Supporting Information

Complexes of the Tripodal Phosphine Ligands $PhSi(XPPh_2)_3$ (X = CH₂, O): Synthesis, Structure and Catalytic Activity in the Hydroboration of CO₂

Alicia Aloisi, Jean-Claude Berthet,* Caroline Genre, Pierre Thuéry and Thibault Cantat*

NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France.

ESI: NMR spectra

Content :

Figure S1: ¹ H NMR of 3 in <i>d</i> ₃ -acetonitrile	2
Figure S2 : ¹³ C{ ¹ H} NMR of 3 in d_3 -acetonitrile	2
Figure S3 : ³¹ P{ ¹ H} NMR of 3 in d_3 -acetonitrile	3
Figure S4: ¹ H NMR of 3' in d ₃ -acetonitrile	3
Figure S5: ¹³ C{ ¹ H} NMR of 3' in d ₃ -acetonitrile	4
Figure S6: ³¹ P{ ¹ H} NMR of 3' in <i>d</i> ₃ -acetonitrile	4
Figure S7: ¹ H NMR of 4 in d ₈ -THF	5
Figure S8 : ¹ H NMR of 4 ' in d_8 -THF	6
Figure S9: ¹ H NMR of 5 in d ₂ -CH ₂ CI ₂	7
Figure S10: ¹³ C{ ¹ H} NMR of 5 in <i>d</i> ₂ -CH ₂ Cl ₂	8
Figure S11 : ${}^{31}P{}^{1}H{}$ NMR of 5 in <i>d</i>₂-CH₂Cl₂	9
Figure S12: ¹ H NMR of 5" in d ₈ -THF	9
Figure S13 : ³¹ P{ ¹ H} NMR of 5 " in <i>d</i> ₈ -THF	10
Figure S14: ¹ H NMR of 5' in d ₂ -CH ₂ CI ₂	10
Figure S15: ¹³ C{ ¹ H} NMR of 5' in d ₂ -CH ₂ Cl ₂	11
Figure S16: ³¹ P{ ¹ H} NMR of 5' in <i>d</i> ₂ -CH ₂ Cl ₂	11
Figure S17: ¹ H NMR of entry 4 (Table 4) in d ₈ -THF	12

Figure S3: ³¹P{¹H} NMR of 3 in d_3 -acetonitrile

Figure S4: ¹H NMR of 3' in *d*₃-acetonitrile

Figure S8: ¹H NMR of 4' in *d*₈-THF

Figure S10: ${}^{13}C{}^{1}H{}$ NMR of **5** in d_2 -CH₂Cl₂

Figure S16: ³¹P{¹H} NMR of **5'** in *d*₂-CH₂Cl₂

Figure S17: ¹H NMR for catalytic run of entry 4 (Table 4) in *d*₈-THF