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Martin Mihelich, Bérengère Dubrulle, Didier Paillard, Corentin Herbert

To cite this version:
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Abstract: The asymmetric simple exclusion process (ASEP) has become a paradigmatic
toy-model of a non-equilibrium system, and much effort has been made in the past decades
to compute exactly its statistics for given dynamical rules. Here, a different approach is
developed; analogously to the equilibrium situation, we consider that the dynamical rules are
not exactly known. Allowing for the transition rate to vary, we show that the dynamical rules
that maximize the entropy production and those that maximise the rate of variation of the
dynamical entropy, known as the Kolmogorov-Sinai entropy coincide with good accuracy.
We study the dependence of this agreement on the size of the system and the couplings with
the reservoirs, for the original ASEP and a variant with Langmuir kinetics.
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1. Introduction

The theory of dynamical systems at statistical equilibrium consists of well identified principles lying
on firm mathematical foundations [1–3]. Although the representative point of the system in phase space
(the microstate) can have a complicated dynamics, the statistics of any function on phase space (an
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observable) are well described, at least for large enough systems (in the thermodynamic limit) by simple
invariant measures depending only on the invariants of the system, and not on the details of the dynamical
equations. On the contrary, general theories describing the statistics of non-equilibrium systems are
still in their infancy; although there have been attempts at formulating general principles governing
non-equilibrium systems [4,5], they have not reached the level of mathematical rigor of their equilibrium
counterpart, partly because there may not exist a universal way of being out-of-equilibrium, and remain
valid essentially close to equilibrium.

Nevertheless, some progress have been achieved recently, in particular in the framework of “toy
models”. Similarly to the Ising model which played a central role in the theory of critical phenomena, the
so-called asymmetric simple exclusion process (ASEP) [6,7], which describes the transport of particles
between two reservoirs, have become the dominant paradigm for non-equilibrium systems. Over the
past few years, this system and others have benefited from the theory of large deviations, developed
by Donsker and Varadhan [8–11]. This theory has introduced the large deviation function, which
characterizes the statistics of the system in an asymptotic regime (large system, large time, low noise,...)
and is a natural candidate for playing the out-of-equilibrium analogous role to the equilibrium free
energy. In the long-time limit, the ASEP reaches a steady-state, and a macroscopic current is established
between the two reservoirs. The average steady-state current, and the corresponding density profile,
have been computed exactly [6,12,13], and more recently, the full large deviation function, which also
describes the atypical fluctuations around these averages, has also been solved exactly [14], using a
generalization of the matrix product ansatz.

Powerful as these techniques may be, they remain far from being applicable to more realistic systems.
Indeed, if many systems in nature share some conceptual properties with the ASEP (establishment of a
steady-state with fluctuations dominating the average behaviors and the resulting anomalous transport
properties), not all of them are easily written as stochastic processes driven by a master equation. For
instance, it has become clear over the years that deterministic systems with a very large number of
degrees of freedom such as turbulent fluids, and in particular the atmosphere and the ocean of the Earth,
should be thought of in terms of non-equilibrium statistical mechanics. However, up to now, attempts
to apply such tools in the climate system have been restricted to phenomenological applications of the
“Maximum Entropy Production” variational principle [15–17]. The success of these approaches points
at a deeper connection with the general properties of non-equilibrium systems. A justification has been
attempted [18], and dismissed [19,20], following the ideas of Jaynes that non-equilibrium systems should
be characterized by a probability distribution on the trajectories in phase space, instead of just the points
in phase space at equilibrium. In the context of Markov chains, this idea has proved to provide a natural
generalization of equilibrium statistical mechanics [21], by considering the Kolmogorov-Sinai (KS)
entropy. In this Letter, we establish a bridge between the phenomenological principle of maximum
entropy production on the one hand, and the maximization of KS entropy on the other hand, in the
context of the ASEP. We also consider a variant of the ASEP with Langmuir kinetics [22], which mimics
the phenomenological climate model designed by Paltridge [15]. In both cases, rather than solving
exactly the system for given dynamical rules, we show that the maxima location of the thermodynamic
entropy production and the KS entropy as functions of the rate of transition coincide, and study the
validity of this agreement when the system size and reservoir couplings vary.
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2. Model Description

In this paper, we have considered a modified version to the ASEP model-hereafter named the CASEP
model (for Changing ASEP model) or the LK-CASEP model when Langmuir dynamics is added- so
as to be able to change the particle flux. A class of toy models for out-of-equilibrium systems consists
of variants of the exclusion process (with open boundaries): let us consider a one dimensional lattice
gas model composed of L sites between two reservoirs. Each site contains at most one particle. The
particle undergoes a random walk on the lattice with the following rules: at each time step a site is
chosen randomly. If this site belongs to the bulk and is occupied by a particle, the particle can jump
right with a probability p and left with a probability q provided the neighboring sites are empty. At the
boundaries, the system is coupled with the two reservoirs: at the left (resp. right) boundary, particles
from the reservoir can enter the lattice with probability α and particles from the lattice can exit with
probability γ (resp. δ and β). This coupling is equivalent to imposing the respective densities ρa = α

α+γ

and ρb = δ
δ+β

. When ρa = ρb, the system reaches an equilibrium state, while it becomes increasingly
out-of-equilibrium as the difference between ρa and ρb increases. The numerous variants of the exclusion
process depend on choices of constraints on the hopping rates p and q: the symmetric simple exclusion
process (SSEP) imposes p = q. Imposing a preferred direction for particle transport (e.g., p > q)
yields the asymmetric simple exclusion model (ASEP). An extreme case is the totally asymmetric simple
exclusion model (TASEP), for which q = 0. Here, we shall consider a particular class of ASEP, by
imposing that the particle has to hop to a neighboring site—provided it is empty; it cannot remain in
place unless both the neighboring sites are occupied (see Figure 1).

Figure 1. The dynamical rules of the asymmetric simple exclusion process (ASEP), without
(top) and with (bottom, LK-ASEP) Langmuir kinetics.
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This amounts to setting p = f and q = 1 − f . We shall call this variant the Changing asymmetric
simple exclusion process (CASEP).

The exclusion processes can be seen as microscopic models of transport. We are interested here in
the connection with heat transport in turbulent flows at a macroscopic scale, like the atmosphere and
the ocean. For such systems, phenomenological variational principles were suggested [15] to compute
the energy transport associated with the establishment of a temperature gradient, outside of the diffusive
regime. In the atmosphere, radiative exchanges on the vertical coexist with this meridional transport.
To mimic this effect, we shall also consider a variant of the CASEP which includes Langmuir Kinetic
dynamics (LK-CASEP) [22]: at each time step, particles can appear in an empty site with probability wa
and disappear from an occupied site with probability wb.
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The exclusion processes, and in particular the CASEP, are special cases of discrete Markov processes
with 2L states. It is therefore difficult to study numerically this system for L larger than 10. These
processes are characterized by their transition matrix P = (pij) which is irreducible. Thus, the
probability measure on the states converges to the stationary probability measure µstat = (µstat1 , ..., µstat2L )

which satisfies:

µstati =
2L∑
j=1

µstatj .pji ∀i ∈ [[1, 2L]] (1)

The states are labeled using the base 2. The pij are equal to f.dt (resp. (1 − f).dt) for a transition
corresponding to a right jump of particule (resp. left) inside the bulk. For a transition corresponding
to a jump at the boundary of the lattice, the pij are equal to α.dt, β.dt, γ.dt, δ.dt. In the LK-CASEP
Model, for a transition corresponding to the appearance or disappearance of a particle, pij = wa.dt or
pij = wb.dt. Once the transition matrix has been defined through these simple rules, the dynamics
can then be obtained by moving particules at each time steps, until a stationary states has been
reached. The density of particules on the lattice ρ = (ρ1, ..., ρL) in such a stationary states can then
be computed numerically.

Most of the studies of the ASEP model consider a fixed dynamics (given value for p and q) and try
to solve exactly the resulting statistics for the steady-state current [14]. Here, we rather consider that the
dynamics is not known exactly, and vary the parameter f in order to obtain different stationary states
and calculate their entropy production σ function of f . Indeed, changing the parameter f is equivalent
to change the flux of particles J . At fixed f , we can also use the dynamical properties of the CASEP
model to compute the Kolmogorov-Sinai Entropy hKS as a function of f and compare it to σ(f).

In the f = 1
2

case, the system reaches a steady state that is reminiscent of a “conductive state”, with a
linear density behaviour over the lattice, going from ρa = α

α+γ
on the left side to ρb = δ

δ+β
on the right

side [6]. When f 6= 1
2
, the system reaches another stationary state, ressembling a “convective state”, in

which the density is mainly constant in the bulk, with steep transitions near the edges towards the left
and the right side densities ρa and ρb.

3. Dynamical and Thermodynamical Entropy

We now define both the Macroscopic Entropy production and the Kolmogorov-Sinai Entropy for the
CASEP model in order to compare them.

3.1. Komogorov-Sinai Entropy

There are many ways to estimate the Kolmogorov-Sinai entropy associated with a Markov
chain [21,23]. Here we compute Kolmogorov-Sinai Entropy as the time derivative of the Jaynes
Entropy. To characterize the dynamics of the system during the time interval [0, t], one considers the
possible dynamical trajectories Γ[0,t] and the associated probabilities pΓ[0,t]

. The dynamical trajectories
entropy—the Jaynes entropy—reads:

SJaynes(t) = −
∑
Γ[0,t]

pΓ[0,t]
. log(pΓ[0,t]

) (2)
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For a Markov chain we find that:

SJaynes(t)− SJaynes(t− 1) = −
∑
(i,j)

µistatpij log(pij) (3)

Thus, the Kolmogorov-Sinai Entropy for the Markov chain is:

hKS = −
∑
(i,j)

µistatpij log(pij), (4)

where µi is the stationary measure and pij the transition matrix.

3.2. Entropy Production

For a macroscopic system subject to thermodynamic forces Xi and fluxes Ji, the thermodynamics
entropy production is given by [5,24]:

σthermo =
∑
i

JiXi (5)

The fluxes to consider for a diffusive particules model are fluxes of particules and the thermodynamics
forces can be writtenX = ∆(− ν

T
) where T is the temperature and ν the chemical potential proportionnal

to log(ρ) for an ideal gas [24]. So, as the temperature is here fixed, the Thermodynamics Entropy
production of a given stationary state takes the form:

σthermo ∝
L∑
i=1

J.(log(ρi)− log(ρi+1)) = J.(log(ρ1)− log(ρL)) (6)

where ρ is the stationary density distribution and J the particle fluxes, that are both (nonlinear) function
of f . Note that we can find this result considering a continuous system. Indeed, the statistical entropy
for an ideal gas confined between the walls A+ and B− is:

S(t) = −
∫ B−

A+

ρ(x, t) log(ρ(x, t))dx (7)

Taking the times derivative of Equation (7) with the continuity equation div(J) + ∂ρ
∂t

= 0 yields:

∂S

∂t
=

∫ B−

A+

∂J(x, t)

∂x
(1 + log(ρ(x, t)))dx (8)

We can write Equation (8) to make entropy production appears:

∂S

∂t
−

∫ B−

A+

div(J(x, t)(1 + log(ρ(x, t)))) = −
∫ B−

A+

J(x, t)
∂ log(ρ(x, t))

∂x
dx (9)

Thus, the entropy production reads:

σthermo = −
∫ B−

A+

J(x, t)
∂ log(ρ(x, t))

∂x
dx (10)

This is nothing but the continuous limit of Equation (6).
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4. Numerical Results

4.1. Comparison between KS Entropy and Macroscopic Entropy Production

Given a value of L, ρa and ρb, we have computed the stationary states of the CASEP model as a
function of f and used them to compute numerically the entropy production in Equation (6) and the
Kolmogorov-Sinai Entropy in Equation (4). An example is provided in Figure 2 for ρa = 0.75, ρb = 0.1

and L = 10. We see that both function are of approximate parabolic shape, reaching a maximum for
f ≥ 1/2. In the sequel, we note fmaxep (resp. fmaxks the value of f at which the maximum of the
entropy production (resp. of the Kolmogorov-Sinai entropy) is reached. The existence of a maximum of
entropy production can be simply understood by considering the case L = 2, i.e., a model with only two
boxes, where we assume for simplicity that ρa > ρb. Noting ρ1 and ρ2 the density of the box number 1
and number 2 respectively, it is easy to see that for J = 0, σthermo = 0 whereas for J large enough
ρ1 = ρ2 and σthermo = 0. Thus, in between these two values of J , σthermo has at least one maximum.
We do not have such heuristic explanation for the existence of the maximum of the Kolmogorov-Sinai
entropy. We note that although the entropy production and the Kolmogorov-Sinai entropy have similar
parabolic shape, they do not coincide exactly: the entropy production and the Kolmogorov-Sinai entropy
differ. For ρa = ρb (i.e., at equilibrium), their maxima take a common value fmaxep = fmaxks = 1/2,
corresponding to the maximum of entropy: at equilibrium, all functionals are maximum for the same
stationary state, corresponding to the “conductive state”. As the difference between ρa and ρb increases,
the two maxima fmaxep and fmaxks deviates from the equilibrium value 1

2
. This is the signature of a

“convective dynamics”. We would like now to explore the behaviour of the two entropy around this
conductive state, by studying the behaviour of the maxima difference, ∆fmax=|fmaxep − fmaxks|.

Figure 2. Macroscopic entropy production (top) and Kolmogorov-Sinai entropy (bottom)
production function of f for ρa = 0.75 and ρb = 0.1 and L = 10. For these parameter values,
we have limited the range of f from 0.4 to 1. Indeed f ≤ 0.4 corresponds to a state where the
flux of particules is in the same direction as the gradient of ρ which is physically impossible.
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4.2. Behaviour of the Maxima Difference

Let us first fix the size of the box, L, and study the variation of ∆fmax=|fmaxep−fmaxks| as function of
ρb and ρa. This is shown in Figure 3 (Left). It can be seen that ∆fmax is zero for at perfect equilibrium,
and remains small near equilibrium, for ρa ≈ ρb. The difference then increases as the system deviates
from equilibrium, reaching a maximal value of about 4% atL = 10. These general features are conserved
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when including the Langmuir-Dynamics as can be seen in Figure 3 (Right): for L = 8 the difference
between the maximum of entropy production and the maximum of the Kolmogorov-Sinai entropy also
of the order of 4%. This is still valid varying wa and wb in [0, 1

L
]. These shows that the coincidence

between the maxima of the KS entropy and the entropy production is robust and independent of inclusion
of vertical fluxes.

Figure 3. ∆fmax = |fmaxep − fmaxks| as function of ρa and ρb for fixed box size L: left at
L = 1) in the CASEP model. Right: at L = 8 for the LK- CASEP model with wa = 0.06

and wb = 0.03.

4.3. Influence of Box Size

The previous results have been obtained for a number of boxes comparable with the number of boxes
used in climate models. However, it is interesting to investigate possible finite size effects by varying
L and observe the orresponding variations of ∆fmax. Due to limited computational power, we were not
able to simulate systems with L larger than L = 10. We could however decrease L and observe the
result. This is done in Figure 4, where both fmaxep and fmaxks are plotted as a function of ρa and L
for fixed ρb. One sees that for fixed ρa, the difference between the two values ∆fmax decreases as L
increases. So it is likely that for L→∞, this quantity converges to 0 for any fixed ρa and ρb.

Figure 4. Maxima difference ∆fmax as function of ρa at fixed ρb = 0.1, for different system
sizes L: blue: L = 6; red: L = 8; green: L = 10.

5. Discussion and Conclusions

In the present paper, we have built a bridge between stationary states that are maxima of
Macroscopic Entropy production and maxima of Kolmogorov Sinai entropy, within a simple model
of out-of-equilibrium physics. Both maxima coincide at equilibrium, and their difference increases with
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increasing out-of equilibrium. For fixed out-of-equilibrium conditions, however, the difference decreases
with increasing system size. We may then postulate that for any fixed out-of-equilibrium conditions, both
the Macroscopic Entropy production and the Kolmogorov Sinai entropy peak at the same stationary state,
that thereby acquire a priviledged status. Whether such a stationary state is the natural one selected by
the dynamics is actually an open question. Many studies point towards the relevence of the Kolmogorov
Sinai entropy for out-of-equilibrium systems. For example, Latora and Baranger [25] established a
link between the Kolmogorov-Sinai entropy, which is a microscopic quantity, with the derivative of the
coarse grained entropy, which is a macroscopic quantity, in an out of equilibrium dynamical system.
In the present paper, we have evidenced another connection between the Kolmogorov-Sinai entropy
and a macroscopic quantity. This link, one hand, strengthens the hypothesis that Kolmogorov-Sinai
entropy may play a key role in the study of out of equilibrium systems. On the other hand, its link
with the Maximum Entropy Production may explain its rather successful role played in in many area of
physics [26] such as solid physics [27], electromagnetism, quantum physics or climate science [15,17].
At present time, the connection has only been established for a 1D discrete special system. Generalizing
our result to continuous ASEP model is straightforward, using the expression of the Kolmogorov-Sinai
entropy found by [28]. However, it would be very interesting to generalize the link between maxima of
Maximum Entropy Production and maxima of Kolmogorov-Sinai entropy to more complicated systems,
such as chaotic dynamical systems, lattice Bolzmann or turbulent flows.
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