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ABSTRACT 

 

Electrical brain oscillations reflect fluctuations in neural excitability. Fluctuations in the alpha band 

(α, 8-12 Hz) in the occipito-parietal cortex are thought to regulate sensory responses, leading to cyclic 

variations in visual perception. Inspired by this theory, some past and recent studies have addressed 

the relationship between α-phase from extra-cranial EEG and behavioural responses to visual stimuli 

in humans. The latest studies have used offline approaches to confirm α-gated cyclic patterns. 

However, a particularly relevant implication is the possibility to use this principle online for real-

time neurotechnology, whereby stimuli are time-locked to specific α-phases leading to predictable 

outcomes in performance. Here we aimed at providing a proof-of-concept for such real-time 

neurotechnology. Participants performed a speeded response task to visual targets that were 

presented upon a real-time estimation of the α-phase via an EEG closed-loop brain-computer 

interface (BCI). We predicted, according to the theory, a modulation of reaction times (RTs) along 

the α-cycle. Our BCI system achieved reliable trial-to-trial phase-locking of stimuli to the phase of 

individual occipito-parietal α-oscillations. Yet, the behavioural results did not support a consistent 

relation between RTs and the phase of the α-cycle neither at group nor single participant levels. We 

must conclude that although the α-phase might play a role in perceptual decisions from a theoretical 

perspective, its impact on EEG-based BCI application appears negligible.  

 

   



 

INTRODUCTION 

 

Alpha oscillations (α, 8-12 Hz) in the occipito-parietal cortex reflect ongoing fluctuations in cortical 

excitability (Bishop, 1932; Adrian & Matthews, 1934; Worden et al., 2000; Kelly et al., 2006). It 

follows that the perceptual fate of a visual stimulus would depend upon the instant it evokes neural 

activity within the ongoing α-cycle, leading to cyclic alternations between more and less favourable 

phases for perceptual processing (Klimesch et al., 2007; Jensen & Mazaheri, 2010; Klimesch, 2012; 

Jensen et al., 2014; VanRullen, 2016a). This hypothesis has been entertained for nearly a hundred 

years (since Bishop, 1932), and it has revived recently (see VanRullen, 2016a). The fact that α-

fluctuations can be picked up extra-cranially via magnetic- or electrical encephalography (M/EEG) 

makes α an optimal candidate to study human perception non-invasively. Specifically, both the 

power (Worden et al., 2000; Ergenoglu et al., 2004; Babiloni et al., 2006; Kelly et al., 2006; Thut et 

al., 2006; Klimesch et al., 2007; Palva & Palva, 2007; Foxe & Snyder, 2011) and the phase of the 

occipito-parietal α (Klimesch et al., 2007; Palva & Palva, 2007; Mathewson et al., 2009; Klimesch, 

2012; Jensen et al., 2014; VanRullen, 2016b) have been linked to performance in visual perception 

(van Dijk et al., 2008; Jensen & Mazaheri, 2010; Jensen et al., 2011; Samaha & Postle, 2015; 

VanRullen, 2016a). However, while the evidence for the role of α-power in perceptual judgments 

seems well-established (Walsh, 1952; Lansing et al., 1959; Jensen et al., 2011; Bompas et al., 2015; 

but see Benwell et al., 2017), the role of the α-phase is still not clearly settled (Walsh, 1952; O’Hare, 

1954; Benwell et al., 2017; Ruzzoli et al., 2019). 

So far, most studies have used an offline approach to study changes in perception based on the α-

phase. In these studies, stimuli that demand a behavioural response are presented at random (or 

pseudo-random) intervals while EEG is recorded, and at a later time trials are separated in terms of 

the behavioural outcome (hit vs miss; fast vs slow reaction times -RTs) and sorted post-hoc based on 

which phase within the pre-target α-cycle, the stimuli happened to fall. Average responses are then 

statistically compared across phase bins to conclude on a phase-behavioural relationship (see Busch 

et al., 2009 for an example). A significant correlation between phase and behaviour, when found, 

provides support for the theory. 



 

 

However, the possibility to link α-fluctuations to behaviour via non-invasive methods, such as EEG, 

is also attractive given the potential applications in Brain-Computer Interfaces (BCI) (Jensen et al., 

2011; Zrenner et al., 2016). For example, one could design closed-loop BCI systems that deliver 

information at favourable brain states for perceptual encoding to improve alerting, learning or 

memory (Brunner et al., 2015; see Zrenner et al., 2016 for examples in the motor domain).  

To harness on the α-theories to develop BCI systems, one must use an online approach, which should 

be efficient even at the single-subject level. Real-time EEG analysis allows BCI settings to trigger 

stimuli at precise phase angles during the ongoing fluctuations in the individual α-rhythm that are 

thought to be associated with specific outcomes (hit/miss, fast/slow RTs). This approach exploits a 

specific brain-behaviour relationship (e.g., α-phase and perception) to augment encoding of 

information with millisecond precision. The efficiency of closed-loop BCI must rely on predictable 

brain-behaviour relationships, in which the relevant parameters at play must be known beforehand. 

Hence, in turn, the attempt at using a closed-loop BCI approach is a test bench of neuro-cognitive 

theories such as the α-theories. 

Interestingly, a good number of studies in the sixties already capitalized on the idea of time-locking 

stimulus presentation to the α-phase in real-time. Such attempts were popular enough by the middle 

of the decade as to prompt Callaway & Layne to write “The idea of presenting photic stimuli at 

various phases of the spontaneous alpha rhythm to alter degrees of photic driving has occurred to 

many investigators” (Callaway & Layne, 1964, pp 421). In one preeminent study published in the 

journal Science in 1960, Callaway & Yeager (Callaway & Yeager, 1960) endeavoured a closed-loop 

BCI addressing the relationship between the α-phase and RTs to visual events. They found that RTs 

were modulated as a function of the instant within the α-cycle the target flash was presented (see 

Lansing, 1957; Dustman & Beck, 1965 for similar results also in a real-time setting). Despite the 

substantial potential impact such closed-loop BCI on both theory and application, to the best of our 

knowledge, no modern study has implemented and reported a similar real-time protocol harnessing 

on occipital α-phase. The 60-year hiatus is remarkable, especially considering the α-theories are still 

entirely current up to this date.  



 

Here, we capitalized on the putative relationship between the phase of ongoing α-oscillations and 

visual perception adopting a closed-loop BCI approach to provide new evidence for the α-theories, 

which opened enduring questions a long time ago. At the same time, the present study aimed at 

providing a proof of concept for the use of the phase of ongoing α-oscillations as a control signal in 

a closed-loop BCI system for practical applications. This experiment is a modern replication of 

Callaway & Yeager’ study (1960). We employed a visual speeded detection task in which the visual 

target was triggered in real-time as a function of the phase of the participant’s α-cycle. We expected 

that visual RTs would fluctuate along the α-cycle, or at least, that it should be possible to find two 

distinct phases associated with fast and slow RTs, respectively. The hypothesis, the procedure and 

the pipeline of the analysis were pre-registered before data collection (https://osf.io/nfdsv/). 

Deviations from the pre-registered procedure and exploratory analyses are clearly stated in the 

manuscript. 

METHODS 

Participants 

Sample size. We planned a maximum sample of 16 participants with a stopping rule set after a 

minimum of 8 participants (see details below). Participants were selected without previous history 

of neurological or psychiatric diseases, with normal or corrected to normal vision, within 18-35 years 

old. The minimum/maximum sample size was decided a priori based on a Monte Carlo simulation 

on Callaway & Yeager’ data (1960) (See Figure S1). We estimated that if less than 3 participants out 

of 8 showed a significant difference between fast and slow phase bins, then the size of the effect in 

this experiment would be null or negligible compared to the original study (Callaway & Yeager, 

1960), assuming an error of 5%.  

Exclusion criteria. A participant was excluded if any of the following criteria were met: (1) No peak 

within the α-band: This criterion applied to the screening stage and ensured that the individual’s 

endogenous α-oscillation could be registered with a sufficiently high signal-to-noise ratio (SNR) to 

enable the BCI system to estimate instantaneous phases from the EEG signal reliably. This decision 

https://osf.io/nfdsv/


 

was based on two sub-criteria: strength and uniqueness (see Screening and estimation of the 

Individual Frequency of Interest section for more details). (2) Experiment duration: Given that we 

had a block stopping rule based on the number of trials per phase bin, the length of the experiment 

could vary as a function of how frequently the EEG phase could be reliably estimated for stimulus 

presentation. Hence, we had to establish an experiment duration limit. We decided to stop the 

experiment if a participant spent more than 10 minutes in the training block or two consecutive blocks 

within the real-time experimental stages. This criterion was added after we had run the first 2 

participants, which required an update of the pre-registered protocol1. 

We recruited 27 participants, 6 of which were discarded for not satisfying the required α-peak 

criterion in the screening stage, and 13 because of the duration criterion. The remaining 8 participants 

(aged 19-30 years, average 24 years, three females; all right-handed) completed the experiment. Data 

from excluded participants were not analysed. All the participants took part in the study voluntarily 

after giving informed consent, and they were compensated for their time with 10€ per hour. The 

duration of the experiment varied between 70 and 120 min. The study was designed in accordance 

with the Declaration of Helsinki and approved by the local ethics committee CEIC Parc de Mar 

(University Pompeu Fabra, Barcelona, Spain) before starting the recruitment.  

Experimental procedure 

The experimental protocol started with a screening, followed by a training and two consecutive 

experimental stages (explained below). In the training and experimental stages, participants 

performed a speeded visual detection task in which stimuli were presented according to the phase of 

the individual spontaneous α-activity in real-time (see Figure 1).  

Task. Participants sat on a comfortable chair wearing an EEG cap, and a pair of opaque sunglasses, 

with two LEDs, mounted on each lens. The LEDs were controlled through the parallel port (both 

LEDs switched on and off simultaneously; luminance 0.076 cd/m2 at an approximate distance to 

 
1 We considered that a duration of > 10 min x block (leading to more than 160 minutes approximately of total 

experimental time + EEG cap montage + debriefing) was unacceptable due to fatigue effects (or sleepiness, 

easy to happen with eyes closed). These factors can have an impact on the α-activity and, therefore, on our 

phase estimation in the BCI setting. 



 

participants’ eye of 1 cm)2. Participants were asked to keep their eyes closed throughout the 

experiment to maintain α-activity high and to limit eye movements (a strategy first suggested by 

Callaway & Yeager, 1960). We instructed the participants to remain attentive and to respond to the 

visual flashes as fast as possible by pressing a button in a response box using their right index finger. 

After the response (or after 1 second time out), the LEDs were switched off. An inter-trial interval 

(ITI), randomly chosen between 1500 and 2500 ms, was introduced between the button response (or 

1s time out) and the beginning of the next trial. RTs were measured from the onset of the visual target 

until a button press was detected. 

Training stage. Before the real-time experimental stages, participants were familiarised with the task 

in a training block (50 trials), identical to Stage 1 (see below).  

Experimental stages. After training, participants went on to Stage 1, where visual targets were aimed 

at 10 equally-spaced phase bins covering the whole α-cycle (see Real-time stimulus presentation). 

This experimental stage was divided into 10 blocks, each ending after the acquisition of at least 5 

valid RTs per phase bin, for a total of 50 RTs per phase bin across blocks. Once Stage 1 had been 

completed, the phase-bins corresponding to the fastest and slowest mean RTs were selected and used 

for Stage 2 (at the individual level). No statistical test was performed at Stage 1. Stage 2 started right 

after Stage 1. In Stage 2, visual targets were aimed only at the “fast” and the “slow” phase bins, 

estimated from Stage 1. Participants ran 4 blocks, each block ended after the collection of at least 25 

valid trials for each of the two-phase bins, for a minimum total of 100 trials per bin. 

EEG recording. Continuous EEG data were recorded at 500 Hz using the ENOBIO 20 5G system 

(Neuroelectrics, Barcelona, Spain) from 14-channels (F3, Fz, F4, C3, Cz, C4, P7, P3, Pz, P4, P8, O1, 

Oz, O2) with Cl-Ag electrodes placed according to the 10-20 international system. Impedance was 

kept below 10 kOhm, according to the Enobio coded system. Additional external electrodes were 

used to record vertical and horizontal eye movements. Electrode AFz was used as online reference 

 
2 Please note that it is not possible to infer the proper stimulus intensity from Callaway & Yeager’ (1960) 

experiment; therefore, we chose a fixed arbitrary value that was comfortable for the participants and ensure 

that response latencies were comparable to those in the original study. 



 

and the right mastoid as ground. Activity from the left mastoid was recorded for offline re-

referencing.  

Screening and estimation of the Individual Frequency of Interest (IFoI). We recorded 5 minutes of 

resting EEG with the eyes closed, which we used to determine the specific frequency of interest 

within the α-band for the real-time stages of the experiment. We estimated the power spectrum 

density (PSD) within the α-band (5-15 Hz) over occipito-parietal electrodes (OP-cluster: P7, P3, Pz, 

P4, P8, O1, Oz, O2) using the Welch method (window = 500 ms; overlap = 10%; resolution = 0.25 

Hz). For each participant, the power spectrum was averaged across the electrodes of interest and 

normalized by the mean power spectrum from 1 to 40 Hz. We verified the strength of the peak - 

power at the local maximum within the 5-15 Hz window is greater than average power in the 1-40 

Hz window - and its uniqueness - the peak is a single local maximum within a ± 5 Hz band. If a single 

frequency peak existed, it was considered as the IFoI3 and used later as a parameter for real-time 

analyses (Figure 1). If a unique frequency peak could not be detected, the participant was excluded 

from the study (see Exclusion Criterion 1). 

Real-time stimulus presentation. We developed a BCI setting to trigger flashes (LEDs) at a specific 

α-phase based on real-time data from electrode O1 (as in Callaway & Yeager, 1960) through custom-

built code in MATLAB (MathWorks, R2015.b). We used the Lab Streaming Layer (LSL) library 

(Swartz Center for Computational Neuroscience, UCSD, January 2018) to acquire EEG data with 

the ENOBIO acquisition software (NIC V2.0). Given that synchronization between the EEG time 

acquisition and local PC time is not supported for online streams by ENOBIO, we used an external 

signal (a parallel port pin connected to one of the ENOBIO electrodes) as time reference. In each 

iteration, we randomly pre-selected, among the bins available (10 bins in Stage 1, or 2 bins in Stage 

2), a phase bin when to send the stimulus trigger. Ten-seconds of EEG data from the O1-electrode 

were continuously buffered, demeaned, and band-pass filtered (Butterworth forward filter, order 2, 

IFoI ± 5 Hz). Amplitude and phase were estimated at each time point using the Hilbert-transform. 

 
3 We prefer to use the term Individual Frequency of Interest (IFoI), instead of Individual Alpha Frequency 

(IAF), often used in the literature, because we focused on a frequency range between 5-15 Hz, which spreads 

out a finer range in the conventional α-band (8-12 Hz).  



 

When the average amplitude in the last second of the buffer was above 30% of the median value of 

the buffered data, a reference time point was set at the peak (90°) of the last α-cycle. Then, the 

moment at which the phase of interest in a given trial would occur was forecasted by extending a 

sine wave (frequency = IFoI) from the reference point. We targeted one of the 10 phase bins (36º 

each) within the next α-cycle starting after a safety buffer of 72° (~20 ms) for computation time. The 

stimulus trigger switched on the LEDs at the latency corresponding to the centre of the targeted phase 

bin (error ≤ 2 ms).   

Responses and trial selection. Responses were collected from a button press via a response box 

connected to the parallel port. There was a response time out of 1 second after the stimulus, following 

which the next trial iteration began. If a response was registered before time out, we stored the RT 

and checked the accuracy of the real-time phase estimation by calculating the difference between the 

empirical phase at which the stimulus was delivered (according to the recorded EEG) and the 

intended one, using the Circular Statistics Toolbox in MATLAB (Berens, 2009). In Stage 1, if the 

stimulus had been triggered in an unintended phase, the trial was relocated to the actual (empirically 

measured) phase bin. In Stage 2, we only targeted two phases and set a tolerance of ± 1 phase bin to 

reduce the testing time, and we did not relocate trials. A trial was excluded if the empirical phase did 

not fall within the tolerance zone, or it fell in an overlapping bin between the slow and the fast bin 

(this could happen if the fast/slow bins were less than 72º apart).  

Only trials that satisfied all the following criteria were accepted as valid: (1) Reaction time criterion: 

RTs within 50 and 300 ms (as in Callaway & Yeager, 1960). (2) Amplitude criterion: the amplitude 

of the IFoI-cycle window centred at stimulus onset had to be above the 30% of the median amplitude 

in the last 10s (this threshold criterion facilitated reliable phase estimation at stimulus presentation).  

A block stopped when the intended number of trials per phase bin was reached (N=5 in Stage 1 or 

N=25 in Stage 2). In between blocks, participants took a break before starting a new one. Excess 

trials (which could happen due to trial relocation) were discarded.  

Statistical analyses 



 

Stage 1 was designed to estimate the phase bins corresponding to faster and slower RTs throughout 

the α-phase, whereas Stage 2 provided data for the validation of the hypothesis. In Stage 1, we only 

ran descriptive statistics to calculate average RTs per phase bin, and to select the phase bins of 

interest. If the fast and slow phase bins selected in Stage 1 would indeed be representative of neural 

excitability states related to visual perception, then sending targets to these phase bins in Stage 2 

should induce faster and slower responses, respectively. To test this prediction, in Stage 2, we 

performed individual and group-level analyses. For the individual analysis, we assessed the 

difference between the RTs collected in the predicted slow and predicted fast phase bins by a one-

tailed t-test (independent samples) with α-level = 0.05. Note that in Stage 2, if slow/fast bins (± 1 

phase bin) shared a common bin, then trials in that bin were post-hoc excluded and not used for the 

analysis. For the group analysis, we evaluated the difference between the mean RTs collected in the 

slow vs fast phase bins across participants by a one-tailed paired t-test with α-level = 0.05. 

RESULTS 

Here, we present the results obtained from the pre-registered analyses as explained above, which 

replicated the conditions of the seminal study by Callaway & Yeager (1960), followed by reality 

checks and a set of exploratory analyses.  

Results of the pre-registered analyses 

Stage 1: Selection of the fast/slow phase bins along α-cycle 

We collected an average of 1034 (SD=219) responses per participant. An average of 77 (SD=53; 

7.41%) trials were excluded because the RTs fell out of the 50 – 300 ms range and 341 (SD=190; 

33%) trials were excluded because the amplitude threshold criterion was not met, leaving an average 

of 617 (SD=36; 60%) valid trials per participant. Among the valid trials, 280 (SD=35; 45.33%) trials 

hit the target phase bin of interest whereas 337 (SD=61; 54.67%) trials had to be relocated to the 

intended phase bin offline (most of them fell on neighbouring bins, see Reality check 1: Accuracy of 

phase estimation during the real-time experiment, below). Therefore, we reached the intended 50 

valid trials per bin for each participant (following the elimination of excess trials). RTs for valid trials 



 

were on average 206 ms (SD=9 ms). We calculated the mean RT for each phase bin along the α-

cycle for each participant (see Figure 2 and Table S1; see Table S2 for information about the number 

of trials at the individual level), and selected the phase bins associated with the slowest and fastest 

mean RTs, to be used in Stage 2. Overall, the mean RT difference between slow and fast phase bins 

in Stage 1 was 12 ms (SD=4; Max=17 ms; Min=8 ms).  

At this point, if the distribution of slow and fast RTs meets the expectations of the α-theory, the 

corresponding slow and fast phase bins should fall on roughly opposite angles (approximately 180°). 

However, what we observed is that for most of the participants, slow and fast phase bins were closer 

than 180°, being the mean difference 90° (SD=51°).  

Stage 2: Validation of the α-phase relation to RT speed 

In Stage 2, we collected an average of 408 (SD=103) trials per participant. Among these, 31 (SD=14; 

7.65%) trials were excluded because they fell outside the RT criterion, 144 (SD=84; 35.30%) trials 

were excluded for not satisfying the amplitude threshold criterion, and 33 (SD=24; 8.09%) trials for 

not falling in the bin acceptance zone. After trial exclusion, we were left with a total of 200 valid 

trials each participant (100 trials per bin), as intended. Among these, an average of 107 (SD=24; 

54%) trials hit the target phase bin of interest (± 1 bin), whereas 93 (SD=24; 46%) trials were 

relocated. Note that from the valid trials, we discarded those trials that shared a common phase bin 

in the phase bin acceptance zone, leaving 79 (SD=15) and 86 (SD=13) trials on average for predicted 

slow and predicted fast trials, respectively. For information on the number of trials in Stage 2 at 

individual-level, see Table S3. 

The mean RT difference across participants between slow and fast phase bins in Stage 2 was -0.439 

ms (SD=4), which was not significant according to a group t-test (t(7)=-0.2977, p=0.6127, dz=-

0.1052). Individually, none of the participants presented a significant difference in RTs between the 

visual targets presented in the predicted slow and fast phase bins of the α-cycle (all ps > 0.1) (Table 

1).  

Interim discussion and reality checks 



 

The analyses according to the pre-registered pipeline adapted from Callaway & Yeager (1960) did 

not return a consistent relation between the phase of individual ongoing α-oscillations and the speed 

of responses to visual targets at the individual or group level. Compared to offline experimental 

approaches, where analyses can be adjusted retrospectively, real-time settings imply a priori 

parameter choices that can affect the outcome. Therefore, we proceeded to exclude the possibility 

that the null results from the main analyses may have originated from a priori choices in the real-

time setting. We focused on three aspects: First, we checked the accuracy of the closed-loop BCI 

system in sending the stimulus trigger at the intended phases along the α-cycle. Second, we 

questioned whether the choice of the IFoI based on resting EEG data was representative of the 

dominant α-frequency during the task. Finally, we checked that the electrode choice (O1) for the 

real-time α-phase estimation was representative of α-activity of interest in the occipito-parietal 

cluster of electrodes.  

Reality check 1: Accuracy of phase estimation during the real-time experiment 

The question here was how precisely the closed-loop BCI triggered visual stimuli at the desired 

phases along the α-cycle. We, therefore, selected all valid trials for each stage and extracted the phase 

at which the stimulus was presented from the empirical EEG offline, and computed the absolute 

difference between the desired and the actual phase using the Circular Statistics Toolbox (Berens, 

2009). On average, across phase bins and participants, our BCI system hit +1.21° (SD= 33.70°) off 

the intended phase in Stage 1, and +3.79° (SD= 25.43°) in Stage 2 (see Figure 3 and Figure S2 and 

S3 for individual results on phase accuracy in Stage 1 and Stage 2, respectively). The phase 

estimation accuracy of our real-time BCI setting seems comparable to previous attempts at phase-

triggered events, like for example targeting the α-frequency in the motor cortex (Zrenner et al., 2018; 

Hougaard et al., 2019) which typically achieved an accuracy within -12º to 5º off of the desired 

phase, with SDs between 48º and 55º.  

We also decided to check the reasonable expectation of whether the accuracy of the phase estimation 

depended on the latencies from the reference point of the EEG signal (i.e., phase bins) and whether 

it was worse at increasing latencies. We rearranged phase accuracy values based on the phase bins 



 

and found, as expected, that both the mean and standard deviation of phase accuracy are worse at 

increasing latencies (see Figure S4 and Table S4 for individual and group data). When subtracting 

the accuracy of the last-first latencies, the average mean varies -5.42º (SD=9.38º) and the variability 

increases 32.20º (SD=10.64º). 

Finally, we calculated the cumulative percentage of trials as a function of the phase bin difference 

between target and hit phases. Table S5 shows the results at the individual and group level. Overall, 

45% of trials felt in the target phase bin, 88% of trials within ±1 bin, and nearly all trials within ±2 

bins. 

These overall results show a reliable alignment at each of the targeted phases of the α-cycle. Although 

extrapolating approximately over one α-cycle has led to more unreliable phase accuracy at increasing 

latencies, the accuracies are still within safe limits in terms of our purposes. Note that accuracy of 

phase estimation was checked against real data as part of the BCI setting, so that trials with erroneous 

estimations that satisfied the trial validity criteria (i.e., RT and amplitude) were eventually relocated 

if necessary to the hit phase bin in Stage 1 or discarded if did not fall within the acceptance zone in 

Stage 2. We, therefore, think that the possibility that null results in the α-phase – RTs relationship 

might be explained by an inaccurate triggering of targets is minimal. 

Reality check 2: Frequency of interest during the real-time experiment 

The real-time stages of the experiment used the IFoI, which was estimated in a 5-min pre-experiment 

screening session from a cluster of occipito-parietal electrodes (see Screening and estimation of the 

IFoI for more details). This pre-screening is a common practice in order to customize the EEG 

analysis in terms of individual frequency, especially in the α-band. One potential problem, however, 

is that the frequency measured in the screening session was not representative of the relevant 

frequency during the task. Small deviations between the relevant α-frequency during task execution 

and the one actually used might be mitigated in our protocol because we used a relatively large 

spectral window (IFoI ± 5 Hz). However, large deviations might affect the subsequent steps of the 

online protocol, such as filtering and forward prediction. To estimate if such deviations took place, 

we compared the IFoI used in the real-time experiment stages (that is, the one estimated from the 



 

screening stage) against the actual dominant α frequency recorded during task execution. IFoI during 

task execution was computed following the same procedure as for the IFoI in the screening stage. To 

avoid potential contamination from visual and motor evoked responses, we used EEG epochs from 

+500 ms after button press to stimulus onset of the next trial (duration about 2 s, depending on inter-

trial jitter). We computed the power spectrum density (PSD) within the α-band (5-15 Hz) for O1-

electrode (the electrode in the BCI setting) and for the OP-cluster (the same as used in the screening 

session for the selection of the IFoI: P7, P3, Pz, P4, P8, O1, Oz, O2) using the Welch method 

(window=500 ms; overlap=10%; resolution=0.25 Hz). For each participant, the power spectrum was 

normalized by the mean power in the 1 to 40 Hz window. Figure 4A illustrates the single frequency 

peak within the α-band during task execution, plotted against the IFoI at rest used in the real-time 

experiment. Overall, the mean peak difference between rest (OP-cluster) and task (O1-electrode) 

IFoIs was 0.16 Hz (SD=0.23), with a maximum absolute mean difference of 0.50 Hz in participant 

8 (see Table S6 for individual results). IFoI at rest in OP-cluster was very close to the dominant α-

frequency during task execution from the same electrode, with deviations of the central frequency of 

less than 1 Hz. 

Moreover, we decided to check whether the instantaneous frequency differed from the IFoI on a trial-

by-trial basis. We calculated the instantaneous frequency for each trial using the Hilbert transform. 

We band-pass filtered the data from O1 electrode within 5-15 Hz (Butterworth filter order 2, one-

pass), epoched from –2 to 2 s (from stimulus onset), demeaned and detrended. We computed the 

instantaneous frequency using the MATLAB function ‘instfreq’. We selected the prestimulus 

window of interest of -1 to 0 s from stimulus onset (same time window as the one-second buffer in 

the real-time experiment) to average the instantaneous frequency within the selected window. Figure 

S5 shows a heatmap chart of the variation of the phase accuracy as a function of the frequency 

difference from IFoI for each participant, in which colour denotes the number of trials. All the 

participants show a mean frequency deviation from IFoI lower than 1 Hz. Participant P08 shows the 

smaller variability in frequency deviation (mean SD=0.32 Hz), whereas participants P03 and P05 

show the larger variability (mean SD=0.73 Hz) (see Table S5). At group-level, the average mean 

frequency across participants is 0.73 (SD=0.24) Hz. 



 

Note that we were extrapolating approximately one α-cycle from a reference point at the peak of the 

EEG signal. Therefore, we would expect to see that if the error in the frequency estimation is negative 

(i.e., actual instantaneous frequency is slower than the estimated IFoI), then there will be a positive 

error in the phase estimation (i.e., the stimuli would reach an earlier hit phase and the target phase 

would happen afterwards in time). Hence, we expected the direction of the correlation to be negative. 

To check for this hypothesis, we decided to compute a linear correlation between the frequency 

difference from IFoI and the phase accuracy for each participant by adopting a directional one-tailed 

hypothesis testing. Table S6 shows the results, including Pearson’s coefficient with its p-value. 

Overall, we see that 5 out of 8 participants present a negative correlation, as expected, and only 

participants P01 (p=.04), P02 (p=.001) and P07 (p<.001) show a significant negative correlation.  

We can, therefore, conclude that the BCI setting employed here was successful in centring the 

spectral analysis around the desired relevant frequency of interest and variation in frequency from 

the IFoI at a single-trial level might have influenced the phase accuracy of the BCI setting. However, 

as stated in the previous section, if there was a deviation in the frequency from the IFoI in a given 

trial, we took that into account by checking the empirical phase at stimulus presentation and 

reallocate it if necessary to the hit phase bin in Stage 1 or discarded if did not fall within the 

acceptance zone in Stage 2. 

Reality check 3: Electrode of interest used in the real-time experiment 

As for the frequency of interest, we had to a priori decide about the electrode of interest to be used 

in the BCI system. Following Callaway & Yeager (1960), we chose O1-electrode. This choice 

appeared convenient to limit real-time computational delays due to clustering over a larger set of 

electrodes. However, it is perhaps important to check that the signal picked up from O1-electrode in 

the real-time stages was representative of the α-frequency dominant in a wider occipito-parietal 

cluster. Therefore, we compared the activity in O1-electrode to that of a cluster of occipito-parietal 

electrodes (OP cluster: P7, P3, Pz, P4, P8, O1, Oz, O2). The spectral comparison was analogous to 

the one described for the reality check 2 (IFoI rest vs IFoI task). The results, illustrated in Figure 4B 

(see Figure S6 and Table S6 for individual data), show that the two α estimates were within 0.20 Hz. 



 

In five out of the eight participants, the relevant frequency peak using the occipito-parietal cluster 

was the same as in O1-electrode. We can, therefore, confirm that the α-fluctuations picked up from 

O1-electrode as our IFoI during the real-time experiment were closely representative of the occipito-

parietal activity.  

EXPLORATORY ANALYSES 

In the present study, we aimed at employing a closed-loop BCI approach to show that the phase of 

ongoing α-oscillations measured with EEG can be harnessed to expedite RTs. This proof-of-concept 

can not only open avenues for neuro-devices but also help to test the relevance of the α-theories. To 

do so, we sought to achieve a conceptual replication of a seminal study were such effects had been 

reported in the past (Callaway & Yeager, 1960). Although our setting included some corrective 

measures and online checks, we ensured that the system successfully phase-locked visual stimulation 

to ongoing occipital α-oscillations, the pre-registered analyses returned null results. We decided to 

explore the data further to find out if phase effects on RTs could be found using other approaches. 

Re-analysis of Stage 2 data including only trials for fast/slow phases 

In the main analysis of Stage 2, we decided to include trials in which our online phase estimation 

was ± 1 phase bins from the intended (fast/slow) phase. This decision was taken under the assumption 

that, by definition, phase effects fluctuate gradually, so that excitability in phase bins near the 

maximum peak (minimum peak) would still be relatively high (low). However, we decided to re-do 

the analysis in Stage 2 and select only those trials falling strictly in the slow and fast phase bins, 

while excluding those falling in ± 1 phase bin acceptance zone (as well as all the rest, as before). We 

re-calculated the mean RT between slow and fast phase bins and found a mean difference of -0.625 

ms (SD=7), which was not significant neither at individual nor at the group level (t(7)=-0.2496, p=0. 

0.5950, dz=-0.0883). Note that the number of trials was much reduced, leaving 55 (SD=18) and 52 

(SD=9) trials on average for predicted slow and predicted fast trials, respectively. For information 

on the number of trials and statistics at individual-level, see Table S7. These findings are in line with 

those found in the pre-registered results. 



 

Smoothing the RT-phase modulation 

The main purpose of Stage 1 was to estimate the phase bins with fastest and slowest RTs for later 

use in Stage 2. However, given that we collected a minimum of 50 RTs for each of the 10 bins 

distributed throughout the α-cycle, one could search for a possible phase-ordered pattern in the RTs 

in that dataset. As described in the Results section, plotting the mean RTs for each phase bin (Figure 

2) did not seem to highlight any discernible oscillatory pattern. However, we did not perform a formal 

statistical analysis at that stage. In this follow up analysis, we adapted an analytical approach used 

by Fiebelkorn (2013) to test statistically for an oscillatory pattern in Stage 1 data. The logic behind 

this approach is that if a phase-dependent modulation of RTs exists, then RTs should vary 

significantly around opposite phases of α (as in the idealized example in Figure 1). Therefore, we 

looked for pairs of phases 180° apart that could result in a larger difference between RTs. We 

calculated the average RT over the trials lumped within -90° and +90° around each phase bin to 

obtain 10 phase-centred RT averages. Then, we normalized each phase-centred RT average by the 

average RT across all trials. If RTs were modulated by phase, the normalized phase-centred RTs 

would resemble a sine wave. To test the statistical significance of possible phase modulation, we 

transformed these phase-centred RT averages to the frequency domain through a fast Fourier 

Transform (FFT). We tested the significance (α-level = 0.05) of the peak in the FFT for one cycle 

using a Monte Carlo randomization procedure (10,000 randomizations). The statistical tests showed 

that none of the participants displayed a significant RT modulation (p-values ranged from 0.11 to 

0.92; Figure 5). This outcome confirmed the results from the pre-registered analysis on phase effects, 

described above.  

Searching for phase opposition at stimulus onset   

If the response to a stimulus is related to the phase of the α-activity, we should expect a pattern of 

opposition within the α-frequency (the narrow band EEG) when comparing between slow and fast 

RT trials at stimulus onset (time = 0) (Mathewson et al., 2009). We checked for this possibility by 

offline band-pass filtering data from electrode O1 using a Butterworth filter (order 2, two-pass) 

around the IFoI ± 5 Hz band. No re-referencing was applied. All valid trials from Stage 1 were used 

for the analysis. EEG data were epoched from – 200 ms to 300 ms (t=0 being the stimulus onset 



 

time), and then demeaned and baseline corrected (- 200 ms to 0 ms). To average across subjects with 

different IFoI, the time dimension of the EEG was transformed into α-cycle units (the time vector 

multiplied by the IFoI; data resampled by linear interpolation). RTs were median-split into slow and 

fast categories. The inter-participants average RT was 231 ms (SD = 9) for slow trials and 182 ms 

(SD = 8) for fast trials. Figure 6 shows the narrow-band activity for the slow and fast RTs, and for 

all trials pooled together (see, Figure S7, for individual plots). Although visual inspection suggests 

an opposition pattern in the narrow-band activity between slow and fast trials at stimulus onset, this 

pattern is not statistically significant. This can be appreciated by comparing the apparent difference 

with the large overlap in the confidence intervals (fast trials mean = -0.4454 µV, 95% CI = -1.5599, 

0.6691 µV; slow trials mean = 0.3901 µV, 95% CI = -0.6210, 1.4012 µV). However, to test for phase 

opposition beyond visual inspection, we used the Phase Opposition Sum (POS) method (VanRullen, 

2016b). We forward-filtered the data from electrode O1 using a Butterworth filter (order 2, one-pass) 

around the IFoI ± 5 Hz band and computed the phase by means of the Hilbert transform. We applied 

the POS on phase values at stimulus onset for fast vs slow trials, both at individual and group-level. 

The statistical significance was assessed using non-parametric permutations tests (10,000 iterations) 

using random shuffles of trial assignment to slow/fast bins to compute the distributions of POS values 

to be expected by chance for each subject. For the group, the distribution of POS values to be 

expected by chance corresponded to the average of individual POS values to be expected by chance. 

The p-value associated to measured POS at individual (group) level corresponded to the proportion 

of times that individual (group averaged) POS obtained in the permutation exceeded measured 

individual (group averaged) POS. In line with the results of the pre-registered analyses, we did not 

observe a significant group-level effect of POS between slow and fast RTs (p=.932) nor at individual-

level.  

Effect size equivalence test 

The present study was a replication of a previous one testing a relationship between the α-phase and 

RT (Callaway & Yeager, 1960). The results were at variance with that original study: we did not find 

evidence for such a relationship. We decided to perform an equivalence testing (Lakens et al., 2018) 

to compare the effect size in the original study with that reached in the present, even if we had already 



 

looked at the data. Callaway & Yeager (1960) reported data from 8 participants and achieved a mean 

difference between slow and fast RT of 8.13 ms (SD= 5.11; dz = 1.59). In a new study, it would then 

be reasonable to expect a minimum effect size equal to 33% of the original effect size, assuming the 

effect in the original study were true (Simonsohn, 2015). This means that we would expect a 

minimum theoretical effect size of 2.681 ms (or dz= 0.53). Incidentally, our aim before the study was 

to achieve RT differences that would also be relevant in terms of BCI application in real life, and 

therefore possibly larger than the meagre 2.7 ms effect size derived from the present estimation 

(admittedly, performed a posteriori). Nevertheless, if not useful at the practical level, one would hope 

to gather some information at the theoretical level. In the present study, we tested 8 participants and 

obtained a mean difference between slow and fast RTs of -0.439 ms (SD= 4.171 ms; dz = 0.105) 

(Stage 2). Given this sample size we cannot reject that the real difference between conditions is 

bigger than 0 (t(7) = -0.298, p = 0.775, α-level = 0.05, one-tailed) or that the effect size is between -

.53 and .53 (t(7) = 1.521, p = 0.09, given equivalence bounds of – 2.68 and 2.68 ms and α-level = 

0.05). The equivalence test was ran also at the individual level: None of the participants showed an 

RT difference in the expected direction over the 2.68 ms limit that it is a reasonable value to be 

anticipate based on Callaway & Yeager (1960). Note that the objective of this study was to find 

effects at participant level. Therefore, the group tests performed here and in previous sections are 

exploratory and must be interpreted with caution as they are very likely underpowered. 

Discussion 

The present study aimed at providing a proof of concept for harnessing on the phase of ongoing α-

oscillations recorded non-invasively with EEG for real-time BCI, and to garner support for the role 

of such occipito-parietal α-oscillations in visual perception. Evidence of this kind is valuable because 

it can help achieve a better understanding of the relation between the occipito-parietal α-phase and 

behavioural outcome (i.e., speed of reaction times to visual events), and lay the groundwork for 

possible BCI applications. Our study was a modern replication of Callaway & Yeager’s study (1960), 

where participants performed a speeded detection on visual targets triggered in real-time at different 

angles of a participant’s α-cycle. First, we sampled RTs to visual targets presented at 10 different 



 

phase bins throughout the α-cycle (Stage 1) to select the phases associated with slowest/fastest RTs. 

Second, we measured RTs to visual targets presented at these two pre-selected phase bins (Stage 2). 

If a consistent phase-RT relation exists in the expected direction, it follows that, in Stage 2, stimuli 

presented at the slow phase would have led to slower RTs compared to stimuli presented at the fast 

phase. 

Contrary to what was expected, the analyses did not return a consistent relation between the phase 

of ongoing α-oscillations and RTs neither at the group nor at the individual level. Because this 

experiment was run in real-time, most analytical choices had been made a priori, based on previous 

literature (Callaway & Yeager, 1960). Please note that obtaining the expected results using a priori 

set analytical pipeline would implicitly corroborate the brain-behaviour theory behind the decisions 

for the closed-loop. In this sense, closed-loop BCI can be considered a test bench for brain-behaviour 

theories. However, because some of the prior choices might have been decisive in producing a null 

result in the present study, we performed a few reality-checks a posteriori. First, we verified that the 

intended phase of visual stimulation and the actual one were in alignment by comparing the time of 

stimulus delivery with the empirical EEG measurements, offline. Real-time phase estimation was 

less than 5º off the intended phase (+1.21±33.70° and +3.79±25.43°, in Stages 1 and 2, respectively), 

which compares well with estimation accuracy in other modern phase-based closed-loop BCIs 

(Zrenner et al., 2018; Hougaard et al., 2019). We also demonstrated that the accuracy of the phase 

estimation depended on the latencies along the α-cycle. We found an average mean variation of -

5.42º (SD=9.38º) and an increase of variability of 32.20º (SD=10.64º) between the last and the first 

latencies. Second, we double-confirmed that the initial choice of the frequency of interest was 

representative of the predominant α-frequency during task execution by analyzing the data both at 

single-trial and stage-dataset levels. Third, we validated our choice of the electrode (O1) for the real-

time analysis as representative of the central frequency of interest in the occipito-parietal cluster, the 

most common for the α-rhythm in visual perception (Myers et al., 2014; Samaha et al., 2015; Benwell 

et al., 2017; Harris et al., 2018; Ruzzoli et al., 2019). Taking all the results together, we reckon that 

both the estimation over almost one α-cycle and the difference in frequency from IFoI on a trial-by-

trials basis are probably the main reasons why phase accuracy varied over latencies along the α-cycle 



 

and why we had to reallocate trials in Stage 1 and enlarge Stage 2 acceptance zone to ± 1 phase bin. 

However, we would like to highlight that, in practical terms, nearly an average of 88% of the trials 

felt within ±1 bin, which we do not consider to be a poor phase estimation for a BCI setting given 

the resolution of our EEG system and the method we implemented to estimate the phase by extending 

a sinus using the IFoI from a reference point in the EEG signal. 

It is important to note that even if the data we obtained were variable across participants, the focus 

of our analysis was on the individual effects because one of the interests in this study was BCI 

application. The cross-validation protocol implemented in our design (selection and validation of 

phase bins from Stage 1 to Stage 2 within the same individual) also highlighted a substantial within-

participant variability, in many cases leading to opposite trends from Stage 1 to Stage 2 (e.g., the 

expected fast phase bin returned, on average, the slowest RTs).  

As we mentioned in the introduction, the relation between the posterior prestimulus α-phase and 

behaviour has been (and it still is) based on a popular hypothesis, leading to several sister theories 

(see Ellingson, 1956, for an overview). For example, the α-phase has been interpreted as a sensory 

gateway (Bartley & Bishop, 1932); a sensory gateway with a functional inhibitory role (Jensen & 

Mazaheri, 2010); as a scanning mechanism (Walter, 1950); as evidence for excitability cycles 

(Bishop, 1932; Lindsley, 1952; see VanRullen, 2016a, for a similar version). The main point in 

common between these theories is that reactions (accuracy or RTs) to visual stimuli correlate with 

(and can be predicted by) the oscillatory activity from the occipito-parietal cortex in the α-band. A 

critical analysis of the literature shows that this hypothesis has not been free of controversy: Early 

studies reported no (Walsh, 1952; O’Hare, 1954), or weakly significant effects (Lansing, 1957; 

Callaway & Yeager, 1960; Callaway, 1962a, 1962b; Dustman & Beck, 1965). Null evidence is also 

reported in modern times with respect to accuracy (Benwell et al., 2017; Ruzzoli et al., 2019). The 

present study adds to the previous literature showing that the α-phase/RTs relationship is variable 

and not reliable when targeted in real-time, at least using extra-cranial EEG.  

Perhaps it is worth mentioning at this point that we focused on human non-invasive studies (i.e., EEG 

or MEG) on the role of the α-phase on perception because one our goals was to provide evidence for 

the possibility to capitalize on this well-studied relationship for BCI settings. We acknowledge, 



 

indeed, that prior studies have frequently found a reliable relationship between α-power and spatial 

attention (for example Worden et al., 2000; Kelly et al., 2006; Thut et al., 2006) or visual memory 

(see Palva & Palva, 2007), however, the main focus here was narrowed to visual detection 

performance (Walsh, 1952; Lansing et al., 1959; Bompas et al., 2015; Benwell et al., 2017; Ruzzoli 

et al., 2019). In this specific case, despite the α-power/behaviour correlation has been more solidly 

established in the literature, the present study was not optimized to reveal power/behaviour 

relationships. Indeed, we introduced measures to achieve a consistently high α-power to facilitate 

reliable phase estimations for stimulus presentation, resulting in a small variability in α-power4. 

Returning to the focus of the present study, which relates to the putative effect of α-phase on RTs to 

visual events, we should consider three critical aspects of our design that might have influenced the 

negative outcome. First, we asked the participants to perform the task with their eyes closed. The 

eyes closed strategy, also implemented in Callaway & Yeager’s study (1960), induces higher α-

power at occipito-parietal locations which is convenient for reliable phase estimation. However, 

whether and how performing a perceptual task with the eyes closed jeopardized the outcome is 

unknown. Excluding the possibility that an eyes-closed condition could also involve sub-cortical 

generators of the α-activity (Lopes da Silva et al., 1973, but see Bollimunta et al., 2011; Sokoliuk et 

al., 2019), we did not find any theoretical caveat against the eyes-closed strategy, which was instead 

technically convenient. Please note that others have successfully used eyes-closed preparations in the 

past (Lansing et al., 1959; Callaway & Yeager, 1960) and more recently (Lim et al., 2013; Hwang 

et al., 2015). Based on this, we doubt that the eyes-closed condition may have been critical to 

producing a null result. The second aspect of our design was to use speeded detection, therefore 

adopting RTs instead of accuracy as the measure of interest. Even if the α-theories have been related 

to both (RTs: Walsh, 1952; Lansing, 1957; Lansing et al., 1959; Callaway & Yeager, 1960; 

Accuracy: van Dijk et al., 2008; Busch et al., 2009), no explicit claims have been made on possible 

differences between the two measures regarding their sensitivity to prestimulus oscillations. One 

would believe that if the temporal structure of α-oscillations is important to parse sensory information 

 
4 An exploratory analysis, presented in the Supplemental Material, confirms both the low power variability and 

the null power to RT correlation; see Table S8 and Figures S8 and S9. 



 

into perception, then it should be relevant for both RTs and accuracy. Furthermore, unlike accuracy, 

RT is a continuous measure potentially more sensitive to moment-to-moment variation in excitability 

than the dichotomic responses in a detection task. Another aspect of our design that merits discussion 

was that stimulus intensity was supra-threshold and fixed across participants. This is often the 

approach in experiments measuring RT. Yet, one could perhaps argue that the stimulus was so strong 

that possibly subtle phase-dependent variations in sensory responses were saturated, thereby having 

a negligible impact on behaviour. It is difficult to answer this question examining previous literature 

because luminance levels have been rarely reported in a precise fashion. Callaway (1962a) published 

the results of a study examining the RT – α-phase relationship with dim and bright visual stimuli 

(although the actual luminance was not reported) and stated that the depth of such modulation did 

not vary consistently as a function of brightness. To the best of our knowledge, the only study 

measuring the RT – α-phase relationship where stimulus intensity was reported clearly is Dustman 

and Beck (1965). The authors found a consistent effect of RT to α-phase with stimuli of 0.7 lum/m2 

(that is, 0.128 cd/m2) at 40 cm distance to the subject’s (closed) eyes. This is brighter than our 

stimulus intensity (0.076 cd/m2). In the absence of reliable information about the stimulus intensity 

in past studies, one can also look at the response latencies as a proxy. The average RT in our study 

was 206 ms (SD=9) in Stage 1, and 199 ms (SD=6) in Stage 2. Past studies where a significant RT – 

α-phase relationship was reported range from faster responses than ours (167±22 ms, Dustman & 

Beckman, 1965) to slower (245±15 ms and 236±12 ms respectively for slow and fast RTs in 

Callaway & Yeager, 1960; 295±51ms and 348±64ms for bright and dim stimuli, respectively in 

Callaway, 1962a). Therefore, even if one cannot be certain of a possible saturation in neural 

responses following our stimuli, the stimulus strength and the speed of ensuing latencies were within 

the range of past studies reporting positive effects. 

Finally, a fair question to ask is whether the occipito-parietal α-phase is a critical parameter for 

perception, but difficult to be extracted from EEG-based closed-loop BCI, or whether it is not critical 

at all. Fluctuations in neuronal excitability giving way to the oscillatory patterns observable with 

EEG (and MEG) are ubiquitous in the brain, and the relationship between these fluctuations and 

neural responses to stimuli is well established in physiology (Bishop, 1932; Buzsáki & Draguhn, 



 

2004). This makes oscillations seen in the EEG appealing candidates to explain and predict 

behaviour. However, the outcomes of tests regarding the role of occipito-parietal α-phase in the 

organization of the visual flow of information have been positive (Lansing, 1957; Lansing et al., 

1959; Callaway & Yeager, 1960; Mathewson et al., 2009) as well as negative (Walsh, 1952; O’Hare, 

1954; Benwell et al., 2017; Ruzzoli et al., 2019). One could argue that a relationship between phase 

and visual detectability (and hence, response latencies) may exist, but it was obscured by the signal-

to-noise variability when recoding from scalp electrodes in EEG. This is, in fact, likely given by the 

oscillatory patterns in neural excitability so frequently observed in intra-cranial recordings (Bishop, 

1932; Lopes Da Silva & Storm Van Leeuwen, 1977; Lakatos et al., 2008) or animal studies (Haegens 

et al., 2011; Spaak et al., 2012; Fiebelkorn et al., 2018, 2019). Based on this, one would have to 

conclude that despite the results from the present study are far from significant, they are also not 

conclusive as to disproof an effect and challenge the α-theories meaningfully.  

Apart from theoretical considerations, we also had a second main goal in mind running this 

experiment: To provide a proof-of-concept for the use of oscillatory phase as a real-time control 

signal in a BCI. We estimated that a minimum RT difference between slow/fast phases of 2.681 ms 

could be expected (33% of the effects in Callaway &Yeager, 1960). However, from a more practical 

perspective, we wonder whether such a small (and variable) effect can be efficiently picked up by 

scalp EEG and, if so, whether it can be considered meaningful in a BCI application. Saving less than 

3 ms in, for example, the efficiency of warning signals would seem close to nothing in most applied 

contexts.  

Conclusions 

Taken together, we must infer that our data do not support a relationship between the phase of α-

fluctuations measured extra-cranially and response latencies to visual events. A prudent conclusion 

is that theoretical and empirical knowledge regarding this relationship may need to progress further 

to generate enough confidence to attempt the application of the α-theory to neuro-devices. Further 

research might investigate the influence of parameters such as the eyes-closed strategy, the different 

sensitivity of discrimination performance vs reaction times as the dependent variable, or the impact 



 

of stimulus intensity. We believe that, at present, the effort to implement a closed-loop BCI 

application based on the relationship of occipito-parietal α-phase measured with EEG and reactions 

to visual events might not pay off. In addition, we encourage other scientists and BCI practitioners 

to use BCI settings for hypothesis-testing with a priori set methods in the cognitive neuroscience 

field as a test-bench for brain-behavioural theories and to explore the feasibility of EEG-based BCI 

applications.  
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FIGURES & TABLES 

 

Figure 1. The protocol included four stages: Screening, Training, Stage 1 and Stage 2 of testing. 

During the Screening, we looked for the individual frequency of interest (IFoI) over the occipito-

parietal area in a 5 min EEG recording at rest (eyes closed). Participants who did not display a single 

peak in the EEG within the range of interest (5-15 Hz) did not proceed to the following parts of the 

protocol. Included participants performed a Training, and entered Stage 1 of the real-time 

experimental sessions. In Stage 1, visual stimuli were triggered phase-locked to 10 equally spaced 

phase bins along the IFoI-cycle. For illustration purposes of an ideal theoretical outcome, stimulus 

onset (circles) is represented as a function of the EEG alpha cycle through a cosine wave. From Stage 

1, the specific phase bins associated with the faster (green dot) and slower (red dot) RTs were selected 

for each participant and used for Stage 2. In Stage 2, visual stimuli were triggered only at the two-

phase bins (fast/slow) individually selected from Stage 1. As illustrated, we predicted that fast and 

slow phase bins would lead to fast and slow RTs, respectively. 

  



 

 

Figure 2. Individual mean RT (in ms, y-axis) plotted against the 10 phase bins (in degrees, x-axis) 

tested in Stage 1. The horizontal dashed line indicates the individual mean RT across all bins. For 

each participant, the graphs report the angular difference and the RT difference between the fast 

(green dot) and slow (red dot) phase bins. IFoI= Individual Frequency of Interest; Error bars = 

Standard Error of the Mean. 



 

Table 1.  Individual data for fast/slow phase bins including phase bin acceptance zone in Stage 2. 

For each participant, the number of trials (max=100), the tested angular points (degrees), and the 

mean RTs (ms) are reported for the fast and slow phase bins tested in Stage 2. Statistics indicate the 

results (t value, degrees of freedom, p-value, Cohen’s dz and 95%-confidence intervals CI) of an 

unpaired t-test (right-tailed, p<0.05) comparing slow vs. fast RTs individually. Group level data and 

statistics are also reported. 

 

 

 

  

Part. 

Slow phase bin Fast phase bin 

RT diff. 
phases 
[in ms] 

Statistics 
No. 
of 

trials 

Phase 
bin 

Mean 
(SD) 
RTs 

[in ms] 

No. 
of 

trials 

Phase 
bin 

Mean 
(SD) 
RTs 

[in ms] t dof p dz 
RT diff. 
95% CI 

1 88 162° 198 (34) 85 234° 200 (37) -2 -0.30 171 .62 -.05 
[-10.43 
7.24] 

2 100 162° 196 (39) 100 18° 202 (30) -6 -1.26 198 .90 -.18 
[-14.24 
1.90] 

3 74 90° 203 (32) 59 126° 206 (39) -3 -0.54 131 .71 -.10 
[-11.70 
5.88] 

4 66 306° 202 (36) 86 234° 195 (39) 8 1.24 150 .11 .20 
[-2.53 
17.83] 

5 100 54° 194 (29) 100 306° 191 (33) 3 0.69 198 .24 .10 
[-4.18 
10.27] 

6 62 54° 207 (34) 87 18° 207 (32) 0 -0.02 147 .51 -.00 
[-9.05 
8.85] 

7 75 306° 200 (32) 78 270° 201 (40) -1 -0.21 151 .58 -.03 
[-10.97 
8.50] 

8 68 306° 191 (39) 90 54° 193 (37) -2 -0.36 156 .64 -.06 
[-12.07 
7.68] 

Mean 
(SD) 

79 
(15) 

-- 199 (5) 
86 

(13) 
-- 199 (6) 0 (4) -- -- -- -- -- 

Group 
level 

633 -- 199 (5) 685 -- 199 (6) 0 -0.30 7 .61 -.11 
[-5.66 
4.78] 



 

   

Figure 3. Rose plot of phase accuracy for valid trials across participants (A) in Stage 1 (total No. 

of trials = 4933) and (B) in Stage 2 (total No. of trials = 1600). For convenience, all phases have 

been realigned to 0⁰. Dotted lines denote boundaries between phase bins. 

 

  



 

 

Figure 4. (A) IFoI [in Hz] at rest using OP-cluster (P7, P3, Pz, P4, P8, O1, Oz, O2) vs IFoI during 

the task [in Hz] for two different electrode set conditions: OP-cluster (circles) and O1-electrode 

(asterisks). Dashed lines denote ±1 Hz and each colour denotes a participant. (B) Power spectrum of 

a representative participant (P08) showing the biggest mean difference (0.50 Hz) between IFoI at 

rest computed at OP-cluster (solid black line) and IFoI at task computed with O1-electrode (dotted 

yellow line). Power spectrum computed at OP-cluster at task is also plotted (dotted black line). 

  



 

 

Figure 5. Phase-RT modulation for each phase bin (centred on the target phases) in Stage 1 for all 

participants. P-value of the modulation comes from using a Monte Carlo randomization procedure 

(10,000 randomizations). Error bars denote the 95%-confidence intervals (CI) of the randomizations. 



 

 

Figure 6. (A) Grand average of the narrow-band activity time-locked to visual stimulus presentation 

for fast (green), slow (red), and all (black) trials from O1-electrode in time of the α-cycles. Thin lines 

represent the standard error of the mean (SEM) interval. Vertical dashed lines denote the mean RTs 

for all slow (red), fast (green) and all trials (black). (B) Polar plot of the representation of the overall 

number of trials across participants for each phase bin (dots) for fast and slow trials. 
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