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émanant des établissements d’enseignement et de
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Inhibition of Phase Turbulence Close to Onset of Convection 
by Permeable Lateral Boundary Condition for the Mean Flow. 
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PACS. 47.25 - Turbulent flows, convection, and heat transfer. 
PACS. 47.25Q - Convection and heat transfer. 
PACS. 47.20 - Hydrodynamic stability and instability. 

Abstract. - We show that the mechanisms which govern the onset of time dependence in usual 
Rayleigh-Benard convection at  low Prandtl number may be inhibited by a suitable choice of the 
lateral boundary condition for the sole mean flow. We first build a boundary condition which 
behaves like a rigid one for the roll flow and like a permeable one for the mean flow. We then 
observe that phase turbulence is inhibited close to the onset of convection. We understand this 
effect by solving the mean-flow field from the Cross-Newel1 equations. Our experimental result 
together with its interpretation demonstrates indirectly the existence of mean flows and 
enlightens the ways by which mean flows destabilize patterns. 

In the past decade, Rayleigh-Benard convection in extended systems has brought about a 
puzzling paradox: at low Prandtl number (Pr  = 0.7), the threshold of time dependence is 
roughly one order of magnitude lower for distorted patterns ( E  = O(O.l)) [l, 21 than for 
straight ones ( E  = 3) [3] ( E  = [Ra  - Ra,]/Ra,, where R a  is the Rayleigh number and Ra, its 
value at the onset of convection). Thus pattern distortion represents quite a dangerous 
mode, capable of leading to an overdestabilization. The origin of this mechanism has been 
traced back to the existence of large scale parallel flows (Le. mean flows) which are produced 
by the roll flows, whenever the roll structure is distorted [4]. It has already been proved 
that large-scale flows play a crucial role in the instabilities of straight roll patterns [5] and in 
the transition to both time dependence and turbulence in a cylindrical container [6-91. In this 
letter, we aim at showing that the spatio-temporal properties of convective patterns, 
including their route to turbulence, may be changed by suitable action on the sole large-scale 
flow. In particular, we have been able to inhibit phase turbulence close to onset of 
convection in a cylindrical container and thus to obtain stationary distorted patterns at 
values of E one order of magnitude greater than in usual configurations. This result proves 
indirectly the existence of mean flows and enlightens the mechanisms by which pattern 
overdestabilization arises. 
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Let us first recall the mechanisms of time dependence in usual convection experiments, 
i.e. in closed containers. For cylindrical geometries and at Pr=0.7 ,  visual observations 
show that rolls tend to end perpendicularly to the walls so that two centres of pattern 
curvature arise near the onset of convection (similarly to fig. la)). Roll curvature then 

Fig. 1. - Pictures of the open container. a) Stationary pattern at e = 0.55. The y-axis is defined such 
that it joins the foci. b)  Occurrence of the first instability at E = 0.56. Notice the skewed-varicose-like 
distortion. 

produces mean flows which in turn give rise to roll compression and finally, for E > .so = 0.1, 
to localized instabilities at the centre of the pattern (nucleations of dislocations) and to time 
dependence [Z]. In agreement with numerical simulations [7], we have observed that the 
threshold of time dependence, c0, slightly decreases with the aspect ratio R: ~ ~ ( 7 . 6 6 )  = 1.4, 
~~(12.5)=0.0t3 and ~~(16)=0.06 ,  where R is defined as the ratio of the radius of the 
cylindrical cell to its depth. In this system, mean flows and roll distortion are coupled in a 
nonlocal way: roll distortion produces mean flows but mean flows may in turn produce 
distortion, as demonstrated by the study of forced mean flow effects on a chain of rolls [lo]. 
Nonlocality is a consequence of mass conservation (any distorted roll of the convective field 
participates in producing a mean flow at a given point) and of the scale difference (mean-flow 
effects accumulate from roll to  roll). This nonlocal coupling is described by the Cross-Newel1 
equations [ll]. An exact perturbative solution of these equations has been found in a closed 
cylindrical container for patterns displaying two opposite bendings [8]. In this solution, a 
back-mean flow is then generated by a pressure gradient on the line joining the foci to the 
centre of the pattern (y-axis) (fig. 24) .  In agreement with experiments, i t  sustains 
dangerous compression modes in the phase equation which finally trigger roll pinchings by 
localized instabilities at E = O(O.1). We emphasize that the main modes leading to time 
dependence are roll curvature for producing mean flow and the back flow for yielding 
overdestabilization. We finally remark that the back flow is a direct consequence of the 
lateral boundary conditions. 

In  our experiment, we aim at modifying this mechanism of time dependence by acting on 
the sole large scale flow independently of the underlying roll structure. To achieve this, we 
alter the lateral boundary condition for the mean flow, but we keep that for the roll flow 
unchanged. We therefore expect the rolls to still end perpendicularly to the boundary so 
that curvature is maintained. As described below, our new boundary stops convection but is 
permeable to mean flows. We therefore expect the pressure gradient and thus the back flow 
together with the route to time dependence, to be modified. 
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Fig. 2. - Mean-flow field solutions of the Cross-Newel1 equations. a) The boundary of the convective 
domain (small circle) is nonpermeable to mean flows. Notice the back flows along the y-axis (the 
orientation is defined in fig. la)). b)  The boundary of the convective domain is permeable to mean 
flows. The mean flow amplitude is then weaker than in the closed configuration. The shear at the 
boundary of the convective domain generates localized additional vertical vorticity, not represented on 
the picture. 

Since mean flows are generated in a nonlocal way by the whole pattern, inhibiting 
convection outside a given domain should not stop them, provided the boundaries are not 
rigid walls. In order to satisfy this condition, we slightly lower the cell depth outside a 
cylindrical domain by inserting a thin sheet at  quarter of the cell height (fig. 3). This trick 
gives rise to negligible thermal perturbations but to strong flow modifications: only 
conduction can take place in the outer region and the sheet is expected to let a large part of 
the mean flows pass. Visual observations ensure that the sheet is sufficient to give rise to 
roll curvature. Finally, as in usual cells, lateral walls protect from external thermal or flow 
perturbations. 

c o n d u c t i o n  

La te raL  ------) 

waLL5 

annuLar  sheet' convect ion 

Fig. 3. - Sketch of the experimental set-up leading to a permeable lateral boundary condition for the 
mean flows. 

We work in argon gas under a pressure of 30 bars (Pr = 0.7). We use an experimental 
apparatus similar to that described in[2], the extension of the visual field having been 
increased, however. The walls are cylindrical and the cell aspect ratio is R '  = 25. The cell 
depth is 1.6" so that the critical temperature is 3 5 ° C .  The thin sheet has an annular 
geometry. It gives rise to a cylindrical convective region of aspect ratio R = 12.5 (fig. 3). 

At onset of convection, rolls are straight. As E is increased, two centres of curvature 
appear and the curvature grows but saturates at ~ ~ 0 . 2 .  This is in agreement with 
observations in a closed container, except that no dangerous compression occurs at the 
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centre of the pattern. Moreover, the pattern remains stationary up to surprisingly high 
values of E (fig. la)). Such stationary states are reached after transient evolution, whatever 
the initial condition is. Sustained time dependence occurs only at E = 1.2 and involves 
repetitive localized processes which are reminiscent of the skewed-varicose and cross-roll 
instabilities of Busse and Clever [12]. The threshold of time dependence of distorted 
patterns is thus one order of magnitude greater in an <<open container. than in a closed one. 
Time dependence and phase turbulence are therefore inhibited over a large range of E .  

The system undergoes several restabilization processes towards stationary patterns in 
its route to turbulence. The first process leads to a wave number selection. It arises at 
E = 0.56 by a roll pinching at  the centre of the pattern (fig. lb)) which leads to the nucleation 
of a pair of dislocations which eventually disappear at  the foci. The whole pattern has then 
lost one wavelength. It remains stationary up to E = 0.74, where a new roll pinching occurs 
at  the centre of the pattern. Further additional defect nucleations yield a long transient 
spatio-temporal evolution which relaxes towards a complex stationary pattern. Stationarity 
persists until E = 1.2, where localized phase oscillations occur by periodic cross-roll-like 
instabilities or grain boundary motions. Finally, at E = 1.5, observations on a time scale of 
the order R . T ~ ,  where q, is the horizontal diffusion time, show phase turbulence. Focus 
singularities near the boundary then display phase travelling waves which either generate 
new rolls or force rolls to disappear. The latter feature is never observed in a closed 
container, presumably because mean flows cannot escape the convective domain. 

o.6 t \ 
0.4 - 

0.2 - 

I 

0 1 2 3 4 k 5  

Fig. 4. - Stability diagram of infinite straight rolls at  Pr=0.7 displaying the marginal (MI, the 
Eckhaus (E) and the skewed-varicose (SV) stability curves. We have plotted the local wave numbers 
for closed and open containers. Black squares correspond to the band of wave numbers in a closed 
container and triangles, crosses and open squares to the wave numbers in an open container, 
respectively at  the boundary on the x-axis, the focus and the centre. The line corresponds to the 
maximum wave number of the solution of the Cross-Newel1 equations, the sheet viscous stress being 
taken into account. 

Measurements of the roll wave number distribution allow us to compare quantitatively 
the pattern behaviour in closed and open cells. As shown in fig. 4, the first two dislocation 
nucleations occur at a local wave number which, as in a closed container, is unstable with 
respect to the skewed-varicose instability, the shift with the marginal stability being 
probably due to finite-size effects produced by the localization. However, this local 
wavenumber crosses the straight roll stability domain at values of E five times greater in 
open cells than in closed cells. This corroborates the observation of a delay in the occurrence 
of time dependence. In addition, we note that the decrease of the wavenumber allows the 
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restabilization of patterns. For both these reasons, although the pattern is distorted, its 
behaviour is similar to that of straight rolls [3]. 

Moreover, in contrast with the case of closed containers, the wave numbers at the foci 
and at the centre of the pattern have quite similar values. This means that the compression 
of the structure has been largely reduced, so that no dangerous large wave number is 
encountered close to the convective threshold. This indicates that, as expected, the mean- 
flow field has been modified by the change of lateral boundary in such a way that it does not 
induce destabilizing distortions. In particular, our measurements evidence that the 
amplitude of the back flow is strongly lowered. 

In order to corroborate these experimental results, we have determined [131 the mean- 
flow field by expansion of the Cross-Newel1 equations in a way similar to that performed in a 
closed container [8]. The phase field p is thus modelled in a polynomial space p(x, y) = 
= ko(l + A )  y(1- ax2/R2 + by2/R2 + cy4/R4 + dx2 y2/R2) where the relation between (b ,  e, d, A )  
and a has to be found by expansion at  first order in a2 and 1/R, assuming R >> 1 and a << 1 and 
where ko is close to k, = 3.117 at Pr = 0.7. In a closed container, we recall that the mean-flow 
vertical vorticity reads 0, = 2wxy/R4 (w is positive and roughly inversely proportional to the 
Prandtl number). Moreover, the orientation being defined such that the y-axis (0 = k d 2 )  
joins the foci (fig. la)), the mean-flow field F takes the following form in polar coordinates: 

where ,5 is only related to a divergence-free pressure gradient. 
Since the container is closed, the normal flow F - r must vanish at the boundary r = R, so 

that ,5 = - 1. In an <<open, container, we consider, as a first step, that mean flows cross the 
boundary of the convective domain quite freely. In order to determine the mean-flow field in 
both the conductive and convective domains, we first assume that no additional source of 
large-scale vertical vorticity 0, is generated by the new boundary. The boundary conditions 
therefore involve the continuity at r = R of the pressure, the vorticity 0, and the radial flux 
F * r and the vanishing at  r = R ’  of the radial flux. In the convective domain, 0, is similar to 
that of a closed container but it must diffuse and vanish in the conductive domain, since 
there are no longer mean-flow sources there. For large R,  we find that the mean-flow field 
takes the previous form (1) inside the convective domain with ,5 = - 1/2(1 + F - ~ )  and 
p=R’IR, and the following form in the conductive region[13]: 

As shown in fig. 2b), the mean-flow streamlines are strongly modified by the change of 
lateral boundary. In particular, a shear flow appears at  the boundary of the convective 
domain so that additional vorticity is created. However, since it remains localized, it does 
not modify the former determination away from the boundary of the convective domain. 
Instead of the strong back flow present in closed containers, the mean flow reverses its 
direction on the line joining a focus to the centre of the pattern and its amplitude is now 
weaker. Introducing its value in the phase equation enables us to determine the stationary 
conditions on the large scale. Compared to a closed container[8], the relation between 
(b, e, d,  A )  and a is unchanged except that b is multiplied by - p, i . e .  1/2(1 + ,c-~). For small 
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p-4(p-4 << l), the maximum wave number is then ko + o(u2/R) and it is reached at both the foci 
and the centre of the pattern. The latter prediction is close to the experimental results (fig. 
4). However, the additional viscous stress produced by the sheet in the conductive domain 
produces an additional back flow which may be taken into account by introducing a 
transmission factor. The agreement with the experiment is then even better (fig. 4). 

Our solution of the Cross-Newel1 equations thus nicely recovers the experimental results 
and agrees with their interpretation. In particular, it confirms that the back flow is 
weakened. Accordingly, though mean flows are still present, the conditions leading to 
.dynamical frustration. [6 ]  are less fulfilled than in a closed container. This explains why 
time dependence is delayed. 

We have demonstrated that opening the container to flows other than the primary 
convective flows changes the spatio-temporal properties of an extended cylindrical 
convective layer and inhibits phase turbulence in a large range of the control parameter E .  

We have solved the Cross-Newel1 equations for this situation at the dominant order in the 
amplitude of the pattern distortion. The mean-flow field of this solution enables us to 
understand the delay observed in the appearance of time dependence. These results prove 
indirectly the existence of mean flows and c o n f m  the mechanisms of phase turbulence 
based on the mean flow-roll distortion interaction. In particular, they point out the nonlocal 
link between mean flows and boundary conditions. At a more general level, our study 
shows, as an example, that spatio-temporal turbulence may be inhibited, provided that the 
right phenomena are understood. We envision to extend this control of turbulence to other 
cellular patterns and to systems exhibiting interactions between more than two scales. 
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