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Abstract: We report on the influence of the quantum well thickness on the effective band 
gap and conversion efficiency of In0.12Ga0.88N/GaN multiple quantum well solar cells. The 
band-to-band transition can be redshifted from 395 to 474 nm by increasing the well 
thickness from 1.3 to 5.4 nm, as demonstrated by cathodoluminescence measurements. 
However, the redshift of the absorption edge is much less pronounced in absorption: in 
thicker wells, transitions to higher energy levels dominate. Besides, partial strain relaxation 
in thicker wells leads to the formation of defects, hence degrading the overall solar cell 
performance.  

 

InGaN alloys are considered as promising candidates for high-efficiency photovoltaic devices [1-4] since 
their band gap spans almost the whole solar spectrum from 0.7 eV (InN) to 3.4 eV (GaN). This makes 
theoretically possible the development of all-InGaN multijunction solar cells with a freely customizable 
number of junctions to enhance the overall efficiency. However, the large lattice mismatch between 
GaN and InN has led several groups to study the possibility of hybrid integration, combining an InGaN 
cell in a tandem device with silicon [5,6] or other non-III-nitride [7] photovoltaic cells.  

The difficulty of growing high-quality InGaN layers increases with the In content. Reports of InGaN-
based junctions with an In mole fraction exceeding 0.3 are rare [1]; the best external quantum 
efficiencies (EQEs) exceeding 0.7 are obtained at around 400 nm and quickly drop for longer 
wavelengths [8-10]. The main challenges are the large dislocation density and In-clustering, caused by 
the strong tendency to phase separation during growth. Absorbing layers in the form of a multiple 
quantum well (MQW) structure are often used to delay strain relaxation. Furthermore, the quantum 
confined Stark effect (QCSE) associated to the strong piezoelectric fields in the InGaN/GaN system [11] 
offers the possibility to tune the effective band gap of the structure by adjusting the quantum well 
(QW) and barrier thickness (tQW and tB, respectively). The effect of tuning tB in InGaN/GaN MQW 
photovoltaic devices has been studied by Wierer et al. [12] and Watanabe et al. [13]. According to their 
results, the absorption cutoff of the solar cells redshifts with decreasing tB. However, this does not 
always translate in enhanced overall cell efficiency, since the short circuit current density (Jsc) and open 
circuit voltage (Voc) also depend on tB.  

In this paper, we focus on the influence of the QW thickness on the effective band gap of the junction 
and its impact on the overall cell efficiency. We experimentally demonstrate that the band-to-band 
transition in InGaN QWs can be significantly redshifted in larger QWs. However, this redshift appears 
linked to a dramatic enlargement of the Stokes shift, so that increasing the tQW above a few nm is no 
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longer beneficial. This fact, combined to the increased defect density associated to strain relaxation in 
thicker QWs, causes thick-QW solar cells to have inferior overall performance. 

The samples considered in this study consist of a non-intentionally-doped In0.12Ga0.88N /GaN MQW 
(tB = 8.5 nm, tQW = 1.3- 5.4 nm) active region sandwiched between p- and n-type GaN contact layers. 
Figures 1(a-c) show the band diagram of three QWs in the middle of the active region calculated at 
zero bias using the nextnano3 software [14,15]. The QWs present the characteristic sawtooth profile 
due to the polarization-induced internal electric field. The band-to-band transition between the 
topmost hole energy level (h1) and the deepest electron level (e1) decreases in energy with increasing 
tQW, hence the expected absorption wavelength redshifts from 390 nm to 475 nm, as shown by the 
solid line in Fig. 1(d). Furthermore, when tQW increases, the overlap of the hole and electron 
wavefunctions decreases, and the deepening of the potential wells enhances the carrier localization. 
It is important to note that the calculations in Figs. 1(a-c) were performed under the assumption of 
fully-strained wells. Growing thicker QWs increases the probability of lattice relaxation: as the energy 
shift is mostly due to the piezoelectric component of the polarization, relaxation would result in a 
smaller band gap redshift. The calculated redshift for full relaxation is shown by the dashed line in 
Fig. 1(d).  

 

Fig. 1: Band diagrams of the In0.12Ga0.88N/GaN (tB = 8.5 nm) MQW structure for (a) tQW = 1.3 nm, (b) tQW = 3.1 nm, (c) 
tQW = 5.4 nm. The two first electronic levels in each QW are shown with their squared wavefunctions. These calculations 
assume the QWs fully strained on GaN, and a lattice temperature of 5 K. The n-doped layers are towards the left side, 
the p-layers towards the right. (d) Calculated e1-h1 transition wavelength as a function of the QW thickness assuming 
the MQW fully strained on GaN and fully relaxed. The stars indicate the result for the strain state estimated by XRD 
measurements. The calculations are compared to the CL peak emission wavelength measured at 5 K. The error bars 
indicate the full widths at half maximum of the CL peaks.  

In order to experimentally investigate these effects, three samples with different QW thickness were 
grown on c-plane sapphire by metal-organic vapor phase epitaxy. The active region consists of a 30-
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period In0.12Ga0.88N/GaN MQW with tB = 8.5 nm and tQW = 1.3, 3.1, and 5.4 nm, as in the previously 
presented simulations. The GaN:Mg top layer has a thickness of 80−110 nm and a hole concentration 
in the 1017 cm−3 range. In the following we will refer to the three samples as A (tQW = 1.3 nm), B 
(tQW = 3.1 nm) and C (tQW = 5.4 nm), as summarized in Table I. Further details about the growth of the 
samples are reported in Ref. [16]. 

High-resolution transmission electron microscopy (HR-TEM) experiments were performed on a Jeol 
3010 microscope operated at 300 kV. The strain state and In content of the samples were measured 
by x-ray diffraction (XRD): θ-2θ scans around the (0004) Bragg peak reflection were recorded at the 
BM02 beamline of the European Synchrotron Radiation Facility using a wavelength  = 1.28361 Å, and 
reciprocal space maps around the (-1015) reflection were measured in an XRD diffractometer using 
the  =1.54056 Å Cu K  line. Cathodoluminescence (CL) measurements were performed in a FEI quanta 
200 CL system, using an acceleration voltage of 10 kV and a current of ~100 pA. The sample emission 
was collected by a parabolic mirror and focused onto a Jobin Yvon HR460 monochromator equipped 
with a charge-coupled device and a photomultiplier tube. The absorption spectra were deduced from 
transmission measurements at normal incidence, neglecting reflection. Excitation was provided by a 
150 W Xe-arc lamp coupled to a Gemini-180 double monochromator for the ultraviolet spectral range 
(250−400 nm), and by a 1000 W halogen lamp coupled with an Omni Lambda 300 monochromator for 
the visible range (360−700 nm), both calibrated with a reference Si photodetector. 

Samples were processed in photovoltaic devices with mesa sizes of 1×1 mm2 and 0.5×0.5 mm2 defined 
by Cl2-based inductively coupled plasma etching. The n-contact surrounding the mesas consisted of e-
beam evaporated Ti/Al/Ni/Au. The p-contact consisted of a semitransparent Ni/Au (5 nm/5 nm) layer, 
annealed for 5 min in oxygen-rich atmosphere, and of a 130 nm-thick Ni/Au finger structure (finger 
width 5 µm, pitch 150 µm). Further details about the fabrication process have been reported in Ref. 
[16]. The spectral response of the cells was measured at room temperature and normal incidence in 
the same setups used for transmission measurements. A He-Cd laser was used to determine the EQE 
at 325 nm. Solar cell measurements were performed under 1 sun illumination (AM1.5G irradiation with 
total power of 1000W/m²) using a class AAA solar simulator from Oriel.  

Cross-sectional HR-TEM micrographs of the samples’ MQW are shown in Fig. 2. In sample A [Fig. 2(a)], 
the periodicity of the MQW is very uniform and the layer interfaces are sharp. In sample B the MQW 
is also mostly smooth and uniform [Fig. 2(b)], although a few areas present evidence of elastic and 
plastic misfit relaxation. This degradation is clearly observed on much larger areas of sample C, as 
illustrated in Figs. 2(c) and (d). The values of tB and tQW measured from the HR-TEM images are 
summarized in Table I.  
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Fig. 2: HR-TEM micrographs of the MQW region of samples (a) A, (b) B, and (c and d) C. In (c), a section of sample C 
with smooth wells and sharp interfaces is shown, while in (d) the MQW is disturbed due to strain relaxation 

Table I: Quantum well and barrier thickness, and MQW period thickness for the samples under study, determined from 
the HR-TEM micrographs and XRD investigations, respectively. Photovoltaic performance of the fabricated solar cells. 

 HR-TEM HR-XRD Cell parameters 
Sample tB (nm) tQW (nm) MQW period (nm) Jsc (mA/cm2) Voc (V) FF (%) η (%) 

A  8.0 ± 0.26 1.3 ± 0.26 9.7 -0.42 ± 0.008 2.17 ± 0.05 54 ± 2 0.49 ± 0.014 
B  9.3 ± 0.26 3.1 ± 0.26 12.0 -0.46 ± 0.045 1.29 ± 0.08 42 ± 2 0.25 ± 0.043 
C  9.1 ± 0.26 5.4 ± 0.26 13.7 -0.14 ± 0.002 1.14 ± 0.01 47 ± 3 0.07 ± 0.002 

 

In order to assess the structural quality of the MQW on a larger scale, the samples were investigated 
by XRD. In Fig. 3(a), the θ-2θ scans show several satellites of the MQW reflection, indicating well-
defined multilayer structures in spite of the local degradation observed by HR-TEM in samples B and 
C. The average MQW periods determined from the distance between satellites are summarized in Table 
I. The In content and the degree of relaxation of the MQW were estimated from reciprocal space maps 
around the (-1015) reflection. For samples A and B (not shown here), the reflections corresponding to 
the GaN layers and to the MQW are vertically aligned (same in-plane wave vector Qx), which means 
that the MQWs are fully strained on GaN within the experimental error bars [17]. In the case of sample 
C (Fig. 3(b)), combining the information from the (-1015) and (0004) reflections with the layer 
thicknesses measured by HR-TEM, a degree of relaxation of 40±15% is estimated. The average In 
content in the QWs is x = 0.12±0.02 for the three samples.  
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Fig. 3: (a) XRD θ-2θ scans around the (0004) reflection of samples A, B and C compared to simulations performed by 
the X’Pert Epitaxy software from Panalytical assuming 12% In content and the layer thickness reported in Table I. (b) 
Reciprocal space map around the (-1015) reflection of sample C (c.p.s. = counts per second).  

Figure 4 displays low temperature (5 K) CL measurements of samples A and C. The CL spectra in the 
insets of Fig. 4 show a distinct emission line which redshifts with increasing QW thickness. The peak 
values for the three samples are plotted in Fig. 1(d), showing good agreement with the simulated trend. 
The experimental data appear slightly redshifted in comparison with the calculated values taking partial 
relaxation into account, which could be explained by the error bars in the determination of the In 
composition and by the presence of alloy and thickness fluctuations in the QWs. Such inhomogeneities 
are confirmed by the nonuniform emission in large QWs observed in monochromatic CL maps (see 
comparison between samples A and C in Fig. 4).  

 

Fig. 4: Monochromatic low-temperature (5K) CL maps of samples A and C at the peak emission wavelength. In the insets, 
the respective spectra are shown. 

Figure 5(a) shows the spectral response of the solar cells under study. For each sample, at least three 
solar cells taken from different areas of the wafer were measured; the error bars associated to the 
responsivity measurement at 325 nm are ±1% for sample A, ±12% for sample B and ±2.5% for sample 
C. No systematic difference was observed in the performance of 1×1 mm2 and 0.5×0.5 mm2 solar cells. 
Considering the best devices, peak responsivities at 370 nm of 155 mA/W (EQE = 0.52), 107 mA/W 
(0.36), and 39 mA/W (0.13) were obtained for samples A, B and C, respectively. The efficiency drop is 
attributed to increased nonradiative recombination, caused by the larger defect density observed by 
HR-TEM in thicker-QW devices. Fig. 5(b) shows the variation of the spectral cutoff wavelength as a 
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function of tQW, compared with theoretical calculations of the transitions between the first electron 
and hole levels (e1-h1) and the second electron and hole levels (e2-h2). Sample A fits well the 
calculations for e1-h1. As expected, the absorption cutoff of sample B is redshifted with respect to A, 
although not as much as theoretically predicted. For the thickest QWs (sample C) no further shift of 
the absorption edge is observed with respect to B, in contrast with the large spectral shift observed in 
CL measurements. However, its absorption cutoff corresponds well with the value calculated for the 
e2-h2 transition. 

 

Fig. 5: (a) Spectral photoresponse of the devices under study. The curves correspond to the best performing 
0.5×0.5 mm2 solar cell of the respective sample. (b) Calculated e1-h1 and e2-h2 transition wavelengths as a function 
of the QW width compared to the experimental spectral cutoff of the samples (defined as the wavelength where the 
photocurrent drops to half its maximum value). The calculations are performed with nextnano3 assuming the lattice at 
room temperature and the strain states measured by XRD. (c) Comparison between photoresponse (dashed lines) and 
absorption (full lines) spectra, normalized at 382 nm. (d) J−V characteristics under 1 sun AM1.5G equivalent illumination 
[same solar cells as in (a)]. 

To understand the cause of the missing redshift, in Fig. 5(c) the spectral response of the three samples 
is compared to their spectral absorption. All curves are normalized at 382 nm, in order to compare only 
the InGaN MQW absorption and exclude the contribution of the GaN layers. The good overlap of the 
curves relating to samples B and C indicates that the collection losses are negligible, since the 
absorption and photoresponse cutoffs coincide. The missing absorption redshift can hence be 
explained by the low oscillator strength of the e1-h1 transition, which decreases drastically with the 
QW thickness due to the QCSE, combined with the lower density of states of the ground levels 
compared to excited levels, e.g. e2, h2. In CL measurements the emission is dominated by the ground 
state transition e1-h1, due to the fast intraband relaxation of excited carriers. However, when 
increasing the QW thickness, the contribution of h1-e1 to the absorption becomes negligible in 
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comparison to the contribution of excited levels [18] e.g. h2-e2, with higher density of states and better 
electron-hole wavefunction overlap. This trend is visible in Fig. 1(a) to (c), and causes the h2-e2 
transition to dominate the absorption in sample C. 

Figure 5(d) depicts the current density-voltage (J-V) curves of the solar cells under 1 sun irradiance. 
Sample B has the largest Jsc, which can be explained by the linear increase of the sun’s irradiance from 
300 nm to 450 nm and the redshift of the absorption cutoff. In sample B, the better overlap of the 
photoresponse with the solar spectrum largely compensates the drop in peak responsivity with respect 
to sample A. However, Voc and the shunt resistance (inverse of the tangent to the J-V curve in V = 0 V) 
are lower in sample B, resulting in a lower fill factor (FF). As a consequence, the maximum efficiency 
(η) of the cells fabricated on sample B is only 0.25±0.04%, which is about half the value obtained on 
sample A (0.49±0.01%). The loss in Voc in sample B points to a leakage path through the active region 
and/or to increased nonradiative recombination, which might be associated to the increased defect 
density. Jsc decreases for sample C because of the much lower external quantum efficiency with respect 
to sample B. An overview of the main cell parameters is provided by Table I.  

In summary, it has been shown that the band-to-band transition in InxGa1-xN QWs with an In mole 
fraction x = 0.12 can be redshifted more than 70 nm by increasing the QW thickness from 1.3 nm to 
5.4 nm. However, this redshift cannot be fully exploited to improve the efficiency of solar cells, due to 
the reduced overlap of the ground state electron and hole wavefunctions caused by the QCSE in thicker 
QWs. Besides, thicker wells are prone to the generation of defects in the MQW structure because of 
strain and local misfit relaxation, which results in lower peak EQE, together with reduced Voc and shunt 
resistance.  
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