agent (known as the
sender) must communicate a target location to a second
agent (known as the receiver), and the receiver must then
navigate to this location. The agents operated within a 1D
periodic environment (a ring) and were each controlled by a
five-neuron CTRNN. Each agent possessed two proximity
sensors, one extending clockwise and the other anticlock-
wise, each reporting the angular distance to the other agent
to a range of π/8. Each agent also possessed a bearing sensor
that either indicated their own current angular location (for
the receiver) or the angular separation between their current

Figure 1. The positions of sensors (numbered grey rectangles)
and actuators (black lozenges) on a Khepera robot. Figure taken
from Quinn (2001).

4 Adaptive Behavior 0(0)



position and the target location (for the sender). A dia-
gram of the environment and the agents is provided in
Figure 3.

Each individual communication strategy was determined
by the parameters of two CTRNNs, a signaller network and
a receiver network, but both were encoded on the same
genome ensuring that one evolutionary individual repre-
sented one entire solution to the problem, composed of an
explicit sender strategy plus a separate explicit receiver
strategy. Some form of communication is necessary in order
to solve the task as the receiver must navigate to a target
location about which they initially are ignorant. In the first
experiment, no constraints were placed on agent interaction
which led to the evolution of two main strategies: ‘shep-
herding’ and ‘sit and wait’. In the former case, the sender
would ‘push’ and ‘pull’ the receiver in order to guide them
to the goal, whereas in the latter the sender would stop
within proximity sensor range of the target in order to in-
dicate its location. However, the fact that the agents solved
the task whilst remaining within proximity sensor range of
each other ensured that whilst the evolved behaviour was
clearly referential communication it could not be cat-
egorised as displaced referential communication.

To remedy this, in the next experiment the sender’s
movement was restricted such that it was constrained to
remain within one quarter of the environment, with the
targets located in one of four locations outside of this region
(see Figure 3). This restriction renders the previously
evolved strategies ineffective and instead requires the use of
displaced referential communication. Evolved agents were
able to succeed at the task, but did not generalise well to
target positions beyond the four that they were evolved to
deal with. The evolved solution effectively relied on a set of
four distinct movement signals, each associated with one of
the four target locations, but had little ability to commu-
nicate about points lying between these locations. This
evolved communication system is described by the authors
as ‘symbolic’ and is compared to the use of a simple set of
‘words’. In a final experiment, the number of target loca-
tions was increased to 10 (Figure 3), encouraging the
evolution of a communication strategy that could generalise
over the entire range of target locations, demonstrating that

it was possible to evolve displaced generalised referential
communication in simple agents.

Campos and Froese (2017) extended this study by
simplifying the agents involved in order to allow for more
analysis to be performed, and to demonstrate that signalling
and receiving behaviour could be handled by the same 3-
node CTRNN. They employed an infinite non-periodic 1D
environment (a line), with one target appearing uniformly at
random in the range [0.5, 1] and two agents initially placed
independently at locations drawn uniformly at random from
the range [0, 0.3] (see Figure 4, top). The sender agent could
sense the location of the target but was not permitted to
leave the ‘signalling zone’ [0, 0.3], whilst the receiver could
not sense the location of the target but was permitted to
move freely throughout the environment. Each agent had
three sensors: a binary contact sensor that was on only if
agents were separated by a distance of less than 0.4, a self-
position sensor that indicated the agent’s own location in the
world and a target sensor. For the sender, the target sensor
indicated its current distance to the goal. For the receiver,
this sensor gave a constant reading of �1. This allowed for
the receiver and sender to behave differently during a trial,
despite being controlled by networks with the same pa-
rameters. The evolved agents were able to successfully
communicate the location of the target over the range [0.5,
1] using a displaced referential communication strategy in
which the location of the target was related to the amount of
time that the agents spent within contact range.

Subsequently, the authors were able to extend this model
to a 2D environment within which a pair of agents con-
trolled by the same evolved 6-neuron CTRNN were able to
communicate the location of a target using a displaced
referential communication scheme that made use of both the
bearing and distance to a target location in a compositional
manner with parallels to the honey bee’s waggle dance
language (Campos & Froese, 2019). This paper represents
the state of the art in this line of research, but leaves open the
challenge of exploring whether two-way communication
can be achieved by similar cognitive architecture and also
the question of to what extent these studies and studies like
them can shed light on the evolution of more sophisticated
linguistic behaviour.

Figure 2. Communication behaviour exhibited by the pair of agents evolved by Quinn (2001): (i) each initially randomly oriented agent
rotates until it senses its partner; (ii) B senses A first; (iii) B oscillates back and forth until A senses B; (iv) A and B move off together in
the direction indicated by the orientation of the agent that was first to detect its partner (B in this case). Figure taken fromQuinn (2001).
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Evolving Bidirectional
Referential Communication

In this paper we will consider two different referential
communication tasks. The first, which we term the one-way
communication task, is taken from Campos and Froese
(2017). The second, bidirectional task, which we will
term the two-way communication task, is defined here for
the first time.

One-Way Communication

During the one-way communication task, two agents move
and interact within a simple 1D environment for 300 sim-
ulated units of time, one playing the role of signaller and the
other playing the role of receiver. The signaller can sense

the location of a stationary target within the environment
and aims to communicate this information to the receiver.
The receiver is not able to sense the location of the target
but aims to navigate to it based on information that it
obtains from the signaller. The receiver and signaller can
each detect their own location and can also detect whether
or not they are within a threshold distance of each other,
but have no other means of influencing one another.

At the start of each trial, both agents have their neuron
activation levels set to zero and their positions initialised to
locations selected uniformly at random from the range [0,
0.3], and the target location, G, is placed at a location
drawn uniformly at random from the range [0.5, 1].
During a trial, the signaller’s movement is restricted to lie
within a ‘signalling zone’ [0, 0.3], whereas the movement
of the receiver is unrestricted (see Figure 4). Each agent

Figure 3. The environment and agents employed byWilliams et al. (2008). Left: The sender is marked with an S and the receiver with an
R. A stationary goal (grey diamond) is randomly positioned at the start of each trial. Centre: The region that the sender was constrained
to in the second set of experiments (grey) and the four possible target locations (diamonds). Right: The region that the sender was
constrained to in the third set of experiments (grey) and the 10 possible target locations (diamonds). Figures taken from Williams et al.
(2008).

Figure 4. Top: The one-way communication task environment. Both agents are initially randomly located within the [0,0.3] region. The
receiver may move freely, but the signaller is restricted to remain within this region. For each trial, the target is randomly located
within the region [0.5,1]. Bottom: The two-way communication task environment. Both agents are initially located at the origin and both
may move freely. The true target is randomly located within one of the upper (green) regions ±[0.65,1]. The false target is randomly
located within one of the lower (red) regions ±[0.5,0.85]. The values of the target coordinates are guaranteed to differ in sign, and the
absolute values of the target coordinates are also guaranteed to differ by at least 0.15 distance units.
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receives input from its three sensors, each providing an
external weighted input to one unique node within its own
3-node CTRNN controller (see Table 1). Firstly, each
agent possesses a binary contact sensor which delivers a
value of +1 if the two agents are separated by a distance of
less than 0.4 and a value of 0 otherwise. Secondly, each
agent also receives input from its self-position sensor,
which delivers a value corresponding to its own real-
valued co-ordinate within the environment. The agents
differ in that their third sensor either provides their
distance to the target location (if the agent is the signaller)
or provides a constant value of �1 (if the agent is the
receiver).

Each agent’s behaviour is controlled by a small Con-
tinuous Time Recurrent Neural Network (CTRNN) com-
prising three model neurons that are updated by Euler
integration of the standard equation for a CTRNN neuron’s
dynamics:

τi
dyi
dt

¼ �yi þ σ
�
βi þ

X
wijyj þ wiI Ii

�
(1)

Here, τi is the time constant of neuron i, yi is the current
activation of neuron i, βi is the bias of neuron i, wij is the
weight on the connection from neuron j to neuron i, Ii is the
magnitude of any external sensory input to node i, wiI is the
weight on this sensory input channel, and σ(.) is the neuron
activation function, which is the standard sigmoid function:
σðxÞ ¼ ð1þ e�xÞ�1

Each agent’s behaviour is controlled by a separate copy of
the same genetically encoded CTRNN. That is the CTRNNs
controlling the signaller and the receiver have the same structure
(i.e. weights, biases and time constants), but each receives its
own sensory inputs and maintains its own internal state. All
neuron activation values are set to zero at the start of each trial
and each simulation step represents 1 unit of simulated time.

Each agent’s movement is driven by the activation level
of one CTRNN node. The maximum speed of each agent is
fixed at 0.01 units of distance per unit of simulated time.
(Acceleration, momentum, friction, etc., are not considered
as part of the model.) For each simulation step, each agent’s

movement is updated using equation (2) below, where Δx is
the change in the agent’s position, Δt = 1 is the number of
units of time that pass during one simulation step (which is
small with respect to the range of neuron time constant
values), V = 0.01 is the maximum speed at which an agent
can travel, and M is the activation of the neuron that drives
the motor, which lies in the range [0, 1]. Note that whereas
each sensory input to the network is weighted, there is no
weight on the output neuron’s connection to the motor.

Δx ¼ 2ðM � 0:5ÞVΔt (2)

Two-Way Communication

The two-way communication task is designed to be as
comparable with the original one-way communication task
as possible, but differs in several key respects.

During the two-way communication task, two agents
move and interact within a simple 1D environment, each
playing the role of both signaller and receiver. One of the
agents is able to directly sense the location of one ran-
domly located stationary target within the environment,
whilst the other agent is able to directly sense the location
of a second randomly located stationary target. The target
that is furthest from the origin is the true target for both
agents. The other target is an irrelevant false target. The
target locations are generated such that (i) they lie on
opposite sides of the origin, (ii) they each lie between
0.5 and 1.0 distance units from the origin and (iii) the
difference between the absolute values of their locations
is at least 0.15, meaning that one is significantly further
from the origin than the other.

Despite each agent not knowing whether they can
sense the true target or the false target, their joint aim is
for both of them to navigate to the true target, the one that
is furthest from the origin. To do this they must exchange
information in order to (i) determine which target to
approach, and (ii) (for one of the agents) determine where
this target is.

Table 1. Sensor Definitions for Sensors Employed in the One-way Communication Task and the Two-way Communication Task.

One-way communication task:

1. Self-Position sensor A continuous-valued sensor that returns the position of the agent in the environment
2a. Distance to target sensor A continuous-valued sensor that returns the distance between the agent and a target location
…or 2b. Constant value sensor A sensor that always returns the value �1
3. Contact sensor A binary sensor that returns +1 if the distance to the other agent is less than or equal to 0.4,

otherwise 0
Two-way communication task:
1. Self-position sensor A continuous-valued sensor that returns the position of the agent in the environment
2. Distance to target sensor A continuous-valued sensor that returns the distance between the agent and a target location
3. Proximity sensor A continuous-valued sensor that returns the distance separating the two agents
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At the start of each trial, both agents are located at the origin
with neuron activation levels set to zero. The location of the
true target, G, is chosen uniformly at random from either the
range [0.65, 1] or the range [ � 0.65, �1.0], with equal
frequency. If the true target,G, is positive, a second false target
location, g, is chosen uniformly at random from a range of
negative locations [ � 0.5, � (G � 0.15)], otherwise g is
chosen uniformly at random from a range of positive locations
[ + 0.5,� (G + 0.15)], thus, ensuring that jGj � jgj ≥ 0:15, i.e.,
the absolute location of the true target is at least 0.15 greater
than the absolute location of the false target.

During a trial, the movement of both agents is unre-
stricted (see Figure 4). Each agent again receives input from
three sensors, each providing an external weighted input to
one unique node within its own 3-node CTRNN. Firstly,
each agent possesses a sensor which indicates the signed
distance separating the agents from each other (i.e. the
contact sensors from the original one-way communication
task have been replaced with proximity sensors). Secondly,
each agent receives input from its self-position sensor.
Finally, each agent’s third sensor now provides the distance
to one unique target location; one agent senses the distance
to the location of the true target whilst the other senses the
distance to the location of the false target. The agents are not
aware of whether they are sensing the true target or the false
target.

The scenario is otherwise identical to the one-way
communication task.

Evolving CTRNNs

For each of the two tasks described above, a genetic al-
gorithm (GA) was employed to discover successful so-
lutions. The scheme employed is based on that described
by Campos and Froese (2017). Each evolutionary gen-
eration comprised a population of N = 50 individual ge-
nomes, each a vector of 18 real values in the range [-1, +1]
used to parameterise a single CTRNN. The 18 values
encoded three sensory input weights (from the contact/
proximity sensor, the self-position sensor and the target
sensor, respectively), and a bias, time constant and three
inter-neuron weights for each of the three CTRNN neu-
rons. Each gene value was linearly re-scaled to a range
appropriate to the phenotypic component that it encoded:
weights and biases were mapped to the range [ � 16, +16]
and time constants to the range [50, 100]. Note that one
individual genome is used to encode the parameters of both
agents’ CTRNNs, which share the same weights, biases,
time constants and initial activation values.

For the one-way communication task, the score for each
individual trial was calculated on the basis of the distance
between the target location and the final position of the
receiver agent as follows:

ST
i ¼ max

�
0; 1� ��RT

i � GT
��� (3)

Where STi is the score that was achieved on trial T by in-
dividual i from the current population of networks, RT

i is the
location of the simulated receiver agent controlled by
network i at the final time step of trial T, and GT is the
location of the target during trial T.

For each individual network, fitness was calculated on
the basis of performance across 20 trials, each randomly
specifying the location of the target and the initial locations
of the two agents. For each generation, the same 20 trials
were used to evaluate each network in the population. The
fitness of an individual network was calculated as a
weighted sum of the scores that it achieved across these
20 trials, where each score’s weight was equal to the re-
ciprocal of its rank (ascending) within the list of 20 trial
scores for that individual, thus, ensuring that the individ-
ual’s worst performing trial was weighted most significantly
(×1) and its best performing trial was weighted least sig-
nificantly

�
× 1
20

�
. This weighted sum was then normalised

such that the maximum possible fitness was 1 and the
minimum was zero.

Selection of parents was fitness rank proportionate, using
Baker’s linear ranking method (with maximum expected
offspring equal to 1.1) and Baker’s stochastic universal
sampling (Baker, 1987). Offspring were generated asexu-
ally. The offspring genome was mutated by applying ad-
ditive Gaussian perturbation to the value of each gene. A
vector of 18 independent samples from a standard Gaussian
distribution was normalised such that it summed to a mu-
tation magnitude value drawn from a Gaussian distribution
with zero mean and variance equal to 0.2. This vector was
then added to the vector of offspring gene values. Any
mutated gene values lying outside the range [� 1, +1] were
clipped to the nearest legal value. If the new offspring did
not achieve a fitness greater than that of its parent, its place
in the new generation was taken by its parent.

For convenience, values used for each parameter de-
scribed above are shown in Table 2. To the best of our
knowledge these are equivalent to those employed by
Campos and Froese (2017).

For the two-way communication task, the score for each
individual trial was calculated on the basis of the distance
between the true target location and the final positions of
both agents as follows:

ST
i ¼ max

�
0; 1� ��AT

i � GT
��� ��BT

i � GT
��� (4)

Where STi is the score achieved on trial T by individual i
from the current population of networks, AT

i and BT
i are the

locations of two simulated agents controlled by network i
(Ai and Bi) at the final time step of trial T, and GT is the
location of the true target during trial T. This fitness function
requires both agents to navigate to the true target location,
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giving higher scores when both agents perform well. This
means that if the agents are unable to reach a consensus
regarding which target is best then they will always receive
a low score and therefore joint coordination of their be-
haviour is essential.

For each individual network, fitness was calculated on
the basis of performance across 20 trials, 10 featuring a true
target with a random positive location, and 10 featuring a
true target with a random negative location. For each
generation, the same 20 trials were used to evaluate each
network in the population. The fitness of an individual
network was calculated as a weighted sum of the scores that
it achieved across either the 10 trials featuring a true target
with a positive location or the 10 trials featuring a true target
with a negative location, whichever was worst. Again, each
score’s weight was equal to the reciprocal of its rank (as-
cending) within the list of 10 trial scores achieved by that
individual on the chosen side of the environment, thus,
ensuring that the individual was assessed on its worst
performing side of the environment and that its worst
performing trial on that side was weighted most signifi-
cantly (×1) and its best performing trial on that side was
weighted least significantly

�
× 1
10

�
. Again, this weighted sum

was normalised such that maximum possible fitness was
1 and the minimum was zero.

Results

One-Way Referential Communication

Figure 5 shows the highest fitness value in the population
across five representative 5000-generation evolutionary
runs. One commonly evolved mediocre, degenerate solu-
tion to the task is for the receiver to ignore the signaller and

move to the average target location. This achieves an av-
erage fitness of 0.816 and corresponds to the behaviour
represented by the purple line between generation 0 and
2000. There also appears to be a significant fitness plateau at
around 0.875, which some runs struggle to surpass (e.g. the
one represented in blue). Because of the increased
weighting given by the fitness function to the lowest scoring
trials, in order to gain a higher fitness score the network
must be able to generalise its performance across the range
of target locations. Manual analysis of the population
represented in blue revealed networks that can only suc-
cessfully deal with a limited range of target locations.

Most evolutionary runs were able to achieve solutions
with a fitness U0.95, which corresponds to recognisably
competent signalling behaviour. Here, we will analyse two
of the best performing evolved solutions. Network 1
(Figure 6) and Network 2 (not shown) enable the signal
receiver to finish trials within 0.05 distance units of the
target location in 99.2% and 98% of cases, respectively. By
comparison, the best performing network reported by
Campos and Froese (2017) managed to achieve this degree
of accuracy in 97% of the trials.

Figure 7 demonstrates the behaviour of Network 1 on
three distinct trials, each starting from the same initial
conditions but confronted with a different target position.
The figure shows the locations of each agent and the target,
and also the values for each of the agents’ sensors
throughout the trials. The strategy performed by Network
1 has two phases. Firstly, for roughly 100 units of time both
agents move in a positive direction. As a consequence of the
fact the signaller is prevented from moving outside its
‘signalling zone’, this enables the two agents to separate and
extinguishes differences caused by their initial random
starting positions. Subsequently, both agents reverse di-
rection and move back towards the origin before reversing

Table 2. Parameters for the One-Way Communication Task
Scenario, CTRNN and Genetic Algorithm.

Population size : 50
Generations of evolution : 5000
Genome length : 18 real values
Legal gene allele range : [ � 1, +1]
CTRNN size : 3 neurons
Tau (τ) range : [50, 100]
Weight range : [ � 16, +16]
Bias (θ) range : [ � 16, +16]
Max. expected offspring : 1.1
Mutation magnitude : 0.2
Trials/fitness assessment : 20
Trial duration : 300 units of time
Integration step : 1 unit of time
Contact sensor range : 0.4 distance units
Other sensor ranges : Unlimited
Motor output : Linear mapping
Maximum speed : 0.01 distance units/time unit

Figure 5. Maximum population fitness over time for five
representative evolutionary runs of the one-way
communication task, smoothed by taking a 50-generation rolling
average.

Fox and Bullock 9



their direction of motion a second time and moving towards
the target. The signaller indicates the location of the target
by performing this reversal at a time related to the mag-
nitude of the target location co-ordinate, thereby altering the

moment at which the two agents regain contact with each
other. This allows the receiver to modulate the point at
which it makes its second reversal of motion such that it is
able to finish the trial at the target location.

An alternative evolved strategy (Network 2) adopts a
similar scheme, but exploits the fact that only the receiver is
capable of moving to negative locations. Network 2’s be-
haviour also features two phases. Firstly, the signaller and
receiver travel in a negative direction. The signaller is
prevented from travelling to negative coordinates (which
are outside the signalling zone) allowing the receiver to
move out of contact sensor range, which enables the agents
to extinguish the effect of variation in their initial conditions
caused by their random initial starting positions. Both
agents then reverse direction, moving positively towards the
target (although the signaller cannot move further than the
upper boundary of the signalling zone). The signaller re-
verses direction a second time at a moment dictated by its
sensory reading of the target location. This serves to de-
termine the amount of time for which the two agents are
within contact range of each other, thereby enabling the
receiver to modulate its outward motion such that it reaches
the target location at the end of the trial.

Figure 8 depicts the overall accuracy of the Network
1 and Network 2 strategies. The left-most pair of graphs
show the mean distance between the receiver and the target

Figure 6. The weights, biases and time constants of Network 1, a
high fitness individual for the original one-way communication
task.

Figure 7. The behaviour of Network 1 on three example one-way communication trials (one per column) that differ only in terms of
the target location. The top row presents the positions of the agents and the target throughout the trial. The middle and bottom rows
present the manner in which sensor values vary over the course of each trial for the receiver and signaller, respectively.
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location at the end of a range of trials for Network 1 agents
(top) and Network 2 agents (bottom). For the vast majority
of the target range, this distance is well below the arbitrary
success threshold of 0.05 employed by Campos and Froese
(2017). The worst performance tends to be associated with
the most extreme target locations. The central pair of graphs
shows the mean final position of the receiver over a large
range of initial conditions for Network 1 (top) and Network
2 (bottom). The receiver position closely approximates the
target location with some slight divergence at the extremes
of the target location range. The standard deviation around
the performance is small, indicating that the Networks are
able to achieve a high performance consistently, regardless
of variation in the agents’ initial starting locations. The
right-most pair of graphs support the hypothesis that the
precise timing of contact being re-established between the two
agents (Network 1) and the precise duration of sensory contact
between the two agents (Network 2) is likely to be strongly
involved in achieving successful task behaviour since the
correlation between these aspects of the agents’ joint behaviour
and the true location of the target are extremely strong.

In order to further understand the behaviour of the two
networks, the neural states of agents controlled by Networks
1 and 2 have been plotted for a range of trials featuring
targets at one of six different locations (Figure 9). Note that
unlike the behaviour of the signaller, which gradually di-
verges in a manner that depends on the target location, the
behaviour of the receiver is identical across these trials until
a certain point in time. This corresponds to the initial
‘separation phase’, during which the behaviour of the
signaller has no impact on receiver movement. After this
point however, the behaviour of the network diverges,
with the neural states branching in a way that depends on
the signaller’s location in a way that strongly correlates
with the target location. It may be tempting to identify
the sharp discontinuities in the neural trajectories as
‘decision points’ corresponding to moments at which the
agents achieve communication. However, these dis-
continuities correspond to points at which either (i) the
signaller reaches a signalling zone boundary, (ii) the
signaller and receiver separate to the extent that they
lose contact with each other. Removing the signaller

Figure 8. Left: The mean absolute distance between receiver and target location at the end of a trial, plotted against the location of the
target during the trial for Network 1 (top) and Network 2 (bottom). Error bars show one standard deviation. Centre: The mean
receiver position at the end of a trial, plotted against the location of the target during the trial for Network 1 (top) and Network 2
(bottom). Error bars show one standard deviation and the line y = x depicts perfect performance. Right: For Network 1 (top), the average
time at which contact is re-established after the first period of separation for signaller and receiver, plotted against the location of the
target. The Pearson product-moment correlation coefficient, r = �0.9959. For Network 2 (bottom), the total amount of time during
which the agents are within contact sensor range, plotted against the location of the target. The Pearson product-moment correlation
coefficient, r =�0.9892. Each data point summarises 100 trials sampling all signaller and receiver initial locations drawn from the set {0,
0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27} (with replacement). (Note that the vertical scales differ between plots.)
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from a trial at any point prior to the agents losing contact
for the final time tends to have a (negative) impact on
receiver behaviour. Thus, rather than being associated
with a discrete event, agent communication is a tem-
porally extended, continuous interaction reliant on the
timing of the onset of contact and/or the duration of this
contact.

Two-way Referential Communication

Solutions for the two-way communication problem were
significantly harder to evolve than for the original one-way
communication task, as shown by Figure 10. Not only do
the evolutionary runs for the two-way communication task
tend to exhibit larger variance in fitness across consecutive
generations, but there is also a much larger variance in the
range of fitness values achieved overall. For the original

Figure 9. The neural dynamics for the signaller (left) and receiver (right) controlled by Network 1 (top) and Network 2 (bottom),
depicted for six independent trials of the one-way communication task with target locations ranging from 0.5 (blue) to 1.0 (brown) in
steps of 0.1.

Figure 10. Maximum population fitness over time for five
representative evolutionary runs of the two-way
communication task, smoothed by taking a 50-generation rolling
average.
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one-way communication task, a non-zero fitness will always
be awarded to an agent that stays still or moves less than
150 distance units in the positive direction. However, for the
two-way communication task most evolutionary runs fea-
ture several initial generations in which every genome
achieves a fitness of zero.

As the fitness function is based on the combined distance
of both agents from the true target, if the agents travel to
different sides of the environment their fitness will almost
always be zero. Similarly, if the agents always go to one
side, regardless of whether the true target is on that side or
not, then the overall fitness will once again be zero, as the
fitness function only considers performance on the agents’
worst performing side. Lastly, if the agents do not move at
all, they will again receive zero fitness as the combined
distance to the true target will be greater than 1. This means
that a randomly initialised population is far less likely to
include strategies that achieve non-zero fitness, and that the
first few generations will therefore often perform very
poorly. Consequently, once a mutant strategy with non-
zero fitness arises, it is likely that it will reproduce
rapidly leading to a strongly converged population,
despite the relatively weak selection pressure that is
implemented. Nevertheless, although the median best

fitness was close to 0.6 across all 20 simulation runs,
some networks managed to achieve higher values, up to
0.9 which corresponds to recognisably communicative
performance.

Figure 11. The behaviour of two successfully evolved CTRNNs on two examples of the two-way communication task. The top row presents the
positions of the two agents and the two targets (the true target and the false target) throughout the trial. The middle and bottom rows present the
manner inwhich sensor values vary over the course of each trial for each of the two agents, respectively. The left-hand pair of columns showNetwork
3’s behaviour on two representative trials, one in which the true target is in a positive location and one in which the true target in is a negative location.
The right-hand pair of columns show Network 4’s behaviour, again on a trial with a positive true target and a negative true target, respectively.

Figure 12. The weights, biases and time constants of a high fitness
individual for the two-way communication problem (Network 4).
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The behaviour of two successful networks is presented in
Figure 11. Due to the continuous range of values that the
proximity sensor can take (by comparison with the binary
contact sensor used for the one-way communication task)
the two-way communication behaviour has the potential to
be far more subtle than that observed in the previous task.
As a consequence, the behaviour of the evolved networks
can be significantly harder to analyse. However, as with the
original one-way communication task, the evolved be-
haviour typically appears to have two phases. In the first
phase, movements are performed that allow each agent to
share the location of their own goal with the other agent (the
‘communication phase’). In the second phase, both agents
move towards the true target (the ‘decision phase’).

For Network 3, it appears that the communication phase
culminates at around t = 120 when Agent 1 (which is able to
sense the location of the positive target but does not initially
know whether this is the true target or not) decides to either
alter its trajectory by moving towards the positive target
(causing Agent 2 to accompany it) or, alternatively, decides
to continue to follow Agent 2 towards the negative target.
The former outcome obtains in situations where Agent 1’s
co-ordinate at the t ≈ 120 ‘decision point’ is higher than
some threshold, but the precise mechanism by which the
agents are able to make this ‘decision’ correctly across the
range of trials that they must deal with is not obvious from
observing their external behaviour. The behaviour of
Figure 12 is significantly different. The agents commence
each trial by moving towards the negative target in a si-
nusoidal pattern that relies on them making use of their
continuously varying proximity sensors. However, if the co-
ordinate of the third turning point of this sinusoidal be-
haviour is greater than the co-ordinate of their first turning

point (which occurs at around t = 50 in almost every trial),
then the agents cease this sinusoidal behaviour and travel
directly towards the positive target. Again, whilst it is
possible to correlate a feature of the agents’ joint trajectory
with the ‘decision’ to choose the positive target versus the
negative target, the extent to which this account captures the
true causal mechanisms in play is not clear.

Figure 13 shows the performance of Networks 3 and
4 across a range of trials in which the positive and negative
target locations vary between [0.5, 1] and [ �0.5, �1.0],
respectively, exhaustively sampled at intervals of 0.01 units.
Scenarios that were invalid during evolution due to the
absolute values of the target locations being too close to-
gether are coloured black. Both heat maps show good
performance across the entire range of scenarios. For
Network 3, the lowest scoring scenarios are in a small
region near (1.0, �0.85) where performance falls to zero in
the worst cases. When the true target is negative, fitness
scores are in general higher, indicating that the agents are
using a more efficient method of communication for this
half of the problem. By contrast, Network 4 is capable of
stronger performance overall. Notably, there are no sce-
narios for which the fitness score falls below 0.56, meaning
there is strong performance across the whole range of
scenarios to which the networks’ lineage was exposed
during evolution.

In order to determine how well these networks gener-
alise, Figure 14 plots their two-way communication per-
formance across an extended range of scenarios that involve
target locations outside the range employed during evolu-
tion, and also removes the lower bound on target separation
(i.e. the difference between the absolute values of target
locations is no longer constrained to be greater than 0.15).

Figure 13. Heat maps showing variation in two-way communication performance across a range of trials for Network 3 (left) and
Network 4 (right). The triangular regions enclosed by a red line correspond to trials experienced during evolution of Networks 3 and
4. The central black region corresponds to trials that the evolving populations were not exposed to because the difference between the
absolute value of the two target locations is less than 0.15.
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Scenarios that were employed during evolution are sur-
rounded by a red line and scenarios for which targets are an
equal distance from the origin are coloured black (as correct
behaviour is undefined in this case). Whilst Network 3 can

cope with negative targets that are far more extreme than
those experienced during evolution (which is consistent
with its higher performance for negative targets in general),
overall, both heat maps indicate that the evolved solutions

Figure 14. Heat maps showing the extent to which Network 3 (left) and Network 4 (right) are able to generalise their two-way
communication performance beyond the scenarios to which their ancestors were exposed during their evolutionary history. Again,
the triangular regions enclosed by a red line correspond to the trials employed throughout the evolutionary runs. Note the scales on
each heat map are different and also differ from those employed in Figure 13.

Figure 15. Trajectories for Agent 1 (orange) and Agent 2 (blue) using Network 3 to solve the two-way communication task across a
range of trials with different positive and negative target locations. Tasks for which the true target was in the negative target range are
coloured green for the first and last 100 time steps.
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can generalise only to some limited and unpredictable
extent, with performance tending to decline steeply towards
zero for increasingly novel scenarios.

In Figure 14, a blue region of low fitness can represent
one of two different failure modes. When performance
changes abruptly from high fitness to low fitness (i.e. from
red to blue), this can represent agents persisting with
visiting one side of the environment when the target is now
on the other side, i.e., consistently making the wrong
choice regarding which side to navigate towards. Alter-
natively, when fitness gradually degrades over a region of
the heat map (i.e. from red through white to blue), this
represents agents becoming increasingly unable to accu-
rately reach the target location by the end of the trial, but
still tending to predict correctly on which side of the
environment the target location lies. This may be caused
either by a failure in the communication scheme’s ability to
direct agents to targets beyond a certain point, or by the
fact that limits on agent speed prevent them from having
enough time to reach the target location before the end of a
trial, despite in principal having the ability to travel to it
accurately.

Earlier it was presumed that the agents first signal their
private information about a target location and then decide

which target they should travel towards based on the in-
fluence that this signalled information has had on their
trajectory. Closer examination of the agent behaviour
demonstrates that this discretised ‘signal-decide-act’ in-
terpretation is not correct.

Figures 15 and 16 depict, for Networks 3 and 4, re-
spectively, the trajectories of both signallers and receivers
across every pair of target locations in the range [0.5,1] for
the positive goal and [-0.5,-1] for the negative goal sampled
at intervals of 0.01. (Note that this set of trials includes ones
in which the magnitude of the true target’s co-ordinate lies
in the range [0.51, 0.65], i.e. trials that would not be en-
countered by the agents during evolution.) Trials for which
the negative target was in fact the true target have been
shaded green for the first and last 100 time steps. These
figures show that the behaviour of both agents is determined
by the true target location far earlier than described pre-
viously. For both Network 3 and Network 4, the behaviour
of both agents is already influenced by whether the true
target is positive or negative by t ≈ 50, implying that the
agents have already begun to ‘decide’ which side to nav-
igate towards before this point.

The method by which the agents exchange information
exploits the fact that they are initialised in the same location

Figure 16. Trajectories for Agent 1 (orange) and Agent 2 (blue) using Network 4 to solve the two-way communication task across a
range of trials with different positive and negative target locations. Tasks for which the true target was in the negative target range are
coloured green for the first and last 100 time steps.
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and in the same the neural state and that their proximity
sensors are both noiseless and precise. This means that even
subtle differences in the relative trajectories of the agents
(that reflect the absolute value that they receive from their
target distance sensor) can be exploited by the agents to
effectively assign a ‘leader’ role to the agent with direct
knowledge of the true target location and a ‘follower’ role to
the other. Whilst there remains a considerable amount of
variation in the trajectories subsequent to this very early
differentiation of agent roles, this can be accounted for in
terms of (i) the leader Agent following a target-location-
specific trajectory that converges on the directly sensed
target location at the end of the trial, and (ii) the follower
Agent timing its convergence on the location of the leader
such that they also coincide at end of the trial. Again, re-
moval of either agent during the trial does damage the
ability of the other to complete the task successfully, so there
remains a significant mutual coupling between the agents
which is not fully captured by the leader/follower labels.

Perhaps somewhat remarkably, then, despite the effort
made in the literature and the current study to introduce a
series of increasingly complex signalling tasks intended to
demonstrate increasingly sophisticated displaced referential
communication, we have arrived at successful evolved
solutions that still strongly resemble the leader/follower co-
ordination described in Quinn’s (2001) original model of
evolving communication without dedicated communication
channels. Whilst that model did not include an explicit
target about which the agents needed to signal, in other
respects the behavioural interpretation of the evolved so-
lutions are remarkably similar, each involving an interplay
of proximity-based oscillation and following behaviours.

Discussion

In this section we will first consider the status of the evolved
communication demonstrated in this paper before discus-
sing the future prospects for this style of work to shed light
on the minimal cognitive basis for communication as
complex as human language.

The bidirectional referential communication evolved by
the agents in this study is effective in allowing them to solve
the evolutionary task that they were confronted with. This is
a positive result given the aims of the study. However, the
signalling system evolved to achieve this success is limited
in several respects.

Firstly, the signalling behaviour is fundamentally ana-
logue or continuous, in the sense that the signal semantics
amount to a mapping between some scalar property of joint
agent behaviour (e.g. the amount of time that the two agents
spend within sensor range of each other) and some scalar
property of the environment (i.e. the co-ordinate of the
target). Secondly, the signalling is also holistic in the sense
that this mapping lacks structural complexity, being

essentially one-dimensional and monotonic. Thirdly, the
signalling behaviour has only a limited degree of produc-
tivity. Whilst the location of a target lying within the normal
range experienced by the agents during their evolution can
be successfully communicated even if this precise location
has never previously been experienced or communicated
during evolution, there is no ability to signal about an open-
ended set of referents. Fourthly, the signalling exhibits only
a restricted kind of referent displacement. Whilst a target
that is not present to the senses of one agent can be
communicated about successfully by the other, neither
temporal nor counterfactual displacement are demonstrated.

Finally, like much animal communication, for the
evolved agents there is no effective separation between an
imperative interpretation of signal meaning (‘Do X!’) and an
indicative interpretation of signal meaning (‘Believe Y!’).
For example there is no in principle way of attributing the
meaning ‘The target is at location x!’ to an agent’s signalling
behaviour without also attributing the meaning ‘Go to lo-
cation x!’ – these meanings are coupled to the extent that
they are inseparable (Millikan, 1984).

Whilst the honey bee dance language shares each of
these four limitations to some degree, human language is
different. It is not limited to analogue, holistic signals,
instead employing utterances that comprise discrete parts
(words) that contribute to the meaning of an utterance in a
way that depends on their configurationwithin the utterance
(i.e. meaning derives from a compositional grammar of
some kind). Whilst the signalling system evolved here does
generalise across a range of target locations, the recursive,
particulate, compositional nature of human language means
it is productive in a much more profound sense, having
limitless potential to say truly novel things. The referent of a
human language utterance may also be displaced arbitrarily
with respect to the speaker and listener: spatially, temporally
and even counterfactually as when an imaginary subject is
discussed. Finally, human language also has the capacity to
decouple imperative and indicative moods, specifically
being able to communicate particular information without
simultaneously conveying an attendant instruction to act
immediately in a particular way: for example ‘Every tri-
angle has three sides’, ‘My name is John’.

These distinctions between human language and the
agent communication evolved here will be returned to
below when we consider potential future work. Beforehand,
what can we infer about the cognitive basis for commu-
nication from the results presented here (and the results of
the previous studies that the current study builds upon)?

The results presented here demonstrate that successful
bidirectional referential communication is possible for
agents that are extremely simple. A network of only three
idealised model CTRNN neurons is sufficient for an agent to
operate as both signaller and receiver in a bidirectional
communication task that requires two pieces of information

Fox and Bullock 17



to be communicated, compared and acted on. The evolved
agents are able to solve the task by exploiting a ‘signalling
channel’ that they construct from their physical movements
as detected by their simple distance sensors.

It is tempting to describe this evolved communication
behaviour in terms of a series of discrete stages that mirror a
traditional view of the psychology of communication: an
agent first signals its own private information and receives
the signal sent by its partner, then compares the two pieces
of information, decides whether to lead or follow their
partner, and then carries out the chosen behaviour. However,
a closer analysis of the behaviour (reported in the previous
section) reveals that there is little basis for projecting this
sequence of stages onto the agents’ joint activity which
more closely resembles a continuous period of mutual
sensory-motor modulation achieved by carefully calibrated
structural coupling between the two agents.

This kind of dynamical systems interpretation of the
evolved communication behaviour allows little room for
explanations couched in terms of ‘representations’ or
‘symbols’. This is true in two distinct senses.

Firstly, there is no real need for this kind of explanation.
A sufficiently detailed dynamical systems analysis is in
principle capable of providing a full and complete causal-
mechanistic account for the evolved behaviour without any
need to employ explanatory entities that are representational
or symbolic for the agent. Such entities would at best su-
pervene on a full dynamical systems account. Secondly,
there is no real purchase for this kind of explanation. Whilst
we might point to events within the simulation that have
representational content for ourselves as observers, it is not
clear that there exist internal, external or joint behavioural
phenomena that could correspond to representations or
symbols for the agents themselves, denying these type of
explanatory entities even a role in some supervenient ex-
planation intended to be layered on top of a full dynamical
systems account.

Taken as a whole, then, this picture usefully draws at-
tention to the fact that a quasi-linguistic interpretation of
cognitive innards is not necessary or automatically appro-
priate (Van Gelder & Port, 1995), and that choosing to use
‘internal representations’ as part of a causal explanation of
cognitive behaviour is an explanatory strategy that needs to
be carefully considered and justified. Agents that are so-
phisticated enough to demonstrate the cognitive behaviours
that we are interested in may nevertheless not be ‘sophis-
ticated enough’ to warrant explanations of this kind.

However, this way of framing the results also leads to a
problematic tension between the studies undertaken so far
and their presumed ultimate explanatory target: the (mini-
mal) cognitive basis for communication that is as advanced
as human language. Human communication involves the
production and consumption of truly symbolic represen-
tations. The evolved communication reported in the studies

considered here does not. Can developing such studies
further ever shed light on human language use? Presumably
there will always be a dynamical systems theoretic account
of any evolved communication, and this account will un-
dercut talk of symbols, concepts and representations in the
same way that a physical account of the brain that is ar-
ticulated in terms of atomic collisions would make no
mention of beliefs and desires. However, in order for the
research programme being pursued here to shed light on
human cognition, it must be the case that bridging expla-
nations that link dynamical systems accounts to cognitive
phenomena are possible, at least in principle (Bullock,
2004), and it must be the case that the agent frameworks
and simulations being explored here are capable of scaling
up to generate behaviour that is sophisticated enough to
demand such bridging explanations, despite them not being
models of particular real-world creatures or particular real-
world brains (Bullock, 2009).

Versions of this ‘scaling-up’ tension are common across
bottom-up, bio-inspired, ‘nouveau’ AI research. For ex-
ample the insect-inspired robotics field, which sought to
build towards robots capable of human-level sophistication
by starting from very simple robots inspired by ants and
hover flies, was vulnerable to similar criticism amounting
to: you would not reach the moon by climbing successively
taller trees (Matarić & Cliff, 1996). Are the evolved agents
reported here just climbing a slightly taller tree than pre-
vious studies? Is human language an impossibly distant
moon? With these questions in mind, it is worth asking to
what extent could further work of the kind reported here
deliver more sophisticated communication that resembles
full-blown human language? What barriers must be
overcome?

Millikan (1989a) provides a useful list of representa-
tional properties that distinguish true language from more
simple animal signalling. They connect directly with the
short-comings of the evolved agent signalling reported here,
mentioned at the start of this section, and together provide a
kind of grand challenge for research into the evolution of
agent signalling.

Self-Representing Elements

Simple animal signals map onto their referent in a simple way,
often relying on some property of the signal to represent the
self-same property of the signal’s referent. For instance, an
alarm call might use a high pitched shriek to indicate that a
predator is approaching. Implicitly, the alarm call also
indicates the where and the when of the approaching
predator (“right here” and “right now”, respectively) by
virtue of the where and the when of the signal also being
“right here” and “right now”. Such a system is therefore
unable to represent a referent with a where and when other
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than “now” and “here”. By contrast, human language is
able to convey “We are being attacked tomorrow” or “We
are being attacked in Paris”.

Storing Representations

If signals that map onto a where and a when other than the here
and now are to be useful, then their meaning must typically
somehow be persistent within the agent such that the agent
can choose to act on the meaning when the time and place are
right. By contrast, many simple animal signals are
ephemeral, being relevant only instantaneously and there-
fore not requiring storage. The bee dance language is a
departure in that the referent of the signal is spatially dis-
placed from the signaller and observer. The meaning of a bee
dance must continue to influence the observer once it has
flown away from the dance floor. Similarly, the evolved
agents reported here must often exhibit behavioural per-
sistence in reaching a location that is outside their signalling
zone. However, for both honey bees and our evolved agents,
the when of a signal’s referent is always now which means
that it is premature to talk of storing representations of target
locations. It is sufficient to talk in terms of heading off
immediately in a signalled direction at a signalled intensity.
Our evolved agents need not store a representation of their
target location that must be consulted as they move towards
it. Rather they need only set off at the right speed, such that
the end of the trial coincides with them reaching the correct
location.

Indicative and Imperative Representations

As mentioned already, language utterances may have a mood
that is either imperative or indicative or a mixture of both. This
flexibility is not true of much animal signalling where the
meaning of a signal is both indicative “Nectar is at location X”
and imperative “Go to location X”. That the cognitive story for
such cases involves no information processing is therefore
hardly surprising. There is little cognitive work to be done on
the signal. It maps directly to an imputation to act. A cognitive
story with little room for information processing has limited
justification for being called “representation hungry”.

Inference

When the act of receiving and understanding a signal can be
decoupled from taking immediate external action, the door is
opened for more sophisticated internal cognitive behaviour. If a
signal’s indicative mood is decoupled from its imperative
mood, some kind of inference will be required in order to re-
couple its meaning with downstream action. Here then perhaps,
to the extent that the contexts for this downstream action are

many and varied, is where the real hunger for something like
internal representation may lie: a cognitive ability to generate
intentions (and actions) from beliefs.

Acts of Identifying

Once a signal’s meaning is decoupled from the where and when
of its immediate sensory-motor context, and is to be retained for
unspecified usage in some other where and when as instigated
by inferential processes, the challenge arises of re-identifying
its referent both in the world and internally. This is not a
challenge for our evolved agents which simply set off im-
mediately with a direction and speed that ensures they arrive
where they need to arrive when they need to arrive without
needing to recognise that they have so arrived. By contrast,
acting on a signal such as “I will mark the traitor’s door with red
just after midnight” requires much more of the relationship
between the internal state and the downstream behaviours that it
enables. The referent as indicated somehow in the trace of an
indicative signal must somehow be identified with the referent
as identified in the sensory world of the agent. Moreover, the
potential for the referent of multiple different imperative or
indicative signals to be identified as one and the same underpins
much sensible behaviour (as when it transpires that “Sam’s
door” is also “The traitor’s door”). Achieving this “substitution
of similars” (what Stanley Jevons called “a dark and inexpli-
cable gift”, Bullock, 2008) requires at minimum that internal
states be articulated as part of some system, rather than merely
mapping holistically onto the world.

Negation and Propositional Content

Finally, Millikan argues that natural signalling systems, such as
the bee dance language, lack negation. When two bee dances
indicate two competing locations it may well simply be the case
that there is nectar in both locations. There is no capacity for
one bee dance to dispute another one. In her Language,
Thought and Other Biological Categories, Millikan (1984)
argues that explicit contradiction relies on subject-predicate
structure and is thus attendant to our capability to communicate
propositional content, i.e., that without it conceptual symbolic
language is not possible.

Future Work

Independent of the issues raised above there remains scope
to explore the extent to which simple CTRNN-controlled
agents can be evolved to solve increasingly complicated
signalling tasks. Future work of this kind could, for example
increase the number of agents involved in each signalling
interaction (beyond the pair of agents considered in the
literature so far), or increase the number of tasks for which
the agents are required to employ communication (beyond
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conveying the location of a target). Honey bee dances, for
instance are performed in front of a large number of ob-
servers, each of whom integrates the information from
several dances before flying towards one (presumably the
best) of the advertised locations (von Frisch, 1965). Like-
wise, honey bees are able to use their dance language to
communicate about more than the location of nectar-bearing
flowers since they also use the signalling system to decide
amongst competing nest sites (Lindauer, 1955; Seeley &
Visscher, 2004). Extensions of this kind would further
separate signalling from acting, creating an intervening gap
that may require more complex cognitive mechanisms than
have been displayed in the literature so far.

Whether advertising nectar or nest sites, the honey bee
dance language is being used to solve an inherently ana-
logue problem: communicating the relative distance and
direction to target locations in continuous space. This type
of task seems inherently suited to a CTRNN architecture
that is also inherently analogue and also to the setting of
simple simulated robots moving in a one- or two-
dimensional arena. One issue is that evolving and ana-
lysing CTRNN agent solutions to such tasks may reveal
more about the behavioural biases and capacities of the
CTRNN substrate, rather than the nature of the cognition or
communication required by the task (Bullock & Cliff,
1997). A second, more significant problem is that such
analogue tasks can also encourage a kind of ‘faux dis-
placement’. Whilst an agent that is limited to communicate
in one region of space before navigating alone to a target
location that is temporally and physically distant may be
described as exploiting information in a signal that is
‘about’ this displaced location, it can be equally accurate to
describe this communication without invoking displace-
ment at all. Such an agent can be re-described as having
received a signal that is ‘about’ the way that it should start
moving right here and right now, behaviour that merely has
the side-effect of ensuring arrival at the right location later
on. As such, there may be value in exploring signalling
scenarios that lie outside the set of analogue spatial navi-
gation problems, scenarios in which communication about
discrete and articulated referents is required (e.g. com-
municating the identity of target objects that differ in
multiple qualitative ways, Steels, 2003) particularly if the
referents need to be acted on in the future in some way that is
determined by the context in which they are encountered.

For instance a task in which an agent must combine
multiple sources of information about the identity of a
target, and must interact with that target when they en-
counter it in the future in a way that is determined by
contextual factors would represent a significant departure
from tasks explored in the literature to date (e.g. being told
“The traitor wears a hat” + “…has blonde hair” + “…has a
big nose” might allow me to identify them during a se-
quence of interactions with suspects, but whether to expose

the traitor or keep quiet might depend on whether I am in
love with them or not).

Evolving agents to successfully solve more demanding
signalling challenges such as these will require more so-
phistication on the part of the evolved agents and should
encourage strategies that are not as reliant on the close
coupling between signaller and receiver that was central to
the solutions reported here. It is not a coincidence that,
simultaneously, studies of this type would address directly
several of the items on Millikan’s list of representational
properties presented above.

Conclusion

A single, three-node continuous time recurrent neural
network was evolved successfully to solve a task requiring
two agents controlled by the same network to communicate
private information to each other and to follow a course of
action that depended on a comparison between these two
pieces of information. The evolved solution relied on a
signalling channel constructed from the physical movement
of the agents as detected by their simple proximity sensors.

Whilst the evolved behaviour is an example of bidirec-
tional referential communication of a displaced referent, it is
not easily described in terms of information processing (i.e.
the storage and processing of structure-sensitive symbolic
representations), being instead more naturally explained in
dynamical systems theoretic terms as relying on a carefully
parameterised period of structural coupling between the two
agents. The evolved signalling system is reminiscent of that
employed by honey bees in that it exhibits only limited
productivity and referent displacement, and employs signals
that are analogue and non-compositional, with self-referring
elements and an inseparably indicative-imperative mood. As
such, it lacks several representational properties that are the
hallmarks of human language. In order to achieve more of
these language-like features in an evolutionary simulation
model, it appears likely that the research paradigm being
employed here may need to move beyond communication
tasks that require agents to direct one another to locations
within a continuous co-ordinate space.
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