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ABSTRACT

We examine three approaches to the problem of source classification in catalogues. Our goal is to determine the confidence with
which the elements in these catalogues can be distinguished in populations on the basis of their spectral energy distribution (SED).
Our analysis is based on the projection of the measurements onto a comprehensive SED model of the main signals in the considered
range of frequencies. We first consider likelihood analysis, which is halfway between supervised and unsupervised methods. Next, we
investigate an unsupervised clustering technique. Finally, we consider a supervised classifier based on artificial neural networks. We
illustrate the approach and results using catalogues from various surveys, such as X-rays (MCXC), optical (SDSS), and millimetric
(Planck Sunyaev-Zeldovich (SZ)). We show that the results from the statistical classifications of the three methods are in very good
agreement with each other, although the supervised neural network-based classification shows better performance allowing the best
separation into populations of reliable and unreliable sources in catalogues. The latest method was applied to the SZ sources detected
by the Planck satellite. It led to a classification assessing and thereby agreeing with the reliability assessment published in the Planck
SZ catalogue. Our method could easily be applied to catalogues from future large surveys such as SRG/eROSITA and Euclid.

Key words. methods: statistical – galaxies: clusters: general

1. Introduction

Astronomy and cosmology are witnessing a transition from spe-
cific point observations to larger and larger astronomical surveys
covering large fractions of the sky, as large as the whole sky in
some cases. In this context, there is a need for reliable classifi-
cation tools to assess the quality and the confidence in detected
sources. For example, in the context of galaxy cluster surveys
several cosmological and astrophysical analyses need to be per-
formed on samples with controlled selection effects. Moreover,
follow-up observations are necessary to obtain crucial informa-
tion such as redshifts. An a priori assessment of the quality of
the detected sources is thus of great importance. For example,
this is a crucial point for future surveys like SRG/eROSITA (see
e.g. Merloni et al. 2012) or Euclid1 that expect to detect from
6 × 104 to 9 × 104 clusters of galaxies. In these experiments, a
purity of 80 to 90% of the catalogues of clusters (defined as the
fraction of detections associated with bona fide clusters) would
translate into a few thousand false detections. These large num-
bers may pose serious issues for the cosmological interpretation
of the number counts. They will also put a heavy load on the
ground-based telescopes since the follow-up observations will
need to mitigate the large number of false sources. In such a
context, an assessment of the quality factor for the detections –

1 http://www.euclid-ec.org/

or even better, a classification of the detected clusters in terms of
their reliability – will be key information.

In the present article, we address the topic of multivariate
tools for sample classification applying machine learning tech-
niques that are commonly used in various scientific domains
such as sociology, genetic classification, cosmology, and spec-
troscopy. Two distinct approaches can be used: Supervised and
unsupervised learning. The difference relies on the utilization of
hypotheses for supervised learning. Unsupervised learning can
be used when no information on the potential classes are known
a priori.

The traditional method for detecting structure within a
population is some form of exploratory technique such as
principal components analysis (PCA). Such methods do not
use prior information on the classification of the candi-
date populations. Another unsupervised method commonly
used is the clustering technique (see e.g. Hartigan 1975;
Hartigan & Wong 1979). It consists of the search for the
nearest neighbours in a canonic space and thus permits un-
known populations to be automatically classified in relation
to a reference population. This method has been in use
since the 1980s in different domains ranging from apiculture
(e.g. Tomassone & Fresnaye 1971; Cornuet et al. 1975) to plan-
etary science (e.g. Forni et al. 2013). Clustering and in partic-
ular Voronoi tessellation is also used in astronomy to model
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and reproduce the cosmic web (e.g. Sheth & van de Weygaert
2004). Of the second type of classification methods, i.e. super-
vised methods, the most commonly used is the artificial neural
networks (ANN; Du & Swamy 2014, and references therein).
These networks are algorithms that mimic the learning abilities
of brains; they have been successfully used in the analysis of
datasets from many scientific domains (Reby et al. 1997; Bridges
et al. 2011).

In our study, we illustrate the use and effects of the statistical
classification techniques on the recently published catalogue of
Sunyaev-Zeldovich (SZ) sources (Planck Collaboration XXIX
2014) which contains both confirmed galaxy clusters and can-
didate clusters detected through their SZ effect in the Planck
frequency maps. Several astrophysical sources contribute to the
measured signal and affect the SZ detection and lead to some
false detections (see e.g. Planck Collaboration VIII 2011; Planck
Collaboration XXIX 2014). Our aim is to assess whether an en-
semble of sources detected through the SZ signal, including low-
reliability sources, can be distinguishable on the basis of their
spectral energy distribution (SED). First, we consider a like-
lihood analysis halfway between supervised and unsupervised
methods. Next, we investigate a clustering technique. Finally,
we consider ANN.

The article is organised as follows. We describe the data in
Sect. 2; we then present both the SED model and the associated
fitted parameters in Sects. 3 and 4. We describe the different clas-
sification methods used in the study in Sect. 5 and discuss the
results in Sect. 6. We summarise our findings and conclusions in
Sect. 7.

2. Data

For our study, we use catalogues and samples of sources includ-
ing clusters of galaxies detected in the X-rays and in the optical
and in SZ. We also use catalogues of radio and IR point sources
as well as galactic cold sources. We use the Planck frequency
maps. We finally construct a test set on 2000 random positions
over the sky.

We use the Meta-Catalogue of X-ray detected Clusters of
galaxies (MCXC, Piffaretti et al. 2011, and reference therein). It
is a compilation constructed from the publicly available ROSAT
All Sky Survey-based and serendipitous cluster catalogues, as
well as the Einstein Medium Sensitivity Survey. It includes only
clusters with available redshift information in the original cata-
logues which yields a dataset of 1789 clusters.

We also use a catalogue of clusters extracted from the Sloan
Digital Sky Survey (SDSS, York et al. 2000) data, the WHL12
catalogue (132 684 objects, Wen et al. 2012). It provides an esti-
mated richness. We apply a cut in richness, N200, of 50 to exclude
low-mass systems and groups that have no significant SZ signal.

Finally, we use the Planck SZ source catalogue (PSZ1 here-
after, see Planck Collaboration XXIX 2014). It consists of 1227
sources detected through their SZ effect in the Planck fre-
quency maps. As detailed in Planck Collaboration XXIX (2014),
the PSZ1 catalogue contains 861 SZ sources associated with
bona fide clusters. They are referred to as confirmed clusters.
The remaining SZ sources are sorted into three categories, noted
1 to 3, from highest to lowest reliability according to an empiri-
cal assessment of their quality. The PSZ1 catalogue contains 54
1 cluster candidates and 170 and 142 2 and 3
candidates, respectively.

We also use catalogues of sources detected in the radio, at
30 GHz, and in the infrared (IR), at 353 GHz, both are ex-
tracted from the Planck Catalogue of Compact Sources (PCCS)

(Planck Collaboration XXVIII 2014). We use a catalogue of cold
Galactic sources (see Planck Collaboration XXIII 2011; Planck
Collaboration XXII 2011) detected in the Planck channel maps
following (Montier et al. 2010). We construct a catalogue of false
SZ detections which consists of the major sources of contamina-
tion identified in Planck Collaboration VIII (2011) and Planck
Collaboration XXIX (2014). Specifically, we take 200 sources
outside the mask used for the Planck SZ detection, from the cold
Galactic source catalogue, the IR sources at 353 GHz, and radio
sources at 30 GHz. The obtained sample of false SZ detections
is representative of unreliable SZ sources.

In order to compute the SED of the considered sources, we
use the Planck channel maps from 70 to 857 GHz. Each map
is set to a resolution of 13 arcmin, i.e. the lowest resolution as-
sociated with 70 GHz channel. This allows us to access to the
emission in the radio domain (below 100 GHz) without decreas-
ing the resolution too much.

3. SED fitting

In the context of multivariate classification, we need to resort
to some dimensionality reduction approaches prior to any clas-
sification. There are standard dimensionality reduction tech-
niques like PCA or independent component analysis (ICA) (Du
& Swamy 2014) that do not include any pre-knowledge of the
physical variables or processes. In the following, we choose to
reduce the dimensionality by decomposing the signal in the form
of a SED.

It is beyond the scope of our study to model the
SED taking into account all the contributions to the sig-
nal. We focus instead on the astrophysical emissions that
affect the most the SZ detection in multifrequency experi-
ments. This was discussed in both Planck Collaboration VIII
(2011) and Planck Collaboration XXIX (2014). From 70 to
857 GHz, several astrophysical sources contribute to the mea-
sured signal: Diffuse galactic free-free, synchrotron, and ther-
mal dust emissions (The Planck Collaboration 2006; Planck
Collaboration XXI 2011); anomalous microwave emission
(AME, Planck Collaboration XX 2011); molecular Galactic
emissions (mainly 12CO in the 100, 217, and 353 GHz bands;
Planck Collaboration XIII 2013); emission from Galactic and
extragalactic point sources (radio and infrared sources, Planck
Collaboration Int. VII 2013; Planck Collaboration VII 2011);
CIB (Planck Collaboration XVIII 2011); zodiacal light emis-
sion (Planck Collaboration XIV 2013); and thermal Sunyaev-
Zeldovich effect (Sunyaev & Zeldovich 1972) in clusters of
galaxies.

Therefore, we model the SED taking into account five com-
ponents: the thermal SZ (tSZ) effect neglecting relativistic cor-
rections; the cosmic microwave background (CMB) signal; and
the CO emission. We also add an effective IR component rep-
resenting the contamination by dust emission, cold Galactic
sources, and CIB fluctuations; and an effective radio component
accounting for diffuse radio and synchrotron emission and radio
sources.

The flux in each channel, i.e. frequency, is then written as

Fν = ASZFSZ(ν) + ACMBFCMB(ν) + AIRFIR(ν)
+ ARADFRAD(ν) + ACOFCO(ν) + N(ν), (1)

where FSZ(ν), FCMB(ν), FIR(ν), FRAD(ν), and FCO(ν) are the
spectra of SZ, CMB, IR, radio, and CO emissions shown in
Fig. 1; ASZ, ACMB, AIR, ARAD, and ACO are the corresponding
amplitudes; and N(ν) is the instrumental noise.
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Fig. 1. SED of the main astrophysical components. In orange is the
tSZ effect, in red the infrared emission, in green the CMB, in dark blue
the radio emission, and in light blue the CO molecular lines.

For FIR(ν), we consider a modified black-body spectrum
with temperature Td = 17 K and index βd = 1.6. This
assumption is representative of the dust properties at high galac-
tic latitudes. The contribution from CIB fluctuations affects the
flux measurement, but is not a major contamination from the
point of view of the detection, i.e. spurious sources. For FRAD(ν),
we consider a power law emission, ναr , with index αr = −0.7 in
intensity units representative of the average property of the radio
emission. The SEDs of the different astrophysical components
are given in Fig. 1.

We compute the flux at the position of each source of the
catalogues described in Sect. 2 with aperture photometry. We set
the aperture to 10 arcmin; the background level is estimated in an
annulus between 20 to 50 arcmin. We have checked that varying
the size of the aperture from 5 to 15 arcmin does not affect the
results. Larger apertures obviously capture more contamination
from the background.

Each derived spectrum, Fν, is fitted assuming the model in
Eq. (1), where we fit for ASZ, ACMB, AIR, ARAD, and ACO through
a linear fit of the form

A = (F TC−1
N F )−1F TC−1

N Fν, (2)

with the mixing matrix F T , the instrumental noise covariance
matrix CN , and A a vector containing the fitted parameters. In
this approach, CN only accounts for the instrumental noise com-
puted from the Planck half-ring maps, and we implicitly assume
that the five components considered in the model reproduce the
astrophysical signal in the data.

The efficiency of the dimensionality reduction is illustrated
in Fig. 2 (right panel), where we show the SED fitted parameters
correlation matrix, compared to the correlation matrix of mea-
sured fluxes from 30 to 857 GHz (left panel). We observe that
we have a high degree of correlation between frequencies, espe-
cially at low frequency due to the CMB component (<217 GHz),
and at higher frequency (>217 GHz) due to the thermal compo-
nent. In contrast, in the SED parameter space, we observed that
the correlation matrix is almost diagonal, except for a spatial
correlation between thermal dust and CO emission.

4. Distribution of the fitted SED parameters

We start by fitting the amplitudes of the different components
in the SED, namely ASZ, ACMB, AIR, ARAD, and ACO, at the po-
sitions of each source in the catalogue and samples described

Fig. 2. Left panel: correlation matrix of the measured fluxes from 30 to
857 GHz estimated on 2000 random positions over the sky. Right panel:
correlation matrix of fitted SED parameters from the same positions.

in Sect. 2. We examine the distribution of the fitted SED pa-
rameters and present, for each catalogue and sample, both the
distributions and the correlation between fitted parameters. We
also perform the same fitting at 2000 random positions in the sky.

4.1. X-ray clusters from MCXC

In Fig. 3 we present the derived distribution for each amplitude
fitted at the positions of MCXC galaxy clusters. Except for some
negative values due to statistical noise, we observe an asymmet-
ric distribution with positive values for ASZ, as is expected for
galaxy clusters. We also note negative values for ASZ. These are
associated with low signal-to-noise detections and are due to the
combination of instrumental noise and the SED model-fitting.
The distribution of ACMB is Gaussian, with a dispersion given
by the amplitude of primordial CMB fluctuations; AIR presents
a Cauchy distribution centred on zero; ARAD has a Gaussian dis-
tribution, except for a few outliers associated with contamina-
tion clusters from radio-loud active galactic nuclei (AGN) (e.g.
Perseus, Virgo); and ACO presents a Gaussian distribution cen-
tred on zero.

We observe a positive correlation between ASZ and ARAD.
Indeed, radio contamination mimics a tSZ effect at frequencies
below 217 GHz, and thus an apparent increase on the tSZ flux
can be compensated for by an increase of radio emission am-
plitude, leading to the observed degeneracy. Both radio and
CO components induce an excess of emission at 100 GHz; as
a result ARAD and ACO are anti-correlated. We notice that ACMB
and AIR are not correlated with the other fitted parameters.

4.2. Optical clusters from SDSS

We now fit the amplitudes of the SED components
at the position of optical clusters selected from the
Wen et al. (hereafter WHL 2012) catalogue. In Fig. 4, we
present the derived values for ASZ, ACMB, AIR, ARAD, and ACO.
The distributions of amplitudes are similar to those of the
MCXC clusters. They show the asymmetric distribution for
ASZ and symmetric Gaussian or Cauchy distributions for the
distributions of the other amplitudes.

4.3. SZ clusters from PSZ1

The distributions of amplitudes of the fitted SED in the direc-
tion of 861 confirmed galaxy clusters from the PSZ1 catalogue
share the same characteristics as the two other cluster catalogues
detected in X-rays or the optical.
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Fig. 3. Bottom line, from left to right: distribution of ASZ, ACMB, AIR, ARAD, and ACO at the position of MCXC galaxy clusters from Piffaretti et al.
(2011). Top lines: 2D histograms showing the correlation between parameters.

Fig. 4. Same as Fig. 3 for the SDSS galaxy clusters with richness above
50 from the WHL catalogue (Wen et al. 2012).

4.4. Radio, IR, and cold Galactic sources

We now examine the cases of sources emitting in the radio and in
the IR that are not galaxy clusters. We focus on three sources that

Fig. 5. same as Fig. 3 for the 861 confirmed SZ galaxy clusters from the
PSZ1 catalogue (Planck Collaboration XXIX 2014).

represent cases of spurious detections that affect the cluster ex-
traction as described in Planck Collaboration VIII (2011) and in
Planck Collaboration XXIX (2014). We fit for the SED in the di-
rection of IR and radio sources from the PCCS catalogue, taken
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Fig. 6. Same as Fig. 3 for the sources detected in the 30 GHz channel of
Planck.

Fig. 7. Same as Fig. 3 for sources detected in the 353 GHz channel of
Planck.

at 353 and 30 GHz, respectively, and we also consider GCS from
Planck. All of the sources are taken outside a galactic mask leav-
ing 85% of the sky.

The derived values are presented in Figs. 6–8. The distribu-
tions of fitted SED amplitudes are very different from the case
of actual galaxy clusters. For the radio sources, we note that IR
and CMB distributions are similar to those of the cluster cat-
alogs and that the tSZ amplitude distribution is more symmet-
ric than the case of galaxy clusters. For the IR sources detected
at 353 GHz, the distribution of all amplitudes are “pathologi-
cal”. The IR emission contaminates all the components includ-
ing CMB and tSZ. For the cold Galactic sources, the distribu-
tions are much less compact. The ACMB distribution is mostly
symmetric. The ASZ is symmetric and extends to very high val-
ues, unrealistic for clusters of galaxies. The distributions of AIR,
ARAD, and ACO are mostly asymmetric and extend to large values
similarly to the IR and radio-source cases.

Fig. 8. Same as Fig. 3 for cold Galactic sources from Planck.

Fig. 9. Same as Fig. 3 at the 2000 random positions on the sky of our
test sample.

4.5. Random positions

We perform the same SED fitting in random positions on the sky
outside the mask. The distributions of the fitted amplitudes all
show symmetric behaviour and do not extend to high values for
any of the components considered here, as seen in Fig. 9.

4.6. PSZ1 sources

All the results presented above are either obtained for random
positions on the sky or for catalogues and samples of actual
clusters of galaxies or IR/radio or cold Galactic sources. The
PSZ1 corresponds to a catalogue of sources detected through
their tSZ effect. As such, it contains bona fide clusters of galax-
ies, 861 in total, but it also contains tSZ sources of different de-
grees of reliability including false detections.

We examine the distribution of the fitted SED amplitudes of
all the PSZ1 sources. The derived values for ASZ, ACMB, AIR,
ARAD, and ACO in the direction of PSZ1 sources are shown
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Fig. 10. Same as Fig. 3 for the PSZ1 sources.

in Fig. 10. We note that the distribution of ASZ is similar to
that of the clusters from MCXC and SDSS-based samples, i.e.
asymmetric and extending to positive values. However, and con-
trary to the case of pure cluster samples of MCXC and SDSS, we
observe a clear excess of IR and CO emissions. This is exhibited
through the bimodal behaviour of the distribution extending to
high AIR and ACO values. We also note a strong correlation of
AIR and ACO that we can explain as the result of a combination
of IR and CO contamination mimicking an offset SZ spectral
distortion, see Fig. 3.

In Fig. 11, we show the distribution over the sky of the
amplitudes ACMB, AIR, ARAD, and ACO. As expected, the distri-
bution over the sky of CMB amplitudes does not show any par-
ticular trend or feature. It simply corresponds a Gaussian back-
ground. The distribution over the sky of the radio amplitudes
is also featureless. We also note the absence of correlation on
large scales, above a few tenths of degrees. As for the IR and
the CO distributions, we clearly see that the contamination is,
as expected, strongly correlated with the galactic emission in the
galactic plane and the molecular clouds. For the AIR we also note
some contamination at higher galactic latitudes.

5. Classification and SZ quality assessment

From the analysis of the SED fitted parameters ASZ, ACMB, AIR,
ARAD, and ACO, we note that X-ray, optical, and SZ bona fide
clusters show distributions of parameters consistent with no or
low contamination. In contrast, the distribution of fitted SED pa-
rameters of the PSZ1 sources show some contamination both by
IR and by CO emission. We thus construct quality assessments
of tSZ detections based on the characteristics of SEDs. We use
three different techniques to assess the quality of the tSZ detec-
tion and thus separate PSZ1 sources into two categories: reliable
and unreliable.

As an intermediate step, we define a phenomenological qual-
ity assessment, hereafter called penalty factor QP, based on the
data themselves, see Fig. 12. It does not rely on a model of
the SED, but rather on the empirical assessments provided in
the PSZ1 which define decreasing reliability classes 1, 2, and
3. Since the average spectrum of the class 3 sources of PSZ1

Fig. 11. From top to bottom: amplitude of ACMB, AIR, ARAD, and ACO as
a function of the position on the sky for PSZ1 sources.

shows a clear excess of IR emission, we limit ourselves to a
parametrization of the IR contamination. The penalty factor is
defined as

QP =

857∑
ν= 353

(
1 −

Fν

F′IR

)
, (3)

with F′IR set to 2.8 × 10−4, 1.6 × 10−3, 2.4 × 10−2, and 1.9 K in
CMB units from 353 to 857 GHz. As previously, Fν is estimated
through aperture photometry in an aperture of 7 arcmin. The am-
plitude of the IR component corresponds to the average ampli-
tude, at each frequency, of the class 3 sources in PSZ1 which
represent the typical low-reliability sources as defined from em-
pirical assessments. This estimator does not use error bars on
the fluxes to derive the IR amplitude. The linear behaviour of QP
penalizes cases that exceed the FIR.
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Fig. 12. Piled-up distribution of the penalty factor for the PSZ1 catalog.
Grey, blue, green, and red are for confirmed clusters, class 1, 2, and
3 sources respectively.

Table 1. Best fitting parameters for ACMB, AIR, ARAD, and ACO distribu-
tions for random positions in the sky.

Distrib. A m σ

ACMB Gaussian 49.6 1.12 35.5
AIR Cauchy 506.8 −24.0 × 10−5 16.2 × 10−4

ARAD Gaussian 273.4 −2.78 × 10−3 6.71 × 10−2

ACO Gaussian 271.1 −1.90 × 10−5 4.92 × 10−4

Notes. CMB component is given in units of µKCMB whereas the other
components are given in arbitrary units.

5.1. Clustering-based quality assessment

The clustering algorithm is an unsupervised machine learn-
ing method often presented as assigning objects to the near-
est cluster by distance. There are several choices for the dis-
tance: Euclidian, Manhattan, or generalized distance with the
Mahalanobis metric. The number of clusters n is supplied as an
input parameter.

We perform the classification of the sources, in n popu-
lations/clusters, using a standard k-means clustering (Hartigan
1975; Hartigan & Wong 1979) considering a Euclidian met-
ric for the parameter space. In a first step, we define the dis-
tance, dcont, in the SED amplitude space from the zero contami-
nation level as

dcont =

√(
ACMB

σCMB

)2

+

(
AIR

σIR

)2

+

(
ARAD

σRAD

)2

+

(
ACO

σCO

)2

, (4)

where σCMB, σIR, σRAD, and σCO are the standard deviations
of CMB, IR, radio, and CO amplitude distributions listed in
Table 1.

In Fig. 13, we present the piled-up distribution of the dis-
tance, dcont, for the PSZ1 sources. We observe that the confirmed
clusters (grey), class 1 (blue), and class 2 (green) candidates
present similar distributions, whereas class 3 objects (red) show
larger values for dcont. This illustrates the presence of distinct
populations of objects in the PSZ1 sample.

Then, we apply the k-means algorithm to the PSZ1 sources.
One drawback of the k-means approach is that it requires each
cluster of the population to be symmetric and to have the same
extension with respect to the metric. This implies that we need a
large number of populations. Moreover, an inappropriate choice
of n may yield to poor results, which is why it is important to run

Fig. 13. Piled-up distribution of the distance, dcont, in the clustering al-
gorithm for PSZ1 sources. Grey is for confirmed clusters, blue is for
class 1 sources, green for class 2 sources, and red is for class 3 sources.

Fig. 14. Same as Fig. 3 for the PSZ1 sources. In red we show the high-
est quality sources, in green and blue the sources are displayed with
decreasing quality.

diagnostic checks when performing k-means. We have tested the
clustering techniques considering from n = 2 to 6 populations of
sources. Below n = 3, the distribution of fitted amplitudes (ASZ,
ACMB, AIR, ARAD, and ACO) showed residual contamination.

We present the results for three populations in Fig. 14. We
found that above three populations the results in terms of the dis-
tributions of fitted SED parameters were unchanged. We show
the results of the clustering algorithm classification for the three
populations (in red the highest quality sources; in yellow, cyan,
and blue the sources with decreasing quality). We note that the
population of good/reliable sources shows little sign of contam-
ination and shares the same characteristics as the true clusters
(see Figs. 3–5). In particular in the AIR/ACO plane, we observe a
good separation between the three populations.

The clustering algorithm separates the low-quality and
higher quality candidates and clusters of PSZ1 catalogue.
However, the separation of populations is not optimal as the
two populations of reliable and unreliable sources shows a large
overlap.
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Fig. 15. Distribution of the quality factor QL for MCXC cluster of galax-
ies. The vertical solid line shows the threshold QL = 1.5 × 10−8.

Fig. 16. Distribution of the quality factor QL for the sample of false
detections. The vertical solid line shows the threshold QL = 1.5 × 10−8.

5.2. Likelihood-based quality assessment

In this second approach halfway between supervised and unsu-
pervised methods, we base the assessment of the SZ detection on
the likelihood of the contamination. We thus define a quality fac-
tor, QL, as the product of SED parameter distributions estimated
in random positions over the sky

QL = GCMB(ACMB)CIR(AIR)GRAD(ARAD)GCO(ACO), (5)

with GCMB, CIR, GRAD, and GCO the distributions of the fit-
ted SED parameters ACMB, AIR, ARAD, and ACO; G stands for
Gaussian distribution, A exp(−(x − m)2/2σ2), and C for Cauchy
distribution, A/(1 + (x−m)2/σ2). In Table 1 we show the results
of the adjustments for the random positions in the sky. We also
conservatively set that high quality tSZ detections correspond to
a 6σ limit, which translates into QL ∼ 1.5 × 10−8.

We first show in Fig. 15 the distribution of QL for the
MCXC clusters. We note that the vast majority of these clusters
fall above the quality factor of QL = 1.5× 10−8. A small number
of clusters from the MCXC have quality factors lower than the
cut. They correspond to clusters exhibiting important contami-
nation from AGN and radio sources. We also show in Fig. 16 the
distribution of QL for the sample of false detections defined in
Sect. 2. Only a handful of false detections lie above the quality
factor cut.

Fig. 17. Fraction of rejected sources as a function of the quality fac-
tor QL cut. In red and orange are the true/confirmed clusters from the
PSZ1 catalogue and false detections, respectively. We also display in
blue, cyan, and green the radio, IR, and cold Galactic sources. The ver-
tical solid line shows the threshold QL = 1.5 × 10−8.

Fig. 18. Distribution of the quality factor for PSZ1 sources. In grey
for confirmed clusters, in blue, green, and red for class 1, 2, and
3 sources, respectively. The vertical solid line shows the threshold
QL = 1.5 × 10−8.

In Fig. 17 we show the percentage of sources rejected by the
quality factor cut QL = 1.5 × 10−8. We see that true confirmed
clusters (red line) are not rejected. Applying the quality factor
to the false sources (orange line) allows us to reject about 10%
of the false detections. We see that the efficiency of the rejection
differs if the contaminating sources are radio sources at 30 GHz
(blue line), IR sources at 353 GHz (cyan line), or cold Galactic
sources (green line).

We show in Fig. 18 the piled-up histograms of QL for the
PSZ1 sources. We present classes 1, 2, and 3 together with the
confirmed clusters in blue, green, red, and grey, respectively. We
observe that the quality factor cut at QL = 1.5 × 10−8 clearly
separates the confirmed clusters from the others. Moreover, the
quality factor also separated the class 3 candidates of PSZ1 from
the other PSZ1 sources, with most of the latter group being in
the category of low-reliability sources. Some of the class 3 can-
didates, however, pass the cut and are in the category of highly
reliable candidates. Confirmation of their status by follow-up ob-
servation will be an interesting test of the classification method.

We show the distributions of ASZ, ACMB, AIR, ARAD, and ACO
in Figs. 19 and 20 for the PSZ1 sources with QL above the cut
1.5 × 10−8 and for the PSZ1 sources with QL < 1.5 × 10−8.
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Fig. 19. Same as Fig. 3 for the high-quality PSZ1 sources with QL >
1.5 × 10−8.

Fig. 20. Same as Fig. 3 for the low-quality PSZ1 sources with QL <
1.5 × 10−8.

We check that the high-quality sources (QL > 1.5 × 10−8) do
not show significant contamination by IR, radio, or CO emis-
sions, while we observe a clear contamination for the sources
with QL < 1.5 × 10−8, especially in the IR-CO plane.

5.3. Neural network-based quality assessment

The third approach is based on ANN, the archetype of super-
vised machine learning methods. Artificial neural networks is
a machine learning methodology based on parallelism and re-
dundancy. The basic building block of an ANN is the neuron.
Information is passed as inputs to the neuron, which processes
them and produces an output which is a simple mathematical
function of the inputs. The power of the ANN comes from

assembling many neurons into a network. Well-designed net-
works are able to learn from a set of training data and to make
predictions when presented with new, possibly incomplete, data.

We consider a standard three-layer back-propagation ANN
to separate the tSZ detections into three populations of reliable
quality (the Good), unreliable quality/false (the Bad), and noisy
sources (the Ugly). A three-layer network consists of a layer of
input neurons, a layer of hidden neurons, and a layer of out-
put neurons. In such an arrangement each neuron is referred to
as a node. The input layer consists of the five SED parameters
and the output nodes represent the three classes of populations.
The layout and number of nodes represent the architecture of the
network.

Details on the ANN implementation can be found in
Appendix A. We briefly present here the basics of this technique
and illustrate the principle schematically in Fig. 21.

We define

Q = g (Wog (Wh (WrFν + br) + bh) + bo) , (6)

where g(x) = 1/(1 + exp(−x)) is the activation function,
Wr = (F TC−1

N F )−1F TC−1
N corresponds to a physically-based

dimensional reduction, Wh are the weights between input and
hidden layers, Wo are the weights between hidden and output
layers, bh are the biases between input and hidden layers, and
bo are the biases between hidden and output layers.

To train the neural network, we use SED fitted parameters of
the confirmed clusters of PSZ1 catalogue; they are representative
of the Good high-quality source population. We use the fitted
parameters of the sample of false detections defined in Sect. 2;
they are representative of unreliable sources, the Bad. We also
use the fitted parameters computed in random position over the
sky; they are representative of noise-dominated population, the
Ugly. We split each catalogue into two equal subsets, one train-
ing set and one checking set. Each of them contains of the order
of 430, 300, and 100 Good (true clusters), Bad (false detections),
and Ugly (noise at random positions) respectively. The second is
used to estimate the efficiency of the ANN.

We defined the error on the classification as

E =
1
2

∑
class

(
Q(true)

class − Qclass

)2
, (7)

where class stands for Good, Bad, or Ugly and Q(true)
class = 1 or

0 depending on whether the source belongs to the considered
class. In order to avoid over-training, we stop the training at the
iteration step that minimizes the error for the checking set.

The ANN outputs a value of Qgood, Qbad, and Qugly (as given
by Eq. (6)) for the source. We first show in Fig. 22 the distribu-
tion of ANN-based estimation of the Q values for the catalogue
of false detections (checking-set subsample). We note that the
distribution is dominated by high values of Qbad and low values
of Qgood. We show by contrast in Fig. 23 the same distribution
of Q values for actual clusters of galaxies from the MCXC cata-
logue. In this case, we note that most of the sources in this cata-
logue have low values of Qbad. The sources with lowest Qbad val-
ues are clusters exhibiting important contamination from AGNs.
We also note a relatively large number of clusters with high val-
ues of Qugly. These clusters are associated with the low-mass
clusters that have no significant SZ counterpart in the Planck
data.

In Fig. 24, we present the piled-up histograms of Qgood, Qbad,
and Qugly values for sources of the PSZ1 catalogue. We note that
the ANN-based quality factor allows us to separate nicely the
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Fig. 21. Neural network diagram. In our analysis, the input layer is composed of the five SED fitted parameters of each source at the seven
frequencies. The hidden layer is composed of ten neurons. The output layer contains three values of Q for the categories, the Good, the Bad, and
the Ugly, standing for reliable, unreliable, and noisy sources.

Fig. 22. Distribution of neural-network-based estimation of Qgood, Qbad,
and Qugly for the catalogue of false detections (checking-set subsample).
The vertical solid line shows the threshold Qbad = 0.4.

distribution of Qbad into two regimes of low and high values (as-
sociated mostly with class 3 PSZ1 sources), thus allowing us to
identify clearly the Bad sources in the catalogue. The distribu-
tion of Qugly is flatter and shows that the category of Ugly noisy

Fig. 23. Distribution of ANN-based estimation of Qgood, Qbad, and Qugly
for the MCXC catalogue. The vertical solid line shows the threshold
Qbad = 0.6.

sources is evenly distributed, also among confirmed bona fide
clusters. The distribution of Qgood is dominated by high values.
The lowest end of the distribution is populated by class 3 sources
from the PSZ1.
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Fig. 24. Distribution of neural-network-based estimation of the quality
factor for the PSZ1 catalog (used as training or checking sets). Grey,
blue, green, and red are for confirmed clusters, class 1, 2, and 3 sources,
respectively. The vertical solid line shows the threshold Qbad = 0.6.

In Fig. 25, we present the distribution of PSZ1 sources
as a function of Qgood, Qbad, and Qugly. The abscissa, x, and
ordinates, y, of each source is given by

x =
1
2

(
Qugly − Qbad

)
,

y = Qgood −

√
3

2

(
Qugly + Qbad

)
. (8)

We observe clearly three populations of sources associated with
the Good, Bad, and Ugly categories. The PSZ1 sample is dom-
inated by the Good sources; it also contains about 10% of Bad
sources and a number of Ugly sources that have low signal-to-
noise from the aperture photometry. We observe a clear separa-
tion between the Bad sources and the others. This representation
illustrates the efficiency with which the neural network identifies
and rejects Bad, most likely spurious, SZ sources.

The same representation of Qgood, Qbad, and Qugly for other
samples considered in this study can be found in Appendix B.

We now use the ANN results to find a quantitative way to
identify the Bad sources from the catalogue. We thus define a
quality factor of the SZ detection as, QN = 1 − Qbad. We show,
in Fig. 26 and for the PSZ1 checking-set sample, the fraction
of rejected sources as a function of the quality factor QN cut.
In red and orange are the true clusters and false detections, re-
spectively. In blue, cyan, and green are the radio, IR, and cold
Galactic sources. We see that a cut at QN = 0.4 ensures that we
remove 95% of the Bad sources without affecting the true clus-
ter distribution. Such a cut allows us to reject 90% of the IR at
353 GHz and radio at 30 GHz sources and more that 95% of the
cold Galactic sources. The cut in QN translates into a Qbad = 0.6
which marks the boundary of the Qbad distribution in Fig. 22.

We show the distributions of ASZ, ACMB, AIR, ARAD, and ACO
in Figs. 27 and 28 for the PSZ1 sources after applying the cut in
QN and for the PSZ1 sources with QN < 0.4. We check that the
good-quality sources (QN > 0.4) do not show significant con-
tamination by IR, radio, or CO emissions, while for the sources
with QN < 0.4 we observe a clear contamination, especially the
IR-CO plane.

Fig. 25. Distribution of PSZ1 sources as a function of Qgood, Qbad, and
Qugly. Top panel: in grey for confirmed clusters, in blue for class 1
sources, in green for class 2 sources, and in red for class 3 sources.
Bottom panel: density of sources as a function of Qgood, Qbad, and Qugly.

6. Discussion

We compare the efficiency with which the different quality fac-
tors distinguish between high-quality and low-quality SZ detec-
tions. We first illustrate this comparison by plotting in Fig. 29
the fraction of overlap between QN, QL, and QP as a function
of the rejection percentage for the PSZ1 catalogue. We observe
that the best agreement between QN and QL is obtained with an
overlap of 91% for a rejection of 12%. For higher rejection per-
centage, we observe that the overlap decreases.

We also examine the distribution of the PSZ1 sources as
a function of the quality factors QN, QL, and the penalty QP,
and we show the 2D scatter plots in the quality-factor planes
in Fig. 30. On the one hand, we see that the cuts in QN and
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Fig. 26. For the PSZ1 checking-set sample: fraction of rejected sources
as a function of the quality factor QN cut. In red and orange are the
true clusters and false detections, respectively. We also display in blue,
cyan, and green the radio, IR, and cold Galactic sources. The vertical
solid line shows the threshold QN = 0.4.

Fig. 27. Same as Fig. 3 for PSZ1 sources with the ANN-based quality
factor QN > 0.4.

QL nicely separate the population of high- and low-quality
SZ sources, with the ANN-based quality assessment seeming
more efficient at identifying the Bad sources. Moreover, the two
cuts preserve the confirmed clusters as only less that 2% of these
fall in the category of low-quality sources. We have checked the
status of the 22 confirmed clusters that are excluded by the com-
bination of QN and QL cuts. We find that they are located mostly
between −30◦ < b < 30◦, and are contaminated by IR, radio
point sources, or CO and thermal dust emission.

Finally, we check the effect of the classification in high- and
low-quality sources through the average SED of the Bad and
Good sources defined according to the cuts in QN, QL, and QP.
For the last group we apply a cut at 7.4 that excludes a few
tens of confirmed clusters. A smaller cut would increase the con-
tamination at high frequencies, but would reduce the number of
excluded clusters of galaxies. The SED are given in Figs. 31
and 32. We show in Fig. 31 that the SED is in perfect agreement
with a dust-like SED. We also see the contamination from CO at

Fig. 28. Same as Fig. 3 for PSZ1 sources with the ANN-based quality
factor QN < 0.4.

Fig. 29. Overlap between QN and QL in red, QN and QP in green, and QL
and QP in blue as a function of the rejection percentage for the PSZ1 cat-
alogue. In black is shown the expected overlap between uncorrelated
variables.

100 and 217 GHz. In contrast, we see in Fig. 32 that the average
SED compatible with that of the SZ emission. Again, the quality
assessment of Good sources from the ANN analysis shows a bet-
ter performance (as traced by the low contamination level of the
SED at the highest frequencies) than with the likelihood-based
quality factor.

The classification from the ANN seems to give better results
than the other methods. This is expected from supervised meth-
ods where the training is performed on pre-defined class mem-
berships. We tested the ANN in a case where no pre-definition of
the Bad class is given. Namely, we used the random positions as
the Ugly class and we trained the network on a subsample con-
structed from the PSZ1 catalogue itself. The results applied on
the checking set, i.e. the other subsample from PSZ1, are shown
in Fig. 33. We note that without a training on the class of Bad
candidates the ANN does not separate this type of source effi-
ciently. The network separate the PSZ1 mostly into a popula-
tion of Ugly, i.e. noisy, and Good. We also note that there is
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Fig. 30. Piled-up distribution of the quality factors QN, QL, and QP for the PSZ1 sources (grey: confirmed clusters, blue: class1, green: class 2, red:
class 3). The vertical solid line represents the cut separating the population of high- and low-quality detections. The 2D scatter plots show the cuts
for the pair of quality factors under consideration. The vertical solid lines show the threshold QN = 0.4, QL = 1.5 × 10−8, and QP = 7.4.

an ensemble of sources (middle of the lower panel, Fig. 33) for
which the network is unable to set a class.

Although, the performance of the ANN is less efficient than
when the classes are predefined, we nevertheless note that this
method gives very satisfactory results.

Finally, we have investigated the ANN-based quality fac-
tors for SZ sources detected in Planck that were shown unam-
biguously to be false candidates by follow-up in X-rays based
on Director’s Discretionary Time on the XMM-Newton observa-
tory (Planck Collaboration IX 2011; Planck Collaboration Int. I
2012; Planck Collaboration Int. IV 2013). No significant ex-
tended X-ray emission was associated with eight SZ de-
tections in Planck data: PLCK G321.410+19.941, PLCK
G355.247-61.038, PLCK G93.139-19.040, PLCK G320.145-
53.631, PLCK G10.161-11.706, PLCK G201.148-35.245,
PLCK G34.92-19.263, and PLCK G120.218+11.093. We find
that all SZ detections have very high Qugly factors (0.7 to 1) ex-
cept the first (PLCK G321.410+19.941), which has a slightly
smaller value of Qugly, but has Qugly = 0.4, i.e. is identified as a
spurious detection. The quality factor Qgood for all but two de-
tections is below 0.01. Only PLCK G201.148-35.245 and PLCK
G34.92-19.263 have Qgood ∼ 0.2 and 0.6, respectively, but they
are both in the class of noisy Ugly sources.

The a posteriori quality assessment of the confirmed false
SZ sources in Planck shows that these spurious detections were
mostly related to noise fluctuations.

7. Summary and conclusions

We have addressed the question of classification of populations
illustrating the approaches used on the catalogue of SZ sources
detected by Planck. To this end, we build a SED model including
all the major sources of signal in the range of frequencies con-
sidered for the dataset. This projection of the data onto a SED
has allowed us to reduce the dimensionality of the problem and
to resort to statistical classification techniques.

We explore three techniques (i) clustering, an unsuper-
vised machine learning; (ii) artificial neural networks, a super-
vised machine learning; and (iii) likelihood, halfway between
supervised and unsupervised. Each of the three methods outputs
quantitative quality factors to the SZ sources. The classification
techniques separate statistically the sources into populations of
different quality and reliability.

We apply the techniques to cluster catalogues detected in the
X-rays and in the optical and to catalogues of point sources.
Each time the statistical classification was able to separate the
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Fig. 31. Average SED for Bad PSZ1 sources, i.e. with QN < 0.4, QL <
1.5×10−8 and QP < 7.4, respectively. In red is the best fit for an infrared
SED and in blue the contribution from CO rotational lines.

Fig. 32. Average SED for good PSZ1 sources, i.e. with QN > 0.4, QL >
1.5 × 10−8, and QP > 7.4, respectively. In red is the expected SED for
tSZ effect.

cases of bona fide clusters and the cases of sources that are not
clusters. We then applied our methods to the PSZ1 catalogue.
All three classification results agree. They reproduce rather well
the distribution of the PSZ1 sources in confirmed clusters and
class 1, 2, and 3 candidates. For each technique, most of the
class 3 objects are put in the least reliable population.

We show that although all methods agree, the supervised
neural network-based classification performs better than the
likelihood approach or the unsupervised clustering method. This
is exhibited by the clean average SED of the sources in the
Good population. The higher performance is expected since the
supervised methods utilise more information. The performance
is even better when we have an a priori definition of class mem-
bership. The classification then serves to determine whether or
not the pre-defined populations are distinguishable. We show,
however, that the ANN can detect differences between classes
of populations even when the training is not performed on pre-
defined populations.

Fig. 33. Top panel: distribution of the PSZ1 sources as a function of
Qgood, Qbad, and Qugly. In grey for confirmed clusters, in blue for class 1
sources, in green for class 2 sources, and in red for class 3 sources.
Bottom panel: density of sources for the PSZ1 catalogue as a function
of Qgood, Qbad, and Qugly.

Finally, we suggest on the basis of our results that a super-
vised learning approach should be the method of choice when
classifying individuals into pre-defined populations. The classi-
fication methods applied in the present study to assess the quality
factor of SZ detections and separate the populations focuses on
photometric quantities only. It can easily be adapted and gener-
alized to other quantities like morphological criteria, or to other
contexts such as the detection of galaxy clusters, and more gen-
erally sources, in Euclid and in the X-rays in SRG/eROSITA
where the classification is mainly an question of disentangling
overlapping point sources and extended sources like clusters of
galaxies. An adaptation is ongoing.
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Appendix A: Neural network

In this section we detail the concept of back propagation neural
network that was used in the present analysis.

The concept of neural network consists in multiple layers
of neurons. Each neuron is set to a value ranging from zero to
one. The value of neurons, x(n), in the layer n is fully determined
by the value of the neurons, x(n−1), in layer n − 1 via a linear
combination using weights,W(n). This relation reads

x(n)
k = g(n)

∑
i

W
(n)
ki x(n−1)

i

 , (A.1)

where g(n)(x) is the activation function of the neuron. In the fol-
lowing, we do not mention the bias term as it can be considered
an extra neuron added at each input layer for which the value is
always set to one.

To be trained, this neural network needs a set of input neu-
rons, x(0), for which the expected value of the neurons of the out-
put layer, y, are known. Using the neural network, it is possible
to estimate the values of y from the values of x(0). We can define
the distance of the estimated value ŷ to the known solution y as

E =
1
2

∑
i

(yi − ŷi)2. (A.2)

Then, we aim at minimizing E by adjusting the weights,W(n),
of each layer.

To do so we need to compute the derivative of E as a function
of a given weightW(l)

ab of the layer l , m,

∂E

∂W(l)
ab

= −
∑

i

(yi − ŷi)
∂ŷi

∂W(l)
ab

= −
∑

i

(yi − ŷi)g
′(m)
i

∑
j

W
(m)
i j

∂x(m−1)
j

∂W(l)
ab

, (A.3)

where m is the total number of layers and g′(m)
i is the derivative of

g(m)
i with respect to

∑
jW

(n)
i j x(n−1)

j . Following the same approach,

and considering m − 1 > l, it is possible to estimate
∂x(m−1)

j

W
(l)
ab

,

∂x(m−1)
j

∂W(l)
ab

= g′(m−1)
j

∑
k

W
(m−1)
jk

∂x(m−2)
k

∂W(l)
ab

· (A.4)

We define the error, e(m)
i = (yi− ŷi)g

′(m)
i , and the back propagated

error, e(n−1)
i = g′(n−1)

i
∑

jW
(n)
ji e(n)

j . Then we have

∂E

∂W(l)
ab

= −
∑

j

∂x(m−1)
j

∂W(l)
ab

∑
i

W
(m)
i j e(m)

i . (A.5)

Using Eq. (A.4), Eq. (A.5), and the relation between e(n−1) and
e(n) we obtain

∂E

∂W(l)
ab

= −
∑

j

∂x(m−2)
j

∂W(l)
ab

∑
i

W
(m−1)
i j e(m−1)

i . (A.6)

Then, by iteration we can derive

∂E

∂W(l)
ab

= −
∑

j

∂x(l)
j

∂W(l)
ab

∑
i

W
(l+1)
i j e(l+1)

i . (A.7)

We need to estimate
∂x(l)

j

∂W(l)
ab

,

∂x(l)
j

∂W(l)
ab

=
∂g(l−1)

(∑
iW

(l)
ji x(l−1)

i

)
∂W(l)

ab

= g′(l−1)
j

∑
i

∂W(l)
ji

∂W(l)
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x(l−1)
i

= g′(l−1)
j

∑
i

δ jaδibx(l−1)
i

= g′(l−1)
j δ jax(l−1)

b . (A.8)

Indeed, x(l−1) does not depend onW(l), as x(l−1) is the input layer
for weightsW(l). Finally, we derive

∂E

∂W(l)
ab

= −
∑

j

g′(l−1)
j δ jax(l−1)

b

∑
i

W
(l+1)
i j e(l+1)

i

= −x(l−1)
b e(l)

a . (A.9)

As a consequence, the gradient of E with respect toW(l) can be
directly expressed from the input layer values x(l−1) and the back
propagated error e(l). Then the weights of the neural network can
be adjusted iteratively through a gradient descent,

W
(l)
ab(t + 1) =W

(l)
ab(t) + αx(l−1)

b e(l)
a + µ

(
W

(l)
ab(t) −W(l)

ab(t − 1)
)
,

(A.10)

where α is the learning rate and µ the momentum, both set to
values ranging from 0 to 1.

Low values for α prevent oscillations towards the mini-
mum of E. High values for µ avoid local minima stabilization.
However, extremely low values for both parameters can slow
down the speed of training the network.

Appendix B: Neural network results for various
samples of sources

In this section we present the distributions from various samples
as a function of Qgood, Qbad, and Qugly. We test our neural net-
work on the MCXC catalogue, the catalogue of clusters from
Wen et al. (2012) based on SDSS data, a set of 2000 random po-
sitions over the sky, a set of bad detections, and PCCS sources
at 30 and 353 GHz.

In Fig. B.1 we observe that galaxy clusters are flagged as
Good quality sources or Ugly sources in the case of low signal-
to-noise ratio for the tSZ emission. We observe that random po-
sitions over the sky are effectively classified as Ugly. We observe
that the false detections are flagged as Bad quality sources. We
note that PCCS sources are flagged as Bad quality sources or as
Ugly for low signal-to-noise sources.

All these tests demonstrate that the neural network-based
quality assessment is able to accurately separate classes of
sources for which we have a significant signal-to-noise ratio.
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Fig. B.1. From left to right and top to bottom: density of sources as a function of Qgood, Qbad, and Qugly for MCXC, SDSS, random, bad, and PCCS
at 30 and 353 GHz.
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