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émanant des établissements d’enseignement et de
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We report on the fabrication and characterization of sin-
gle nitride nanowire visible-to-ultraviolet p-n photodetec-
tors. Nitride nanowires containing 30 InGaN/GaN radial 
quantum wells with 18% indium fraction were grown by 
catalyst-free metal-organic vapour phase epitaxy. Single 
nanowires were contacted using optical lithography. As 
expected for a radial p-n junction, the current-voltage (I-

V) curves of single wire detectors show a rectifying be-
havior in the dark and a photocurrent under illumination. 
The detectors present a response in the visible to UV 
spectral range starting from 2.8 eV. The peak responsiv-
ity is 0.17 A/W at 3.36 eV. The on-off switching time 
under square light pulses is found to be below 0.1 sec.   
 

 

 

1 Introduction InGaN/GaN two-dimensional quan-
tum well (QW) superlattices have been intensively studied 
as materials for visible and ultraviolet light emission and 
detection1-3. They are also investigated in view of photo-
voltaic conversion4, 5. However, the performance of InGaN 
devices is negatively affected by the presence of a large 
number of threading dislocations6, 7 and by a strong inter-
nal polarization field in c-oriented thin films8, 9. Nanowires 
(NWs) can solve these two major problems. The disloca-
tion density is drastically reduced due to the free lateral 
surface, which allows efficient relaxation of the misfit 
strain. For the core/shell QWs grown on the non-polar m- 
plane facets the potential profile is not distorted by the in-
ternal field leading to a good overlap between the electron 
and hole wavefunctions. In addition, the NW design pre-
sents promising advantages for photodetectors10, 11 because 
of independent optimization of light absorption and carrier 
collection, efficient light trapping and thus a possibility to 
reduce the active material volume without loosing efficien-
cy. Previously, NW-based core/shell n-i-n InGaN/GaN de-
tectors have been investigated12. Thanks to the high photo-
conductive gain, these devices exhibit a very high sensi-

tivity (in the 104 A/W range), however their operation 
speed is low (return to equilibrium time constants are in 
the range of tens to hundreds of seconds). Core-shell p-n 
GaN single nanowires containing a thick (50 nm) InGaN 
layer have been also used as photodetectors in a photonic 
platform10. The replacement of the photoconductive n-i-n 
device by a p-n junction photodiode allowed to improve 
the operation speed (reported characteristic times were 
shorter than 0.1 sec). However, due to the strain accumula-
tion, the structural quality of the InGaN radial layers is 
quite low leading to important non-radiative losses. The 
material quality can be improved by replacing a thick 
InGaN layer with a multi-quantum well heterostructure. 
Up to date, there have been no reports on core/shell p-n 
InGaN/GaN NW photodetectors using QWs for the light 
absorption.  

In this work, we report for the first time the fabrication 
of a p-n junction NW photodiode containing radial 
InGaN/GaN QWs and we investigate the optoelectronic 
properties of these devices for their application in visible to 
UV range photodetection. The NWs were grown by cata-
lyst-free Metal-organic vapour phase epitaxy (MOVPE) on 
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sapphire substrates. The photoresponse was studied on a 
model case of a single NW contacted by means of optical 
lithography. The NW detectors present a response in the 
visible to UV spectral range starting from 2.8 eV. The peak 
responsivity is 0.17 A/W at 3.36 eV. This value corre-
sponds to a more than two times enhancement with respect 
to the previous report for core/shell p-n photodiodes based 
on a thick InGaN radial layer 10. The on-off switching time 
under square light pulses is found to be below 0.1 sec, 
which is much shorter than the typical response time of 
photoconductive detectors suffering from a slow current 
decay. 

 

2 Experimental The N-polar GaN wires were grown 
by MOVPE on c-sapphire substrates using in-situ SiNx 
thin film pre-deposition13, 14. The bottom wire part (~10 
µm long) was heavily n+-doped. Then a non-intentionally 
doped GaN segment (~10-15 µm long, residual n-doping 
~1018 cm-3) was deposited. The upper part of the wires was 
coated with 30 InGaN/GaN radial QWs (6 nm/24 nm) 
along nonpolar m-plane facets and then overgrown with a 
p-doped GaN shell layer as reported in Refs13, 15. The tar-
geted indium composition in the QWs is ~18%. The NW 
morphology is illustrated in figure 1. The average wire 
length is 20-25 µm and the diameter is 1-2 µm. 

 

 
To fabricate single wire photodetectors, the NWs 

were detached from their native substrate by ultra-sonic 
cutting and dispersed on a SiO2/Si substrate. The NWs 
were then encapsulated in a hydrogen silsesquioxane pol-
ymer (HSQ) transformed into SiOx after thermal baking 
for 1 hour at 400 °C. The excess of HSQ was etched in di-
luted HF solution (HF:H2O = 1:200 volume) to expose the 
lateral NW facet for contacting. The first contact was de-
fined on the p-GaN shell by optical lithography. The Ni 
/Au (10 nm / 150 nm) was deposited followed by an an-
nealing at 500 °C in ambient atmosphere for 5 min to favor 

the formation of ohmic contact on p-type GaN. The second 
electrode to n-type GaN core was also defined by optical 
lithography and Ti/Al/Ti/Au (10/20/10/200 nm) metalliza-
tion. A scanning electron microscopy (SEM) image of a 
typical device is shown in figure 2 (a) and a schematic pic-
ture illustrating the device structure is presented in figure 2 
(b).  
  

 
3 Electrical and optical characterization 
3.1 Current-voltage characterization 

Figure 3 (a) presents the I-V curve (in logarithmic scale) of 
a single NW photodetector in the dark and under illumina-
tion. In the dark, the I-V curve shows a typical rectifying 
behavior without significant current leakage (dark current 
is below 10-11 A at -1 V bias). The non-zero dark current at 
zero bias (below 1 pA) and the current accidents in the -
0.75 to 0 V range are due to the measurement uncertainty 
of our electrical detection system. Under illumination with 
λ=370 nm, the photodetector exhibits a strong photocur-
rent. The induced current under zero bias reaches ~200 pA. 
As expected for a p-n junction photodiode, the current sig-
nal does not significantly change with the reverse bias (for 
biases from 0 to -1.5V the current remains between 200 
and 240 pA). Under forward bias, the current under illumi-
nation first slightly decreases and then increases following 
the dark current behavior of a p-n junction under forward 
bias.  

Figure 2 (a) SEM picture of the processed single nanowire vi-
sible-UV photodetector and (b) the schematic picture of a single 
nanowire photodetector 

Figure (1) 45° tilted SEM image of self-assembled 
InGaN/GaN nanowires. 
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The I-V curve for higher forward current levels (up to 
50 nA) is shown in figure 3 (b) (in linear scale) under illu-
mination and in the dark. It is seen that for forward bias 
above 1.5 V the slope of the I-V curve under illumination 
is slightly steeper that the slope of the dark I-V curve. This 
indicates the variation of the access resistance under illu-
mination (possibly, the resistance of the p-GaN shell). It 
should be noted that NW photodetectors due to the surface 
Fermi level pinning are often characterized by strong pho-
toconductive effects leading to an elevated photocurrent 
gain16. NW photoconductors can even present persistent 
photoconductivity. However, as seen in figure 3 (b), in the 
presently-investigated case of a radial p-n junction these 
negative effects are minimized thanks to the core-shell ge-
ometry. Indeed, the dark and illuminated I-V curves under 
the forward bias are almost identical, whereas a strong cur-
rent increase is expected for a NW photoconductor16.  
 

 
3.2 Time dependent photocurrent transient meas-
urement  
In order to investigate the operation speed of the photode-
tector, the time dependent photocurrent transient measure-
ments were performed under zero bias. The NW detector 

was illuminated with square light pulses with different 
wavelengths using a wavelength tunable light source (Xe 
lamp coupled with a monochromator). The photocurrent 
signal has been normalized with respect to the incident 
light intensity at different wavelengths. As shown in figure 
4 (a), the photodetector presents a response to wavelengths 
starting from 430 nm (photocurrent = 4.7 pA) correspond-
ing to the absorption in the InGaN/GaN radial QWs. The 
response increases for shorter wavelength. The rise and the 
decay switching times for all illumination wavelengths are 
below the time resolution of the measurement system (~0.1 
sec). We note that no persistent photoconductivity effects 
that would lead to slow signal transients were observed. To 
characterize the switching time with a better precision, the 
illumination was mechanically chopped at different fre-
quencies and the detector signal was recorded. The -3dB 
cutoff frequency under zero bias and λ=370 nm is found to 
be 30 Hz.  
 

 
 

3.3 Photocurrent spectroscopy  
To better analyze the spectral dependence of the de-

tector reponse, photocurrent spectra of a single NW device 
were measured at room temperature using a wavelength 
tunable Xenon lamp light coupled with a Jobin Yvon Triax 
180 spectrometer. The photocurrent spectrum under zero 
bias of a typical device in the visible-to-UV spectral range 
is reported in figure 5 (in a logarithmic scale). The calibra-
tion of the light source output intensity was done using a 
commercial calibrated photodiode sensor and the photocur-
rent spectrum was normalized accordingly. The detector 
responsivity is defined as : 
        ! =   

!!!
!!"#

, 

where Iph is the photocurrent and Popt is the incident optical 
power. As seen in figure 5, the photoresponse appears be-
low the GaN bandgap at around 2.8 eV (442 nm). This re-
sponse is attributed to the absorption in the QWs and the 

Figure 4 Time dependent photocurrent for on/off illumination 
cycles at different wavelength from 450 nm to 370 nm. Inset 
shows a close-up on one illumination cycle with λ = 430 nm cor-
responding to the QW absorption. 

Figure 3 (a) I-V curve of a single nanowire photodetector 
in the dark and under illumination. (b) I-V curve for larger 
forward biases showing only a weak current modification 
under illumination. 
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subsequent extraction of the electron-hole pairs from the 
quantum wells by the electric field of the radial p-n junc-
tion. However, the responsivity in the visible range is ra-
ther weak (~0.015 A/W at λ=442 nm). Between 2.8 eV and 
3.36 eV (370 nm), the photocurrent rapidly increases and 
reaches its maximum of 0.17 A/W at 3.36 eV (~370 nm). 
This increase can be understood as a consequence of the 
inhomogeneous In compositions in the QWs17. The regions 
with a lower In content contribute to the photocurrent at 
shorter wavelengths. In addition, the carrier extraction 
from the shallow In poor QW parts is more efficient than 
from the deep In-rich QW parts. The signal remains almost 
constant until 3.54 eV (350 nm) and then decreases by 35-
40 % toward the UV range (300 nm). This decrease for 
wavelengths shorter than the GaN bandgap is due to the 
loss of photoexcited carriers absorbed in the p-GaN shell 
region. Indeed, these carriers can recombine on surface 
states before diffusing to the p-n junction field region and 
thus they do not contribute to the photocurrent.  
With respect to the previously reported NW core/shell p-n 
photodiodes based on a thick radial InGaN layer 10, the 
peak responsivity of the multi-QW photodiode is increased 
from 0.075 A/W to 0.17 A/W. We attribute this enhance-
ment to the improvement of the structural properties of the 
multi-QW nanowires. Indeed, thick InGaN layers exhibit 
plastic relaxation due to the lattice mismatch with the GaN 
core. Therefore, thick InGaN layers are expected to have a 
large number of non-radiative defects leading to carrier 
losses. The multi-QW design allows to improve the struc-
tural quality leading to a higher responsivity.  
  

 
 
4 Conclusion  
In summary, we fabricated and characterized single NW 
photodetectors operating in the visible-to-UV spectral 
range. Self-assembled NWs containing 30 InGaN/GaN 
core/shell QWs ( 6 nm/24 nm ) in the middle of a radial p-
n junction were synthesized by MOVPE. The electrical 
properties of the photodetector as well as the time depend-
ent current transits and the photocurrent spectra were ana-
lyzed. Contrary to the NW photoconductors, the detector 
presents no persistent photoconductivity and the response 

time is below 0.1 sec, which is limited by experimental set-
up timporal resolution. The detector response extends from 
2.8 eV (442 nm) to the deep UV range. The peak respon-
sivity is 0.17 A/W at 3.36 eV (370 nm). 

Acknowledgements This work has been partially finan-
cially supported by Laboratory of Excellency ‘GaNeX’ (ANR-
11- LABX-2014) and ‘NanoSaclay’ (ANR-10-LABX-0035), by 
ANR-14-CE26-0020-01 project ‘PLATOFIL’, by FP7 Marie Cu-
rie projects ‘Funprob’ and by EU ERC project “NanoHarvest” 
(grant no. 639052). A. Babichev acknowledges the support of 
RFBR  (Project number 14-02-31485, 15-02-08282), Russian 
Science Foundation (Project number 15-12-00027) for photocon-
ductivity measurements support, and of the Scholarship of the 
President of the Russian Federation (Grant number SP-
4716.2015.1). The device processing has been performed at 
CTU-IEF-Minerve technological platform, member of the Re-
natech RTB network. 
 

References: 
[1]  S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, 

C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, 
IEEE Electr Device L 24, 212 (2003). 

[2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czer-
necki, S. Grzanka, and M. Leszczynski, IEEE J Quan-
tum Elect 45, 617 (2009). 

[3] C. Rivera, J. L. Pau, J. Pereiro, and E. Muñoz, Super-
lattice Microst 36, 849 (2004). 

[4]  M. Anani, C. Mathieu, M. Khadraoui, C.  Zouaoui, S. 
Lebid, and Y. Amar, Microelectronic J 40, 427 (2009). 

[5]  A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Ya-
mamoto, IEEE Journal of Photovoltaics 2, 276 (2012). 

[6]   C. J. Humphreys, Mrs Bull 33, 459 (2008). 
[7] S. C. Jain, M. Willander, J. Narayan, and R. V. Over-

straeten, J Appl Phys 87, 965 (2000). 
[8]  S.  F. Chichibu,  T.  Sota,  K.  Wada,  O. Brandt,  K.  H.  

Ploog,  S. P.  Denbaars,  and  S.  Nakamura,  phys.  
stat.  sol.  (a)  183,  91 (2001). 

[9]  L. H. Peng and C. W. Chuang and L. H. Lou, Appl 
Phys Lett 74, 795 (1999). 

[10] M.  Tchernycheva,  A.  Messanvi,  A.  de  Luna Bu-
gallo,  G. Jacopin,  P.  Lavenus,  L.  Rigutti,  H.  
Zhang,  Y.  Halioua,  F.  H. Julien, J. Eymery and C. 
Durand, Nano Lett 14, 3515 (2014). 

[11] L.  Rigutti,  F.  Fortuna,  M.  Tchernycheva,  A.  De  
Luna Bugallo, G. Jacopin, F. H. Julien, F. Furtmayr, 
M.  Stutzmannand M. Eickhoff, physica status solidi 
(a) 207, 1323 (2010). 

[12] A.  De  Luna Bugallo, L. Rigutti, G. Jacopin, F. H. Ju-
lien, C. Durand, X. J. Chen, D. Salomon, J. Eymery, 
and M. Tchernycheva, Appl Phys Lett 98, 233107 
(2011). 

[13] R.  Koester,  J.  S.  Hwang,  D.  Salomon,  X.  J.  Chen,  
C. Bougerol, J.  P.  Barnes, D.  L.  S.  Dang, L.  Rigut-
ti, A.  De Luna Bugallo,  G.  Jacopin,  M.  Tcher-
nycheva,  C.  Durand  and  J. Eymery, Nano Lett 11, 

Figure 5 Room temperature photocurrent spectrum of a single 
nanowire photodetector. 



 5 
 

  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

4839 (2011). 
[14] R. Koester, J. S. Hwang, C. Durand, D. S. Dang, and J. 

Eymery, Nanotechnology 21, 15602 (2010). 
[15] P. Lavenus, A. Messanvi, L. Rigutti, A. De Luna Bu-

gallo, H. Zhang, F.  Bayle, F.  H.  Julien, J.  Eymery, 
C. Durand, and M. Tchernycheva, Nanotechnology 25, 
255201 (2014). 

[16] G. Jacopin, A. De Luna Bugallo, L. Rigutti, P. Lav-
enus, F. H. Julien, Y. Lin, L. Tu, and M. Tchernyche-
va, Appl Phys Lett 104, 23116 (2014). 

[17] L. Rugutti, I. Blum, D. Shinde, D. Hernańdez-
Maldonado, W. Lefebvre, J. Houard, F. Vurpillot, A. 
Vella, M. Tchernycheva, C. Durand, J. Eymery, B. 
Deconihou, Nano Letters 14, 107−114 (2014). 

 


