
Novel lightweight signcryption-based key distribution

mechanisms for MIKEY

Kim Thuat Nguyen, Nouha Ouahla, Maryline Laurent

To cite this version:

Kim Thuat Nguyen, Nouha Ouahla, Maryline Laurent. Novel lightweight signcryption-based
key distribution mechanisms for MIKEY. WISTP 2016 : 10th International Conference on
Information Security Theory and Practice, Sep 2016, Heraklion, Greece. IFIP; Springer, Pro-
ceedings WISTP 2016 : 10th International Conference on Information Security Theory and
Practice, pp.19 - 34, 2016, <10.1007/978-3-319-45931-8 2>. <hal-01391308>

HAL Id: hal-01391308

https://hal.archives-ouvertes.fr/hal-01391308

Submitted on 3 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52669503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01391308

Novel Lightweight Signcryption-based Key
Distribution Mechanisms for MIKEY

Kim Thuat Nguyen1, Nouha Oualha1, and Maryline Laurent2

1 CEA, LIST, Communicating Systems Laboratory,
91191 Gif-sur-Yvette CEDEX, France

kimthuat.nguyen@cea.fr, nouha.oualha@cea.fr
2 Institut Mines-Telecom, Telecom SudParis, UMR CNRS 5157 SAMOVAR,

9 rue Charles Fourier, 91011 Evry, France
maryline.laurent@telecom-sudparis.eu

Abstract. MIKEY is a standard key management protocol, used to
set up common secrets between multiple parties for multiple scenarios
of communications. As MIKEY becomes widely deployed, it becomes
worthwhile to not confine its applications to real-time or other specific
applications, but also to extend the standard to other scenarios as well.
For instance, MIKEY can be used to secure key establishment in the In-
ternet of Things. In this particular context, Elliptic Curve Cryptography-
based (ECC) algorithms seem to be good candidate to be employed by
MIKEY, since they can support equivalent security level when compared
with other recommended cryptographic algorithms like RSA, and at the
same time requiring smaller key sizes and offering better performance.
In this work, we propose novel lightweight ECC-based key distribution
extensions for MIKEY that are built upon a previously proposed certifi-
cateless signcryption scheme. To our knowledge, these extensions are the
first ECC-based MIKEY extensions that employ signcryption schemes.
Our proposed extensions benefit from the lightness of the signcryption
scheme, while being discharged from the burden of the public key infras-
tructure (PKI) thanks to its certificateless feature. To demonstrate their
performance, we implemented our proposed extensions in the Openmote
sensor platform and conducted a thorough performance assessment by
measuring the energy consumption and execution time of each operation
in the key establishment procedure. The experimental results prove that
our new MIKEY extensions are perfectly suited for resource-constrained
devices.

1 Introduction

Multimedia Internet KEYing (MIKEY) [4] is a key management protocol which
is intended for use with real-time applications. MIKEY provides different meth-
ods to establish a session key with multiple parties, in addition to the authentica-
tion of parties if required. For example, MIKEY pre-shared key method permits
any two parties with a pre-shared secret to set up a secure communication.
However, this mechanism suffers from scalability issues since it is unpractical

to pre-distribute a common key for any two parties in large networks, e.g. the
Internet of Things (IoT). To be scalable, public key encryption-based methods,
where any two parties can establish security communications without any a pri-
ori shared common keys, have been proposed to be employed by MIKEY.

These different key distribution mechanisms can be classified into two cat-
egories: (i) a key exchange mode and (ii) a key transport mode. The MIKEY
key exchange modes, such as, MIKEY-DHSIGN [5], MIKEY-DHHMAC [13],
are usually based on the Diffie-Hellman (DH) key exchange [20]. These modes
provide the perfect forward secrecy property, i.e. the compromise of long-term
keying materials does not reveal previously derived session keys. Additionally,
both communicating parties participate in the session key generation process.
As a result, DH-based modes require at least two message exchanges to set up
a common secret key. As another disadvantage, these modes do not support the
establishment of group keys.

In key transport modes, on the other hand, the initiating party is responsible
for the key generation. The generated keys are then encrypted using the public
key of the responding party. Even if key transport modes do not provide perfect
forward secrecy, they are more efficient in terms of computation and communi-
cation than DH-based modes. Indeed, only a half roundtrip is needed to set up
a common key between two parties. Existing key transport modes of MIKEY
generally employ a public key encryption algorithm to protect transferred keys,
such as RSA [18] or ECIES [15] and an additionally public key signature algo-
rithm to sign MIKEY message. In this paper, we propose to use more lightweight
key transport modes built upon a signcryption scheme defined in [21], which is
an authenticated encryption algorithm that combines encryption and signature
procedures in an optimized manner. The signcryption scheme is based on Ellip-
tic Curve Cryptography (ECC), thus inheriting multiple advantages of ECC in
terms of performance. As mentioned in [15], ECC-based schemes require smaller
key sizes and offer better security per bit, when compared with known crypto-
graphic algorithms like RSA. Moreover, the signcryption scheme in [21] offer the
certificateless feature that allows to dispense the two parties with the provision
of a digital certificate issued by a Public Key Infrastructure (PKI).

Our contribution: In this paper, we first introduce two novel key transport
mechanisms for the standardized key management protocol MIKEY [5]. The
main idea is to apply the certificateless elliptic curve Korean signature-based
signcryption scheme, namely ECKSS, defined in [21] as the public key encryp-
tion algorithm to construct MIKEY messages. Then, we present experimental
performance results of the two proposed key distribution methods by measuring
the energy consumption and the execution time for each operation. Our solu-
tions have been implemented and validated using the Openmote sensor platform
[2]. The experimental results show that our proposed extentions to MIKEY are
suited for resource-constrained devices.

Paper outline: The rest of this paper is organized as follows. Section 2 sur-
veys several existing ECC-based key transport solutions proposed for MIKEY
and presents briefly related work on signcryption schemes. Section 3 provides

several notations and recalls our proposed signcryption scheme provided in [21].
We describe in details our proposed key transport mechanisms for MIKEY in
section 4. Section 5 discusses several security considerations needed for our pro-
posals. The performance assessment of our proposals is given in section 6, while
section 7 concludes our work.

2 Related work

As MIKEY [5] becomes more deployed, extensions to the base protocol have
emerged [15], [4], [6]. Several of these extensions brought additional key distri-
butions methods to MIKEY, for instance based on Elliptic Curve Cryptography
(ECC) [23]. Since ECC support requires smaller keys while keeping the same
security level as other asymmetric algorithms like RSA, ECC usage is consid-
ered interesting for devices with limited performance and storage capabilities.
ECC extensions to MIKEY offer new mechanisms for authentication, encryption
and digital signature to provide secure key distribution. ECC-based mechanisms
such as ECDH to extend the Diff-Hellman exchange [20], ECDSA or ECGDSA
for digital signatures, Elliptic Curve Integrated Encryption Scheme (ECIES)
and Elliptic Curve Menezes-Qu-Vanstone Scheme (ECMQV) to provide, respec-
tively, integrated encryption and authenticated key exchange, have been defined
in [23]. To the best of our knowledge, ECC-based signcryption mechanisms have
not been proposed for MIKEY, even though these mechanisms have been present
in the literature for many years, and many ECC-based signcryption mechanisms
offer a good performance thanks to their optimized authenticated public key
encryption besides the advantages of ECC.

Signcryption schemes allow to simultaneously perform the functions of both
digital signature and encryption. Most of existing signcryption schemes are de-
rived from popular signature schemes (refer to the survey in [27]). For examples,
Zheng’s scheme [28] is based on ElGamal encryption and signature schemes [12],
and Shin et al.’s scheme [24], called SCDSA+, is based on DSA (Digital Signature
Algorithm) signature scheme [14]. Zheng’s scheme requires complex interactive
zero-knowledge proof to validate the non-repudiation and does not provide in-
sider confidentiality. On the other hand, the security of Shin et al.’s scheme has
not been formally proven. KCDSA (Korean Certificate-based Digital Signature
Algorithm) [19] is a variant of DSA, whose design allows to relieve the signature
generation and verification procedures of modular inversions required in DSA.
Two signcryption variants based on KCDSA have been proposed by Yum et al.
in [26]. However, the first variant is confidentiality insecure in the insider model,
while the second one is not semantically secure due to the disclosure of the hash
of the message.

ECC-based signcryption schemes have also been proposed in several papers
like [17] and [25], which are both based on ECDSA. In [21], we have proposed
a new signcryption scheme based on ECKCDSA, and we have formally proven
the security of this scheme in the random oracle model, thus providing out-
sider/insider confidentiality and unforgeability, in addition to non-repudiation,

while being more efficient in terms of communication and computation costs
than existing signcryption schemes. Moreover, our scheme offers the certificate-
less feature, so certificates are not needed to verify initiator/responder’s public
keys. In this paper, we propose to extend the MIKEY base protocol with new key
distribution methods based on our signcryption scheme [21], and we demonstrate
the advantages and gains in terms of performance achieved by these methods.

3 Preliminaries

In this section, we introduce several notations and review briefly our elliptic
curve-based signcryption scheme proposed in [21].

3.1 Abbreviations and Notations

The definitions and abbreviations, as described in Table 1, and used throughout
the rest of this document are consistent with those used in the MIKEY standard
[5].

P +Q Addition of two elliptic curve points P and Q.
t.P Addition of P with itself t times.
s||t Concatenation of two strings s and t.
⊥ Error symbol.
KMS Key Management Server
I Initiator
R Responder
HMAC Hash Message Authentication Code
MAC Message Authentication Code
TEK Trafic-Encrypting Key
TGK TEK Generation Key

Table 1. Abbreviations

3.2 The certificateless elliptic curve Korean signature-based
signcryption

In this subsection, we describe our certificateless signcryption scheme based on
elliptic curve, named as ECKSS. The security of this scheme has been formally
proved in the random oracle model [21].

Considered actors We consider three main actors in our scenario presented
in the following.

– Two parties: an Initiator (I) and a Responder (R), which respectively initi-
ates the communication and responds to incoming requests.

– A trusted Key Management Server (KMS), which is responsible for gener-
ating keying materials and that acts as the root of trust of the responder
and initiator. The proposed solutions support also multiple KMSs i.e., the
initiator or the responder may use a different KMS, but this multi-authority
setting is considered as out of scope of the paper.

Security parameter generation process Depending on the security param-
eter as input, KMS first runs the Setup algorithm to define an elliptic curve
E over finite field Fp with a generator G, where p is the prime modulus. Two
hash functions are also defined: H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}∗.
(Enc, Dec) are the encryption and decryption algorithms of a symmetric cipher.
Then, KMS executes the KeyGen algorithm to generate the keying material for
I and R. KMS first chooses the master key as mk from Zp. Its public key is then
calculated as PKKMS = mk.G. For an entity A with the identifier idA, KMS
generates the public and private values of an entity A as follows.

– Compute VA = xA.G, where xA is a random number on Zp
– Compute the private key for A: privA = (mk+xA.H1(idA||VA||G||PKKMS))−1

– Compute PA = priv−1A .G
– Set the public key of A as PKA = (PA, VA)

As we shall see, we can validate the public key of A by using the following
equation:

PA = PKKMS +H1(idA||VA||G||PKKMS).VA (1)

ECKSS description The detailed procedure of ECKSS is described in the
following:
– Signcrypt(privI , PKI , PKR,M)→ CT : To signcrypt a message M intended to
R, I executes the following steps:

1. Choose randomly x← Zp
2. Compute K = x.PKR

3. Generate a secret key: τ = H2(PKI ||PKR||K)
4. Compute r = H1(PKI ||PKR||K||M)
5. Compute s = privI .(x− r)
6. Compute c = Encτ (M)
7. Send the ciphertext CT = (r, s, c) to R

– Unsigncrypt(privR, PKR, PKI , CT) → M : Upon receiving the ciphertext
CT = (r, s, c) from I, R has to perform the following procedure:

1. Compute K = (s.priv−1R).PKI + (r.priv−1R).G .
2. Get the secret keys: τ = H2(PKI ||PKR||K)
3. Compute Decτ (c) = M

4. Verify that r = H1(PKI ||PKR||K||M)

Note that I and R can be sure about the public values of the other party
by verifying the equation (1). This feature makes ECKSS certificateless since it
does not require certificates to authenticate the public keys.

4 Novel signcryption-based key distribution methods for
MIKEY

In this section, we first present the payload and data type formats of a MIKEY
key transport mechanism. Then, we clarify our design goals for proposing new
key distribution methods for MIKEY. Finally, we give details on these extensions
in respect to the original MIKEY payload formats.

4.1 Basic payload and message formats of a MIKEY key transport
mechanism

Figure 1 describes the basic message composition of a MIKEY key transport
method that uses a public-key encryption algorithm, for example, in the MIKEY-
RSA [5] and MIKEY-ECIES [15] modes. The mechanisms contain two message
exchanges: the I MESSAGE and the R MESSAGE. The main objective of the
Initiator’s message is to distribute one or more TGKs and a set of security
parameters in a secure manner. We recall the payload notions as defined in [5],
in the following:

– HDR: The MIKEY header, which contains related data and information
mapping to the specific security protocol used.

– T: The timestamp, used to prevent replay attacks.

– RAND: The random byte-string, which is used as a value for the freshness
of the session key generation process.

– IDx: The identity of the entity X (IDi: Identity of the Initiator, IDr: Identity
of the Responder).

– SP: The security policies.

– KEMAC: The Key Data Transport Payload, which contains the encrypted
TGKs and a MAC.

– CHASH: The Cert Hash Payload, which is the hashes of the used certificates
(e.g. CERTi).

– PKE: The Envelope Data Payload, which contains the encrypted envelope
key, env key.

– SIGNx: The signature covering the entire MIKEY message, which is gener-
ated using the signature key of the entity X.

– V: The verification message payload containing the MAC calculated over the
entire MIKEY message.

Initiator Responder

I MESSAGE: HDR, T, RAND, [IDi|CERTi], [IDr], SP,
KEMAC, [CHASH], PKE, SIGNi

[Optional] R MESSAGE: HDR, T, [IDr], V

Fig. 1. Basic message format for a MIKEY public key encryption method

As described in Figure 1, the MIKEY public key encryption method first
chooses an envelope key env key. This key is then to be encrypted using the
public key PKR of the Responder and conveyed in the PKE payload: PKE
= E(PKR, env key). Then, the encr key and the auth key are derived from the
envelope key, env key. These two keys are used to build the KEMAC payload
where the encr key is used to encrypt the TGKs. The encrypted part is then
followed by a MAC calculated using auth key over the entire KMAC payload.
The whole MIKEY message is then integrity protected by the signature payload
SIGNi.

4.2 Design motivations

The novel key transport mechanisms for MIKEY are designed to put forwards
the following motivations:

– Performance and Efficiency: Our proposed ECKSS signcryption scheme
is able to transport secret data in a secure manner without intensive cal-
culation. Thus, ECKSS-based methods for MIKEY is able to address the
same scenario as the other key establishment methods in MIKEY [15]. In
fact, existing MIKEY modes are intended for application-layer key manage-
ment and multimedia applications. However, thanks to ECKSS lightweight
computation requirements, the proposed methods can be considered in con-
strained environments such as IoT. We prove the feasibility of our proposed
mechanisms in such environment in section 6. Furthermore, the mechanisms
are based on elliptic curve cryptography (ECC). Additionally, when com-
pared with existing ECC-based asymmetric methods of MIKEY, our pro-
posed mechanisms are the most efficient while offering equivalent security
guarantees. More details are provided in section 6.1.

– PKI Independence: ECKSS can be applied in the context where no access
to a public-key infrastructure (PKI) is available. Indeed, the validation of
entity’s public keys is realized in equation (1) without certificates. Moreover,
as pre-shared master secrets are not required, the proposed ECKSS-based
schemes should be as scalable as other existing asymmetric mechanisms of
MIKEY.

4.3 The MIKEY-ECKSS mode specification

Figure 2 defines the message exchanges for our first proposal MIKEY-ECKSS.
Similarly to other MIKEY public key encryption methods such as MIKEY-RSA
[5] or MIKEY-ECIES [15], the main objective of the Initiator’s message is to dis-
tribute one or more TGKs in a secure manner. This method reuses the defined
payload in section 4.1 except the payload ECKSSi in the I MESSAGE. This
payload transports actually the encrypted TGKs through the triple (r, s, c) as
defined in section 3.2. To guarantee the integrity protection, we employ the pay-
load SIGNi, which is a signature covering the entire I MESSAGE. As described
in [5], the SIGNi payload will use either ECDSA or ECGDSA as the signature
algorithm.

Initiator Responder

I MESSAGE: HDR, T, RAND, [IDi|PKi], [IDr],
{SP}, ECKSSi, SIGNi

[Optional] R MESSAGE: HDR, T, [IDr], V

Fig. 2. Elliptic curve Korean signature-based signcryption key distribution method for
MIKEY

Upon receiving the I MESSAGE, R first approves the integrity of the message
by verifying the appended signature payload SIGNi. If the verification holds, it
then uses the Unsigncrypt algorithm to decrypt the payload ECKSSi in order
to obtain the values of TGKs. In case mutual authentication is required, the
verification message, V, is calculated by building a MAC over the concatenation
of the header HDR (the same as the one that was used in the I MESSAGE), the
timestamps, the identities of the two parties, using the authentication key. The
latter is derived from the received TGKs. Then, we append the V payload to the
concatenation (HDR, T, [IDi, PKi], [IDr]) to form the R MESSAGE. However,
as depicted in Figure 2, the R MESSAGE is optional.

4.4 MIKEY-ECKSS-HMAC mode specification

In this subsection, we describe in detail our second key distribution extension
for MIKEY. We call this mode MIKEY-ECKSS-HMAC, since this mode uses
ECKSS to envelop the TGKs and HMAC to ensure the authentication of the
messages exchanged. As we shall see, the use of the signature payload SIGNx still
requires multiple exponentiations in the signature generation and verification
processes, e.g. 3 modular exponentiations are needed if using ECDSA. As a
result, MIKEY-ECKSS-HMAC is even more lightweight than MIKEY-ECKSS,
which is suitable for constrained devices.

Initiator Responder

I MESSAGE: HDR, T, RAND, [IDi|PKi], [IDr],
{SP}, ECKSSi, KEMAC

[Optional] R MESSAGE: HDR, T, [IDr], V

Fig. 3. HMAC-authenticated Elliptic Curve Korean signature-based signcryption key
distribution method for MIKEY

Figure 3 describes in detail the MIKEY-ECKSS-HMAC mode. We use the
same notations for the payload names as defined in section 4.1. In the I MESSAGE,
the ECKSSi payload contains the triple (r, s, c) as depicted in section 3.2. The
KEMAC payload conveys the Hash Message Authentication Code (HMAC) of
the entire MIKEY message. This technique is also employed in the MIKEY-
DHHMAC method [13]. The HMAC value is calculated using the secret key
kauth. This key is generated during the encryption of TGKs using the ECKSS
algorithm. Indeed, we make modifications in step 4 of the Signcrypt algorithm
and in step 2 of the Unsigncrypt algorithm (see section 3.2 for more details).
Another secret key kauth in addition to τ is generated, as depicted in Table 2.
This key is to be used in the creation of HMAC.

Signcrypt Unsigncrypt
3) Generate a couple of secret keys:

τ, kauth = H0(PKS ||PKR||K)
2) Get the secret keys:

τ, kauth = H2(PKI ||PKR||K)

Table 2. Modifications made to the Signcrypt and Unsigncrypt algorithms

Upon receiving the I MESSAGE, R first runs the Unsigncrypt algorithm to
get the value of TGKs and kauth. The authentication key kauth is then used to
verify that the I MESSAGE has not been modified by an attacker. Indeed, a
MAC is calculated over the entire I MESSAGE using kauth. This value is then
compared with the hashed value extracted from the KEMAC payload. On the
other hand, the R MESSAGE’s construction is optional as depicted in Figure
3. This message is only needed when mutual authentication between parties is
required.

5 Security considerations

As this paper proposes two new methods for the MIKEY protocol, existing
security considerations discussed in [5] apply here as well.

As mentioned in [5], one should select a secure symmetric cipher supporting
at least 128 bits as a practical choice for the actual media protection. In our
proposals, the payload ECKSSi carries the actual encrypted TGKs, the used
encryption algorithm should also offer a security level of at least 128 bits. For
the selection of hash functions, we recommend to work at least with SHA-256 [8]
when constructing the ECKSSi payload and other payloads as well. This should
be seriously taken into account in order to achieve the 128-bit level.

Similar to other key transport mechanisms, our proposed methods do not
provide the perfect forward secrecy property. A Diffie-Hellman key distribution
resolves this issue but requires the transmission of the R MESSAGE in order to
set up a common secret key.

In order to provide the certificateless feature, our proposed methods rely on
the binding of public values of communicating parties with the public keys issued
by KMS. Thus, after validating a provided public value using equation (1), we
can be sure that only KMS is able to generate such value. It also means that
the KMS can read all traffic between any parties administrated by the KMS.
However, we assumed that the KMS is a fully trusted party.

6 Performance Assessment

In this section, we first quantify the performance of our schemes. Then, we de-
scribe our testing environment and the used methodology to achieve the exper-
imental measurements. Finally, we provide in detail the performance results in
terms of energy consumption and the time execution of our proposals including
the ECKSS algorithm and the two proposed MIKEY modes.

6.1 Comparison with related work

Table 3 illustrates the performances of our two proposed methods and multi-
ple ECC-based MIKEY modes in related work. The table first identifies if the
scheme is a key exchange method or a key transport method. Then, it shows if
the scheme is independent to the public key infrastructure or not. This prop-
erty means that a PKI-independent scheme does not require standard digital
certificates to provide authentication between communicating parties and hence
the scheme is discharged from complex operations during certificate verification,
revocation and management processes. Then, the efficiency of each scheme is
evaluated with respect to the computational cost demonstrated in terms of the
number of expensive operations needed to generate the I MESSAGE and the
R MESSAGE. Here, we consider the three most expensive operations for an
ECC-based scheme: modular point multiplication (PM), modular inversion (I)
and pairing operation (e). Furthermore, we provided also the name of the payload
that requires these expensive operations. For example, in a PM column, the line
”2 (PKE) + 1 (SIGNi)” means that two point multiplications are executed to
build the PKE (public key encryption) payload and 1 other point multiplication
is calculated to build the SIGNi (signature) payload. For simpler comparison, if

not explicitly specified in each mode, we assume that SIGNi payload carries an
ECDSA signature and its related data.

Mode Type PKI I MESSAGE R MESSAGE
PM I e PM I e

MIKEY-DHSIGN [15]
KE

Yes 1 (DH) + 1 (SIGNi) 1(SIGNi) 0 1 (DH) + 2 (SIGNi) 1 (SIGNi) 0
MIKEY-ECQMV [15] Yes 1(ECCPT)+1 (SIGNi) 1 (SIGNi) 0 1 (PKE)+2 (SIGNi) 1 (SIGNi) 0
MIKEY-SAKKE [16]

KT

No 3 (SAKKE)+1 (SIGNi) 1 (SIGNi) 0 2 (SAKKE)+4 (SIGNi) 0 1 (SAKKE)
MIKEY-ECIES [15] Yes 2 (PKE)+1 (SIGNi) 1 (SIGNi) 0 1 (PKE)+2 (SIGNi) 1 (SIGNi) 0
MIKEY-ECKSS No 1 (ECKSSi) + 1 (SIGNi) 0 0 2 (ECKSSi) + 2 (SIGNi) 0 0

MIKEY-ECKSS-HMAC No 1 (ECKSSi) 0 0 2 (ECKSSi) 0 0

Table 3. Performance comparison of our propositions and ECC-based MIKEY modes
in related work

Meaning of abbreviations: PM: Modular point multiplication; I: Modular Inversion; e: Pairing oper-

ation; PKI: Public Key Infrastructure; KE: Key Exchange; KT: Key Transport.

As we shall see, the first two modes in Table 3: MIKEY-DHSIGN and
MIKEY-ECQMV, are two ECC-based key exchange methods proposed for MIKEY.
These methods are based on the Diffie-Hellman key exchange [20]. Hence, the
R MESSAGE is compulsory in order to setup a common secret key. On the
other hand, in a key transport mechanism, I envelops and sends directly a secret
key/message that can be used as a session key without the response from R.
As our proposed schemes are key transport mechanisms, we only make di-
rect comparison with other key/message distribution mechanisms proposed for
MIKEY. As depicted in Table 3, MIKEY-ECIES [15] seems to be our direct
competitor in terms of performance since it is slightly more heavyweight than
our first proposal MIKEY-ECKSS (with two more modular inversions to com-
pute). In addition, MIKEY-ECKSS is more lightweight in the generation of
the I MESSAGE which can be beneficial for a very resource-constrained initia-
tor. Our second proposal MIKEY-ECKSS-HMAC is even more efficient than
our first one. As such, it requires only 1 point multiplication for generating
the I MESSAGE and 2 point multiplications for generating the R MESSAGE.
Furthermore, both proposals do not require certificates to validate the public
values of communicating parties, which is not the case in MIKEY-ECIES mode.
MIKEY-SAKKE [16] is also exempted from the use of PKI. However, this mode
is much more expensive than our two methods since a pairing operation needs
to be executed when receiving the R MESSAGE.

6.2 Experimental tools and platforms

We implemented our assessment program in C for the operating system Contiki
3.0 [10]. Based on the Relic library version 0.4.0 [3], we evaluated our proposed
MIKEY modes on the elliptic curves secg k256. Its domain parameters have
been recommended by SECG [22], which provides a security level of 128 bits.
In addition, we opted for the sensor node Openmote to evaluate the required
operations. Openmote [2] is a low power wireless sensor module featured with 32
MHz Cortex-M3 microcontroller, a CC2520-like radio transceiver, 32 kB of RAM,

512 kB of ROM and an IEEE 802.15.4 radio interface. This platform supports
32 bit addressing and sufficient RAM and ROM capacities. Such features are
needed in order to use a cryptographic library along with an application on top
of it.

In our testing scenario, we encrypted data using AES in CBC mode. For
MAC and message verification function, we used SHA-256 as secure hash algo-
rithm, which provides digests (hash values) that are 256 bits. Furthermore, we
transported each time a TGK with the size of 32 bytes in our tests. In each case,
the experimental measurements have been obtained by calculating the average
of 100 executions for each operation.

6.3 Methodology

For measuring the processing time, we used two timers provided in the rtimer
library of Contiki [10]. The first timer with 128 ticks per second was employed
to measure the execution time of expensive operations. The second one is more
powerful with 32768 ticks per second. It was used to measure the time duration
of the mote running on a specific mode.

On the other hand, in order to assess the energy consumption, we employed
a software-based online energy estimation mechanism described in [11]. In this
model, we can calculate the energy consumption E in Joule of an operation on
Contiki using the following equation:

E = U ∗
∑

Im ∗ tm (2)

where U is the supply voltage, Im is the hardware specific current draw, tm is
the time duration and m means a particular mode (e.g. active power mode, low
power mode, transmit mode and receiver mode). In our scenario, the value of
U is typically 3V, as with two new AA batteries. Besides, the current draw of
the sensor node in each mode is extracted from its data sheet [1]. Concretely,
we considered the following modes in our measurement: power mode 1 (cpu
active mode), power mode 2 (low power mode), active-mode rx (receive mode)
and active-mode tx (transmit mode). The consuming current draw for each mode
are respectively: Ipm1 = 0.6mA, Ipm2 = 1.3µA, Irx = 20mA and Itx = 24mA, as
described in [1]. The time duration tm that the mote is in mode m, is measured
using Powertrace and Energest power profile [9]. These latters are pre-loaded
tools in the Contiki OS, which provide an accuracy up to 94% of the energy
consumption of a device.

6.4 Experimental results of ECKSS

In this subsection, we provide the experimental results of our signcryption scheme
ECKSS. Table 4 shows the execution time and energy cost of ECKSS algorithms
on the elliptic curve secg k256 over the Openmote platform. The results reveal
that even for a really lightweight signcrypt algorithm with only one point multi-
plication, it requires up to 2.6 s to compute and consumes 5.6 mJ. The resources

Algorithm Time (s) Energy (mJ)

ECKSS Signcrypt 2.64 5.6
ECKSS Unsigncrypt 5.8 12.4

Public Key Validation 3.12 6.6

Table 4. Energy consumption and time execution of ECKSS algorithms on the Open-
mote platform

required for an unsigncrypt are practically doubled since the algorithm has to
compute 2 point multiplications. We provide also in Table 4 the resources con-
sumed by an entity to validate other party’s public values. As we shall see, this
process consumed the same order of magnitude of time and energy as the sign-
crypt algorithm. Such property is advantageous since the verification of certifi-
cates in a PKI-based scheme is usually complex and energy and time consuming.

ECKSS ECIES
0

5

10

15

E
n
er

g
y

co
n
su

m
p
ti

o
n

(m
J
)

Genration

Verification

ECKSS ECIES
0

2

4

6

8

E
x
ec

u
ti

o
n

ti
m

e
(s

)
Genration

Verification

Fig. 4. Performance comparison of our proposal ECKSS with the algorithm ECIES

In Figure 4, we compare the performance of our ECKSS implementation with
the standard algorithm ECIES, as specified in [7]. ECIES’s implementation is
provided in the Relic library [3]. We remark that the total work load required
by our scheme ECKSS is practically identical to the one of ECIES. As we can
see in Table 3, ECKSS is more rapid in the data encryption process but slower
in the data decryption process.

6.5 Experimental results of the proposed MIKEY modes

In this subsection, we describe the performance of our prototype implementations
for the two proposed MIKEY modes.

In MIKEY-ECKSS’s implementation, we use ECDSA as the signature algo-
rithm. Table 5 provides the performance of ECDSA algorithms on the Openmote
platform. These experimental results are measured based on the implementation
of ECDSA provided in [3]. As we can see, ECKSS is even slightly more effi-
cient than ECDSA both in the generation and verification processes. This fact

Algorithm Time(s) Energy (mJ)

ECDSA signature generation 2.75 6.3

ECDSA signature verification 5.83 13.6
Table 5. Energy consumption and time execution of ECDSA algorithms on the Open-
mote platform

is understandable since our proposal is exempted from two modular inversions
compared to the ECDSA algorithm.

Additionally, to be more adapted to resource-constrained devices, we replace
the timestamps payload by an incremental counter payload. This counter is used
together with the random number (carried in RAND payload) to mitigate the
replay attacks. If it is the first time that I communicates with R, the counter is
set to 0. It is increased by 1 after every successful key/data transportation.

Mode I MESSAGE R MESSAGE
Time (s) Energy (mJ) Time (s) Energy (mJ)

MIKEY ECKSS 5.6 11.9 11.4 24.3
MIKEY ECKSS HMAC 2.6 5.6 5.7 12.2

Table 6. Energy consumption and time execution of our proposed MIKEY modes on
openmote

Table 6 demonstrates the average time and energy consumption for generat-
ing the I MESSAGE and R MESSAGE, respectively. The measures show that
the MIKEY-ECKSS-HMAC mode is approximately two times more efficient than
the MIKEY-ECKSS mode. The performance gap between them lies in the cost
of creating the SIGNi payload. As such, instead of certificates and signatures,
MIKEY-ECKSS-HMAC uses a keyed hash message authentication code (carried
by the KEMAC payload) to guarantee the integrity of the messages exchanged.

Figure 5 provides a graphical view of the performance of our proposals in
comparison with the MIKEY-ECIES mode. The performance of the latter are
roughly estimated by summing the experimental results of the two algorithms
ECIES and ECDSA given in Figure 4 and Table 5. As we shall see, the MIKEY-
ECIES mode has a slightly higher computational cost in comparison with our
proposed modes. However, it requires certificates to validate the public keys.
This constraint could be very costly for a sensor node, since the verification of
certificates is usually complex and consuming in time and energy.

0 10 20 30 40

MIKEY-ECKSS-HMAC

MIKEY-ECKSS

MIKEY-ECIES

Energy consumption (mJ)

I MESSAGE

R MESSAGE

0 5 10 15

MIKEY-ECKSS-HMAC

MIKEY-ECKSS

MIKEY-ECIES

Execution time (s)

I MESSAGE

R MESSAGE

Fig. 5. Performance comparison of our proposed MIKEY modes and MIKEY-ECIES
mode

7 Conclusion

In this paper, we proposed two novel signcryption-based key transport methods
for MIKEY. Both methods are relieved from the dependance on a public key
infrastructure thanks to their certificateless feature, and are more lightweight in
terms of computation when compared with existing ECC-based key transport
mechanisms proposed for MIKEY. The performance of the proposed methods
have been demonstrated by experimental implementations on the Openmote
sensor platform. The results confirmed that our proposed MIKEY extensions
are feasible on resource-constrained devices. Hence, they can be used not only
as key distribution mechanisms for real-time applications but also as lightweight
key distribution solutions for the Internet of Things applications.

References

1. Cc2538 data sheet, http://www.ti.com/lit/ds/symlink/cc2538.pdf, last ac-
cessed: May 2016.

2. Openmote platform, http://www.openmote.com/, last accessed: May 2016.
3. Relic toolkit - an efficient library for cryptography, https://github.com/

relic-toolkit/relic, last accessed: May 2016.
4. Mohammed Riyadh Abdmeziem and Djamel Tandjaoui. An end-to-end secure key

management protocol for e-health applications. Computers & Electrical Engineer-
ing, 44:184–197, 2015.

5. Jari Arkko, Elisabetta Carrara, Fredrik Lindholm, Mats Naslund, and Karl Nor-
rman. Rfc 3830: Mikey: Multimedia internet keying. Internet Engineering, 2004.

6. Aymen Boudguiga, Alexis Olivereau, and Nouha Oualha. Server assisted key es-
tablishment for wsn: A mikey-ticket approach. In 2013 12th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications,
pages 94–101, July 2013.

7. D Brown. Standards for efficient cryptography, sec 1: elliptic curve cryptography.
Released Standard Version, 1, 2009.

8. Quynh Dang. Recommendation for applications using approved hash algorithms.
US Department of Commerce, National Institute of Standards and Technology,
2008.

http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.openmote.com/
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

9. Adam Dunkels, Joakim Eriksson, Niclas Finne, and Nicolas Tsiftes. Powertrace:
Network-level power profiling for low-power wireless networks. 2011.

10. Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki-a lightweight and
flexible operating system for tiny networked sensors. In Local Computer Networks,
2004. 29th Annual IEEE International Conference on, pages 455–462. IEEE, 2004.

11. Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He. Software-based
on-line energy estimation for sensor nodes. In Proceedings of the 4th workshop on
Embedded networked sensors, pages 28–32. ACM, 2007.

12. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in cryptology, pages 10–18. Springer, 1984.

13. Martin Euchner. Hmac-authenticated diffie-hellman for multimedia internet keying
(mikey). 2006.

14. PUB FIPS. 186-2. digital signature standard (dss). National Institute of Standards
and Technology (NIST), 2000.

15. Steffen Fries and Dragan Ignjatic. On the applicability of various multimedia
internet keying (mikey) modes and extensions. Technical report, 2008.

16. Michael Groves. Mikey-sakke: Sakai-kasahara key encryption in multimedia inter-
net keying (mikey). 2012.

17. Yiliang Han, Xiaoyuan Yang, Ping Wei, Yuming Wang, and Yupu Hu. Ecgsc: ellip-
tic curve based generalized signcryption. In Ubiquitous Intelligence and Computing,
pages 956–965. Springer, 2006.

18. Dragan Ignjatic, Lakshminath Dondeti, Francois Audet, and Ping Lin. Mikey-rsa-
r: An additional mode of key distribution in multimedia internet keying (mikey).
RFC4738, November, 2006.

19. Chae Hoon Lim and Pil Joong Lee. A study on the proposed korean digital
signature algorithm. In Advances in CryptologyASIACRYPT98, pages 175–186.
Springer, 1998.

20. Ralph C Merkle. Secure communications over insecure channels. Communications
of the ACM, 21(4):294–299, 1978.

21. Kim Thuat Nguyen, Nouha Oualha, and Maryline Laurent. Lightweight certifi-
cateless and provably-secure signcryptosystem for the internet of things. In The
14th IEEE International Conference on Trust, Security and Privacy in Computing
and Communications (IEEE TrustCom-15), 2015.

22. Daniel R. L. Brown. Sec 2: Recommended elliptic curve domain parameters, 2010.
23. Daniel R. L. Brown, Eugene Chin, and Chi Chiu Tse. Ecc algorithms for mikey.

Work in Progress, 2007.
24. Jun-Bum Shin, Kwangsu Lee, and Kyungah Shim. New dsa-verifiable signcryp-

tion schemes. In Information Security and CryptologyICISC 2002, pages 35–47.
Springer, 2002.

25. Raylin Tso, Takeshi Okamoto, and Eiji Okamoto. Ecdsa-verifiable signcryption
scheme with signature verification on the signcrypted message. In Information
Security and Cryptology, pages 11–24. Springer, 2007.

26. Dae Hyun Yum and Pil Joong Lee. New signcryption schemes based on kcdsa. In
Information Security and CryptologyICISC 2001, pages 305–317. Springer, 2001.

27. Moti Yung, Alexander W Dent, and Yuliang Zheng. Practical signcryption.
Springer Science & Business Media, 2010.

28. Yuliang Zheng. Signcryption or how to achieve cost (signature & encryp-
tion)¡¡ cost (signature)+ cost (encryption). http://www. pscit. monash. edu.
au/yuliang/pubs/signcrypt. ps. Z, 1999.

	Novel Lightweight Signcryption-based Key Distribution Mechanisms for MIKEY

