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PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998

Coupling of rotating water jets by surface waves

F. Giorgiutti L. Laurent, and F. Daviaud
Commissariat d'Energie Atomique (CEA), Service de Physique de I'Etat Conde®aelay, F-91191 Gif sur Yvette Cedex, France
(Received 8 July 1997; revised manuscript received 23 February) 1998

Above a critical flow rate, a single jet impinging from below on a water-air interface oscillates while arrays
of jets exhibit collective behaviors. The aim of the paper is to explain the physics governing such an array.
First, a series of experiments shows that the instability mechanism leading to the oscillation of a single jet
is due to a feedback effect between surface distortion and the unstable jet as in the “jet-edge” system and that
several jets are coupled through surface waves. Then a modelization is proposed in which jets are considered
as oscillators close to their limit cycle coupled by delayed action to take into account the wave propagation.
A good agreement is obtained between the predictions of the model and experiments on sets of two or four jets.
The long range of the surface waves and the large number of oscillators render this jet configuration
very similar to idealized phase coupled nonlinear oscillators investigated in theoretical models but with a
not instantaneous coupling ensured by traveling waves. This allows in particular the existence of various
synchronization modes, which appear as geometrical pat{8h663-651X98)07407-§

PACS numbegs): 47.20—k, 68.15+¢, 68.10—m

[. INTRODUCTION jets. In the next section, after a brief presentation of the ex-
perimental setup, experiments concerning the single jet insta-
A lot of theoretical work has been done on large popula-ility [11,12] are presented. A model of the oscillation is

tions of coupled oscillators because of their interest to repdiscussed based on the “jet tone” conc¢p8], which pro-
resent various physical or biological systems with a largevides the right scaling of the frequency. Then, in Sec. III,
number of degrees of freedofsee, for instancd1-3]). On  simple arrays of two or four jets are investigated experimen-
the experimental side, several attempts have been made #@lly and a model is presented to explain the observed phase
design extended systems that can be considered as such aRefterns. In Sec. 1V, the results are discussed. The model is
of oscillators. Some of them use fluids perturbed by a spatested by comparing the predicted and observed frequency
t|a||y periodic action that to some extent behave as Coup|e@.nd modes of oscillation for various sizes and flow rates.
oscillators such as coupled wakie§, air jets[5], magneti- Then to explain the unlocking of jets when they are sepa-
cally driven vorticeg6], and to a lesser extent coupled ther- rated by a too large distance, the effect of a slight detuning of
mal boundary layer§7]. Modelization of these systems has the jets is investigated.
often been done by using a nonlinear amplitude equation
modified to take into account the coupling with the neigh-
boring oscillators. The exact nature of the coupling term de-
pends on the underlying physics and various schemes have A. Experimental setup

begn usgd such as an additional dr!\{e depending linearly on Figure 1 describes the experimental setup. The jets flow
neighboring amplitudg4,6], an additional nonlinear term of a tranquilization chamber containing a 5-cm-thick po-

[6], or a delayed modification of the nonlinear saturation;q,s medium. The chamber is filled by pressurized water
term[5,7]. Another interesting system consists in using ver-

tical jets close to a water-air interface. It can be easily ex-
tended to configurations with a large number of oscillators.
When they are isolated, such jets can rotate or oscillate at

constant amplitudg8,9]. When they are associated in arrays, |:|
phase locks and a wide variety of phase patterns are observed

that depend on the symmetries of the netw|dr®].

Il. PROPERTIES OF THE JET AS AN OSCILLATOR

photodiode  video camera

Up to now, the understanding of the jet rotary instability , oscillating bump (30Hz)
was only partial, in particular the observed frequency depen- bl -
dence(decreasing with the jet velocitywhich is quite un- water yh ﬂeﬂﬂ‘ﬁ hole o movabie
usual for standard jet instability. Moreover, no quantitative AAA A plate
model for the coupling and the phase pattern has been pro-
posed. The two aims of this paper dreto provide a clearer : TtranquilizationT
understanding of the jet rotation afid) to present the first chamber
model able to predict quantitatively the coupling between

*Present address: Laboratoire FAST{iBent 502, Campus Uni-
versitaire, 91405 Orsay Cedex, France. FIG. 1. The experimental setup.
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PRE 58 COUPLING OF ROTATING WATER JETS BY SURFACE WAVES 513

about frequency can be summarized in the following
way: (i) for a given geometry the frequency decreases with
the jet velocity[Fig. 4(a)], (ii) it increases with surface ten-
sion [Fig. 4(b)], (iii) when the depth, obJ, is varied, the
most relevant parameter seems to be the bump hdight
(where primes denotes quantities related to the Hueasp
shown in Fig. 4b) of [10].

It appears that the jet rotation can be synchronized when
excited with surface waves in the range of frequencies cor-
responding to the free rotation one. This was shown in a
series of experiments, which present some similarities with
The oscillating edge experiment by Staubli and Rockwell
[13]. Surface waves were generated on the water tank
through a blade connected to the coil of a loudspeaker. The

due to a pumpthrough a flow meter and a regulation valve. evolution of the bump oscillation wit_h the forcing frequency
Its top part is a removable 6-mm-thick perforated plate |o-Nas been followed. Two phase-locking areas have been seen

cated a few millimeters below the surface. Various types o]tor forcmg frequencies cI_ose to the bump frequgncy orina
plates can be used. For the present paper, square networks'§f'oN at I_ower fre_quenmes. For other frequ_enc_les both 0s-
holes with a radiud=0.5 mm are used and flow velocities cil atlor_ws, i.e., forcing waves and bump oscillation coexist
at the hole, andJ lies between 0.5 and 0.7 msleading to (see Fig. 5
the Reynolds numberdJp/v) in the range 250-350. The ) )
whole device is immersed in a 110 | plexiglass constant level C. Discussion
water tank. In some experiments the surface tension was var- The observed rotation of the bump suggests that the jet is
ied in the range 50— 7610 3 Nm™* using soap. To control ~ subjected to a helical instability. This is compatible with the
the depthh of the jets below the surfadgypically 6 mm,  Reynolds number range. Moreover, previous works demon-
the vertical position of the jet nozzles can be adjusted with &trated that a few diameters away from the nozzle, when the
micropositioner. More details can be found [it0]. When  shear layer has widened, this mode is the one with the largest
one of the jets reaches the water-air interface, there is a stgrowth rate[11,12. However, for the free jet, the most un-
tionary axisymmetric bump. Its radius’ is determined by stablew are of order of 0.8/b, which corresponds to fre-
the equilibrium between the jet pressy®’? (wherep is quencies of the order of 100 Hz for the present experiment,
the water volumic mass and’ is the jet velocity at the i.e., typically three times the experimental ones. In addition,
bump and the surface resistance, which scales/&s (ois  the observed frequency decreases with jet velocity instead of
the superficial tensignWhenU is larger than a threshold; increasing. An additional frequency-selection mechanism
so that this equilibrium is no longer possible, .8, is so  must be invoqued. The water-air interface, which is not in
large that equilibrium would requirb’ smaller thanb, the  the standard theory, provides this ingredient. The helical in-
surface breaks and the system looks like a “small fountain.”stability distorts the surface and this causes a pressure fluc-
tuation along the jet path, which can be amplified by the jet.
B. Observations Such an amplification is well known and examples are given
in [14,15. Indeed the strength of the feedback will depend
on the amplitude of the surface distortion. When the helical
gfnstability distorts the bump, surface tension tends to restore
the initial shape, which corresponds to the equilibrium be-

oscillations les between 10 and 50 Hz. and measuremen ween the surface tension and the pressure. The spring force
’ cales asrb’, i.e., the product of the surface tension by a

can be made either with stroboscopic lighting for V'Sual'za'characteristic length. To restore the initial shape, this force

tion or intensity' of a Iigh't beam reflecting on.the bump to- has to modify the momentum of the water inside the bump,
wards a photodiode for time evolution. Experimental resultsWhich scales apU’b’3. The characteristic time of the bump

relaxation is the ratio of these two quantities, i.e:,

L =pU'b’'?/o. Thus the feedback between the bump and the
jet is expected to be optimum when the latter rotates at an
angular velocitywg, so thatwer,=1, i.e.,wq is proportional

FIG. 2. Picture of a rotating bump fa#>U,. The jet diameter
is equal to 1 mm, the height and width of the bump are of the sam
order, about 3 mm.

supplied from an elevated reserv@io avoid any vibration

Above a critical velocityU =U, the axisymmetric equi-
librium of the bump becomes unstable and it starts rotatin
around the jet axigFig. 2), while generating surface waves
with a spiral geometryFig. 3). The frequency range of these

to a/pb’?U’.
Using the flow rate conservatidw U’ =b2U, the scal-

ing of frequency should be,=G(U)a/pb?U, whereG(U)
is an unknown dimensionless number that takes into account

the numerical factor and the actual geometry of the flow,
A e which may vary with the jet velocity. In Fig. @b%Uwy/o
[i.e., the expecte®(U)] is plotted as a function of the ve-

FIG. 3. Picture from above of the surface waves generated byocity of the jet for various water velocities and depth. The
the rotating bumgspiral waves fact that this quantity is almost constaeixcept for highU,




514 F. GIORGIUTTI, L. LAURENT, AND F. DAVIAUD PRE 58

-
oo (87)
280

T
T

250 +

+

220 +

54 55 56 57 58 59 60 61 62

(@) U(ms™) x1072
0o (s™)
145
135 + I
125
15 | I
105 +
95 1 I
85 +
75 +
65 + + t t +
0.045 0.05 0.055 0.06 0.065 0.07 0.075
(b) o (Nm™)

FIG. 4. (a) Evolution of wg with the jet velocityU. (b) Effect onw, of a change in surface tension obtained by adding soap to water.

i.e., low wg) shows that the model for oscillation is correct 100 m %, respectivelyf12]. The amplification takes place on
and moreover that geometry distortion due to variationd of distanced |y|ng betweenb’ andh so that its Va|u&|m(kz)1
is not too large. In co'nclusion, taking into account the valuayjj| pe in the range 1—1.5. If the coupling between the pres-
of G deduced from Fig. 6 one gets sure modification due to the bump distortion and the jet is
wo=(0.9+0.1) 5/ pb2U. 1) not too lossy, the system can oscillate-. To gxplain the rota-
tion start atU =U., the following scenario is likely: whed
It is also possible to eliminatd)’ in the relation w, IS 10W, the Reynolds number is too low for an amplification
~alpb’2U" using the equilibrium discussed in Sec. Il A Process to take place. When increases above, Im(k)
between the stregsU’2 and superficial tensioa/b, i.e.,U’ reaches a value such that the oscillation is possible. The most
is proportional tob %% so thatw, should approximatively —favored frequency is», since the feedback on pressure is
scales withb~1®. This curve is compatible with experimen- optimum at the bump resonance.
tal results[10] although the exponent cannot be determined The loudspeaker experiment can be interpreted along the
accurately(between—2 and—1.5). same lines. When the incoming waves distorts the bump ef-
As discussed at the beginning of the section, these freficiently i.e., when its frequency is close &, it can lock in
guencies are two or three times lower than the optimum fophase the jet instability. This is not contradictory with the
the amplification by the jet. However, taking a reasonablepresence of another region at lower frequency, where there is
velocity profile across the jet, the linear theory still predictsa phase locking that could correspond to the direct excitation
an instability with Rek,) and Imk,) of the order of 1000 and of the jet by the surface wave.
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FIG. 5. Effect on the bump pulsatian, of a launched surface wayblade connected to a loudspeaker excited by a sinusoidal tension
The natural value ofyg is 126 s,

Ill. COUPLING OF OSCILLATORS IN SIMPLE rate amplitude measuremgind the same direction of rota-
GEOMETRIES tion. There are two differences with the single jet casg)
the critical flow rate for the bump oscillation appearance is
lower for two bumps than the one for a single ofie) the
Results of Sec. Il suggest that when the system containgequencyw is different from the single jet one, as shown
several jets, they can be coupled. This has been investigatéal Fig. 7. The results obtained during, scang(i.e.,U scans
for two types of jet configurations. since wy decreases as increasesfor various values of jet
(i) The first one consists in two jets separated by distancespacinga, are presented in Table I. The second column rep-
6x10 3<a<12x10 3 m, the plate being 6 mm deep. resents the phase difference between the motion of the two
Whena is too large(above 1% 10 2 m) the coupling dis- jets. Two collective modes are observed: an acoustic mode
appears. The flow rate was varied, limited on the lower sidgvhere the two bumps oscillate in phaghase difference of
by the threshold for jet oscillation, and on the upper side by27), and an optical mode where the two bumps oscillate in
the fountain regime. This corresponds to the single jet frephase oppositiorfphase difference ofr). When there is a
quency range: 240 w,<300 s * [Eq. (1)]. The two bumps transition, the symbol at lefright) represents the mode at
oscillate at the same frequency, with the same amplitudéow (high) wq. In this case the value ab, at the transition
(note that the photodiode technique does not allow an accus displayed in the third column. A transition between two

A. Experimental results with simple arrays

Y=o0ob?U/c

- e e e T o

08 -
06+
041

02+

37 39 41 43 45 47 49 51 53
-4 -2
U (ms™) x10

FIG. 6. Evolution of the rescaled pulsatidh=pwob2U/o with the jet velocityU for one single jet, for different depths. The figure
contains values obtained for plate deptits 7, and 10 mm.
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FIG. 7. Evolution of the pulsation for two coupled jets with- 11 mm(squares and for one single jefcircles as a function of the jet
velocity.

modes is accompanied by a phase and frequency j@hp slowly varying complex amplitude ang,= arg(a,) repre-
ways positive whenw, increasep which is indicated in the  sents the phase of the motion. When jetis alone, the
last column. Around the transition there is a domain whergotation occurs with a pulsation, so that the argument of

the system hesitates between the two modes with a typical,, does not depend on time. This behavior is well repre-
half-width Awo=10s. Similar results are obtained for sented by the following equation:

lines of five jets.

(ii) The second network is made of four jets displayed on dap, .
squares of different sizes. The plate is still at 6 mm from the dar Y(U) (1~ apap)an=0, @
surface. For this network the onset of the threshold velocity
is lower than for two jets so that the range«f that can be where an asterisk denotes complex conjugate. The second
explored is larger, between 240 and 316.5As for the two-  term represents the effect of the jet instability, which ampli-
jet network, bumps oscillate at the same frequency at qualifies the motion at a rate, y is real (positive whenU>U ),
tatively the same amplitude and the same direction of rotaand which saturates fdr,,| =1 (amplitudes have been nor-
tion. The two modes are recovered: in the optical mode thenalized to the free jet saturation amplityde
two adjacent jets on the square oscillate in phase opposition One considers now an array of jets, coupled through sur-
while in the acoustic mode all jets are in phase. Again therdace waves. This can be more easily studied when the bumps
are transitions and a perturbed area in the transition zoneotate in stationary conditions at the frequengyi.e., when

The results are presented in Table II. am(t) = age'(“" @0t Note thatw— wo<wq SO thatay(t) is
a slowly varying function. Surface waves have a well-
B. Modelization defined wave numbek(w), which is the solution of the

A natural model to fit the data should be a network of jetsSuncace wave dispersion relation for deep waerour case

oscillating all at the same frequenaywith the same direc- the produck(w) X (depth) is about B[16].

tion of rotation and coupled through surface waves. One con- o

siders first jetm. It is defined by its positionZ,= Xy, k(w)g+k(w)3gl2—w?=0 with [2=—. 3)
+iY,, and the bump displacementig=x,,+iy,,. When P9

. . _ I(}J t . .
the stationary state is reachety,=ame'“” With ap its A given jetn radiates a spiral capillary wave, which depends

on the flow velocityU and on the bump displacement. Dur-
TABLE |. Modes in a two-jet array for 240 w,<300s .

TABLE Il. Modes in a four-jet array for 248 w,<310 s ™.

wg at transition o jump at transition

a(m) Phase difference (s} (sh Phase difference wq at transition o jump at transition
a (m) (neighboring jet st st

0.006 w—27 275 220- 220+ 80 (m) _(neig g jets s S

0.0085 2r— 280 226226+ 56 0.0085 2r— 295 250250+ 40

0.009 2r— 270 226226+ 56 0.009 =

0011 = 0.011 7—2m 300 250- 250+ 56
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0g(®,) Even forU<U. so thaty is negative, the growth rate can be
400 ; positive in accordance with the observations described in
3501 Sec. Il A.
s00l There are two parameters in our dynamical syste(u)
SRR the growth rate of the free jet instability, the coupling con-
e 1 stantA (U). In addition, the functiorf(r) must be adjusted.
. e o
209, 300 oo s) 350 For the sake of simplicity, it will be taken equal¢éc*". The

parametersy,\,u do not depend on the geometry of the jet
lattice (a dependence in the nozzle diameter and depth is not
excluded but all experiments have been made taking these
two parameters constantn Sec. Il D, experiments will be
simulated fitting y(U), A (U), and x by simple number.
Thus the parameteisandy will be taken independent @,

i.e., the notation “function otJ” will be skipped.

0t(©,)

09

250 300 350

@o(s™)

C. Analytic determination of phase patterns
FIG. 8. Functionsw,(wg) and a,(w,) defined by Eq(8); dot- of two- or four-jet arrays
ted line (acoustical modg full line (optical mode. The numerical

values chosen here age=8.5 mm andhe™ #@=15¢~ 374, 1. Two-jet network

The system is described by a set of two equations, which
ing its propagation between jets and m separated by a admit obviously solutions withz,|=|z,|=|a|. A mode is
distancer,,, the wave is attenuated by geometrical effectdefined by the phase shift between both &= ¢,— ;.
(energy flux proportional to i/in cylindrical geometryand  The system4) becomes
other dissipation mechanisms. The total attenuation will be
included in a functionf(r). The wave experiences also a
phase shift given bi(w)r,,. The simplest coupling term in
the amplitude equation compatible with surface waves leads
to the following equation:

if[o—wo(U)]an— '}’(U)(l_ama:w)am

(0= wo)|a| = y(1=|al?)|al+ re #2e (*)%ale!?

=0, (6a)

i(0—wo)|al = y(1—|al?)]a] + Ne~#oe K2 qle2¢

=0. (6b)
+NU) X f(rppe K@i, =0.  (4)
n#m This system has solutions if Eq$.a) and(6b) have the same
w as solution. Two modes are alloweNg=0 or A¢p= .
Their frequencies and amplitudes are obtained from the real
and imaginary parts:

The functionwg(U) is the free jet frequency, which can be
measured directly by single jet experimefsge Fig. 4a)]
and w is the frequency of the motion in the array. The cou-
pling constant\(U) contains the wave amplitude and the
physics of the forcing effect of a wave on the helical jet
instat_)ility. _ 'y(1—|a€|2)+8|)\|e_'“a Re[ei[—k(w)a+arg>\)]]:o

This model allows us also to recover the fact that the (7h)
threshold is lower when there are several jets. For instance, if

one considers now in Ed4) a small amplitude oscillation \yit ¢ equal to—1 or 1, respectively, for the optical and the
(instead of a saturated one¢he real part reads acoustic mode. From Ed7a) it is possible to deduce the
frequency and amplitude of both modes. A simple approxi-
mation can be obtained using, — wg<wq, i.€., taking the
coupling terms evaluated fas= wg:

w,—wo+te|\|e #2 Im[elkeatagM=0  (7g)

Im w=—7(U)+Re<)\Z f(rppe k@m|=0. (5)
n<m

TABLE 1. Experimental modes and simulated ones for three values diarg

Result of Eqs(7) or (9) for |\|=33.33 andu=120

a (m) jets  Transition atg (™% arg(\)=—57/8 argf)=—37/4 argh)=—"77/8
0.006 2 7— 2 at wg=275 m—2m at wg=277 w—2m7 atwy=256 2r

0.00852 27— at wyg=280 2r—matwyg=310 2r—7atwy=291 27— atwy=273
0.009 2 27— at wg=270 2r—matwg=287 2mr—watwy=270 27— at wyg=255
0.011 2 T T T 7— 27 at wy=300
0.00854 27— at wg=295 2r—matwg=295 2r— 7 atwy=273 27— at wy=255
0.009 4 T 2rm—m atweg=271 T

0.011 4 m— 2 at wg=300 7—2m atwg=320 727 atwy=311 7—27 atwy=300
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TABLE IV. Mode transitions for three values ¢f| and x and argf)=—3x/4.

Solution of Egs.(7) (two jetg or (9) (four jety

a (m) Experimentalw IN|=60 [N|=100 IN|=320
number of jets jump (s} w="50 w=120 =250
0.006 2 220—220+ 80 230-230+ 70 220-220+ 80 210210+ 90
atwy=275s"1 at wy=255s"1 atwy=255s1 at wy=255s"1
0.0085 2 226226+ 56 250- 250+ 55 250250+ 60 250- 250+ 60
atwy=280s1 at wy=293s?! atwy=290s1 at wy=291s1
0.009 2 226226+ 56 240- 240+ 55 240-240+ 65 240- 240+ 60
atwy=270s? atwy=270s? atwy=270s? atw,=269s?
0.0085 4 250250+ 40 250- 250+ 90 240- 240+ 80 230-230+ 80
atwy=295s? atwy=262s? atwy=258s? at wy=258s?
0.011 4 250250+ 56 250- 250+ 90 260- 260+ 90 260- 260+ 80
atwy=300s? atwy=310s"1 atwy=310s1 atwy=312s?
ws=wo—e|\|e"#? si —k(wg)a+arg\)], (83 2. Four-jet network

One considers now a network with four jets on a square.
Introducing the experimental mode structure, {.2Q00 and
[0707] in Eq. (4), one obtains the equation equivalent to Eq.

(@):

(w;— wg) +|\| Im(2g e~ #3g~ ik(@)ati argh)

|a8|2=1—% IN|e”#? cog —k(wg)a+arg\)]. (8b)

For wg, i.e., U values so that-k(wg)a+arg\)=n/2 (mod
), the two modes have the same amplitéegqual to ). At

these points the frequency difference between the two modes +e Ha2gTik(wa2tiaghy = g (9a)
is 2|]\|e”#2. In the Appendix it is shown that only the mode 5 ~ pan k(@) argy)

that has the largest amplitude is stable. This means that ex-  ~ Y(1-|a|") +|\[Re(2e€™ e

perimentally only this mode should be seen. An example of +eravZig-ik(@ava+iagh)) — o (9b)

this prediction is shown in Fig. 8, which illustrates one of the

computations discussed in Table Ill. The functiong wg) with ¢ equal to 1 or—1, respectively, for the acoustic and
andw,(0) are shown foa=8.5 mm and\=15e" 34 Ac-  the optical mode. These equations provide the evolution of
cording to the prescription that the observed mode is the onthe amplitude and the frequency of each mode with the natu-
with the largest amplitude, a jump from acoustic to opticalral frequencywq. Again, within the approximatiomw, — wq

mode should be observed @} around 275 s <wq, the two modes have the same amplitude for
o (s
340
—
320 A
° o 2
4 nFmerical transiﬁ'on
analytical transition
<>
300 . !
o A
A
280 A A|:|
. o
¢ o °
2 ‘n o
260 . N a
4 * u
¢ am ™ u
240 | l x B L) P experimental transition .
n | »
220

280 290

wg (s™

250 260 270 300 310

FIG. 9. Pulsation of the motion of jets displayed on a square X1 mm) as a function of the free jet pulsationy]. Experimental
results for a depth6 mm (square} solution of Eq.(8) (circles, numerical simulatiortriangles, with u =120, y=60, \ =33.32 X374,
The lines with double arrows on the graph represent the transition areas between the acoustic and the optical mode.
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—k(we)a+arg(\)=/2 (mod ), while the frequency differ- C. Effect of a scattering of oscillator properties

ence at the transition between the two modes|iqe #. When a increases beyond 12 mm, the synchronization
becomes poor and eventually is lost. Another experimental
feature is that, in the transition zoG@hen the amplitudes of

IV. COMPARISON WITH THE EXPERIMENTAL DATA the two modes are close togethére system is unstable. A

possible explanation could be the unavoidable dispersion in

the wq values, which tends to hamper the synchronization.

In Table IIl, one shows a comparison between the experiThis is a well known effect for coupled oscillatdi]. This

mental data and the ones obtained with the analytical treagffect has been investigated more quantitatively for a two-jet

ment for values of arg() in an optimum range, i.e., around System. One assumes that there is some scatter imghe

—3m/4. The second column of Table Il contains experimen-values, i.e., that they becoms ,= wo*=A. In the presence

tal data from Sec. Il A while the last three columns give theof coupling, the motion of jetm can be expressed as

modes with the largest amplitudes obtained from E@sor  an(t)e”'“o'. Provided it is slowly varying, the evolution of

(9). arg() has been determined by trying to fit all the ob- ay(t) obeys the following equation:

served transition&heir location depends di| only through da

corrections of order ¢ — wg)/wy, as can be seen in Table d_tm —i(wm—wg)am— Y(1— amay)am

IV), or at least the observed modes when the values of jet

spacinga correspond to windows without transition. The _

computations are made in the window 250,<325 s'* for +\ >, e Kae klenimng =0, (13)

two and four jets. The predicted modes are in quite good nzm

agreement with the experimental ones, especially if one tak

into account the error bars abotit —10 s ! on w, at tran-

sition. In the following arg{)=—3#/4 will be taken.

A. Mode transition

eI§quation(11) has been solved using an iterative scheme to
determine thew, values to be used in the coupling coeffi-
cients[17]. For the system chosda=8.5 mm as in Fig. B
) there is a predicted transition acoustioptical at wq
B. Strength of the coupling =291 s ! (observed at 2809). For A=0, these modes are

In a second step)| and . can be found from expression found by the evolutive computation. Wheh is nonzero,
(7a) using the two-jet experiment. For both modes, experi-depending on thene #? value, there exists a zonA
mental frequencies should follow the relation <Aax Where a synchronization is possible. The value of
A max depends ofk(wg)a+arg() and|\e”#?|. This domain
is displayed in Fig. 1@ for wy=240s?! (far from the
mode transitionand 295 s* (close to the mode transitidn
The synchronization domain depends kfwg)a, i.e., the
phase of the interaction between the jets. In particular, close
If the value of w can be measured as a function af it to the transition point, the system becomes very sensitive to
should be possible to guepg and u. However, due to the any defect, i.e., is hard to synchronize. This is expected since
small range ofr and the low value of attenuation, the accu- at this location the Eigenvalues associated to the mode sta-
racy is poor. Several combinations dfand w are possible bility analysis are close to zer@ee the Appendjx This is
provided|\|e~2* stays in the same range. This is shown inshown in Fig. 1@), which displays the value of ., for
Table IV, which displays a comparison between the five ex{Ae #|=15 as a function oivy. This simple model explains
perimental mode transitions given in Tables | and Il and thdwo experimental findingsi) The synchronization becomes
simulated ones taking two Combinationsm’f and u. difficult for a>12 mm. According to Table 1V, the values of

To summarize, from Tables Il and IV, it appears that thehe™ #? at this point range between 16 €120) and 32 4
amplitude, nature, and location of modes can be reasonably50). For such coupling parameters, according to Fig.
fitted by the model especially if one takes into account thelO(b), the desynchronization occurs farabout 10-20'',
small number of parameters to be fitted: Qaeg(\)] to fit i.e., anw, scatter in the range 5-10 %, i.e., according to Eq.
all the transition(location and directionand two[modu- (1) a scatter in the hole diameter of order of 5¢i6) The
lus(\) and u] for the values of frequencigwith little effect). ~ width of the unstable domain in Fig. (1) is compatible with
The value ofy plays almost no roléit has been taken equal the width of the transition zone in experiments.
to 60. An example of comparison theory-experiment of
w(wy) fora four—jet system is shown in Fig. 9. The transition V. CONCLUSION
has been simulated in two ways. First there is the largest
amplitude mode given by E¢9). One admits then that the The mechanism for the oscillation of a single vertical jet
system cannot choose between the two modes if it exists impinging on an interface has been investigated. It turns out
difference of less than 10% between the amplitudes of théhat a feedback mechanism between surface waves and the
modes. This assumption allows us to determine a small traninstable jet is at the origin of the oscillations of the bump to
sition zone(“analytical transition”) where the two modes, the surface. An analogy can be made with the “jet-edge”
like in the experiments, are unstable. This is possibly due teystem if considering a “resonant edge” mechanically at-
desynchronization as discussed in the next section. Secon@ched to springs. Indeed, the stiffness of the springs is here
there is the result obtained by evolving in time the jet motionequivalent to the surface tension of the fluid. In a dimen-
using a scheme described elsewhdrg). sional model, the frequency is found to be proportional to the

W — wWq

2 2 ‘
" codk(w)a+ m/d)|

=In|\|— ua. (10
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APPENDIX: STABILITY ANALYSIS OF THE LIMIT
CYCLE IN THE TWO JET CONFIGURATION

Following the notation of Sec. Ill C, the two jet system
has two limit cycles described by E), the acoustic mode
with an amplitude at saturation; and a frequency, and
the optical mode with an amplitude _, and a frequency
w_4. The phase shift between the bumps of a given mode is
¢., which is equal to zero foe=1 and = otherwise. The
equations governing the eigenmodes are

i(w,— wg) — Y(1— aa¥ )+ e #a ikle)agid. =,
(A1)

One considers that the system is at the limit cycle for the
modee (=+ or —1) so that the envelope of rotation of
bumpm (m=1,2) is close toa,e'(“s~ @t*imé: - A small
perturbation corresponding to a mogé# ¢ is added which

is of the formf(t)e!(@:~@dt+iméer  Thyg, the envelope of
the position of bumpm is ap=a.el'(@:~@ttime]
+f(t)el@.mwt+iméor and is as follows:

d;‘m— V(L= apal) ap+ e #2710 [e (g gllo:th 40

+e—ik(u)s')af(t)ei(‘”;t"'d)s’)]:0_ (A2)

The zero-order equation gives the equation of the limit cycle
of modee. The terms can then be developed to first order in
f. The linearized terms are

S00 250 300 350
(b) 0,=X

FIG. 10. () Synchronization domain fob,=240 s * (crosses
and 295 st (starg for a two-jet system witha=8.5 mm in the
spaceX=| e #| andY=A; [arg(\) is kept equal to- 3iw/4]. (b)
Value of Y=A ., as a function o= w, for \e *=15e~%7* and
a=8.5mm.

dapny

M ti(w — i(w,—wo)t+ime,:
TREART: i(w,—wp)f(t) € ,

) ) ) * 25i(w) — wo)t+ime, * 2i 6(t)
surface tension and conversely proportional to the jet veloc-  #m¥m@m— @€ [2f(D)+T*()e™]

ity. These results are in good agreement with the experimen-

tal results obtained when varying the surface tension of thyith 0(t) =(w,— 0 ) t+m(p,— ¢,./)

fluid, the velocity of the jet, and the depth of the nozzle. After multiplication by e—iw;t—imqﬁé’ an evolution equa-
Considering simple ensembles of jets, a phase-lockingq, for £(t) can be deduced from the linearized equation

mechanism has been observed. When the jet velocity, i-€a1)

the resonant frequency is modified and two modes are ob-

served, namely an acoustic mode and an optical one. A mod- ot

elization in which each bump is a nonlinear oscillator L 2

coupled with its neighbors through surface waves gives rea- gt T (@~ o) (D) = yF(1) +2ya (D)

sonable agreement with the experimental results, especially

if one takes into account the scatter of jet frequencies due to

imperfections. Generalization of this model to infinite net-

works is possible at the expense of a more complex formal-

ism, which will be presented in a forthcoming pap&v]. It

appears that systems of jets are very close to the large popUsing Eq.(A1) expressed for the limit cycle of mode, Eq.

lation of coupled oscillators investigated by theoreticians(A3) can be simplified. Taking the complex conjugate, a

There is, however, one important difference, the coupling isimilar equation can be obtained f&(t),

ensured not by instantaneous interactimflected by a cou-

pling constant but by traveling waves propagating at finite

velocity. This plays a significant role in the formation of ﬂz(az —2a?)f(t)— af* (1)ed !V

phase patterns observed in large regular networks. ydt & & & '

+ )\f(t)e*#aefik(w;)aﬂ(bs' =_ yaif* (1)e? 0.
(A3)
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df* given by the zeros of the determinanf—Z)\(ai,—Zaﬁ)

22 —2i6(t) 2 5 2vex
ydt a f(t)e +(ag, —2ap) (1) +(2a§—a§,)2—a3. The roots arexf,—?aaﬁ and ai,—ai.
_ _ _ _ Both roots have a negative real part, i.e., the system is stable
Since ¢(t) is a slowly varying function, the system can be if and only if the limit cycle corresponds to the mode with

considered as a linear operator bnThe eigenvalue& are  the largest amplitude.
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