
Coupling of rotating water jets by surface waves

F. Giorgiutti, L. Laurent, F. Daviaud

To cite this version:

F. Giorgiutti, L. Laurent, F. Daviaud. Coupling of rotating water jets by surface waves. Phys-
ical Review E, 1998, 58, pp.512-521. <10.1103/PhysRevE.58.512>. <cea-01373943>

HAL Id: cea-01373943

https://hal-cea.archives-ouvertes.fr/cea-01373943

Submitted on 29 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Coupling of rotating water jets by surface waves

F. Giorgiutti,* L. Laurent, and F. Daviaud
Commissariat a` l’Energie Atomique (CEA), Service de Physique de l’Etat Condense´, Saclay, F-91191 Gif sur Yvette Cedex, France

~Received 8 July 1997; revised manuscript received 23 February 1998!

Above a critical flow rate, a single jet impinging from below on a water-air interface oscillates while arrays
of jets exhibit collective behaviors. The aim of the paper is to explain the physics governing such an array.
First, a series of experiments shows that the instability mechanism leading to the oscillation of a single jet
is due to a feedback effect between surface distortion and the unstable jet as in the ‘‘jet-edge’’ system and that
several jets are coupled through surface waves. Then a modelization is proposed in which jets are considered
as oscillators close to their limit cycle coupled by delayed action to take into account the wave propagation.
A good agreement is obtained between the predictions of the model and experiments on sets of two or four jets.
The long range of the surface waves and the large number of oscillators render this jet configuration
very similar to idealized phase coupled nonlinear oscillators investigated in theoretical models but with a
not instantaneous coupling ensured by traveling waves. This allows in particular the existence of various
synchronization modes, which appear as geometrical patterns.@S1063-651X~98!07407-8#

PACS number~s!: 47.20.2k, 68.15.1e, 68.10.2m
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I. INTRODUCTION

A lot of theoretical work has been done on large popu
tions of coupled oscillators because of their interest to r
resent various physical or biological systems with a la
number of degrees of freedom~see, for instance,@1–3#!. On
the experimental side, several attempts have been mad
design extended systems that can be considered as such
of oscillators. Some of them use fluids perturbed by a s
tially periodic action that to some extent behave as coup
oscillators such as coupled wakes@4#, air jets @5#, magneti-
cally driven vortices@6#, and to a lesser extent coupled the
mal boundary layers@7#. Modelization of these systems ha
often been done by using a nonlinear amplitude equa
modified to take into account the coupling with the neig
boring oscillators. The exact nature of the coupling term
pends on the underlying physics and various schemes
been used such as an additional drive depending linearl
neighboring amplitude@4,6#, an additional nonlinear term
@6#, or a delayed modification of the nonlinear saturati
term @5,7#. Another interesting system consists in using v
tical jets close to a water-air interface. It can be easily
tended to configurations with a large number of oscillato
When they are isolated, such jets can rotate or oscillat
constant amplitude@8,9#. When they are associated in array
phase locks and a wide variety of phase patterns are obse
that depend on the symmetries of the network@10#.

Up to now, the understanding of the jet rotary instabil
was only partial, in particular the observed frequency dep
dence~decreasing with the jet velocity!, which is quite un-
usual for standard jet instability. Moreover, no quantitat
model for the coupling and the phase pattern has been
posed. The two aims of this paper are~i! to provide a clearer
understanding of the jet rotation and~ii ! to present the first
model able to predict quantitatively the coupling betwe

*Present address: Laboratoire FAST, Baˆtiment 502, Campus Uni-
versitaire, 91405 Orsay Cedex, France.
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jets. In the next section, after a brief presentation of the
perimental setup, experiments concerning the single jet in
bility @11,12# are presented. A model of the oscillation
discussed based on the ‘‘jet tone’’ concept@13#, which pro-
vides the right scaling of the frequency. Then, in Sec.
simple arrays of two or four jets are investigated experim
tally and a model is presented to explain the observed ph
patterns. In Sec. IV, the results are discussed. The mod
tested by comparing the predicted and observed freque
and modes of oscillation for various sizes and flow rat
Then to explain the unlocking of jets when they are se
rated by a too large distance, the effect of a slight detuning
the jets is investigated.

II. PROPERTIES OF THE JET AS AN OSCILLATOR

A. Experimental setup

Figure 1 describes the experimental setup. The jets fl
out of a tranquilization chamber containing a 5-cm-thick p
rous medium. The chamber is filled by pressurized wa

FIG. 1. The experimental setup.
512 © 1998 The American Physical Society
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PRE 58 513COUPLING OF ROTATING WATER JETS BY SURFACE WAVES
supplied from an elevated reservoir~to avoid any vibration
due to a pump! through a flow meter and a regulation valv
Its top part is a removable 6-mm-thick perforated plate
cated a few millimeters below the surface. Various types
plates can be used. For the present paper, square netwo
holes with a radiusb50.5 mm are used and flow velocitie
at the hole, andU lies between 0.5 and 0.7 m s21 leading to
the Reynolds numbers (Ub/n) in the range 250–350. Th
whole device is immersed in a 110 l plexiglass constant le
water tank. In some experiments the surface tension was
ied in the range 50– 7531023 Nm21 using soap. To contro
the depthh of the jets below the surface~typically 6 mm!,
the vertical position of the jet nozzles can be adjusted wit
micropositioner. More details can be found in@10#. When
one of the jets reaches the water-air interface, there is a
tionary axisymmetric bump. Its radiusb8 is determined by
the equilibrium between the jet pressurerU82 ~wherer is
the water volumic mass andU8 is the jet velocity at the
bump! and the surface resistance, which scales ass/b8 ~s is
the superficial tension!. WhenU is larger than a thresholdU f
so that this equilibrium is no longer possible, i.e.,U8 is so
large that equilibrium would requireb8 smaller thanb, the
surface breaks and the system looks like a ‘‘small fountai

B. Observations

Above a critical velocityU5Uc the axisymmetric equi-
librium of the bump becomes unstable and it starts rota
around the jet axis~Fig. 2!, while generating surface wave
with a spiral geometry~Fig. 3!. The frequency range of thes
oscillations lies between 10 and 50 Hz, and measurem
can be made either with stroboscopic lighting for visualiz
tion or intensity of a light beam reflecting on the bump t
wards a photodiode for time evolution. Experimental resu

FIG. 2. Picture of a rotating bump forU.Uc . The jet diameter
is equal to 1 mm, the height and width of the bump are of the sa
order, about 3 mm.

FIG. 3. Picture from above of the surface waves generated
the rotating bump~spiral waves!.
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about frequency can be summarized in the followi
way: ~i! for a given geometry the frequency decreases w
the jet velocity@Fig. 4~a!#, ~ii ! it increases with surface ten
sion @Fig. 4~b!#, ~iii ! when the depth, orU, is varied, the
most relevant parameter seems to be the bump heighb8
~where primes denotes quantities related to the bump! as
shown in Fig. 4~b! of @10#.

It appears that the jet rotation can be synchronized w
excited with surface waves in the range of frequencies c
responding to the free rotation one. This was shown in
series of experiments, which present some similarities w
the oscillating edge experiment by Staubli and Rockw
@13#. Surface waves were generated on the water t
through a blade connected to the coil of a loudspeaker.
evolution of the bump oscillation with the forcing frequenc
has been followed. Two phase-locking areas have been
for forcing frequencies close to the bump frequency or in
region at lower frequencies. For other frequencies both
cillations, i.e., forcing waves and bump oscillation coex
~see Fig. 5!.

C. Discussion

The observed rotation of the bump suggests that the je
subjected to a helical instability. This is compatible with t
Reynolds number range. Moreover, previous works dem
strated that a few diameters away from the nozzle, when
shear layer has widened, this mode is the one with the lar
growth rate@11,12#. However, for the free jet, the most un
stablev are of order of 0.5U/b, which corresponds to fre
quencies of the order of 100 Hz for the present experime
i.e., typically three times the experimental ones. In additi
the observed frequency decreases with jet velocity instea
increasing. An additional frequency-selection mechani
must be invoqued. The water-air interface, which is not
the standard theory, provides this ingredient. The helical
stability distorts the surface and this causes a pressure
tuation along the jet path, which can be amplified by the
Such an amplification is well known and examples are giv
in @14,15#. Indeed the strength of the feedback will depe
on the amplitude of the surface distortion. When the heli
instability distorts the bump, surface tension tends to res
the initial shape, which corresponds to the equilibrium b
tween the surface tension and the pressure. The spring f
scales assb8, i.e., the product of the surface tension by
characteristic length. To restore the initial shape, this fo
has to modify the momentum of the water inside the bum
which scales asrU8b83. The characteristic time of the bum
relaxation is the ratio of these two quantities, i.e.,t
5rU8b82/s. Thus the feedback between the bump and
jet is expected to be optimum when the latter rotates at
angular velocityv0 , so thatv0t r51, i.e.,v0 is proportional
to s/rb82U8.

Using the flow rate conservationb82U85b2U, the scal-
ing of frequency should bev05G(U)s/rb2U, whereG(U)
is an unknown dimensionless number that takes into acco
the numerical factor and the actual geometry of the flo
which may vary with the jet velocity. In Fig. 6,rb2Uv0 /s
@i.e., the expectedG(U)# is plotted as a function of the ve
locity of the jet for various water velocities and depth. T
fact that this quantity is almost constant~except for highU,
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FIG. 4. ~a! Evolution of v0 with the jet velocityU. ~b! Effect onv0 of a change in surface tension obtained by adding soap to wa
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i.e., low v0! shows that the model for oscillation is corre
and moreover that geometry distortion due to variations oU
is not too large. In conclusion, taking into account the va
of G deduced from Fig. 6 one gets

v05~0.960.1!s/rb2U. ~1!

It is also possible to eliminateU8 in the relation v0
's/rb82U8 using the equilibrium discussed in Sec. II
between the stressrU82 and superficial tensions/b, i.e.,U8
is proportional tob20.5 so thatv0 should approximatively
scales withb21.5. This curve is compatible with experimen
tal results@10# although the exponent cannot be determin
accurately~between22 and21.5!.

As discussed at the beginning of the section, these
quencies are two or three times lower than the optimum
the amplification by the jet. However, taking a reasona
velocity profile across the jet, the linear theory still predic
an instability with Re(kz) and Im(kz) of the order of 1000 and
e

d

e-
r
e

100 m21, respectively@12#. The amplification takes place o
distancesl lying betweenb8 and h so that its valueeIm(kz)1

will be in the range 1–1.5. If the coupling between the pr
sure modification due to the bump distortion and the je
not too lossy, the system can oscillate. To explain the ro
tion start atU5Uc , the following scenario is likely: whenU
is low, the Reynolds number is too low for an amplificatio
process to take place. WhenU increases aboveUc , Im(kz)
reaches a value such that the oscillation is possible. The m
favored frequency isv0 since the feedback on pressure
optimum at the bump resonance.

The loudspeaker experiment can be interpreted along
same lines. When the incoming waves distorts the bump
ficiently i.e., when its frequency is close tov0 it can lock in
phase the jet instability. This is not contradictory with th
presence of another region at lower frequency, where the
a phase locking that could correspond to the direct excita
of the jet by the surface wave.
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FIG. 5. Effect on the bump pulsationv0 of a launched surface wave~blade connected to a loudspeaker excited by a sinusoidal tens!.
The natural value ofv0 is 126 s21.
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III. COUPLING OF OSCILLATORS IN SIMPLE
GEOMETRIES

A. Experimental results with simple arrays

Results of Sec. II suggest that when the system cont
several jets, they can be coupled. This has been investig
for two types of jet configurations.

~i! The first one consists in two jets separated by distan
631023,a,1231023 m, the plate being 6 mm deep
When a is too large~above 1231023 m! the coupling dis-
appears. The flow rate was varied, limited on the lower s
by the threshold for jet oscillation, and on the upper side
the fountain regime. This corresponds to the single jet
quency range: 240,v0,300 s21 @Eq. ~1!#. The two bumps
oscillate at the same frequency, with the same amplit
~note that the photodiode technique does not allow an a
ns
ted

es

e
y
-

e
u-

rate amplitude measurement! and the same direction of rota
tion. There are two differences with the single jet case:~i!
the critical flow rate for the bump oscillation appearance
lower for two bumps than the one for a single one,~ii ! the
frequencyv is different from the single jet onev0 as shown
in Fig. 7. The results obtained duringv0 scans~i.e., U scans
sincev0 decreases asU increases! for various values of jet
spacinga, are presented in Table I. The second column r
resents the phase difference between the motion of the
jets. Two collective modes are observed: an acoustic m
where the two bumps oscillate in phase~phase difference of
2p!, and an optical mode where the two bumps oscillate
phase opposition~phase difference ofp!. When there is a
transition, the symbol at left~right! represents the mode a
low ~high! v0 . In this case the value ofv0 at the transition
is displayed in the third column. A transition between tw
e
FIG. 6. Evolution of the rescaled pulsationY5rv0b2U/s with the jet velocityU for one single jet, for different depths. The figur
contains values obtained for plate depths56, 7, and 10 mm.
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FIG. 7. Evolution of the pulsation for two coupled jets witha511 mm~squares!, and for one single jet~circles! as a function of the jet
velocity.
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modes is accompanied by a phase and frequency jump~al-
ways positive whenv0 increases!, which is indicated in the
last column. Around the transition there is a domain wh
the system hesitates between the two modes with a typ
half-width Dv0510 s21. Similar results are obtained fo
lines of five jets.

~ii ! The second network is made of four jets displayed
squares of different sizes. The plate is still at 6 mm from
surface. For this network the onset of the threshold velo
is lower than for two jets so that the range ofv0 that can be
explored is larger, between 240 and 310 s21. As for the two-
jet network, bumps oscillate at the same frequency at qu
tatively the same amplitude and the same direction of ro
tion. The two modes are recovered: in the optical mode
two adjacent jets on the square oscillate in phase oppos
while in the acoustic mode all jets are in phase. Again th
are transitions and a perturbed area in the transition z
The results are presented in Table II.

B. Modelization

A natural model to fit the data should be a network of j
oscillating all at the same frequencyv with the same direc-
tion of rotation and coupled through surface waves. One c
siders first jetm. It is defined by its positionZm5Xm
1 iYm , and the bump displacement iszm5xm1 iym . When
the stationary state is reached,zm5ameiv0t with am its

TABLE I. Modes in a two-jet array for 240,v0,300 s21.

a (m) Phase difference
v0 at transition

(s21)
v jump at transition

(s21)

0.006 p→2p 275 220→220180
0.0085 2p→p 280 226→226156
0.009 2p→p 270 226→226156
0.011 p
e
al

n
e
y

li-
-
e

on
e
e.

s

n-

slowly varying complex amplitude andfm5arg(am) repre-
sents the phase of the motion. When jetm is alone, the
rotation occurs with a pulsationv0 so that the argument o
am does not depend on time. This behavior is well rep
sented by the following equation:

dam

dt
2g~U !~12amam* !am50, ~2!

where an asterisk denotes complex conjugate. The sec
term represents the effect of the jet instability, which amp
fies the motion at a rateg, g is real~positive whenU.Uc!,
and which saturates foruamu51 ~amplitudes have been nor
malized to the free jet saturation amplitude!.

One considers now an array of jets, coupled through s
face waves. This can be more easily studied when the bu
rotate in stationary conditions at the frequencyv, i.e., when
am(t)5a0ei (v2v0)t. Note thatv2v0!v0 so thatam(t) is
a slowly varying function. Surface waves have a we
defined wave numberk(v), which is the solution of the
surface wave dispersion relation for deep water@in our case
the productk(v)3(depth) is about 5# @16#:

k~v!g1k~v!3glc
22v250 with l c

25
s

rg
. ~3!

A given jetn radiates a spiral capillary wave, which depen
on the flow velocityU and on the bump displacement. Du

TABLE II. Modes in a four-jet array for 240,v0,310 s21.

a (m)
Phase difference
~neighboring jets!

v0 at transition
(s21)

v jump at transition
(s21)

0.0085 2p→p 295 250→250140
0.009 p
0.011 p→2p 300 250→250156
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ing its propagation between jetsn and m separated by a
distancer mn , the wave is attenuated by geometrical effe
~energy flux proportional to 1/r in cylindrical geometry! and
other dissipation mechanisms. The total attenuation will
included in a functionf (r ). The wave experiences also
phase shift given byk(v)r mn . The simplest coupling term in
the amplitude equation compatible with surface waves le
to the following equation:

i @v2v0~U !#am2g~U !~12amam* !am

1l~U ! (
nÞm

f ~r mn!e
2 ik~v!r mnan50. ~4!

The functionv0(U) is the free jet frequency, which can b
measured directly by single jet experiments@see Fig. 4~a!#
andv is the frequency of the motion in the array. The co
pling constantl(U) contains the wave amplitude and th
physics of the forcing effect of a wave on the helical
instability.

This model allows us also to recover the fact that
threshold is lower when there are several jets. For instanc
one considers now in Eq.~4! a small amplitude oscillation
~instead of a saturated one!, the real part reads

Im v52g~U !1ReS l (
nÞm

f ~r mn!e
2 ik~v!r mnD 50. ~5!

FIG. 8. Functionsv«(v0) anda«(v0) defined by Eq.~8!; dot-
ted line ~acoustical mode!, full line ~optical mode!. The numerical
values chosen here area58.5 mm andle2ma515e23ip/4.
t

e

s

-
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e
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Even forU,Uc so thatg is negative, the growth rate can b
positive in accordance with the observations described
Sec. III A.

There are two parameters in our dynamical system:g(U)
the growth rate of the free jet instability, the coupling co
stantl(U). In addition, the functionf (r ) must be adjusted
For the sake of simplicity, it will be taken equal toe2mr . The
parametersg,l,m do not depend on the geometry of the j
lattice ~a dependence in the nozzle diameter and depth is
excluded but all experiments have been made taking th
two parameters constant!. In Sec. III D, experiments will be
simulated fittingg(U), l(U), and m by simple number.
Thus the parametersl andg will be taken independent ofU,
i.e., the notation ‘‘function ofU ’’ will be skipped.

C. Analytic determination of phase patterns
of two- or four-jet arrays

1. Two-jet network

The system is described by a set of two equations, wh
admit obviously solutions withuz1u5uz2u5uau. A mode is
defined by the phase shift between both jetsDf5f22f1 .
The system~4! becomes

i ~v2v0!uau2g~12uau2!uau1le2mae2 ik~v!auaueiDf

50, ~6a!

i ~v2v0!uau2g~12uau2!uau1le2mae2 ik~v!auaue2Df

50. ~6b!

This system has solutions if Eqs.~6a! and~6b! have the same
v as solution. Two modes are allowed,Df50 or Df5p.
Their frequencies and amplitudes are obtained from the
and imaginary parts:

v«2v01«ulue2ma Im@ei @2k~v!a1arg~l!##50, ~7a!

2g~12ua«u2!1«ulue2ma Re@ei @2k~v!a1arg~l!##50
~7b!

with « equal to21 or 1, respectively, for the optical and th
acoustic mode. From Eq.~7a! it is possible to deduce the
frequency and amplitude of both modes. A simple appro
mation can be obtained usingv«2v0!v0 , i.e., taking the
coupling terms evaluated forv5v0 :
TABLE III. Experimental modes and simulated ones for three values of arg~l!.

a (m) jets Transition atv0 (s21)

Result of Eqs.~7! or ~9! for ulu533.33 andm5120

arg(l)525p/8 arg(l)523p/4 arg(l)527p/8

0.006 2J p→2p at v05275 p→2p at v05277 p→2p at v05256 2p
0.0085 2J 2p→p at v05280 2p→p at v05310 2p→p at v05291 2p→p at v05273
0.009 2J 2p→p at v05270 2p→p at v05287 2p→p at v05270 2p→p at v05255
0.011 2J p p p p→2p at v05300
0.0085 4J 2p→p at v05295 2p→p at v05295 2p→p at v05273 2p→p at v05255
0.009 4J p 2p→p at v05271 p p
0.011 4J p→2p at v05300 p→2p at v05320 p→2p at v05311 p→2p at v05300
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TABLE IV. Mode transitions for three values ofulu andm and arg(l)523p/4.

a (m)
number of jets

Experimentalv
jump (s21)

Solution of Eqs.~7! ~two jets! or ~9! ~four jets!

ulu560
m550

ulu5100
m5120

ulu5320
m5250

0.006 2J 220→220180 230→230170 220→220180 210→210190
at v05275 s21 at v05255 s21 at v05255 s21 at v05255 s21

0.0085 2J 226→226156 250→250155 250→250160 250→250160
at v05280 s21 at v05293 s21 at v05290 s21 at v05291 s21

0.009 2J 226→226156 240→240155 240→240165 240→240160
at v05270 s21 at v05270 s21 at v05270 s21 at v05269 s21

0.0085 4J 250→250140 250→250190 240→240180 230→230180
at v05295 s21 at v05262 s21 at v05258 s21 at v05258 s21

0.011 4J 250→250156 250→250190 260→260190 260→260180
at v05300 s21 at v05310 s21 at v05310 s21 at v05312 s21
d
e

t e
o

he

on
a

re.

q.

d
of

atu-

for
v«5v02«ulue2ma sin@2k~v0!a1arg~l!#, ~8a!

ua«u2512
«

g
ulue2ma cos@2k~v0!a1arg~l!#. ~8b!

For v0 , i.e., U values so that2k(v0)a1arg(l)5p/2 ~mod
p!, the two modes have the same amplitude~equal to 1!. At
these points the frequency difference between the two mo
is 2ulue2ma. In the Appendix it is shown that only the mod
that has the largest amplitude is stable. This means tha
perimentally only this mode should be seen. An example
this prediction is shown in Fig. 8, which illustrates one of t
computations discussed in Table III. The functionsa«(v0)
andv«(0) are shown fora58.5 mm andl515e23ip/4. Ac-
cording to the prescription that the observed mode is the
with the largest amplitude, a jump from acoustic to optic
mode should be observed atv0 around 275 s21.
es

x-
f

e
l

2. Four-jet network

One considers now a network with four jets on a squa
Introducing the experimental mode structure, i.e.,@0000# and
@0p0p# in Eq. ~4!, one obtains the equation equivalent to E
~7!:

~v«2v0!1uluIm~2«e2mae2 ik~v!a1 i arg~l!

1e2ma&e2 ik~v!a&1 i arg~l!)50, ~9a!

2g~12ua«u2!1uluRe~2«e2mae2 ik~v!a1 i arg~l!

1e2ma&e2 ik~v!a&1 i arg~l!!50, ~9b!

with « equal to 1 or21, respectively, for the acoustic an
the optical mode. These equations provide the evolution
the amplitude and the frequency of each mode with the n
ral frequencyv0 . Again, within the approximationv«2v0
!v0 , the two modes have the same amplitude
FIG. 9. Pulsation of the motion of jets displayed on a square (a511 mm) as a function of the free jet pulsation (v0). Experimental
results for a depth56 mm ~squares!, solution of Eq.~8! ~circles!, numerical simulation~triangles!, with m5120, g560, l533.3e2 i 33p/4.
The lines with double arrows on the graph represent the transition areas between the acoustic and the optical mode.
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2k(v0)a1arg(l)5p/2 ~modp!, while the frequency differ-
ence at the transition between the two modes is 4ulue2ma.

IV. COMPARISON WITH THE EXPERIMENTAL DATA

A. Mode transition

In Table III, one shows a comparison between the exp
mental data and the ones obtained with the analytical tr
ment for values of arg(l) in an optimum range, i.e., aroun
23p/4. The second column of Table III contains experime
tal data from Sec. III A while the last three columns give t
modes with the largest amplitudes obtained from Eqs.~7! or
~9!. arg(l) has been determined by trying to fit all the o
served transitions~their location depends onulu only through
corrections of order (v2v0)/v0 , as can be seen in Tabl
IV !, or at least the observed modes when the values o
spacinga correspond to windows without transition. Th
computations are made in the window 250,v0,325 s21 for
two and four jets. The predicted modes are in quite go
agreement with the experimental ones, especially if one ta
into account the error bars about1/210 s21 on v0 at tran-
sition. In the following arg(l)523p/4 will be taken.

B. Strength of the coupling

In a second step,ulu andm can be found from expressio
~7a! using the two-jet experiment. For both modes, expe
mental frequencies should follow the relation

lnU v22v0
2

cos„k~v!a1p/4…
U5 lnulu2ma. ~10!

If the value of v can be measured as a function ofa, it
should be possible to guessulu andm. However, due to the
small range ofa and the low value of attenuation, the acc
racy is poor. Several combinations ofl and m are possible
providedulue2am stays in the same range. This is shown
Table IV, which displays a comparison between the five
perimental mode transitions given in Tables I and II and
simulated ones taking two combinations ofulu andm.

To summarize, from Tables III and IV, it appears that t
amplitude, nature, and location of modes can be reason
fitted by the model especially if one takes into account
small number of parameters to be fitted: One@arg(l)# to fit
all the transition~location and direction! and two @modu-
lus~l! andm# for the values of frequencies~with little effect!.
The value ofg plays almost no role~it has been taken equa
to 60!. An example of comparison theory-experiment
v(v0) for a four-jet system is shown in Fig. 9. The transitio
has been simulated in two ways. First there is the larg
amplitude mode given by Eq.~9!. One admits then that th
system cannot choose between the two modes if it exis
difference of less than 10% between the amplitudes of
modes. This assumption allows us to determine a small t
sition zone~‘‘analytical transition’’! where the two modes
like in the experiments, are unstable. This is possibly due
desynchronization as discussed in the next section. Sec
there is the result obtained by evolving in time the jet mot
using a scheme described elsewhere@17#.
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C. Effect of a scattering of oscillator properties

When a increases beyond 12 mm, the synchronizat
becomes poor and eventually is lost. Another experime
feature is that, in the transition zone~when the amplitudes o
the two modes are close together! the system is unstable. A
possible explanation could be the unavoidable dispersio
the v0 values, which tends to hamper the synchronizati
This is a well known effect for coupled oscillators@1#. This
effect has been investigated more quantitatively for a two
system. One assumes that there is some scatter in thev0
values, i.e., that they becomev1,25v06D. In the presence
of coupling, the motion of jetm can be expressed a
am(t)e2 iv0t. Provided it is slowly varying, the evolution o
am(t) obeys the following equation:

dam

dt
2 i ~vm2v0!am2g~12amam* !am

1l (
nÞm

e2mae2 ik~vn!r mnan50. ~11!

Equation~11! has been solved using an iterative scheme
determine thevn values to be used in the coupling coef
cients@17#. For the system chosen~a58.5 mm as in Fig. 8!
there is a predicted transition acoustic→optical at v0
5291 s21 ~observed at 280 s21!. For D50, these modes are
found by the evolutive computation. WhenD is nonzero,
depending on thele2ma value, there exists a zoneD
,Dmax where a synchronization is possible. The value
Dmax depends onk(v0)a1arg(l) andule2mau. This domain
is displayed in Fig. 10~a! for v05240 s21 ~far from the
mode transition! and 295 s21 ~close to the mode transition!.
The synchronization domain depends onk(v0)a, i.e., the
phase of the interaction between the jets. In particular, cl
to the transition point, the system becomes very sensitiv
any defect, i.e., is hard to synchronize. This is expected s
at this location the eigenvalues associated to the mode
bility analysis are close to zero~see the Appendix!. This is
shown in Fig. 10~b!, which displays the value ofDmax for
ule2mu515 as a function ofv0 . This simple model explains
two experimental findings.~i! The synchronization become
difficult for a.12 mm. According to Table IV, the values o
le2ma at this point range between 16 (m5120) and 32 (m
550). For such coupling parameters, according to F
10~b!, the desynchronization occurs forD about 10– 20 s21,
i.e., anv0 scatter in the range 5–10 %, i.e., according to E
~1! a scatter in the hole diameter of order of 5%.~ii ! The
width of the unstable domain in Fig. 10~b! is compatible with
the width of the transition zone in experiments.

V. CONCLUSION

The mechanism for the oscillation of a single vertical
impinging on an interface has been investigated. It turns
that a feedback mechanism between surface waves and
unstable jet is at the origin of the oscillations of the bump
the surface. An analogy can be made with the ‘‘jet-edg
system if considering a ‘‘resonant edge’’ mechanically
tached to springs. Indeed, the stiffness of the springs is h
equivalent to the surface tension of the fluid. In a dime
sional model, the frequency is found to be proportional to
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surface tension and conversely proportional to the jet ve
ity. These results are in good agreement with the experim
tal results obtained when varying the surface tension of
fluid, the velocity of the jet, and the depth of the nozzle.

Considering simple ensembles of jets, a phase-lock
mechanism has been observed. When the jet velocity,
the resonant frequency is modified and two modes are
served, namely an acoustic mode and an optical one. A m
elization in which each bump is a nonlinear oscillat
coupled with its neighbors through surface waves gives
sonable agreement with the experimental results, espec
if one takes into account the scatter of jet frequencies du
imperfections. Generalization of this model to infinite ne
works is possible at the expense of a more complex form
ism, which will be presented in a forthcoming paper@17#. It
appears that systems of jets are very close to the large p
lation of coupled oscillators investigated by theoreticia
There is, however, one important difference, the coupling
ensured not by instantaneous interaction~reflected by a cou-
pling constant! but by traveling waves propagating at fini
velocity. This plays a significant role in the formation
phase patterns observed in large regular networks.

FIG. 10. ~a! Synchronization domain forv05240 s21 ~crosses!
and 295 s21 ~stars! for a two-jet system witha58.5 mm in the
spaceX5ule2mu andY5D; @arg(l) is kept equal to23ip/4#. ~b!
Value ofY5Dmax as a function ofX5v0 for le2m515e23ip/4 and
a58.5 mm.
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APPENDIX: STABILITY ANALYSIS OF THE LIMIT
CYCLE IN THE TWO JET CONFIGURATION

Following the notation of Sec. III C, the two jet syste
has two limit cycles described by Eq.~6!, the acoustic mode
with an amplitude at saturationa1 and a frequencyv1 and
the optical mode with an amplitudea21 and a frequency
v21 . The phase shift between the bumps of a given mod
f« , which is equal to zero for«51 andp otherwise. The
equations governing the eigenmodes are

i ~v«2v0!2g~12a«a«* !1le2ma2 ik~v«!aeif«50.
~A1!

One considers that the system is at the limit cycle for
mode « ~51 or 21! so that the envelope of rotation o
bump m (m51,2) is close toa«ei (v«2v0)t1 imf«. A small
perturbation corresponding to a mode«8Þ« is added which

is of the form f (t)ei (v«82v0)t1 imf«8. Thus, the envelope o
the position of bump m is am5a«e@ i (v«2v0)t1 imf«#

1 f (t)ei (v«82v0)t1 imf«8 and is as follows:

dam

dt
2g~12amam* !am1le2ma2 iv0t@e2 ik~v«!aa«ei ~v«t1f«!

1e2 ik~v«8!af ~ t !ei ~v«8t1f«8!#50. ~A2!

The zero-order equation gives the equation of the limit cy
of mode«. The terms can then be developed to first order
f . The linearized terms are

dam

dt
→S d f

dt
1 i ~v«82v0! f ~ t ! Dei ~v«82v0!t1 imf«8,

amam* am→a«
2ei ~v«82v0!t1 imf«8@2 f ~ t !1 f * ~ t !e2iu~ t !#

with u(t)5(v«2v«8)t1m(f«2f«8).

After multiplication by e2 iv«8t2 imf«8, an evolution equa-
tion for f (t) can be deduced from the linearized equati
~A1!,

d f

dt
1 i ~v«82v0! f ~ t !2g f ~ t !12ga«

2f ~ t !

1l f ~ t !e2mae2 ik~v«8!a1 if«852ga«
2f * ~ t !e2iu~ t !.

~A3!

Using Eq.~A1! expressed for the limit cycle of mode«8, Eq.
~A3! can be simplified. Taking the complex conjugate,
similar equation can be obtained forf * (t),

d f

gdt
5~a«8

2
22a«

2! f ~ t !2a«
2f * ~ t !e2iu~ t !,
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d f*

gdt
52a«

2f ~ t !e22iu~ t !1~a«8
2

22a«
2! f * ~ t !.

Sinceu(t) is a slowly varying function, the system can b
considered as a linear operator onf . The eigenvaluesl are
D

o

given by the zeros of the determinantl222l(a«8
2

22a«
2)

1(2a«
22a«8

2 )22a«
4. The roots area«8

2
23a«

2 anda«8
2

2a«
2.

Both roots have a negative real part, i.e., the system is st
if and only if the limit cycle corresponds to the mode wi
the largest amplitude.
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