
Authenticated key agreement mediated by a proxy

re-encryptor for the Internet of Things

Kim Thuat Nguyen, Nouha Ouahla, Maryline Laurent

To cite this version:

Kim Thuat Nguyen, Nouha Ouahla, Maryline Laurent. Authenticated key agreement mediated
by a proxy re-encryptor for the Internet of Things. ESORICS 2016 : 21st European Sympo-
sium on Research in Computer Security, Sep 2016, Heraklion, Greece. Springer international
publishing, Proceedings ESORICS 2016 : 21st European Symposium on Research in Computer
Security, pp.339 - 358, 2016, <10.1007/978-3-319-45741-3 18>. <hal-01391319>

HAL Id: hal-01391319

https://hal.archives-ouvertes.fr/hal-01391319

Submitted on 3 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52669502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01391319

Authenticated Key Agreement mediated by a
Proxy Re-encryptor for the Internet of Things

Kim Thuat Nguyen1, Nouha Oualha1, and Maryline Laurent2

1 CEA, LIST, Communicating Systems Laboratory,
91191 Gif-sur-Yvette CEDEX, France

kimthuat.nguyen@cea.fr, nouha.oualha@cea.fr
2 Institut Mines-Telecom, Telecom SudParis, UMR CNRS 5157 SAMOVAR,

9 rue Charles Fourier, 91011 Evry, France
maryline.laurent@telecom-sudparis.eu

Abstract. The Internet of Things (IoT) is composed of a wide range of
heterogeneous network devices that communicate with their users and
the surrounding devices. The secure communications between these de-
vices are still essential even with little or no previous knowledge about
each other and regardless of their resource capabilities. This particular
context requires appropriate security mechanisms which should be well-
suited for the heterogeneous nature of IoT devices, without pre-sharing
a secret key for each secure connection.
In this work, we first propose a novel symmetric cipher proxy re-encryption
scheme. Such a primitive allows a user to delegate her decryption rights
to another with the help of a semi-trusted proxy, but without giving this
latter any information on the transmitted messages and the user’s se-
cret keys. We then propose AKAPR, an Authenticated Key Agreement
mediated by a Proxy Re-encryptor for IoT. The mechanism permits any
two highly resource-constrained devices to establish a secure communica-
tion with no prior trust relationship. AKAPR is built upon our proposed
proxy re-encryption scheme. It has been proved by ProVerif to provide
mutual authentication for participants while preserving the secrecy of the
generated session key. In addition, the scheme benefits from the light-
ness of our proxy re-encryption algorithm as it requires no expensive
cryptographic operations such as pairing or modular exponentiation.

Keywords: authenticated key agreement, proxy re-encryption, security,
Internet of Things

1 Introduction

The Internet of Things (IoT) paradigm implies a network of heterogeneous de-
vices (things) that evolves constantly in terms of complexity and scale. According
to Garner’s forecast [1], the number of active wireless devices will exceed 25 bil-
lions of units by 2020. More connected devices mean more attack vectors and
more difficulties to protect these devices. In addition, IoT security issues concern
not only civil applications (e.g. monitoring live home temperature and humidity)

but also critical applications, for instance, the Internet-connected cars or the re-
mote patient monitoring in healthcare. These applications can be compromised
when secure channels are not properly implemented. Hence, secure communica-
tions between IoT devices become no longer an option, but a requirement.

Due to limited resources and highly interconnected objects, there is a strong
need to design lightweight and scalable key establishment protocols. The existing
solutions that require the pre-distribution of secret keys cannot be envisioned.
Indeed, we cannot pre-share every time a common secret key in each device
because the number of connected devices composing the network is very impor-
tant. If the key pre-distribution is not considered, most of the existing schemes
require expensive cryptographic operations to establish a session key between
entities that do not share common credentials a priori such as ECDH-based
approaches [26]. Indeed, Sciancalepore et al. [26] propose a key agreement pro-
tocol with implicit certificates in the context of IoT. Their approach requires
four costly operations in order to negotiate a common key between two parties.
In addition, the negotiation algorithm always produces the same key for a given
couple of devices, which can be vulnerable to known-key attacks. Many other ef-
forts (e.g. in [24], [23]) have been undertaken to reduce the overhead of standard
security protocols so that they can fit in low power computing sensor platforms.
However, these solutions still require the executions of costly cryptographic op-
erations on such platforms.

The aforementioned heavyweight computations can be handled by a resource-
rich server. Server-assisted approaches for key establishment protocols have been
proposed in this respect for IoT. As such, Fouladgar et al. [17] introduce an
adaption and an extension of TLS (Transport Layer Security) handshake to
the Wireless Sensor Network. Their solution describes an ECDH key establish-
ment between a constrained sensor node and an external entity mediated by
a partially trusted gateway. Such solution requires only two costly operations
on the constrained node side. However, the gateway is able to launch a man-
in-the-middle attack and to establish a common Diffie-Hellman key with each
party without anyone noticing. Saied et al. [25] propose a lightweight collab-
orative key agreement based on Diffie-Hellman (DH) key establishment. Their
idea is to delegate the heavyweight cryptographic calculation of DH values to
the resource-unconstrained trusted proxies in neighborhood. Such mechanism
requires a sufficient number of non-colluding neighbors in proximity. Besides, it
may seem unpractical, since the two end nodes, which do not share any rela-
tion, may not be in possession of a secure established link with those common
proxies. Several works attempt to build a common secret key for any two en-
tities using the DTLS (Datagram TLS) protocol in the context of IoT. Their
approach is to delegate partially [18,29] or totally the DTLS handshake [20] to a
third party. Such mechanism removes the overhead of intensive calculations for
the constrained-devices. However, the third party can read all communications
between sensor nodes and the Internet hosts. This feature is not desirable in
certain scenarios especially when we do not trust the server. We remove such
inconvenience by applying a lightweight proxy re-encryption mechanism in our

proposed key establishment mechanism.
Lighter proxy re-encryption (PRE) schemes can help to design scalable key

establishment mechanisms. The proxy can translate a ciphertext encrypted un-
der one key to another but is not allowed to learn anything on either keys. There
exists many PRE schemes in the literature (e.g. in [7], [2], [19,22]). Their applica-
tions are diverse such as encrypted mail forwarding system, secure data storage
on semi-trusted servers. In this paper, we present an application of PRE to build
a server-assisted key agreement protocol where the server is unable to recover
not only the secret keys of communicating parties but also the negotiated session
keys.

Our contribution: In this work, we first propose a lightweight proxy re-
encryption that uses a symmetric cipher to encrypt data. Our scheme is able
to convert a ciphertext from one key to another without placing trust entirely
on the proxy and without computing heavyweight computational operations.
Second, based on the proposed re-encryption scheme, we build an efficient au-
thenticated key agreement mediated by a proxy re-encryptor, namely AKAPR,
for IoT services. The scheme allows us to establish common secret keys between
devices, even highly resource-constrained ones (e.g. class 1 devices [9]). Third,
we present a formal security validation of AKAPR using ProVerif [6]. The results
show that AKAPR provides mutual authentication for participants and ensures
the secrecy of the generated session keys.

Paper outline: The rest of this paper is organized as follows. Section 2
presents a novel lightweight proxy re-encryption construction. We describe in
detail our proposed authenticated key agreement AKAPR for IoT in Section
3. Section 4 provides an informal security analysis of AKAPR against com-
mon attacks with a formal security validation done by the cryptographic verifier
ProVerif [6]. Finally, the conclusion remarks are given in Section 5.

2 The basic idea: Lightweight Bi-directional Proxy
re-encryption Scheme with Symmetric Cipher

In this section, we first specify general definitions and the most useful properties
of a PRE scheme. We present subsequently several related PRE propositions in
the literature. Then, the concrete description of our proposed symmetric cipher
PRE scheme is given which is followed by a comparison with related solutions
in terms of supported properties and performance.

2.1 Properties of a proxy re-encryption scheme

In a proxy re-encryption scheme, Alice can delegate the decryption right on an
encryption to Bob with the help of a semi-trusted proxy (i.e. An entity that acts
and returns correct results according to demanded tasks but can be untrusted
when processing sensitive data). In general, the proxy uses a prior provided se-
cret, namely, proxy key or re-encryption key, to translate a ciphertext dedicated

to Alice to another one dedicated to Bob. However, it cannot gain any informa-
tion on the secret keys of Alice or Bob and is unable to read the content of the
encrypted messages.

Proxy re-encryption schemes are characterized according to different criteria.
The works in [19] and [7] provide several properties by which to compare differ-
ent proxy re-encryption schemes. We briefly redefine these desirable properties
as follows.

– Uni-directionality: The proxy re-encryption scheme is said to be unidirec-
tional if the re-encryption key of the proxy can be used in only one di-
rection. In contrast, a bidirectional proxy re-encryption scheme permits the
re-encryption key to be used to translate encrypted messages from Alice to
Bob and vice versa.

– Non-Interactivity: In a non-interactive scheme, Alice can generate a re-
encryption key, while offline, from its secret key and Bob’s public values
without the participation of the Key Distribution Center (KDC), the proxy,
or Bob. On the other hand, interactive schemes require the participation of
parties (including KDC) to generate the re-encryption keys.

– Multiple-use: Some proxy re-encryption schemes can re-encrypt a ciphertext
multiple times. For example, Bob can demand a re-encryption of a ciphertext
re-encrypted for him which is previously intended to Alice to obtain a ci-
phertext dedicated to Charlie without actually decrypting the message. Such
scheme is called mutiple-use. In opposition, a single-use proxy re-encryption
scheme permits the proxy to perform only one re-encryption on a ciphertext.

– Non-transitivity: In a non-transitive scheme, the proxy cannot combine pro-
vided re-encryption keys to re-delegate decryption rights. For example, given
three entities A, B and C, the proxy is unable to construct the re-encryption
key rkA→C from A to C from the two supplied re-encryption keys rkA→B

and rkB→C .
– Collusion resistance: In a proxy re-encryption scheme, it is desirable that

Bob even colluding with the proxy, can not guess the secret key of Alice.

2.2 Existing approaches on proxy re-encryption

Blaze et al. [7] first proposed the notion of proxy cryptography where Alice
(A) can securely delegate her decryption rights or her digital signatures to
another party Bob (B) with the help of a proxy. Many works on proxy re-
encryption schemes have been proposed in the literature. We classify these
schemes into two categories as depicted in Table 1: (a) Proxy re-encryption
schemes that employ asymmetric ciphers (public key cryptography) to encrypt
the message and (b) Proxy re-encryption schemes that employ symmetric ci-
phers to encrypt the message. Most of the proposed schemes use a public key
primitive to encrypt the message. In [7], the authors propose the very first
proxy re-encryption scheme based on Elgamal cryptosystem [15]. Alice first
generates the ciphertext CA = (m.gr, gar) on message m using its pair of
public/private key (skA = a, pkA = ga). The proxy uses subsequently the

Type Typical operations of a proxy re-encryption scheme Examples

PRA A PR B
EpubA

(M) EpubB
(M)

[7], [2], [19,22]

PRS A PR B
EskA

(M) EskB
(M)

[13,27]

Table 1. Two existing approaches of a proxy re-encryption scheme

Meaning of abbreviations: PRA: Proxy re-encryption schemes that employ asymmetric ciphers; PRS:

Proxy re-encryption schemes that employ symmetric ciphers; E: An encryption function; M: Message;

pubX : public key of the entity X; skX : secret key of the entity X; PR: the proxy.

re-encryption key rkA→B = b/a to obtain gbr = (gar)rkA→B . Hence, B re-
ceives the new ciphertext CB = (m.gr, gbr) encrypted under his secret key.
This scheme is bidirectional, transitive and exposed to collusion attacks. As
such, the proxy can compute (rkA→B)−1 to obtain the re-encryption key in
the opposite direction from B to A. In addition, the proxy can combine the
two re-encryption keys rkA→B and rkB→C to get the valid re-encryption key
from A to C (rkA→C = a/c = (a/b).(b/c)). Such property is sometimes un-
wanted. Furthermore, if the proxy colludes with one party, it is trivial for them
both to learn the secret key of the other party. Ateniese et al. [2] proposed an
unidirectional pairing-based proxy re-encryption scheme that fixes the above is-
sues. They use a proxy key in the form of rkA→B = ga/b. Such configuration
provides non-transitivity and collusion-resistance properties. Indeed, the posses-
sion of (rkA→B = ga/b, rkB→C = gb/c) does not permit the proxy to find out
rkA→C = ga/c due to the Decisional Diffie-Hellman Problem [8]. In addition,
colluding with Bob does not help the proxy to discover the secret key of Al-
ice and vice versa since having ga/b and b does not help him to recover a due
to the Discrete Logarithm Problem. From then onwards, many schemes based
on pairing operations have been proposed including Identity-based (IBE) proxy
re-encryption schemes [19,22]. They are proved to be secure under chosen cipher-
text attack (CCA) assumption. Pairing-free proxy re-encryption schemes exist,
for example [11,12], but multiple modular exponentiations are still required.

There are several propositions on proxy re-encryption that employ symmetric
ciphers to encrypt the message such as [13,27]. The main advantage of symmetric
cipher proxy re-encryption approach is the lightness of the employed symmet-
ric cryptographic operations in terms of complexity and memory usage. In [13],
Cook et al. propose two conversion functions for symmetric ciphers. In their
first attempt, they assume that Alice shares with Bob a secret key kab. In ad-
dition, Alice and the proxy must share ka. Then, Alice sends Eka

(Ekab
(M)) to

the proxy. The proxy decrypts the obtained ciphertext with ka and sends the
result Ekab

(M) to Bob. Hence, Bob does not need to share a key with the proxy
and yet he can still get the message M . However, this assumes Alice and Bob
must always share a common secret. Such assumption is not trivial when there
exists a significant number of devices in the network, such as in the context of
IoT. In their second attempt (termed as CK to be used in Table 2), the authors

provide the proxy the key kp = ka ⊕ kb, built from the secret keys (ka, kb) of A
and B, respectively. A computes C = M ⊕ ka and sends it to the proxy. The
proxy performs the conversion by computing C ′ = kp⊕C = kb⊕M . B can then
decrypts C ′ to get the message using its secret key kb. This approach is efficient
but not secure. Indeed, B can easily retrieve the secret key of A by computing
kb ⊕ C ⊕ C ′ = ka. In [27], Syalim et al. propose a pure symmetric cipher proxy
re-encryption algorithm. However, this approach requires that A and B share
common secret keys a priori. Moreover, it is assumed that the proxy cannot col-
lude with any previous users since a compromised user can recover the current
encryption key if he/she has the re-encryption key.

2.3 Our proposed lightweight proxy re-encryption

In this section, we present in detail our proposed symmetric cipher proxy re-
encryption. A symmetric cipher proxy re-encryption consists of five algorithms
(KeyGen,ReKeyGen,Encrypt, Decrypt,Reencrypt). In addition, we define (Enc,Dec)
as the encryption and decryption algorithms of a symmetric encryption scheme.
A key distribution center (KDC) is responsible for providing keying material.
As such, KDC runs the two algorithms KeyGen and ReKeyGen to generate the
needed security parameters. We suppose that Alice (A) desires to delegate the
decryption right of a ciphertext CA encrypted under her secret key to Bob (B)
with the help of the proxy (PR). Figure 1 describes the message exchanges of
our proposed PRE scheme. The procedure is detailed as follows.

A PR B
EncKt (M), t.h(skA||idB) EncKt (M), t.h(skB ||idA)−1

Compute rkA→B .(t.h(skA||idB)) = t.h(skB ||idA)−1

Fig. 1. Our proposed symmetric cipher proxy re-encryption scheme

– KeyGen(k) → (idA, idB , skA, skB): Given the security parameter k, this al-
gorithm outputs the identifiers (idA, idB) and the secret keys (skA, skB) for
A and B, respectively.

– ReKeyGen(idA, skA, idB , skB)→ rkA→B : Given the identifiers and the secret
keys of A and B, this algorithm returns the re-encryption key rkA→B =
(h(skA||idB).h(skB ||idA))−1, where h : {0, 1}∗ → Zp is a hash function
that converts a string to a number on Zp. As we shall see, our construction
results in the fact that rkA→B = rkB→A. This property makes our proxy-
encryption scheme bidirectional meaning that the proxy only needs to store
one re-encryption key to re-encrypt messages from A to B and vice versa.

– Encrypt(idA, skA,M, idB)→ CA: Given the identifier of B and a message M ,
A uses its identifier idA and its secret key skA to generate a ciphertext CA.

A first chooses a random number t ← Zp. Then, it generates a symmetric
key Kt ← KDF (t), where KDF is a Key Derivation Function. Finally, it
outputs the ciphertext CA = (EncKt(M), t.h(skA||idB)).

– Reencrypt(rkA→B , CA)→ CB : Upon receiving the ciphertext CA = (C1, C2),
PR keeps C1 unchanged while multiplying C2 with the re-encryption key
rkA→B to obtain the new ciphertext CB = (EncKt

(M), t.h(skB ||idA)−1).
– Decrypt(idB , skB , CB , idA)→M : Upon receiving CB = (C ′1, C

′
2)

= (EncKt
(M), t.h(skB ||idA)−1), B first calculates the value of l = h(skB ||idA)

from its secret key and the identifier of A. Then, it obtains the value of t by
multiplying l to C ′2. From t, B generates the symmetric key Kt ← KDF (t).
Then, it gets the message M by decrypting C ′1 using the generated key Kt:
M = DecKt(EncKt(M)).

Correctness. The correctness of our proposed scheme is straightforward.

2.4 Comparison of our PRE scheme to related work

In Table 2, we compare several proxy re-encryption schemes in related work
with our scheme based on the properties provided in Section 2.1. In comparing
with asymmetric cipher PRE schemes, our scheme is much lighter in terms of
computational cost. Indeed, the proposed construction does not necessitate any
pairing or exponentiation operation. On the other hand, while providing equiva-
lent performance compared with symmetric cipher proxy re-encryption schemes,
our scheme is more robust against attacks from compromised receiver, semi-
honest proxy and their corporation. We argue that our scheme provides most of
the desirable properties as described in the following.

First, our scheme is bidirectional since rkA→B = rkB→A. This can be an

Property BBS [7] AFG [2] GG [19] CH [11] CK [13] SN [27] Ours
Type PRA PRA PRA PRA PRS PRS PRS

Directionality bi-d uni-d uni-d bi-d bi-d bi-d bi-d
Non-Interactivity No No Yes No No No No

Multiple-use Yes No Yes Yes Yes No No
Non-Transitivity No Yes Yes No No Yes Yes

Collusion resistance No Yes Yes No No No Yes
Pairing-free Yes No No No Yes Yes Yes

Exponentiation-free No No No No Yes Yes Yes

Table 2. Comparison of our scheme and related work

Meaning of abbreviations: bi-d: Bidirectional; uni-d: Unidirectional; PRA: Proxy re-encryption

scheme that uses asymmetric ciphers; PRS: Proxy re-encryption scheme that uses symmetric ci-

phers.

advantage in the considered scenario (e.g. IoT) where the proxy has to store only
one proxy key for any pair of devices. Second, in our construction, only KDC
can provide the re-encryption key because it is generated from the secret keys of
participants. This property makes our scheme interactive. However, the scheme

can be made partially non-interactive such that A and B can negotiate a new
proxy re-encryption key even when KDC is offline. In fact, A may generate a
new secret key sk′A and compute k1 = h(sk′A||idB).h(skA||idB). B generates also
a new secret key sk′B and compute k2 = h(sk′B ||idA).h(skB ||idA). k1, k2 are then
sent to the proxy. The latter can now obtain the new proxy re-encryption key
by computing 1/(k1.k2.rkA→B) in Zp. Finally, as each proxy key is generated
specifically for a pair of users, the proxy can only re-encrypt the ciphertext a
single time. Such construction makes our scheme unconditionally non-transitive
and collusion-resistant. Indeed, providing rkA→B = (h(skA||idB).h(skB ||idA))−1

and rkB→C = (h(skB ||idC).h(skC ||idB))−1, the only way that the proxy can
get rkA→C is to have the secret keys of A and C due to one-way property of
hash function. Even if B colludes with the proxy, they only have the value of
h(skA||idB) which is only used in the communication between A and B. Such
knowledge will not help them to find out A’s secret key skA. In addition, to
obtain rkA→C , they still need both the secret keys of A and C.

3 Lightweight authenticated and mediated key agreement
for IoT

In this section, we present the application of our PRE scheme presented in Sec-
tion 2.3 to obtain a very lightweight key establishment mechanism. Our protocol
is relevant even with highly resource-constrained devices in the context of IoT.
The first subsection presents the network architecture and our considered sce-
narios. The second subsection provides the security assumptions needed for the
description of the protocol. Then, we describe concretely the message exchanges
of our proposal.

3.1 Network architecture and scenario description

Figure 2 describes the network architecture of our proposal. The considered net-
work of things consists of a number of tiny nodes communicating with each other
and with an unconstrained resource border router (or gateway). The gateway
is the bridge between the sensor network and the outside world. It may take
part in the communication between two entities in a passive (transparent to the
communicating parties) or active (as a mediator in the communication process)
manners.

Our key establishment protocol involves the four following actors:

– Two parties: an Initiator (I) and a Responder (R), which respectively initi-
ates the communication and responds to incoming requests.

– A partial trusted party, named as Delegatee (DG), which is responsible for
assisting the key establishment process between I and R. In fact, DG is
provided with a re-encryption key that allows it to translate the ciphertext
from I to R. In addition, it is considered as a semi-trusted party that acts
and returns correct results according to the protocol but can be curious on
transmitted messages.

– A trusted Key Distribution Center (KDC), which is responsible for generat-
ing keying material and acts as the root of trust of the whole system. Besides,
KDC is also in charge of delegation credential management and distribution.

R1

GW

R2

I2

GW

DG

KDC

I1

Fig. 2. Network architecture and considered scenarios
→: KDC provides keying material for all actors in the system.

Examples of scenario: (1) →: The external user I1 initiates a key agreement process (mediated by

DG) with the resource-constrained sensor node R1; (2)→: Two unknown resource-constrained nodes

(I2 and R2) initiate a key agreement process with the help of DG and then GW.

In our considered scenario, I and R can be both resource-constrained devices.
At the beginning, KDC provisions the keying material for all users on the system.
Hence it can stay offline until the security parameters need to be refreshed.
On the other hand, DG must stay online and participate actively in the key
establishment procedure. Our motivation is that DG acts as a partially-trusted
third party helping the constrained devices to negotiate session keys without
obtaining any knowledge about these keys.

As depicted in Figure 2, the initiator can be an external entity requesting for
information of the Responder - a sensor platform device lying in a Wireless Sensor
Networks (WSN). The key negotiation process is assisted by DG. In addition,
when I and R are in the same WSN, DG can provide the delegation keys for
the border router (or gateway) so that the key agreement process can be done
locally. Note that the gateway is also considered semi-trusted as a consequence

of which it only knows the delegation keys and is not able to recover the secret
keys of I and R. We provide more details on the security analysis of our proposal
in Section 4.

3.2 Security assumptions and notations

We suppose that I and R possess their own secret keys (skI and skR, ac-
cordingly). However, they do not have any common secrets a priori. On the
other hand, DG shares with each communicating entity X a secret symmet-
ric key Kxd which is employed to protect the integrity of the traffic between
X and DG. As a result, DG shares the secret keys Kid and the secret key
Krd with I and R, respectively. In addition, we use an incremental counter
in both communicating parties to mitigate the replay attacks. For example,
we maintain the counter CTIR in I’s side for all exchanges with R. If this is
the first time that I communicates with R, CTIR is set to 0. It is increased
by 1 after every successful key agreement. Furthermore, for each entity X,
we denote its identifier as idX . Such identifier must be unique for each en-
tity. We also define (Enc,Dec) as the encryption and decryption algorithms of a
symmetric encryption scheme. While, (AEnc,ADec) is an authenticated encryp-
tion algorithm such that AEncK1,K2

(M) = EncK1
(M)||MACK2

(EncK1
(M)) and

ADecK1,K2(EncK1(M)||MACK2(EncK1(M))) = M , for each message M and two
secret keys K1,K2. Each key agreement exchange of order i between I and R
(Message i, for i = 1, 2, 3) has two components EDi and MACi(K). EDi defines
the appended security parameters and the encrypted data, while MACi(K) de-
notes the MAC of EDi computed with the symmetric key K.

In addition, two hash function h : {0, 1}∗ → Zp and H : {0, 1}∗ → {0, 1}n
are also defined, where n is an integer number generated from the input security
level. These functions are modeled as random oracles [5]. Such oracle produces a
random value for each new query. Of course, if an input is asked twice, identical
answers are returned. In this work, we also use a Key Derivation Function (KDF)
for generating a symmetric key. KDF is based on a solid pseudorandom number
generator (PRNG) (e.g. in [3]). This function is initialized with several secret
values, called seeds. An attacker with the knowledge of PRNG output should
not be able to guess the seeds other than by exhaustive guessing.

3.3 AKAPR Message Sequence Chart

The proposed key establishment protocol AKAPR consists of four messages as
depicted in Figure 3. The key negotiation process is mediated by DG. The de-
tailed description of the key agreement process is given as follows.
Message 1 from I to DG: To start a new session, I first increases CTIR by
one, where CTIR denotes the current counter of I for all communications with
R. CTIR is set to zero if this is the first time I communicates with R. Next, it
generates a session identifier SID at random (e.g. SID = H(idI ||idR||w), where
w is randomly chosen in Zp). Then, I chooses at random two fresh numbers
Ni and t from Zp. The ephemeral authentication keys AK = (AKe, AKa) are

then generated from idI , idR and t using a key derivation function (KDF). To
construct the Message 1, I concatenates the session identifier SID, its identifier
idI and R’s identifier idR to (Ni, CTIR). The concatenation is then encrypted
using the algorithm AEnc. As we shall see, the resulting ciphertext is the en-
cryption and MAC of the concatenation by the pair of keys (AKe, AKa). This
guarantees that the attacker (including DG) cannot modify the encrypted text
of the concatenation. Second, I masks the value of t by multiplying it with the
hashed value h(skI ||idR), where skI is the secret key of I. As we shall see, the
result of such multiplication is randomly distributed in Zp since the two used
operands are also randomly generated in Zp. Then, the first five components of
the message (SID, idI , idR,AEncAKe,AKa

(idI ||idR||Ni||CTIR),
t.h(skI ||idI)) is completed by a MAC computed with Kid, to form the Message
1.

Message 2 from DG to R: Upon receiving the Message 1 from I, DG first ver-
ifies that SID is fresh. We suppose that DG stores a list of SID values for each
pair of I and R. Next, DG validates that the message has not been modified by an
attacker by verifying its MAC using Kid. If the verification holds, DG is also cer-
tain that the Message 1 has not been replayed. Then, it modifies the fifth compo-
nent of the encryption part (ED1) in the Message 1 with the delegation key dkIR.
Indeed, it multiplies t.h(skI ||idR) with dkIR = (h(skI ||idR).h(skR||idI))−1 to
obtain t.h(skR||idI)−1. DG now concatenates the obtained result to the first four
components of the Message 1 to form ED2. The encryption part of the Message
2, ED2 = (SID, idI , idR,AEncAKe,AKa

(idI ||idR||Ni||CTIR), t.h(skR||idI)−1), is
then appended with a MAC computed with Krd.

Message 3 from R to I: When receiving the Message 2 from DG, R first verifies
the authenticity of the message by employing its shared key with DG, Krd.
Then, by multiplying the hashed value of its secret key skR and the identifier
of I (idI) to the fifth part of ED2, (t.h(skR||idI)−1), it obtains t, which is a
number on Zp. From t, I generates the secret ephemeral authentication keys
AK = KDF (idI , idR, t) = (AKe, AKa). Next, it decrypts the fourth part of the
Message 2 using (AKe, AKa) to get the value of (idI , idR, Ni1, CT ′). It verifies
subsequently that CT ′ is superior or equal to its counter number CTRI to be
sure about the freshness of the Message 2 (see Section 4.1). The counter value
of R, CTRI , is now set to the value of CT ′. To construct the Message 3, R first
chooses randomly Nr from Zp. Next, it increases CTRI by one. R now encrypts
the concatenation of (SID, idR, idI , Ni1, t, Nr) with the generated key AKe. The
encrypted data is then appended with the session identifier SID to obtain the
encryption part. The latter is finally integrity protected with a MAC based on
the generated secret key AKa.

Message 4 from I to R: After receiving the Message 3 from R, I first approves
the authenticity of the message using AKa. Next, it decrypts the encrypted part
by employing the secret key AKe to get the values of (SID1, idR, idI , Ni2, t1,
Nr1, CTRI1). I verifies that (SID1, Ni2, t1) is equal to the generated values
(SID,Ni, t). It also verifies that CTRI1 = CTIR + 1. Finally, the session keys
are generated from the values (CTRI1, Ni, Nr1) and the identifiers of I and R:

Ks = KDF (CTRI1, idI , idR, Ni, Nr1). I macs the concatenation of (SID, idI ,
idR, Ni, Nr1) using the session key Ks and sends directly to R the hashed value
appended with the session identifier SID as a key confirmation message.

I DG R

Message 1: SID, idI , idR,AEncAKe,AKa(idI ||idR||
Ni||CTIR), t.h(skI ||idR),MAC1(Kid)

Message 2: SID, idI , idR,AEncAKe,AKa(idI ||idR
||Ni||CTIR), t.h(skR||idI)−1,MAC2(Krd)

Message 3: SID,EncAKe(SID||idR||idI ||Ni1||t||Nr||CTRI),MAC3(AKa)

Message 4: SID,MACKs(SID||idI ||idR||Ni||Nr1)

incr(CTIR), Ni ← Zp, t← Zp,
AK = KDF (idI , idR, t) = (AKe, AKa)

Compute t.h(skI ||idR).dkIR = t.h(skR||idI)−1

Get t = h(skR||idI).(t.h(skR||idI)−1),
AK = KDF (idI , idR, t) = (AKe, AKa)

(idI , idR, Ni1, CT ′)← ADecAKe,AKa(AEncAKe,AKa(idI ||idR||Ni||CTIR)),
Verify if !(CT ′ < CTRI), then let CTRI = CT ′ and

generate Nr ← Zp, incr(CTRI)

Get (SID1||idR||idI ||Ni2||t1||Nr1||CTRI1)
= DecAKe(EncAKe(idR||idI ||Ni1||t||Nr||CTRI))

Verify if SID1 = SID, Ni2 = Ni, CTIR + 1 = CTRI1 and t1 = t,
then generate Ks = KDF (CTRI1, idI , idR, Ni, Nr1)

Generate Ks = KDF (CTRI , idI , idR, Ni1, Nr),
Verify if (Message 4) = MACKs(SID||idI ||idR||Ni1||Nr)

Fig. 3. Lightweight Secure Key Agreement for IoT
Meaning of abbreviations: dkIR = (h(skI ||idR).h(skR||idI))

−1; incr(CT): CT =

CT + 1; Message i = (EDi,MACi(K)) for i = 1, 2, 3, e.g. ED1 = (idI , idR,

AEncAKe,AKa (idI ||idR||Ni||CTIR), t.h(skI ||idR)), MAC1(Kid) = MACKid
(ED1).

Security keys needed for each participant: I (CTIR, skI , Kid), DG (Kid, Krd, dkIR), R

(CTRI , skR, Krd).

Upon receiving the Message 4, R first generates the session key Ks from the
identifiers (idI , idR), the obtained Ni1 in the Message 2, the generated value Nr

and its counter number CTRI . Then, it calculates a MAC from the concatena-
tion of (SID, idI , idR, Ni1, Nr) using the generated session key Ks. If the latter
is identical to the received Message 4, I and R can now start secure communica-
tions, e.g. using standard security protocols such as DTLS-PSK [16] where the
pre-shared keys are provided beforehand by our proposal.

4 Security analysis

In this section, we first provide an informal security analysis of AKAPR by
describing its resistance against common security attacks. Then, we validate the
security of AKAPR using the cryptographic protocol analyzing tool ProVerif [6].

4.1 Resistance against attacks

Our proposal is resistant to the following attacks:

– Replay attack: This attack is mitigated by the used counter numbers (CTIR,
CTRI) and the random numbers (Ni, Nr) at run-time. The replays of messages
1 and 2 are detected thanks to the counter numbers (CTIR, CTRI). Indeed,
for any new session, I increases the value of CTIR by one. This value is then
encrypted inside the Message 1. Upon receiving the Message 2, R can be sure
about the freshness of this message by comparing its counter number CTRI

with CT ′. If the latter is inferior than CTRI then the message is detected as
replayed. On the other hand, the freshness of the Messages 3 and 4 are assured
by the pair of random values Nr and Ni since they are newly generated for each
session. DG can also prevent replay attacks by keeping the session identifier
SID. Because CTIR is increased by one for each communication, the latter
will vary in each session.

– Denial-of-service attack (DoS): The Dos attacks aiming at each participant are
reduced in our proposal because all exchanges between parties are authenti-
cated. Indeed, each message is appended with an authentication code (MAC)
that permits the receiving party to verify if the message is altered during the
transmission. Further operations are canceled if the verification fails.

– Man in the middle attack (MITM): The attacker cannot impersonate any
party in our protocol since each message is protected by the secret keys that
are unknown to him. As such, the Message 1 and the Message 2 are encrypted-
then-maced by (AKe,Kid) and (AKe,Krd), respectively. The Message 3 is
encrypted then maced by the ephemeral secret keys AK = (AKe, AKa), while,
the Message 4 is protected by the new generated session key Ks.

– Key escrow attack: DG is a blind participant in the key agreement proce-
dure. It aids the key negotiation without having any knowledge on the agreed
session key and the secret keys of I and R. Indeed, although DG partic-
ipates in the key negotiation process, it possesses only the delegation key
dkIR = (h(skI ||idR).h(skR||idI))−1) for each pair of Initiator and Responder.
In addition, without knowing the secret key of I and R, DG cannot distin-
guish dkIR, t.h(skR||idI) and t.h(skI ||idR)−1 from a random number on Zp.
The only actor that can intercept message exchanges between I, R and DG
is the KDC. However, we have assumed that KDC is a totally trusted party
which is responsible for the keying material generations and stays offline.

– Collusion attack: This feature inherits the collusion-resistance property of the
proposed PRE scheme in Section 2. As such, even if DG colludes with one
party, it cannot retrieve the secret key of the other party thanks to the one-
way property of the hash function h. Indeed, if R collaborates with DG, they
will get the values of t, AK,Ni and Nr. However, only the messages dedicated
for R of I are affected. In fact, DG can only have the value of h(skI ||idR) which
does not help him to find the secret key of I, skI . If DG colludes with I, I can
then decrypt itself the Message 3, which contains no secret information of R.
The colluding parties can achieve the value of h(skR||idI). However, they are
unable to guess the secret skR of R thanks again to the one-way property of
hash functions.

The above security attacks except the MITM attacks, are usually impossible
to be detected by an automatic software verifier (e.g. ProVerif [6]). In practice,
the latter is used to verify if the essential security properties, such as mutual
authentication and secret key protection, are provided in the testing crypto-
graphic protocol. We provide more details on such software verification in the
next section.

4.2 Formal security validation with ProVerif

In this section, we present a formal verification of AKAPR using ProVerif [6].
Our verification ensures that the proposed protocol provides the secrecy of the
generated session keys and the authentication of participants.

ProVerif is an automatic verifier for cryptographic protocols defined in the
Dolev-Yao model [14]. In such model, the attacker is an active eavesdropper,
capable of obtaining any message passing in the network, initiating a conversa-
tion with any other users and impersonating as a legitimate receiver. It is only
limited by the restrictions of the cryptographic methods used. In other words,
the cryptographic primitives is considered idealized in the sense that they are
unbreakable without knowing the employed secret keys.

In Listing 1.2, we provide the ProVerif verification code of our protocol
AKAPR while respecting the description written in Section 3.3. A protocol de-
scription in ProVerif is divided into three parts: the declarations, the process
macros and the main process. As described in Lines 1-44, the declaration part
consists of the user types, the security properties, the cryptographic primitive
functions and the list of defined events and queries. We define the types, the
communication channel and the identifiers of the participating parties in Lines
1-6. The tables specified in Lines 8-11 are employed to model the storage of keys
in a server. Only I, R and DG can use these tables to get the associations be-
tween host names and keys. Note that we use the table ctr(host,Zp) to store the
counter value of a specific host. To describe the synchronization of the counter
values in both sides (I and R), we model only the ideal situation where there is
no failed session between them. In such case, the counter values of I and R are
equal. The detailed synchronization process is described in Lines 52-54, 68, 87
and 90 of Listing 1.2. Furthermore, the secrecy assumptions are specified in Lines
13-16. For example, sk I and K id define the secret key of I and its shared key
with DG. These keys are kept secret to the attackers. Then, Lines 18-30 describe
the cryptographic functions needed in our protocol. For example, the function
(kdf h(Zp, host) : Zp) generates the hashed value h(aZpNumber||aHostName). On
the other hand, the function (mask(Zp,Zp) : Zp) denotes a simple multiplication
on Zp. Other functions are self-explained according to the protocol specification
as depicted in Section 3. As we shall see, the correctness of the re-encryption
process is modeled in Lines 32-35 based on the commutativity of multiplication
on Zp. Finally, we introduce a list of events and queries in Lines 37-44. For exam-
ple, the event beginRkey(host, host, key) represents the request from I to create
a trusted session with R. The defined events play as reference points for the
protocol execution order.

In ProVerif, we can ensure the authentication by testing the correspondence
assertions between the aforementioned events. Indeed, we verify the mutual au-
thentication between I and R using queries defined in Lines 43-44. For example,
the first query in Line 43 says that, if event endRkey(host, host, key) occurs then,
event beginRkey(host, host, key) must have occurred before. Furthermore, our sec-
ond interest of this protocol modeling is to verify the secrecy of the negotiated
session key K s. To do so, I and R choose a random number in each side and
output the ciphertext encrypted with K s. Then, they challenge the attacker to
find the encrypted data by the queries specified in Lines 41-42. The attacker
can obtain the underlying data if and only if having the secret key K s since the
cryptographic primitives are considered as black-boxes in ProVerif.

The second part of AKAPR ProVerif program describes the process macros
for participants I, R and DG. They are specified in Lines 46-74, Lines 76-
99 and Lines 101-109, respectively. These macros present the operations of I,
R and DG during AKAPR execution. Note that in lines 57, 71, 86 and 98,
we insert the events that we specified earlier. The other four process macros
processDK, processKD, processK and processCTR fill the four tables of secret keys
defined in Lines 8-11.

In the last part of Listing 1.2, we specify the main process (Lines 127-141) of
the AKAPR ProVerif program. It instantiates the keying materials needed, in-
serts these keys to the right tables and runs the defined macros unlimited times.

The output of the program when running with ProVerif is summarized in
Listing 1.1.

1 RESULT event (endIkey (x 72 , y 73 , z)) ==> event (beg inIkey (x 72 ,
y 73 , z)) i s t rue .

2 RESULT event (endRkey (x 3724 , y 3725 , z 3726)) ==> event (
beginRkey (x 3724 , y 3725 , z 3726)) i s t rue .

3 RESULT not a t ta cke r (s e c r e t I [! 1 = v 7305]) i s t rue .
4 RESULT not a t ta cke r (secretR []) i s t rue .

Listing 1.1. AKAPR verification results

The result in Lines 1-2 informs us that AKAPR provides mutual authentication
of the two participants I and R. As such, the proved correspondence property
in Line 1 implies that R authenticates I by the fact that I can correctly retrieve
the session key Ks. On the other hand, Line 2 shows that I authenticates R since
the latter can obtain the correct ephemeral key AK after receiving the Message
2. In addition, Lines 3-4 show the results of the queries not attacker(secretI[])
and not attacker(secretR[]) returned by ProVerif. As we shall see, these results
are true, which means that the secrecy of the random values secretI and secretR
are preserved by the protocol. In other words, the secrecy of the session key
generated by AKAPR is also preserved.

The above ProVerif verification has several limitations. Indeed, in ProVerif,
the hypothesis of perfect cryptography is considered, meaning that the only way
to decrypt an encrypted message is to use the right secret key. Besides, in Line 18-
35, we have to model the modular multiplication and its commutative property

required in the re-encryption process by defining several new functions. This is
necessary because real modular multiplication cannot be handled by ProVerif.
In fact, ProVerif verification might not terminate when dealing with protocols
that use algebraic operations such as modular multiplication or Exclusive-or.
In addition, several security protocols that are conceptually safe, but are found
flawed when considering algebraic properties as described in [21]. As a result, one
can complete the above formal verification using other tools such as CryptoVerif
[10], CL-Atse [28] or OFMC [4], which support most of algebraic properties and
provide more realistic assumptions, e.g. the hypothesis of perfect cryptography
is not required.

5 Conclusion

In this paper, we first introduced a novel proxy re-encryption scheme that re-
quires only symmetric cipher to encrypt data. We showed that although our
scheme is bidirectional and single-use, it provides the most important features:
non-transitivity and collusion-resistance. Furthermore, the scheme is much more
efficient when compared with related solutions that use asymmetric approaches.
Second, we proposed a novel authenticated delegation-based and lightweight key
agreement protocol to be used in the Internet of Things. This protocol is built
upon the proposed proxy re-encryption scheme. The security of our solution has
been formally validated by ProVerif. In addition, thanks to the used symmetric
primitives, the proposed key agreement mechanism is very lightweight since it
does not require any expensive cryptographic operations such as pairing opera-
tion or modular exponentiation. The proposed protocol can be applied even in
class 1 devices with extremely resource-constrained profile.

References

1. Gartner inc., forecast: The internet of things, worldwide, 2013.
2. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved

proxy re-encryption schemes with applications to secure distributed storage. ACM
Transactions on Information and System Security (TISSEC), 9(1):1–30, 2006.

3. Elaine B Barker and John Michael Kelsey. Recommendation for random number
generation using deterministic random bit generators (revised). 2007.

4. David Basin, Sebastian Mödersheim, and Luca Vigano. An on-the-fly model-
checker for security protocol analysis. In European Symposium on Research in
Computer Security, pages 253–270. Springer, 2003.

5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73. ACM, 1993.

6. Bruno Blanchet. Automatic verification of correspondences for security protocols.
Journal of Computer Security, 17(4):363–434, 2009.

7. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Advances in CryptologyEUROCRYPT’98, pages 127–144.
Springer, 1998.

8. Dan Boneh. Algorithmic Number Theory: Third International Symposiun, ANTS-
III Portland, Oregon, USA, June 21–25, 1998 Proceedings, chapter The Decision
Diffie-Hellman problem, pages 48–63. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1998.

9. Carsten Bormann, Mehmet Ersue, and A Keranen. Terminology for constrained-
node networks. Internet Engineering Task Force (IETF), RFC, 7228, 2014.

10. David Cadé and Bruno Blanchet. Proved generation of implementations from
computationally secure protocol specifications1. Journal of Computer Security,
23(3):331–402, 2015.

11. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In Proceedings of the 14th ACM conference on Computer and com-
munications security, pages 185–194. ACM, 2007.

12. Sherman SM Chow, Jian Weng, Yanjiang Yang, and Robert H Deng. Efficient
unidirectional proxy re-encryption. In Progress in Cryptology–AFRICACRYPT
2010, pages 316–332. Springer, 2010.

13. Debra L Cook and Angelos D Keromytis. Conversion functions for symmetric key
ciphers. Journal of Information Assurance and Security, 2:41–50, 2006.

14. Danny Dolev and Andrew C Yao. On the security of public key protocols. Infor-
mation Theory, IEEE Transactions on, 29(2):198–208, 1983.

15. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in cryptology, pages 10–18. Springer, 1984.

16. Pasi Eronen and Hannes Tschofenig. Pre-shared key ciphersuites for transport
layer security (tls). Technical report, RFC 4279, December, 2005.

17. Sepideh Fouladgar, Bastien Mainaud, Khaled Masmoudi, and Hossam Afifi. Tiny
3-tls: A trust delegation protocol for wireless sensor networks. In Security and
Privacy in Ad-Hoc and Sensor Networks, pages 32–42. Springer, 2006.

18. Jorge Granjal, Edmundo Monteiro, and Jorge Sa Silva. End-to-end transport-layer
security for internet-integrated sensing applications with mutual and delegated ecc
public-key authentication. In IFIP Networking Conference, 2013, pages 1–9. IEEE,
2013.

19. Matthew Green and Giuseppe Ateniese. Identity-based proxy re-encryption. In
Applied Cryptography and Network Security, pages 288–306. Springer, 2007.

20. René Hummen, Hossein Shafagh, Shahid Raza, Thiemo Voig, and Klaus Wehrle.
Delegation-based authentication and authorization for the ip-based internet of
things. In Sensing, Communication, and Networking (SECON), 2014 Eleventh
Annual IEEE International Conference on, pages 284–292. Ieee, 2014.

21. Pascal Lafourcade, Vanessa Terrade, and Sylvain Vigier. Comparison of crypto-
graphic verification tools dealing with algebraic properties. In International Work-
shop on Formal Aspects in Security and Trust, pages 173–185. Springer, 2009.

22. Toshihiko Matsuo. Proxy re-encryption systems for identity-based encryption. In
Pairing-Based Cryptography–Pairing 2007, pages 247–267. Springer, 2007.

23. Sangram Ray and GP Biswas. Establishment of ecc-based initial secrecy usable
for ike implementation. In Proc. of World Congress on Expert Systems (WCE),
2012.

24. Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt.
Lithe: Lightweight secure coap for the internet of things. Sensors Journal, IEEE,
13(10):3711–3720, 2013.

25. Yosra Ben Saied, Alexis Olivereau, Djamal Zeghlache, and Maryline Laurent.
Lightweight collaborative key establishment scheme for the internet of things. Com-
puter Networks, 64:273–295, 2014.

26. Savio Sciancalepore, Angelo Capossele, Giuseppe Piro, Gennaro Boggia, and
Giuseppe Bianchi. Key management protocol with implicit certificates for iot
systems. In Proceedings of the 2015 Workshop on IoT challenges in Mobile and
Industrial Systems, pages 37–42. ACM, 2015.

27. Amril Syalim, Takashi Nishide, and Kouichi Sakurai. Realizing proxy re-encryption
in the symmetric world. In Informatics Engineering and Information Science, pages
259–274. Springer, 2011.

28. Mathieu Turuani. The cl-atse protocol analyser. In International Conference on
Rewriting Techniques and Applications, pages 277–286. Springer, 2006.

29. Floris Van den Abeele, Tom Vandewinckele, Jeroen Hoebeke, Ingrid Moerman,
and Piet Demeester. Secure communication in ip-based wireless sensor networks
via a trusted gateway. In Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2015 IEEE Tenth International Conference on, pages 1–6.
IEEE, 2015.

Appendix

1 type host .
2 type key .
3 type mkey .
4 type Zp .
5 f r e e c : channel .
6 f r e e I , R: host .
7
8 tab l e msKey(host , Zp) .
9 tab l e transMsKey (host , host , Zp) .

10 tab l e keys (host , mkey) .
11 tab l e c t r (host , Zp) .
12
13 not a t tacke r (new K id) .
14 not a t tacke r (new K rd) .
15 not a t tacke r (new sk I) .
16 not a t tacke r (new sk R) .
17
18 fun addone (Zp) : Zp .
19 fun enc (b i t s t r i n g , key) : b i t s t r i n g .
20 reduc f o r a l l x : b i t s t r i n g , y : key ; denc (enc (x , y) , y) = x .
21 fun mac(b i t s t r i n g , mkey) : b i t s t r i n g .
22 fun kdf AK(host , host , Zp) : key .
23 fun mkdf AK(host , host , Zp) : mkey .
24 fun kdf h (Zp , host) : Zp .
25 fun kd f fn (Zp , host , host , Zp , Zp) : key .
26 fun mkdf fn (Zp , host , host , Zp , Zp) : mkey .
27 fun mask(Zp , Zp) : Zp .
28 fun kd f rk (Zp , Zp) : Zp .
29 fun inv (Zp) : Zp .
30 fun s id gen (host , host , Zp) : b i t s t r i n g .
31
32 reduc f o r a l l r : Zp , k1 : Zp , k2 : Zp ;
33 reenc (mask(r , k1) , kd f rk (k1 , k2)) = mask(r , inv (k2)) .
34 reduc f o r a l l r : Zp , k : Zp ;
35 unmask (mask(r , inv (k)) , k) = r .
36
37 event beg inIkey (host , host , key) .
38 event endIkey (host , host , key) .
39 event beginRkey (host , host , key) .
40 event endRkey (host , host , key) .
41 query at tacke r (new s e c r e t I) ;
42 at tacke r (new secretR) .
43 query x : host , y : host , z : key ; event (endRkey (x , y , z)) ==> event (beginRkey (x , y , z)

) .
44 query x : host , y : host , z : key ; event (endIkey (x , y , z)) ==> event (beg inIkey (x , y , z)

) .
45
46 l e t p r o c e s s I =
47 new s e c r e t I : b i t s t r i n g ;
48 in (c , hostR : host) ;
49 get keys(=I , kid) in
50 new Ni : Zp ;
51 new t : Zp ;
52 get c t r (=I , c t i 0) in
53 l e t c t i : Zp = addone (c t i 0) in
54 i n s e r t c t r (I , c t i) ;
55 l e t AK e : key = kdf AK(I , hostR , t) in
56 l e t AK a : mkey = mkdf AK(I , hostR , t) in
57 event beginRkey (I , hostR , AK e) ;
58 new w: Zp ; l e t SID : b i t s t r i n g = s id gen (I , hostR , w) in
59 l e t e1 : b i t s t r i n g = enc ((I , hostR , Ni , c t i) , AK e) in

60 l e t me1 : b i t s t r i n g = mac(e1 , AK a) in
61 get msKey(=I , k i) in
62 l e t tb : Zp = mask(t , kdf h (ki , hostR)) in
63 l e t mac1 : b i t s t r i n g = mac ((SID , I , hostR , e1 , me1 , tb) , kid) in
64 out (c , (SID , I , hostR , e1 , me1 , tb , mac1)) ;
65 in (c , (=SID , e2 : b i t s t r i n g , mac2 : b i t s t r i n g)) ;
66 i f mac ((SID , e2) , AK a) = mac2 then
67 l e t (=SID , =hostR , =I , =Ni , =t , Nrp : Zp , c t rp : Zp) = denc (e2 , AK e) in
68 i f (c t rp = addone (c t i)) then
69 l e t K s : key = kd f fn (ct rp , I , hostR , Ni , Nrp) in
70 l e t m Ks : mkey = mkdf fn (ct rp , I , hostR , Ni , Nrp) in
71 event beg inIkey (I , hostR , K s) ;
72 l e t mac3 : b i t s t r i n g = mac ((SID , I , hostR , Ni , Nrp) , m Ks) in
73 out (c , (SID , mac3)) ;
74 out (c , enc (s e c r e t I , K s)) .
75
76 l e t processR =
77 new secretR : b i t s t r i n g ;
78 in (c , (SID : b i t s t r i n g , hos t I : host , =R, e4 : b i t s t r i n g , me4 : b i t s t r i n g , tbp : Zp ,

mac4 : b i t s t r i n g)) ;
79 get keys(=R, krd) in
80 i f mac ((SID , hostI , R, e4 , me4 , tbp) , krd) = mac4 then
81 get msKey(=R, kr) in
82 l e t tp : Zp = unmask (tbp , kdf h (kr , hos t I)) in
83 l e t AK ep : key = kdf AK(hostI , R, tp) in
84 l e t AK ap : mkey = mkdf AK(hostI , R, tp) in
85 i f mac(e4 , AK ap) = me4 then
86 event endRkey (hostI , R, AK ep) ;
87 get c t r (=R, c t r) in
88 l e t (=hostI , =R, Nip : Zp , =c t r) = denc (e4 , AK ep) in
89 new Nr : Zp ;
90 i n s e r t c t r (R, addone (c t r)) ;
91 l e t e5 : b i t s t r i n g = enc ((SID , R, hostI , Nip , tp , Nr) , AK ep) in
92 l e t mac5 : b i t s t r i n g = mac ((SID , e5) , AK ap) in
93 out (c , (SID , e5 , mac5)) ;
94 in (c , (=SID , mac6 : b i t s t r i n g)) ;
95 l e t K s : key = kd f fn (addone (c t r) , hostI , R, Nip , Nr) in
96 l e t m Ks : mkey = mkdf fn (addone (c t r) , hostI , R, Nip , Nr) in
97 i f mac ((SID , hostI , R, Nip , Nr) , m Ks) = mac6 then
98 event endIkey (hostI , R, K s) ;
99 out (c , enc (secretR , K s)) .

100
101 l e t processDG =
102 in (c , (SID : b i t s t r i n g , hos t I : host , hostR : host , e7 : b i t s t r i n g , td : Zp , mac7 :

b i t s t r i n g)) ;
103 get keys(=hostI , kd1) in
104 i f mac ((SID , hostI , hostR , e7 , td) , kd1) = mac7 then
105 get transMsKey(=hostI , =hostR , dk i r) in
106 l e t tdr : Zp = reenc (td , dk i r) in
107 get keys(=hostR , kd2) in
108 l e t m7: b i t s t r i n g = mac ((SID , hostI , hostR , e7 , tdr) , kd2) in
109 out (c , (SID , hostI , hostR , e7 , td , m7)) .
110
111 l e t processDK =
112 in (c , (h i : host , hr : host , k : Zp)) ;
113 i f (h i <> I) && (hr <> R) then i n s e r t transMsKey (hi , hr , k) .
114
115 l e t processKD =
116 in (c , (h : host , k : mkey)) ;
117 i f (h <> I) && (h <> R) then i n s e r t keys (h , k) .
118
119 l e t processK =
120 in (c , (h : host , r : Zp)) ;
121 i f (h <> I) && (h <> R) then i n s e r t msKey(h , r) .
122
123 l e t processCTR =
124 in (c , (h : host , r : Zp)) ;
125 i f (h <> I) && (h <> R) then i n s e r t c t r (h , r) .
126
127 proce s s
128 new sk I : Zp ;
129 new sk R : Zp ;
130 new K id : mkey ;
131 new K rd : mkey ;
132 new cpt : Zp ;
133 i n s e r t c t r (I , cpt) ;
134 i n s e r t c t r (R, cpt) ;
135 i n s e r t msKey(I , s k I) ;
136 i n s e r t msKey(R, sk R) ;
137 i n s e r t keys (I , K id) ;
138 i n s e r t keys (R, K rd) ;
139 l e t dgIR : Zp = kdf rk (kdf h (sk I , R) , kdf h (sk R , I)) in
140 i n s e r t transMsKey (I , R, dgIR) ;
141 ((! p r o c e s s I) | (processR) | (! processDG) | (! processK) | (! processKD) | (!

processDK) | (! processCTR))

Listing 1.2. ProVerif code of AKAPR

