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Single electron sources enable electron quantum optics
experiments where single electrons emitted in a ballis-
tic electronic interferometer plays the role of a single
photons emitted in an optical medium in Quantum Op-
tics. A qualitative step has been made with the recent
generation of single charge levitons obtained by apply-
ing Lorentzian voltage pulse on the contact of the quan-
tum conductor. Simple to realize and operate, the source
emits electrons in the form of striking minimal excitation
states called levitons. We review the striking properties
of levitons and their possible applications in quantum
physics to electron interferometry and entanglement.

t 

Schematic generation of time resolved single charges called
levitons using Lorentzian voltage pulses applied on a contact.
A Quantum Point Contact is used to partition the levitons for
further analysis. Injecting levitons on opposite contacts with a
delay τ enables to probe electronic like Hong Ou Mandel cor-
relations.
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1 Single electron sources In this introduction, we
will distinguish single charge sources from coherent sin-
gle electrons sources. The former have been developed for
quantum metrology where the goal is to transfer an integer
charge at high frequency f through a conductor with good
accuracy to realize a quantized current source whose cur-
rent I = ef shows metrological accuracy. The latter, the
coherent single electrons source, aims at emitting (inject-
ing) a single electron whose wave-function is well defined
and controlled to realize further single electron coherent
manipulation via quantum gates. The gates are provided by
electronic beam-splitters made with Quantum Point Con-
tacts or provided by electronic Mach-Zehnder and Fabry-

Prot interferometers. Here it is important that the injected
single electron is the only excitation created in the conduc-
tor. The frequency f of injection is not chosen to have a
large current, as current accuracy is not the goal, but only
to get sufficient statistics on the electron transfer events to
extract physical information.

1.1 single charge sources for current standards
The first manipulation of single charges trace back to the
early 90’s where physicists took advantage of charge quan-
tization of a submicronic metallic island nearly isolated
from leads by tunnel barriers. The finite energy EC =
e2/2C to charge the small capacitorC with a single charge
being larger than temperature (typically one kelvin for
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2 D.C. Glattli et al.: levitons

C =1fF), Coulomb Blockade of tunneling occurs allow-
ing for single charge manipulations. An architecture made
of several island in series lead to single electron pumps
and turnstiles [1,2]. Pumps and turnstiles were dedicated to
quantum metrology with the hope to realize a current stan-
dard where the current I = ef is related to the frequency
of single charge transfer through the device. A 7-junction
pumps lead soon to 15.10−8 current accuracy but limited
to too low currents [3] for metrology. Later hybrid super-
conducting normal junctions single electron pumps lead to
higher operating frequencies to reach 10−6 accuracy [4].

In parallel, electron pumps have been realized using
2D electrons confined in GaAs/GaAlAs semiconductors
heterojunctions where the metallic island is replaced by
a quantum dot obtained by surface gate depletion. Here
pairs of split gates were used to form a narrow constric-
tion which selects the number of electronic modes trans-
mitted between the dot and the leads and ultimately leads
to a 1D tunnel barrier. This Quantum Point Contact (QPC)
offers tunability of the tunnel barrier whose fast manip-
ulation was exploited to capture a single electron in the
dot from the left contact and release it to the right con-
tact providing fast accurate electron pumping [5]. Similar
double modulated barrier pumps at GHz frequencies lead
to average pump current of several hundred picaoamperes
[6] more suitable for metrology. Single gate pumps have
been implemented using silicon nanowires [7] and etched
GaAl/GaAsAl nanowires. Recent improvements gave ac-
curacy better than 1.2.10−6 for a 150pA generated current
[8] making these devices promising for current standard in
quantum metrology while similar devices combined with
quantum Hall effect may give a short path to metrology
triangle closure [9].

Another approach to single charge sources is based on
moving quantum dots carrying integer charges using of
Surface Acoustic Waves (SAWs) [10]. In a piezo-electric
material like GaAs, a mechanical wave can be generated by
the electric field created by interdigitated gates deposited
on top of the device. An electrical potential well moving
at the surface phonon velocity, a few km/s, can trap elec-
trons confined in a 1D wire and the moving quantum dot
so realized can transfer them through the conductor at GHz
frequencies leading to good current quantization accuracy
[11].

1.2 single electron sources for electron quantum
optics In all the examples cited above, the goal was a
good accuracy in the charge transfer. In the following we
will focus on quantum experiments appropriate for elec-
tron quantum optics where the emitted single electrons
play the role of flying charge qubits [12]. Depending on
the system used the charge or the spin may code a binary
qubit information. The flying qubit approach is fundamen-
tally different from the standard qubit realization which
are based on a static localized two-level system (nuclear
or electron spin, atom, charge state of a superconducting
metallic island, photonic state of resonator circuits, etc.).

Here the information is coded by the presence or not of
a particle (electron, photon) propagating or delocalized in
spatial modes.

Experiments in this direction using the SAW technique
described above have been done recently. SAW assisted
transfer of single electrons through depleted 1D channels
have demonstrated single electron transfer over several µm
between two distant quantum dots [13,14] and the spin
state of one and two electrons have been transferred [15].
Using quantum dot sources, single electrons have been
emitted at high energy above the conductor Fermi level.
The energy and time properties of the wavepacket have
been analyzed [16]. The partitioning of spin entangled
electron pairs emitted that way has been recently realized
[17]. These examples are promising for further quantum
experiments where only the spin coherence of electrons is
concerned, but regarding orbital quantum coherence, ap-
propriate for charge flying qubits, different approaches are
needed.

The first coherent single electron source has been pro-
posed and realized by one of the present authors with the
ENS Paris team [18]. It is based on a mesocopic capac-
itor which has been precedently realized [19] to check
the universal quantization of the charge relaxation resis-
tance (called Büttiker’s resistance h/2e2) predicted by M.
Büttiker [20]. Here no dc current is produced but only an ac
current made from the periodic injection of single electrons
followed by single holes above and below the Fermi energy
EF of the target quantum conductor. For ease of operation
and further use in electron quantum optics, the conductor
is in the integer quantum Hall effect regime where a strong
magnetic field quantizes the electron cyclotron orbits and
only 1D chiral modes propagating along the sample edges,
called edge channels, ensure electron conduction. Here, the
capacitor is made so small that energy level quantization
makes it behave as a quantum dot. To ensure energy level
and charge quantization, the capacitor is weakly connected
to the leads, the chiral edge channels, via a quantum point
contact which controls the tunnel coupling. The operating
principle is as follows, see Fig.1. Starting from a situation
where the last occupied energy level is below the Fermi
energy, a sudden rise of the voltage applied on a top gate
capacitively coupled to the mesoscopic capacitor rises the
occupied energy level above the Fermi energy. After a time
equal to the life time ≃ h̄/D∆ of the energy level and con-
trolled by the barrier transmission D, an electron is emit-
ted at a tunable energy εe above the Fermi level (∆ is the
energy level spacing). Then restoring the top gate voltage
to its initial value pulls down the energy level below the
Fermi energy: an electron is captured or equivalently a hole
is emitted with a definite energy −εh below the lead Fermi
energy.

The mesoscopic capacitor single electron source has
been used for electron quantum optics experiments like
the partitioning of single electrons in an electronic beam
splitter [21], an Hanbury Brown-Twiss experimental set-up

Copyright line will be provided by the publisher



pss header will be provided by the publisher 3

commonly used in optics, and the Hong Ou mandel (HOM)
electron interferometry where two electron emitted with
a controlled relative time delay are sent to an electronic
beam-splitter and second order interference revealing par-
ticle indistinguishability is observed in the detection statis-
tics at the beam-splitter output [22]. Similar experiments
have been repeated with the leviton source discussed be-
low [23,24]. The 2007 first realization of a single electron
source has triggered many theoretical works [25–27,29–
34] as it opened the possibility to test dynamical quantum
transport at the single electron level, investigating single
and two-electron coherence, non-local entanglement, wait-
ing time statistics or quantum heat fluctuations. However
the mesocopic capacitor source is delicate to operate and
to fabricate (tuning two identical energy levels and emis-
sion time to demonstrate electron undistinguishability in
[22] was a tour de force). Like single photon sources it dis-
plays a fundamental quantum uncertainty in emission time,
a quantum jitter measured by high frequency shot noise in
[35]. A simpler complementary approach to single electron
sources for electron quantum optics came more recently
with the realization of voltage pulse sources.
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Figure 1 a) Radio-frequency pulse applied on the top gate (in-
set of the figure). (1) Starting point: the fermi level lies between
two discrete energy levels of the quantum dot. (2) 2eVexc(t) is
equal to the level spacing ∆. An electron escapes the dot at a
well defined and tunable energy. (3) Vexc(t) is brought back to
its initial value, a hole escape at energy below the lead Fermi
energy . b) Time domain measurement of the average current
(black curves) on one period of the excitation signal (red curves)
at 2eVexc(t) = ∆ for three values of the transmission D. The ex-
pected exponential relaxation with time h̄/D∆ fits well the data
(blue curve)(figure adapted from [18]).

The voltage pulse source is based on a simple principle.
A voltage pulse V (t) is applied on the contact of a quantum
conductor where electrons can propagate in few modes.
According to ac quantum transport laws, if all other con-
tacts are grounded, a current I(t) = e2/hV (t) is injected
form the contact in each mode emitted from this contact
(disregarding spin). Then, by tuning the amplitude and du-
ration of the voltage pulse such that

∫∞
−∞ I(t)dt = e a sin-

gle charge is injected. The procedure seems too simple to
think it can give correct results. Indeed, if a single charge is
actually injected, it is in general accompanied by unwanted
neutral excitations in the form of electron-hole pairs result-
ing from the perturbation of the electrons already present
in the conductor (the Fermi Sea). However, nearly twenty
years ago, in their quest for a clean electron generation
model for studying the Full Counting Statistics in quan-
tum conductors, L. Levitov and collaborators discovered
that, if the voltage pulse has the shape of a Lorentzian, a
clean single electron injection (without extra neutral exci-
tations) can be realized [36–39]. The Lorentzian voltage
pulse single electron source has been experimentally real-
ized in 2013 by the present authors and their team at CEA
Paris-Saclay and the predicted minimal excitations states,
now called levitons, have been carefully characterized by
their minimal shot noise [23]. The single electron leviton
source is presented in more detailed and reviewed in the
next parts of the present paper.

In order to conclude this part I will refer the reader
to Fig. 2 which shows a comparison of the Mesoscopic
capacitor and Leviton single electron sources, both being
suitable to perform electron quantum optics. The figure
shows the complementary aspects of the two sources. The
mesoscopic capacitor source emits energy resolved elec-
trons while the leviton source is time-resolved. There is
a duality of their properties if we interchange time and
energy: Lorentzian energy distribution versus Lorentzian
time wavepacket, semi-exponential time wavepacket ver-
sus semi exponential energy distribution above the Fermi
energy. Being energy-resolved, the mesoscopic capacitor
source allows to make nice fundamental tests of the en-
ergy relaxation and decoherence of a Landau like quasi-
particle above the Fermi sea [40]. For the same reason
the electrons injected well above the Fermi sea are more
prone to decoherence than the levitons whose energy dis-
tribution is as close as possible to the Fermi energy [40].
Due to charging effects complicating electron injection,
the mesoscopic capacitor source is limited to single charge
injection. The voltage pulse source lacks of exact charge
quantization (as the charge is tunable) but it can simul-
taneously injects any number of electrons while keeping
the levitonic minimal excitation property. Interestingly, it
was theoretically shown that if the mesoscopic capacitor
is driven adiabatically (i.e. the energy level not suddenly
risen above the Fermi energy but slowly risen at constant
speed), the Lorentzian energy shape of the level gives rise
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Figure 2 Top figure: the mesoscopic capacitor source (energy-
resolved source). Its energy distribution is lorentzian and the time
wavepacket envelope is semi-exponential. Bottom Figure: the
voltage pulse leviton source. Its energy distribution is semi expo-
nential and the time wavepacket is lorentzian. The two sources are
suitable for electron quantum optics. They show a duality when
interchanging time and energy

to a Lorentzian wavepacket similar to a leviton with the
emitted charge fundamentally fixed to the charge e [27].

2 Levitons: time-resolved single electron with
minimal excitation property.

2.1 principle We consider a single mode conductor,
spin disregarded. The following results can be directly ex-
tended to multiple modes including spin. The single mode
can be an edge channel of the integer quantum Hall ef-
fect for filling factor one. It can also be a single elec-
tronic mode of a 2D conductor spatially filtered by a nar-
row constriction like a Quantum Point Contact inserted in
the middle of the 2D conductor. When a time dependent
voltage V (t) is applied, say on the left contact of conduc-
tor while the opposite contact is grounded, electrons emit-
ted at energy ε below the Fermi level of the contact, and
experiencing the voltage, acquire a time dependent phase
ϕ(t) = e

∫ t

−∞ V (t′)dt′/h̄. Because of the time depen-
dency, energy is not conserved and the electron are scat-
tered in a superposition of quantum states of different pos-
sible energies. The amplitude of probability to have the en-
ergy displaced from ε to ε+ δε is :

p(δε) =

∫ ∞

−∞
e−iϕ(t)eiδεt/h̄dt (1)

and the probability P (δε) = |p(δε)|2. Eq. 1 is the basis
of the Floquet scattering theory developed by M. Büttiker
and M. Moskalets for periodically driven conductors [28].
For V (t) a voltage pulse, the injected charge q is q =∫∞
−∞ I(t)dt. For a spinless single mode, for which I(t) =
e2V (t)/h, this gives the Faraday flux (or action):∫ ∞

−∞
eV (t)dt = (q/e)h (2)

and the phase increment:

∆ϕ = ϕ(−∞)− ϕ(∞) = 2π(q/e) (3)

In general p(δε) have non zero values for both positive and
negative δε. Consequently all electrons of the left contact
Fermi sea are displaced up and down in energy. Compared
with the reference Fermi sea of the grounded right con-
tact, this gives both electron and hole like excitations. At
zero temperature, with sharp Fermi sea distribution, one
can quantify the number of electrons Ne and hole Nh ex-
citations created by the pulse. They are given by:

Ne =

∫ ∞

0

δεP (δε)d(δε) (4)

Nh =

∫ 0

−∞
(−δε)P (δε)d(δε) (5)

The charge introduced by the pulse in the conductor is q =
e(Ne −Nh) and the total number of excitations is Nexc =
Ne +Nh.

For a single electron source injecting electrons in the
form of a minimal state called leviton, it is mandatory to
have no hole excitations creation, i.e.Nexc = Ne = 1 such
that only excitation is the injected electron, as schemati-
cally shown in Fig 3. To do that, the Fourier transform of
the phase term e−iϕ(t), which in Eq. 1 gives p(δε), must
be zero for all negative δε. According to standard complex
integration technique, this implies the phase term e−iϕ(t),
prolongated in the complex plane must have no pole in the
lower half plane and at least one pole in the upper half
complex plane. The simplest expression for the phase term
with only one pole, at say t = iw, is:

e−iϕ(t) =
t+ iw

t− iw
(6)

With this form, the phase increment is ∆ϕ = 2π and, from
Eq.3, the associated charge is q = ewhile the phase deriva-
tive is a Lorentzian with 2w full width at mid-height. The
corresponding voltage pulse is therefore a Lorentzian:

V (t) =
h̄

e

2w

t2 + w2
(7)

Eqs. 6,7 uniquely define the type of voltage pulse
needed to generate a single charge leviton. Generalization
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Figure 3 Top figure: effect of an arbitrary pulse on the Fermi sea.
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initial energy. Electron hole excitations are created, as schemati-
cally represented in the energy distribution f̃(ε). Bottom figure:
applying a Lorentzian shape voltage pulse generates a minimal
excitation state called Leviton , no hole excitation is created.

to multiple electron injection in the form of levitons in-
jected at time tk with width wk is possible by introducing
extra poles in the upper complex plane, such that

e−iϕ(t) =
N∏

k=1

t− tk + iwk

t− tk − iwk
(8)

V (t) =
N∑

k=1

h̄

e

2wk

(t− tk)2 + w2
k

(9)

The absence of poles in the lower half part of the complex
plane in 8, ensures that the multiple electron injection still
forms a minimal excitation state. Simultaneous injection of
N electrons in the form of levitons is also possible by sim-
ply increasing by N the pulse amplitude. The phase term
acquires a single pole of order N, in the upper half com-
plex plane e−iϕN (t) = ( t+iw

t−iw )N . In [41] it was remarked
that such phase modulation generates N orthogonal enve-
lope wave-functions of the form ϕk(u) =

(u+iw)k−1

(u−iw)k
, with

u = t − x/vF , k = 1, N and the resulting quantum state
generated from the voltage pulsed Fermi sea is a slater de-
terminant made of these N wave-functions.

The voltage pulse charge injection method also al-
lows to inject arbitrarily a non-integer charge q. Keeping a

Lorentzian pulse shape, this gives the phase term:

e−iϕ(t) =

(
t+ iw

t− iw

)q/e

(10)

One immediately sees that if q is not integer, the resulting
fractional power gives non-analytic properties to the phase
term on the real axis. As a consequence, the Fourier trans-
form of e−iϕ(t) acquires non-zero values for positive and
negative δε giving both electron and hole excitations. This
situation was named in Levitov’s original paper [36] ”dy-
namical orthogonality catastrophe” in reference to the An-
derson orthogonality catastrophe problem but in the time
domain.

To summarize, Lorentzian voltage pulses generate
clean minimal excitation states called levitons carrying
an integer number of charge only. Other pulse shape intro-
duce extra excitations in the form of neutral electron hole
pairs.

2.2 Evidence and characterization of levitons
2.2.1 Minimal noise for minimal excitation states

In a practical experiment, as in [23], periodic injection is
chosen. For an injection frequency ν, period T = 1/ν,
the average current is I = eν. The periodicity implies that
P (δε) = Σ∞

l=−∞Plδ(δε−lhν), the discrete Pl being the l-
photo-absorption probabilities. To experimentally demon-
strate that the right pulse shape, the Lorentzian, generates
a minimal excitation state, the expected levitons were sent
to an artificial quantum impurity, a Quantum Point Con-
tact, which partially transmits a single electronic mode.
Its mode transmission D was tunable by gates and mea-
surable by dc conductance. The idea is to take advan-
tage of the partitioning of electron and hole excitations by
the QPC into transmitted and reflected modes. This fun-
damentally quantum probabilistic effect generates what is
known as quantum shot noise,where shot noise means cur-
rent noise. It can be shown that the shot noise at zero tem-
perature is a direct measure of the total number of excita-
tions Nexc = Ne+Nh [36,39,42]. The spectral density of
the current noise SI is given by:

SI = 2e2νD(1−D)(Ne +Nh) (11)

By comparing the noise generated with sinewave,
square wave and Lorentzian pulses, ref.[42] showed that
for integer charge, thermal corrections included, the shot
noise of Lorentzian pulses is indeed minimal and cor-
responds exactly to the noise of a clean single charge.
Thus minimal excitation states, levitons, generate minimal
noise.

2.2.2 energy spectroscopy: absence of hole ex-
citations Energy spectroscopy is another way to charac-
terize the levitonic state. Indeed, contrary to sinewave or
square wave pulses, it is expected that Lorentzian pulses
carrying charge e generate no hole excitation. It is thus
important to show the absence of hole excitations for en-
ergies below the Fermi energy. Again, the partition shot
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Figure 4 Top figure: shot noise spectroscopy of a sine wave
pulse. Since an equal number of electron and hole excitations
is created the noise spectroscopy is symmetric with respect to
VR = 0.The schematic zero temperature energy distribution f̃(ε)
is shown on the left. Bottom figure: shot noise spectroscopy of
a lorentzian pulse. The number of holes is minimized to zero
and the shot noise spectroscopy is asymmetric. The figures are
adapted from [23]

noise of a Quantum Point Contact can be used to demon-
strate this. The idea is to add a dc voltage VR on the op-
posite right contact. Under negative bias, the hole emitted
from the periodically driven left contact in the energy range
−eVR < ε < 0 will no longer contribute to noise and the
corresponding shot noise variation will measure their num-
ber. For positive VR, electrons emitted in the energy range
0 > ε > VR will anti-bunch with electron excitations com-
ing from the driven left contact and no noise is produced.
Again, the noise variation with VR will give a measure of
the electron excitations. With a finite VR, the shot noise
is still given by expression Eq. 11 but for VR > 0, Ne

is replaced by Ne,VR
=

∫∞
EVR

δεP (δε)d(δε) and Nh un-
changed while for VR < 0,Ne is unchanged byNh relaced
by Nh,VR

=
∫ −e|VR|
−∞ (−δε)P (δε)d(δε).

Fig. 4 shows shot noise spectroscopy comparison of
sine wave and Lorenztian pulses and comparison with pre-
dictions. For a sine wave, a symmetric noise variation with
VR is observed due to symmetric electron and hole contri-
bution which strikingly differs from the asymmetric noise
variation for Lorentzian due to the absence of holes.

2.2.3 Time domain characterization: Hong Ou
Mandel correlations In the celebrated Hong Ou Man-
del photonic experiment, the authors were at first inter-
ested to determine the time shape of the photon pairs

emitted by parametric down conversion of a Laser pulse
sent to a non-linear crystal. To do this, they took advan-
tage of the photon bunching effect which is expected to
occur when two undistinguishable photons arrive at the
same time and mix on a beam-splitter. According to Bose
statistics, both photons prefer to exit at the same beam-
splitter output and experimentalists repeating the exper-
iment will find fluctuations ⟨(∆N)2⟩ in the detection
photon number N due to the partitioning by the beam-
splitter of two bunched photons. This is twice the particle
noise expected if the photons were separately arriving and
partitioned by the beam-splitter. By varying the delay τ
between the photon arrival, one progressively goes from
the first to the second situation and the variation is sim-
ply given by the overlap of the photon wave-functions ψ
which partially mix for finite τ in the beam-splitter, i.e.
⟨(∆N)2⟩τ = ⟨(∆N)2⟩τ=∞(1 + |⟨ψ(0)|ψ(τ)⟩|2). This
provided a measure of the photon wave-packet extension
and a nice evidence of bosonic quantum statistics. A simi-
lar trick can be done with electrons which, being fermions,
anti-bunch. When in coincidence (τ = 0) they will always
take different outputs to satisfy Pauli exclusion and the
particle noise is zero.

Hong Ou Mandel (HOM) correlations can be realized
using levitons periodically sent with a relative delay τ from
opposite contacts toward a Quantum Point Contact playing
the role of the electronic beam-splitter while measuring the
cross correlation shot noise between output leads. One ex-
pects

SI = 2e2νD(1−D)2(1− |⟨ψ(x)|ψ(x− vF τ)⟩|2) (12)

where ψ is the leviton wavefunction. If doubly charge levi-
tons are sent, one expects:

SI = 2e2νD(1−D)2(2− |⟨ψ1(x)|ψ1(x− vF τ)⟩|2−
|⟨ψ2(x)|ψ2(x− vF τ)⟩|2)

(13)

where ψ1,2 are the first two orthogonal levitonic wave
functions [41] carrying the two incoming electrons. Re-
markably, the voltage pulse electron injection technique
allows the generation of an arbitrary number of electrons
and for performing N-electrons HOM correlation. In this
case, Eq. 13 generalizes easily. Because of constraints due
to Fermi statistics, a direct comparison between HOM cor-
relations with N-photon Fock states [59] and those with
N-electron minimal excitation states cannot be done. This
situation opens new perspectives in quantum mechanics.

Fig. 5 shows the HOM shot noise experiment done
with single and doubly charged levitons. The comparison
with expected HOM noise variation is excellent without
adjustable parameters. This provides a good check of the
levitonic states with one or two electrons in the time do-
main. The HOM shot noise of colliding sine-wave pulses
is also shown for comparison. Here, because sine-wave
pulses give rise to charge pulses accompanied with a cloud
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Figure 5 Top figure: HOM experiment for one and two elec-
trons injected in the separate input of a beam-splitter. The HOM
shot noise resulting from partitioning of antibunched electrons is
plotted versus the arrival time delay τ giving access to the wave-
function overlaps. Note the excellent agreement with the expected
theory (solid line). Bottom figure: HOM experiment with two dif-
ferent pulses. The sine pulse creating a large amount of electron
hole excitations, the HOM shot noise is enhanced. The figures are
adapted from [42].

of electron-hole pairs and all these excitations interfere in
the electron beam-splitter, the physical information to ex-
tract is not clear (except to confirm the good agreement
with HOM shot noise theoretical modeling [42]).

The leviton HOM correlations give remarkably 100%
noise suppression at τ = 0. This contrasts with the small
HOM dip observed in ref [22] where electron are injected
from a mesocopic capacitor. In the latter case, the reason
for a weak HOM noise suppression is not due to the dif-
ferent nature of the source but is due to the propagation
in the leads between the source and the beam-splitter. In
[22] the leads are made of two chiral edge channels (In-
teger Quantum Hall regime at filling factor 2) and elec-
trons are injected in the outer edge channel. A (pseudo)-
spin charge separation occurs where the incoming elec-
tron fractionalizes. This induces decoherence and energy
relaxation which spoils the otherwise naively expected full
HOM noise suppression. Working with a single edge or
putting the source closer to the beam-splitter would pro-
duce a better HOM shot noise dip.

In [42], it was remarked that the HOM noise shape
versus τ does not depends on temperature. This was ac-
tually experimentally observed [41]. This remarkable de-
coupling occurs only for single charge levitons but not for

LORENTZIAN SINE-WAVE

Figure 6 Temperature dependence of the HOM shot noise for
lorentzian (left) and sinewave (right) pulses. By plotting the ra-
tio of the HOM noise to the theoretical zero temperature HOM
noise versus the HOM delay τ , one observes that, contrary to the
sinewave pulses, for levitons the HOM noise shape versus τ is
not affected by thermal excitations. Figures adapted from [41]

sine wave pulses nor for doubly charged levitons. The ro-
bustness of the 100% HOM dip to temperature for any
voltage pulse shape and of the HOM leviton noise curve
versus τ to temperature effects and decoherence has been
recently theoretically studied in [60]. Fig 6 shows exper-
imental HOM noise measurements demonstrating the de-
coupling between the temperature and the delay τ for the
case of a leviton and shows the absence of decoupling for
sinewave pulses.

2.2.4 Full characterization: Wigner function of a
leviton In the last two sections levitons have been charac-
terized in time or in energy. But a wave function is a more
complex object. Because of the fundamental quantum un-
certainty of conjugated variables ( energy versus time or
momentum versus position), standard quantum measure-
ments gives in general information on the wavefunction
versus one variable only. Having all information on the
wave function requires a lot of different measurements to
’see’ the wavefunction under all aspects. This is done using
Quantum State Tomography (QST). It consists in measur-
ing the energy density matrix ϱ(ε′, ε) =< ψ†(ε′)|ψ(ε) >
or the coherence < ψ†(t′)|ψ(t) > to which the pure Fermi
sea contribution has been subtracted. From this, one can
reconstruct the Wigner function W (t, ε) which represents
a quasiprobability distribution of the state versus the two-
dimensional phase space of conjugated variables (ε, t) ( or
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Figure 7 The off diagonal terms of the energy density matrix of
a leviton (bottom figures) are extracted from the shot noise (mid-
dle figures) measured when performing the HOM interference of
a leviton mixing (colliding) in a beam-splitter with a small sine-
wave pulse at frequency ν (left figure) and 2ν (right figure). The
top figures show the noise variation with the time delay τ be-
tween the small sinewave pulse and the periodic levitons. The
oscillations, and the doubling of the period at frequency 2ν with
respect to ν, prove the existence of non-diagonal coherence terms
in the energy density matrix. The figures are adapted from [24].

(p, x)) .

W (t, ε) =

∫ ∞

−∞
dδϱ(ε+ δ/2, ε− δ/2)e(−iδt/h̄) (14)

For periodic injection, only the non-diagonal elements
of ρ differing by a multiple of the fundamental frequency
ε′ − ε = lhν are non zero. This implies that the Wigner
function is a periodic function of time and this conve-
niently restricts the number of measurements to be done. A
Quantum State Tomography procedure for Measurements
of ϱ(ε′, ε) has been theoretically proposed by C. Grenier
in [44] and has been experimentally implemented and re-
ported by the present authors in [24]. First let us remark
that the Shot noise spectroscopy makes a measurement of
the diagonal term of the energy density matrix as one can
deduce from the measurements the electron distribution
function f̃(ε) = ϱ(ε, ε). In order to access the off-diagonal
elements where the energies differ by khν, the same shot
noise spectroscopy technique is used but, following [44],
instead of only applying a dc voltage VR on the right reser-
voir, a small amplitude Vac sine-wave voltage is added at
frequency kν. Electrons emitted by the right reservoir at
energy ε are thus is weak amplitude superposition of states

WDF 

experimental  

Wigner function 

Experiment 

Theory 

Figure 8 Experimental Wigner function extracted from the off-
diagonal components of the density matrix (adapted from [24]).

of energies ε± khν. Mixed in the beam-splitter, they anti-
bunch with the ε and ε± khν leviton energy components.
Finally, Introducing a delay τ between the small ac sine-
wave signal and the leviton pulses, like in the HOM ex-
periment, provides a way to give a convincing signature of
the interference of the ε and ε + khν terms in the result-
ing shot noise variation. In [24] only the first two harmonic
terms were measured (k = 0, 1, 2) but the third one could
have been measured as well. The expected shot noise dif-
ference∆SI obtained when the noise is measured with Vac
on and off is given by:

∆SI =S0
I 2kη cos(2πkντ).

.

∫ eVR

0

(ϱ(ε, ε+ khν)− ϱ(ε, ε− khν))dε/hν

(15)

from which the off diagonal terms can be extracted. Fig 7
shows the noise variations for k = 1, 2. The characteris-
tic doubling of the period with τ ensures that interference
terms are indeed measured. This demonstrates the fully co-
herent nature of the levitonic quantum state. The deduced
off-diagonal components (bottom of the figure) are then
used to extract from Eq. 14 the leviton Wigner function
truncated to the first two harmonic temporal components
as shown in Fig. 8

3 Perspectives Levitons seem to be the ideal source
for electron quantum optics and offers wide perspectives.
The excellent ability to synchronize leviton sources could
be exploited to realize leviton flying qubits using the edge

Copyright line will be provided by the publisher



pss header will be provided by the publisher 9

)(tV

)(tV

t

t

rail 0a

rail 1a

rail 1b

rail 0b

conditional

phase   π

rail 0a

rail 1a

rail 1b

rail 0b

(1a)

(0a)

(0b)

(1b)

CNOT operation with Levitons

Figure 9 Schematic representation of a CNOT quantum gate with
Levitons. Two Levitons are injected in rail 1a and 1b. The out-
put state is a maximally entangled state. The vertical dashed line
schematically indicates the Coulomb interaction which could pro-
vide a conditional π phase shift in the two particle (two-qubit)
wavefunction.

state topology. As an example, we propose the follow-
ing CNOT quantum gate coupling two flying qubits (a)
and (b). Starting with the sate |1a⟩|1b⟩ by injecting levi-
tons on the appropriate contacts, the output is expected to
be |1a⟩|1b⟩ + |0a⟩|0b⟩ a Bell state. Here we have used a
coulomb coupling which provides a conditional π phase
shift when an electron on the lower edge of qubit (a) per-
forms a distant scattering with an electron propagating on
the upper edge of qubit (b). Fig. 9 schematically displays
such a quantum circuit with chiral ballistic electrons to per-
form the CNOT quantum gate.

Leviton single electron sources have stimulated many
theoretical works. The time domain control and the special
minimal excitation state property leads to well posed prob-
lems not accessible to dc voltage electron sources. Here
we will cite only a few examples of many theoretical pre-
dictions concerning levitons. For example, the non-local
entanglement of electrons emitted by two independent dc
voltage sources, as first considered in [45] in a two particle
Hanbury Brown Twiss set-up, was difficult to characterize
and found very fragile with respect to thermal fluctuations
[46]. The same problem has been recently recently revis-
ited using leviton sources and it has been shown that non
local characterization of entanglement is possible without
the need of post-selection [61]. Another example is the
generation of neutral levitons pairs by a controlled time
variation of the transmission amplitude of a punctual scat-

ter like a QPC which has have been first predicted in [48].
The principle is based on a controlled variation of the QPC
transmission d(t) and reflection r(t) amplitudes. Writing
the scattering amplitudes in the form of d(t) = sinϕ(t)
and r(t) = i cos(ϕ(t), to ensures unitarity of the QPC
scattering matrix, and choosing a phase variation ϕ(t) cor-
responding to that used to produce levitons with voltage
pulses, see Eq. 6, neutral leviton anti-leviton pairs are pre-
dicted to be emitted in the adjacent leads from the mod-
ulated scatter. These pairs are expected to be entangled
[49]. Embedding, these neutral leviton pairs in a Mach-
Zehnder electronic interferometer, their entanglement has
been theoretically demonstrated and the entanglement de-
tection theoretically shown possible in [50].

Levitons can also be useful for new quantum detec-
tion schemes. For example, the Full Counting Statistics
(FCS) of levitons partitioned by a quantum conductor has
been theoretically shown detectable by sending synchro-
nized levitons in a coupled Mach-Zehnder interferometer
[61]. Here, remarkably, no noise measurements are needed,
only dc current measurements are necessary to access the
electron FCS.

Regarding interaction, it has been predicted that levi-
tons can also be generated in an interacting 1D electron
system [39] called a Luttinger Liquid (LL). A nice exam-
ple is given by the chiral edge states of the Fractional quan-
tum Hall effect (FQHE), whose best understood state, the
Laughlin state, occurs at filling factor 1/3 [51]. Here the
current is carried by a single edge channel. This is a chi-
ral Luttinger liquid which is expected to generate elemen-
tary excitations carrying fractional charge e∗ = e/3 [52]
and showing anyonic statistics [53] in full correspondence
with the bulk Laughlin excitations. This regime has been
considered in [54] and more recently in [55]. Counterin-
tuitively and contrary to what was suggested in [39], no
fractionally charged levitons can be generated in a frac-
tional edge but only integer charge leviton. Indeed, it is
mandatory that the total phase variation resulting from the
voltage pulse be not a fraction of 2π in order to have only
electron like excitations with no holes and thus a mini-
mal excitation property. This implies that the Faraday flux,
which in the 1/3 FQHE regime writes

∫
e ∗ V (t)dt be

equal to nh. As I(t) = e ∗ (e/h)V (t) the total injected
charge for 2nπ phase shift is thus q = ne, where n an in-
teger. Can these integer charge minimal excitation states
be used to probe the fascinating fractionally charge ex-
citations? Having the time domain control of e∗ excita-
tions could open new way to probe their anyonic statis-
tics via Hong Ou Mandel correlations or other two-particle
interferometry protocol. In Fig. 10 we propose a possible
source of on-demand anyons: integer charge levitons are
first generated and then sent to a QPC which is tuned in
the weak backscattering regime (i.e. shows a weak reflec-
tion probability). In this regime, shot noise measurements,
using dc voltage source to create an incoming flux of in-
teger charges, have shown that a Poissonian emission of
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fractional charges e∗ can be emitted to contribute to the
backscattering current [56],[57]. We conjecture that, sim-
ilarly, an integer charge leviton would be partitioned into
an e/3 backscattered charge and a 2e/3 transmitted charge.
We think this situation would lead to the generation of levi-
tonic like charge pulses carrying fractional charge. Here,
the deterministic emission of fractionally charge levitons
would be lost because of the Poissonian backscattering
statistics but the time resolution and the time domain con-
trol inherited from the initial integer charge levitons will
be kept and could be used for further experiments like
Hong Ou Mandel collision of anyons to probe their quan-
tum statistics.

In another perspective it is interesting to address the
physics of non-integer charge pulses. Only voltage pulses
can realize this situation while quantum dot based charge
sources can only emit integer charge particles. Indeed by
continuously tuning the voltage pulse amplitude on a con-
tact one can generate any value of the injected charge. It
was shown from Eq. 10 that only an integer q gives rise to a
minimal excitation state. Injecting fractional charges, even
using Lorentzian pulses can not be viewed as pure levitons.
However non-integer charge pulses created by Lorentzian
voltage pulses have interesting properties which deserve
attention. In [58] it was shown that half-levitons, i.e. charge
e/2 created by Lorentzian voltage pulses, minimize the shot
noise of a Superconducting/Normal conductor junction the
same way as integer charge levitons minimize the noise
in a purely normal conductor. Here this occurs in the en-
ergy sub-gap regime where, while the normal current is
suppressed by the superconducting gap, a small current
is allowed via the so-called Andre’ev reflection mecha-
nism. In Ref. [60], the nature of half integer Lorentzian
charge pulses have been studied and it has been shown
that they can form remarkable fractionally charged zero-
energy single-particle excitations states. Separating the
half-leviton into a e/2 charge part and its accompanying
neutral electron-hole cloud, [60] showed that a half-leviton
and a anti-half leviton mixed in a semi-transparent elec-
tronic beam-splitter can elastically annihilate, a property
not shared with ordinary distinguishable electron and hole
excitations.

Non-integer charge pulses behave differently than in-
teger pulses in electronic Mach-Zehnder (MZI) or Fabry-
Prot (FPI) interferometers. This was first noticed in the
work of [62] where, from numerical dynamical simula-
tions, it was remarked that, for pulses having an extension
smaller than the MZI arm difference or the FPI perime-
ter, the transmission was dependent on the charge. For ex-
ample, the Fabry-Prot transmission shows oscillations with
the charge q modulo e. The explanation was found in the
phase difference 2π(q/e), see Eq. 3, between the front and
the back of the charge wave-packet which combines with
the orbital phase accumulated in the interferometer. Strik-
ing effect on the interference visibility of the current in
an electronic Mach-Zehnder interferometer have been also

transmitted

backscattered

incoming

QPC

(WB)

e/3

leviton (e)

i

n

c

o

m

anyon (e/3)

(2e/3)V(t)

νννν=1/3 FQHE 

state

νννν=1/3 FQHE 

state

Lorentzian

pulse

Figure 10 Proposal for a time-resolved anyonic source in the
Fractional Quantum Hall regime (filling factor 1/3). Integer
charge levitons are first created with a charge e Lorentzian volt-
age pulse applied on the contact of a 1/3 fractional edge channel.
Then, the leviton arrives at a Quantum Point Contact tuned in
the weak backscattering (WB) regime (weak electronic reflection
probability). It is conjectured that the leviton will break into a e/3
backscattered and 2e/3 transmitted fractionally charged pulses.
From the backscattered side, this realizes a non-deterministic
source of e/3 excitations with Poissonian statistics. The time re-
solved properties inherited from the original integer charge levi-
ton may open the way for new quantum experiments to probe the
anyonic statistics.

found in [63]. For example, while the visibility as a func-
tion of an external magnetic flux vanishes when the injec-
tion period corresponds to have exactly one electron in the
MZI for charge q = e, Ref. [63] found that for q = e/3 the
visibility vanishes when there are exactly three fractional
charge pulses in the MZI. More generally robust visibility
cancelation occurs when there are p charges for fractional
charges q = ek/p. Similar results are found in a FPI in-
terferometer. This intriguing properties call for looking at
possible anyonic or parafermionic quantum statistics that
may obey these charge pulses.

The above mentioned perspectives are only a few di-
rection and do not pretend to give a fair exhaustive account
of the impressive literature that levitons have triggered and
we apologize for missing references and topics. We think
that we are only walking on the surface of a Fermi Sea Ice-
berg.
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