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Abstract
For Operational Modal Analysis (OMA), the vibration response of a structure from ambient and unknown ex-
citation is measured and used to estimate the modal parameters. For OMA with eXogenous inputs (OMAX),
some of the inputs are known in addition, which are considered as realizations of a stochastic process.
When identifying the modal parameters from noisy measurement data, the information on their uncertainty
is most relevant. Previously, a method for variance estimation has been developed for the output-only case
with covariance-driven subspace identification. In this paper, a recent extension of this method for the in-
put/output covariance-driven subspace algorithm is discussed. The resulting variance expressions are easy
to evaluate and computationally tractable when using an efficient implementation. Based on Monte Carlo
simulations, the quality of identification and the accuracy of variance estimation are evaluated. It is shown
how the input information leads to better identification results and lower uncertainties.

1 Introduction

The goal of operational modal analysis (OMA) is the identification of modal parameters (frequencies, damp-
ing ratios, mode shapes) from vibration measurements on a structure. The modal parameters are related to
the poles and observed eigenvectors of a linear time-invariant system. Subspace-based linear system identi-
fication algorithms have been proven efficient for the identification of such systems, fitting a linear model to
output-only measurements or input and output measurements taken from a system [1].

Usually, OMA refers to the identification of modal parameters from output-only measurements under un-
known ambient excitation (e.g. wind, traffic). Besides such non-measurable excitation sources, in addition
some measurable excitation sources (e.g. artificial excitation from hammer impact or shaker, ground motion)
may be available for modal parameter identification, which is referred to as Operational Modal Analysis
with eXogenous inputs (OMAX). In this case, measured outputs are due to both known and unknown inputs,
and may be corrupted by noise (i.e. sensor noise uncorrelated with known inputs). The known inputs are
assumed to be a realization of a stochastic process. The use of input information in modal identification
usually provides better modal estimates.

Many methods for OMA and OMAX are available in the literature [2]. In this work, we focus on subspace
methods [1, 3], in particular on covariance-driven subspace methods. They are based on auto- and cross-
covariance matrices of the measurements and can be based on output-only data or input/output data [4–9].

The purpose of this paper is the variance analysis of modal parameters obtained from input/output subspace
methods. Using noisy measurement data, subspace algorithms provide parameter estimates that are afflicted
with statistical uncertainty due to finite data, unknown inputs and sensor noise properties. In the field of



vibration analysis, explicit expressions for their variance estimation have been proposed for some subspace
methods. A successful approach was developed in [10], where an estimated covariance on the measurements
is propagated to the desired parameters based on a sensitivity analysis. The required sensitivities are derived
analytically through the propagation of a first-order perturbation from the data to the identified parameters.
This approach has the advantage of computational convenience: the sample covariance as the starting point is
directly linked to the measurements and therefore easy to compute, and the sensitivities are computed using
the system identification estimates. In [11], details of this scheme are developed for the covariance com-
putation for output-only covariance-driven subspace identification. This approach offers advantages beyond
technical correctness. The exploitation of the stabilization diagram, which is a basic tool for OMA(X), is a
crucial step in modal analysis, but computationally costly for the covariance computation. A well-adapted
fast and memory efficient implementation in an operational modal analysis context has been proposed in the
covariance-driven output-only case [12]. As a result, the computational cost for the variance computation of
an entire stabilization diagram analysis is reduced significantly. This was mandatory for realistic applications
on large structures like in [13, 14].

While this approach has shown to be working both in theory and practice for the variance computation of
modal parameters, it was only available for output-only covariance-driven subspace identification [11, 12].
Very recently, the generalization of this approach to a wider class of subspace algorithms in both output-only
and input/output frameworks, and for covariance-driven and data-driven methods, has been presented in
[15]. Developing the sensitivities of the modal parameters with respect to the correlations of inputs, outputs
and cross-correlations between inputs and outputs for the selected subspace method, the uncertainty of the
correlation estimates is propagated to the modal parameters in a rigorous way.

In this paper, we recall the new developments on variance estimation for an input/output covariance-driven
subspace method. In the theoretical framework of the method, we focus in particular on assumptions about
the stochastic nature of the available inputs, which are essential for the proper formulation of the input/output
subspace method and the variance analysis. Besides the validation of the new variance computation scheme
in Monte-Carlo simulations, we report an application on laboratory data from a vibration test of a composite
plate, showing that the estimated variances of natural frequencies and damping ratios with the new method
are in good agreement with the sample statistics.

This paper is organized as follows. In Section 2, the vibration model is recalled. Section 3 contains a brief
description of the considered covariance-driven input/output subspace method. In Section 4, the variance
estimation method is presented and validated in a Monte Carlo simulation and on data from a laboratory
experiment in Section 5. Finally, conclusions are given in Section 6.

2 Vibration modeling

2.1 Mechanical and state space models

The vibration behavior of a linear time-invariant mechanical structure, which is observed at some sensor
positions, can be described by the equations{

Mq̈(t) + Cq̇(t) +Kq(t) = Fu(t) + ũ(t)
y(t) = Laq̈(t) + Lv q̇(t) + Ldq(t) + v(t)

(1)

whereM, C and K ∈ Rm×m are mass, stiffness and damping matrices, and m is the number of degrees of
freedom. The vector q(t) ∈ Rm×1 contains the displacements at the degrees of freedom generated by the
known inputs u(t) ∈ RNi ×1 and unknown inputs ũ(t) ∈ Rm×1, where Ni is the number of known inputs,
and F ∈ Rm×Ni represents how the known inputs are applied to the system. The vector y(t) ∈ RNo×1

contains the observed outputs, with No being the number of sensors. The matrices La, Lv and Ld ∈ RNo×m

represent how accelerations, velocities and displacements are obtained from the model degrees of freedom.



The vector v(t) ∈ RNo×1 is the sensor noise. Both ũ(t) and v(t) are assumed to be white noise with finite
fourth moments and uncorrelated with the known inputs.

Sampling Eq. (1) at rate τ and assuming zero-order hold for inputs u(t) and ũ(t) yield the discrete-time state
space representation {

xk+1 = Axk +Buk + B̃ũk
yk = Cxk +Duk + D̃ũk + vk,

(2)

where xk = [q̇(kτ)T q(kτ)T ]T ∈ Rn×1 is the state vector, n = 2m is the model order and

Ac =

[
−M−1C −M−1K
Im 0m,m

]
∈ Rn×n, A = exp(Acτ), B = (A− I)A−1c

[
M−1F
0m,Ni

]
∈ Rn×Ni , (3)

C =
[
Lv − LaM−1C Ld − LaM−1K

]
∈ RNo×n, D = LaM−1F ∈ RNo×Ni (4)

are the state transition, input, output and feedthrough matrices, respectively. The matrices B̃c and D̃c are
defined similarly with respect to the unknown inputs.

The modal parameters of system (1) are equivalently found in system (2) as follows. Let λi and φi be eigen-
values and eigenvectors of A, for i = 1, . . . , n. Then the eigenvalues µi of system (1), modal frequencies fi,
damping ratios ξi and mode shapes ϕi are obtained by

µi =
log(λi)

τ
, fi =

|µi|
2π

, ξi =
−Re(µi)

|µi|
, ϕi = Cφi. (5)

2.2 Stochastic nature of known inputs

Until now, no assumption has been stated on the known input {uk}k=1,...,N for the case of input/output al-
gorithms. Known inputs are used in what is called deterministic [1] or combined deterministic/stochastic
[1, 16] system identification in the literature. In the designation of these methods, there is equivalence be-
tween “deterministic” and “the input sequence is known”, and between “stochastic” and “there are unknown
inputs and/or noise”.

However, these designations should not be mistaken with the nature of the known inputs. The known input
sequence itself may be a deterministic signal, or it may be a realization of a stochastic process. If it is
deterministic, it can be defined exactly by a mathematical formula (e.g. a multi-sine excitation), and it could
be predicted exactly also for k > N . If it is stochastic, the properties of the known values {uk}k=1,...,N are
defined by the probability distribution of the underlying stochastic process. In this case it is not possible to
predict values for k > N . The model of the known input – deterministic or stochastic – is important for the
subsequent uncertainty analysis of the modal parameters.

For the considered input/output methods in this paper, we assume that known inputs are realizations of a
stochastic process satisfying mild ergodicity and mixing properties. This assumption is in particular coherent
with the ergodic-algebraic framework of [17] and cross-covariance estimates in [9] for covariance-driven
input/output algorithms. In combination with standard white noise assumptions for unknown inputs and
measurement noise, this assumption allows the consistent computation of auto-covariances of the inputs, the
outputs and of cross-covariances between inputs and outputs, which is a basic step in subspace identification.

These auto- and cross-covariances contribute to the modal parameter estimates. Then, the corresponding
uncertainties for these auto- and cross-covariances play together in a non-trivial way to obtain the modal
parameter uncertainties, for which the expressions are shown in this paper. The assumption of stochastic
inputs is coherent with the techniques for variance analysis that are used in this paper to obtain these ex-
pressions. The uncertainty of the modal estimates comes from the fact that only sequences of finite length
N are known. Expressions for their variance based on an input/output data sequence of length N are hence
also estimates, and the central limit theorem (CLT) ensures that these expressions are asymptotically correct



(i.e. for N → ∞). This requires some stochastic properties of the underlying input and output sequences,
for which the assumption of stochastic inputs (and of course also stochastic outputs) is particularly useful.

Note that assuming known inputs as stochastic is no contradiction for the particular case of a system with no
unknown inputs and no sensor noise. In this case, the modal parameters can be identified exactly from the
known inputs and outputs, and their variance assuming stochastic inputs is indeed zero, shown in [15].

3 Subspace identification

Subspace algorithms are based on projections of output, input or input/output data Hankel matrices with a
“past” and “future” time horizon. These projections are designed in a way that the column space of the
resulting matrixH is defined by the observability matrix Γp = [CT . . . (CAp−1)T ]T of system (2). Matrix
H has the factorization property H = ΓpZ , where Z depends on the subspace algorithm [1]. This property
leads to the estimation of Γp from measurement data and subsequently to the system matrices A and C,
from where the desired modal parameters are identified. In this section, the input/output covariance-driven
subspace algorithm from [8] is recalled. The three steps of modal identification with subspace algorithms
are: 1/ Estimation of auto- and cross-covariance matrices related to “past” and “future” data matrix products,
2/ Computation of the subspace matrixH, and finally 3/ Estimation of the modal parameters fromH.

3.1 First step: estimation of auto- and cross-covariances

Data Hankel matrices and the respective auto- and cross-covariances are the basic elements for the computa-
tion ofH, which are recalled in this section. A data Hankel matrixAi|j is defined for the samples al ∈ Rr×1

of a discrete signal a as

Ai|j
def
=

ai ai+1 . . . ai+N−1
...

...
. . .

...
aj aj+1 . . . aj+N−1

 ∈ R(j−i+1)r×N . (6)

Let N + p+ q be the number of available samples for the known inputs uk and the outputs yk, where q and
p are parameters that define a “past” and “future” time horizon. They are most often equal, and assumed to
be large enough to satisfy the condition min{(p − 1)No, qNo} ≥ n. The “past” (−) and “future” (+) data
Hankel matrices containing the known data are defined as

U− def
=

1√
N
U0|q−1, U+ def

=
1√
N
Uq|q+p−1, Y−

def
=

1√
N
Y0|q−1, Y+ def

=
1√
N
Yq|q+p−1. (7)

Consider similarly the unknown signals, i.e. the unknown input ũ and the sensor noise v, and define the cor-
responding matrices Ũ− def

= 1√
N
Ũ0|q−1, Ũ+ def

= 1√
N
Ũq|q+p−1, V− def

= 1√
N
V0|q−1 and V+ def

= 1√
N
Vq|q+p−1,

which are needed for deriving the equations of the model.

Known data (outputs and, if available, inputs) are used to estimate auto- and cross-covariances in order to
compute the subspace matrix H. Let a and b be placeholders for two of these signals (e.g. u and y, y and y
or u and u). Then, their cross-covariance estimate at lag i is defined as

R[a,b]i =
1

N

N∑
k=1

ak+ib
T
k , (8)

considering that a and b are ergodic and zero mean random processes. The term auto-covariance is used for
the cross-covariance of the same signal, i.e. a = b in (8). Note that due to the finite data length, these auto-
and cross-covariance estimates are random variables with a covariance, which will be the starting point of
the variance propagation to the modal parameter estimates in Section 4.



Products of “past” and “future” data Hankel matrices as defined in Eq. (7) are closely related to the auto- and
cross-covariance estimates. For example, it holds

U+Y−T
=


R[u,y]q R[u,y]q−1

. . . R[u,y]1

R[u,y]q+1
R[u,y]q . . . R[u,y]2

...
...

...
...

R[u,y]q+p−1
R[u,y]q+p−2

. . . R[u,y]p

, U+Y+T
=


R[u,y]0 R[u,y]−1

. . . R[u,y]1−p

R[u,y]1 R[u,y]0 . . . R[u,y]2−p

...
...

. . .
...

R[u,y]p−1
R[u,y]p−2

. . . R[u,y]0


(9)

The products Y+Y−T
and U+U+T

are computed analogously. These products based on auto- and cross-
covariances are elementary blocks for the computation ofH in the following section.

Remark 1 (Cross-covariance with unknown inputs and sensor noise) Products between data Hankel ma-
trices containing outputs or known inputs and noise Hankel matrices are established analogously as above.
Some of these cross-covariances tend to zero due to the assumption that unknown inputs and sensor noise
are white and uncorrelated with the known inputs. In particular it holds Ũ+U+T = 0 and V+U+T = 0
for an infinite amount of data. Under these assumptions, past outputs are uncorrelated with future unknown
inputs and with future sensor noise, and it holds similarly Ũ+Y−T

= 0 and V+Y−T
= 0. These properties

are required for the development of the subspace method in the next section.

3.2 Second step: computation of subspace matrix H

With the definitions in the previous section, the observation equation in (2) can be extended to [1]

Y+ = ΓpX+ +HpU+ + H̃pŨ+ + V+ (10)

The matrices Hp and H̃p are defined in [1].

Orthogonal projections of the data Hankel matrices lead to a matrix H whose column space is defined by
the observability matrix Γp. An orthogonal projection M/P of the row space of M onto the row space of
P yields M/P = MP T

(
PP T

)†
P , and the projection on the orthogonal complement P⊥ yields M/P⊥ =

M(I − P T
(
PP T

)†
P ), where † denotes the Moore-Penrose pseudoinverse.

The considered input/output covariance-driven subspace algorithm is defined by the projection [8]

H def
= (Y+/U+⊥)Y−T

(11)

= Y+Y−T − Y+U+T
(
U+U+T

)†
U+Y−T

.

The factorization property of H to obtain the observability matrix can be shown as follows. Plugging the
extended state-space equation (10) for Y+ into (11), it follows

H =
(

(ΓpX+ +HpU+ + H̃pŨ+ + V+)/U+⊥
)
Y−T

. (12)

By definition, it holds U+/U+⊥ = 0, and since known inputs are assumed uncorrelated with unknown inputs
and with sensor noise (Remark 1), it holds

H =
(

ΓpX+/U+⊥ + H̃pŨ+ + V+
)
Y−T

. (13)

Finally, using the assumptions that past outputs are uncorrelated with future unknown inputs and with future
sensor noise (Remark 1), it follows

H = Γp

(
X+/U+⊥

)
Y−T

= ΓpZ. (14)



3.3 Third step: estimation of the modal parameters from H

For the estimation of the modal parameters, the observability matrix Γp is obtained from H, which contains
the system matrices A and C. Thanks to the factorization property (14), H and Γp share the same column
space. Thus, Γp can be obtained by the singular value decomposition (SVD) [18]

H = USV T =
[
U1 U2

] [S1 0
0 S2

] [
V T
1

V T
2

]
(15)

as Γp = U1S
1
2
1 , where the SVD is truncated at the desired model order n. The output matrix C is then

obtained by direct extraction of the first block row of Γp as C =
[
INo 0No,(p−1)No

]
Γp. The state transition

matrix A is obtained from the shift invariance property of Γp as the least squares solution A = Γ†upΓdw [4],
where Γdw and Γup are obtained from Γp by removing the first and last block row, respectively, as

Γdw =

 CA
...

CAp−1

 , Γup =

 C
...

CAp−2

 . (16)

Finally, the modal parameters are obtained from matrices A and C as stated in Section 2.1.

4 Variance estimation

In [11, 12], a method for the variance estimation of modal parameters was developed for the output-only
covariance-driven subspace algorithm. In [15], this method was extended for an input/output covariance-
driven subspace algorithm, amongst other data-driven and input/output algorithms, which is presented in the
following.

The computation of the modal parameter covariance results from the propagation of sample covariances
on auto- or cross-covariance estimates (involving measured outputs and known inputs) through all steps of
the modal identification algorithm. These sample covariances reflect in particular the unknown inputs due
to non-measurable excitation sources and the sensor noise, and they contribute in a non-trivial way to the
covariance of the modal parameter estimates. The propagation to the modal parameter estimates is based
on the delta method [19], where the analytical sensitivity matrices are obtained from perturbation theory
[10, 11].

Let ∆X be a first-order perturbation of a matrix-valued variable X . Then, for a function Y = f(X) it
holds vec(∆Y ) = JY,X vec(∆X), where JY,X = ∂vec(f(X))/∂vec(X), where vec(·) denotes the column
stacking vectorization operator. Subsequently, covariance expressions for the estimates satisfy

cov(vec(Ŷ )) ≈ ĴY,Xcov(vec(X̂))Ĵ T
Y,X . (17)

For simplicity of notation we dismiss the notation̂for an estimate in the following.

4.1 Sample covariance estimation

The starting point of the variance propagation to the modal parameters is the covariance of the auto- and
cross-covariance matrices that are involved in the subspace algorithm. In Eq. (11), this concerns the covari-
ance of and between the matrices

R1 = Y+Y−T
, R2 = Y+U+T

, R3 = U+U+T
, R4 = Y−U+T

, (18)



i.e. the computation of cov(vec(Ri), vec(Rj)) between any of the matrices Ri and Rj (including i =
j) is required. This computation follows the lines of the output-only covariance-driven algorithm, i.e. for
cov(vec(R1)), as described in detail in [11, 12], and is generalized in [15] as follows.

Let A, B, C and D be placeholders for any of the data Hankel matrices U−, U+, Y− or Y+, such that
Ri = ABT and Rj = CDT are the respective auto- or cross-covariance matrices. Divide the data matrices
into nb blocks and normalize them with respect to their length, such that

√
N A =

√
Nb

[
A1 A2 . . . Anb

]
,
√
N B =

√
Nb

[
B1 B2 . . . Bnb

]
,√

N C =
√
Nb

[
C1 C2 . . . Cnb

]
,
√
N D =

√
Nb

[
D1 D2 . . . Dnb

]
,

(19)

where each block Ak, Bk, Ck and Dk may have the same length Nb, with nb ·Nb = N for simplicity. Each
block may be long enough to assume statistical independence between the blocks. On each of these blocks,
the respective auto- or cross-covariance estimate can be computed as Rk

i = AkBkT and Rk
j = CkDkT ,

which can be assumed to be i.i.d., yielding

Ri =
1

nb

nb∑
k=1

Rk
i , Rj =

1

nb

nb∑
k=1

Rk
j . (20)

It follows cov (vec(R∗)) = 1
nb

cov
(
vec(Rk

∗)
)
, and the covariance between the auto- or cross-covariance

matrices can be computed from the usual sample covariance as

cov(vec(Ri), vec(Rj)) =
1

nb(nb − 1)

nb∑
k=1

(
vec(Rk

i )− vec(Ri)
)(

vec(Rk
j )− vec(Rj)

)T
. (21)

4.2 Sensitivity and covariance of H

In this section, the sensitivity of H is developed with respect to the underlying auto- and cross-covariance
matrices in their computation. It holds, from Eq. (11),H = R1 −R2R†3RT

4 , and thus [15]

∆H = ∆R1 −∆R2R†3R
T
4 +R2R†3∆R3R†3R

T
4 −R2R†3∆R

T
4 , (22)

vec(∆H) = JH,R


vec(∆R1)
vec(∆R2)
vec(∆R3)
vec(∆R4)

 , (23)

where JH,R =
[
IpNoqNo −R4R†3 ⊗ IpNo R4R†3 ⊗R2R†3 −(IqNo ⊗R2R†3)PqNo,pNi

]
, ⊗ denotes the

Kronecker product and PqNo,pNi is a permutation matrix with the property vec(RT
4 ) = PqNo,pNivec(R4).

Then, it follows for the covariance

cov(vec(H)) = JH,R cov




vec(R1)
vec(R2)
vec(R3)
vec(R4)


J T

H,R, (24)

where the blocks for the covariance matrix on the right side are computed in Eq. (21).

4.3 Covariance of modal parameters

From H, the modal parameters are obtained as described in Section 3.3. The respective propagation of the
covariance of vec(H) to the modal parameters has been described in detail in [11, 12].



5 Application

5.1 Simulation study

In [15], a simulation study was made on a damped mass-spring chain model of six degrees of freedom (see
Figure 1) to validate the variance computation for the output-only and input/output subspace methods in
an academic example that is summarized here. The mass of all elements is mi = 1/20, stiffnesses are
k1 = k3 = k5 = 100, k2 = k4 = k6 = 200 and damping is defined such that all modes have a damping ratio
of ξi = 0.020.

m1 
k1 

m2 
k2 

m3 
k3 

m5 
k5 

m4 
k4 

m6 
k6 

Figure 1: Mass-spring chain (with modal damping), three sensors, for simulations.

The covariance-driven output-only algorithm is compared with the covariance-driven input/output algorithm
considered in this paper, using the same output realizations. The input/output algorithm uses the simulated
Gaussian white noise excitation force at element 1 as the known input, besides further unknown inputs at all
elements with 10% of the standard deviation of the known input. 10,000 acceleration output time series each
of length N = 10,000 are simulated with time step τ = 0.02 s at elements 1, 2 and 5, where Gaussian white
sensor noise with 5% of the standard deviation of each output is added.

Each time the modal parameters and their variances are estimated with the covariance-driven output-only
and input/output subspace algorithms. The means of the identified modal parameters with both subspace
algorithms are shown together with the theoretical modal parameters from the mass-spring chain model in
Table 1. The identified values are more precise with the input/output algorithm than with the output-only
algorithm. In particular, the first mode in the output-only method deviates from the theoretical value, which
would have required longer datasets for more precision.

In each simulation, the standard deviations of the modal parameters are computed for the output-only
covariance-driven subspace algorithm with the method described in [12], and for the input/output covariance-
driven algorithm with the method described in Section 4. They are obtained from the square root of the
respective modal parameter variances. The mean σest of these 10,000 estimated standard deviations from
each of the Monte Carlo simulations is shown for each modal parameter and algorithm in Table 2. These
values are compared to the sample standard deviations σMC of the 10,000 estimated modal parameters in
Table 2. An excellent agreement between the estimated standard deviations and the sample statistics from
the Monte Carlo simulations can be found for both methods, validating the variance computation from a the-
oretical point of view. Note that the standard deviations are significantly lower with the input/output method,
compared to the output-only method, roughly by factor 4 in this application.

Table 2 also shows the one sigma sample standard deviation of the estimated standard deviations during the
Monte Carlo simulations. It is mostly smaller than 15% of their mean value (except for the badly estimated

Frequency (Hz) Damping ratio (h)
Algorithm 1 2 3 4 5 6 1 2 3 4 5 6

Actual model 1.930 5.618 8.682 14.49 15.85 17.01 20.0 20.0 20.0 20.0 20.0 20.0
OO 1.937 5.618 8.683 14.49 15.85 17.01 29.4 20.1 20.1 20.0 20.0 20.0
IO 1.930 5.618 8.682 14.49 15.85 17.01 20.2 20.0 20.0 20.0 20.0 20.0

Table 1: Means for frequencies and damping ratios from modal identification in 10,000 Monte Carlo simu-
lations. OO: output-only, IO: input/output algorithm.



Standard deviation of frequency (Hz ·10−2)
Algorithm 1 2 3 4 5 6
OO σest 2.02 ± 1.80 1.10 ± 0.15 1.55 ± 0.21 2.60 ± 0.36 2.64 ± 0.38 3.51 ± 0.48

σMC 1.99 1.14 1.59 2.63 2.65 3.48
IO σest 0.42 ± 0.06 0.24 ± 0.03 0.29 ± 0.03 0.66 ± 0.08 0.49 ± 0.05 0.87 ± 0.10

σMC 0.41 0.25 0.29 0.68 0.50 0.87

Standard deviation of damping ratio (h)
Algorithm 1 2 3 4 5 6
OO σest 16.46 ± 26.64 1.98 ± 0.28 1.80 ± 0.25 1.70 ± 0.22 1.67 ± 0.23 2.09 ± 0.28

σMC 17.12 2.07 1.85 1.71 1.71 2.09
IO σest 2.13 ± 0.34 0.43 ± 0.05 0.33 ± 0.04 0.45 ± 0.05 0.31 ± 0.04 0.52 ± 0.06

σMC 2.07 0.44 0.34 0.45 0.31 0.53

Table 2: Mean of estimated standard deviations (σest) and sample standard deviations (σMC) for frequencies
and damping ratios of the six modes in 10,000 Monte Carlo simulations. OO: output-only, IO: input/output
algorithm.
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Figure 2: Histograms for first mode identified with the input/output method from Monte Carlo simulations:
estimated frequencies, estimated standard deviations on frequencies, estimated damping ratios and estimated
standard deviations on damping ratios.

modes), both for frequencies and damping ratios. This means that the estimation error of the standard devia-
tion on a single dataset is in most cases less than 15% with the proposed methods, which is very reasonable
for a second-order statistics. As examples, the histograms of the identified frequencies and damping ratios
of the first mode, and the histograms of their estimated standard deviations with the methods from this paper
are shown in Figure 2 for the Monte Carlo simulations with the input/output method.

5.2 Validation on experimental data

In a second study, experimental input/output data from a lab experiment on a composite plate was considered
[20]. The considered vibration test was performed with one input and the outputs were measured at 14
sensors. Input/output time series of length 1,600,000 at a sampling rate of 4096 Hz were recorded. For the
experimental validation of the output-only and input/output algorithms, they are separated into 32 smaller
datasets of length 50,000.

Stabilization diagrams from both identification methods using one of the datasets is shown in Figure 3,
where seven modes could be clearly identified. The means of the identified frequencies and damping ratios
are shown in Table 3, where a stable range between model orders 25 and 50 has been selected. It can be
observed that some frequencies show a significant difference between both algorithms, which may suggest



that the inputs were actually not exactly white noise. The damping ratios identified with the input/output
algorithm are lower than with the output-only algorithm for most of the modes.
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Figure 3: Stabilization diagram of one dataset with output-only (left) and input/output subspace identification
(right), including the ±1σ uncertainty bound.

mode 1 2 3 4 5 6 7
f (Hz) OO 344 561 794 912 1073 1849 1925

IO 376 567 837 946 1099 1798 1888
ξ (h) OO 27.4 11.4 16.3 7.4 9.7 12.4 23.7

IO 9.4 9.4 6.0 9.8 8.0 19.4 13.5

Table 3: Means of frequencies and damping ratios of the seven modes from 32 datasets of the composite
plate. OO: output-only, IO: input/output algorithm.

Standard deviation of frequency (Hz)
Algorithm 1 2 3 4 5 6 7
OO σest 1.72 ± 1.23 0.54 ± 0.11 1.59 ± 1.04 0.41 ± 0.15 0.56 ± 0.14 1.54 ± 0.41 4.47 ± 3.76

σMC 1.61 0.43 1.49 0.39 0.54 1.25 3.37
IO σest 0.33 ± 0.13 0.07 ± 0.02 0.08 ± 0.02 0.18 ± 0.09 0.13 ± 0.05 0.55 ± 0.67 0.84 ± 3.50

σMC 0.26 0.06 0.11 0.17 0.13 0.55 0.75

Standard deviation of damping ratio (h)
Algorithm 1 2 3 4 5 6 7
OO σest 5.3 ± 4.2 1.0 ± 0.2 2.1 ± 2.1 0.5 ± 0.1 0.6 ± 0.3 0.9 ± 0.2 5.4 ± 7.9

σMC 4.0 0.7 1.7 0.5 0.5 0.7 3.1
IO σest 1.2 ± 0.3 0.1 ± 0.04 0.1 ± 0.03 0.2 ± 0.1 0.1 ± 0.04 0.2 ± 0.2 0.5 ± 2.0

σMC 0.9 0.1 0.1 0.2 0.1 0.2 0.2

Table 4: Mean of estimated standard deviations (σest) and sample standard deviations (σMC) for frequencies
and damping ratios of the seven modes from 32 datasets of the composite plate. OO: output-only, IO:
input/output algorithm.



A comparison between the sample standard deviations from the 32 identification results and the means of
the estimated standard deviations with the method described in this paper is shown in Table 4. There is a
good agreement between both statistics for each mode and for each methods, which validates the proposed
uncertainty quantification method for the input/output covariance-driven subspace algorithm on experimental
data. For both frequencies and damping ratios, the standard deviation of the estimates is significantly lower
with the input/output algorithm than with the output-only algorithm. Thus, taking into account the input
information indeed leads to a higher precision of the estimates in terms of the standard deviation.

6 Conclusions

In this paper, we have recalled a recently developed method for the variance estimation of modal parameter
estimates from an input/output covariance-driven subspace identification method, and we have validated it
on experimental data from a laboratory vibration test. The results show a good agreement between the
sample statistics and the variance estimates from the proposed method, which validates the method not only
in Monte Carlo simulations, but also on experimental data. Note that often only one dataset is available
for modal analysis, which makes a Monte Carlo approach unfeasible in practice. The presented method
extends variance estimation for subspace identification to input/output data, which has been shown to give
more precise identification results and lower uncertainty bounds than the output-only approach. In this work,
inputs have been considered as the realization of a stochastic process. Future work includes the analysis of
both stochastic and deterministic inputs in the same framework.
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[14] M. Döhler, F. Hille, L. Mevel, W. Rücker. Structural health monitoring with statistical methods during
progressive damage test of S101 Bridge. Engineering Structures, 69:183–193, 2014.
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