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Abstract 

Soft X-Ray (SXR) emission in the range 0.1 keV – 20 keV is widely used to obtain valuable 

information on tokamak plasma physics, such as particle transport, magnetic configuration or 

magnetohydrodynamic (MHD) activity. In particular, 2D tomography is the usual plasma 

diagnostic to access the local SXR emissivity. The tomographic inversion is traditionally 

performed from line-integrated measurements of two or more cameras viewing the plasma in 

a poloidal cross-section, like at Tore Supra (TS). Unfortunately, due to the limited number of 

measured projections and presence of noise, the tomographic reconstruction of SXR 

emissivity is a mathematical ill-posed problem. Thus, obtaining reliable results of the 

tomographic inversion is a very challenging task. In order to perform the reconstruction, 

inversion algorithms implemented in present tokamaks use a priori information as additional 

constraints imposed on the plasma SXR emissivity. Among several potential inversion 

methods, some of them have been identified as well suited to tokamak plasmas. The purpose 

of this work is to compare two promising inversion methods, i.e. the Minimum Fisher 

Information (MFI) method already used at TS and planned for WEST configuration, and the 

alternative 2
nd

 order Phillips-Tikhonov Regularization (PTR) with smoothness constraints 

imposed on the second derivative norm. Respective accuracy of both reconstruction methods 

as well as overall robustness and computational time are studied, using several synthetic SXR 

emissivity profiles. Finally, a real case is studied through tomographic reconstruction from TS 

SXR database.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CEA

https://core.ac.uk/display/52669449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:axel.jardin@cea.fr


1. Introduction 

Soft X-rays (SXR) in the range of 0.1 keV – 20 keV provide valuable information on tokamak 

plasmas for studying e.g. magnetohydrodynamic (MHD) activity, magnetic equilibrium or 

impurity transport [1]. In particular tungsten which is widely used as the main plasma facing 

material on major tokamaks such as ITER, Joint European Torus (JET) or WEST, is a source 

of concern due to significant radiation losses in the plasma core and thus must be kept under 

acceptable concentrations [2]. 

In this context, 2D SXR tomography is a useful tool to observe poloidal asymmetries of 

impurities and access a rather good estimate of their local concentration. Unfortunately, the 

local SXR emissivity reconstruction is an ill-posed inverse problem [3] with usually a very 

limited number of measurements in tokamak plasmas. This limitation is caused by the lack of 

available space and other technical constraints. Thus to compensate for the lack of 

experimental data to some extent and to obtain a physically meaningful solution, inversion 

algorithms implemented in present tokamaks use a priori information as additional constraints 

imposed on the plasma SXR emissivity. The solution may sensitively depend on the chosen 

tomographic inversion method [4], thus it is worth to perform a comprehensive benchmark 

and validate used algorithms. 

The purpose of this work is to compare two promising inversion methods, i.e. the Minimum 

Fisher Information (MFI) method already used at Tore Supra (TS) [5] and planned for WEST 

configuration, and the alternative 2
nd

 order Phillips-Tikhonov Regularization (PTR) 

developed at JET for neutron tomography [6] with smoothness constraints imposed on the 

second derivative norm, see also [7] and more recently [8]. Respective accuracy of both 

reconstruction methods as well as influence of noise, overall robustness and computational 

time are studied, using several phantoms of SXR emissivity profiles. Finally, a real case is 

studied through tomographic reconstruction from TS SXR database. The article is structured 

as follows. In the next section SXR diagnostic at TS, MFI and PTR tomography methods are 

presented. The procedure of comparison between the two methods using phantoms of 

emissivity and results are then detailed in the third section. Finally, conclusion and 

perspectives are given in the last section. 

 
Figure 1. (a) 3D view of SXR detection system on Tore Supra with 2 cameras, 82 Lines of Sight (LoS) in total 

and (b) 2D poloidal cross-section. 



2. SXR plasma Tomography at Tore Supra 

2.1. Generalities 

The SXR diagnostic DTOMOX used at Tore Supra is equipped with two fan-beam cameras. 

The horizontal one consists of 45 lines of sight (LoS) associated with one pinhole while the 

vertical camera features 31+6 LoS associated with two pinholes. The geometrical layout of 

the diagnostic’s LoS is shown in figure 1. This configuration enables to obtain the poloidal 

resolution of ~3 cm at the toroidal beam width of ~12 cm in the center of the poloidal cross-

section of the vessel. The diagnostic measures line-integrated profiles of the plasma SXR 

emission between 3 – 25 keV. For this purpose the DTOMOX diagnostic is equipped with a 

total of Nm = 82 silicon diodes accurately calibrated in their X-ray domain, including the 

electronics and geometrical correction [9].  

The searched SXR emissivity is discretized on a square grid of 1.6 m × 1.6 m as a matrix of 

Np × Np = Np
2
 square elements. Each element is associated to a value εj of the SXR emissivity 

that is assumed to be homogenous within the pixel. It should be noted here that other basis 

functions than pixels can be used for tomography purposes, see e.g. the use of Fourier-Bessel 

expansion in [10]. The inverse problem of SXR tomographic reconstruction between 

emissivity and the line-integrated measurements mi is defined by the set of equations: 

𝑚𝑖 = ∑ 𝑇𝑖𝑗휀𝑗𝑗             (1) 

where Tij are the transfer matrix coefficients and represent the lengths of the i-th chord in the 

j-th pixel in the Line of Sight (LoS) approximation, as defined by collimators geometry with 

empirical correction coefficients for efficiency of each detector. The residual χ² between line 

integrated measurements and reconstructed emissivity is defined as:  

𝜒2(𝜺) = (𝒎 − 𝑇. 𝜺). (𝒎 − 𝑇. 𝜺)
𝑡

    (2) 

where the superscript t denotes the matrix transpose operation. Simple minimization of χ² is 

irrelevant and not applicable in tokamak plasmas due to the ill-conditioned nature of the 

problem as well as presence of noise in the measured data, with only Nm = 82 projections in 

TS compared to the amount of information to retrieve Np
2
 ~ 500 - 5000. In this paper, the 

tomographic inversion will rely on the Tikhonov regularization technique, which consists in 

adding a priori information on the expected emissivity profile, namely a regularization term 

𝑅 = 𝜺𝒕 𝐻𝜺 which usually imposes smoothness on the gradients of the solution by minimising 

the functional Φ: 

𝜺𝟎 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜺

 𝜙(𝜺) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜺

 (𝜒2(𝜺) + 𝜆𝑅)         (3) 

where matrix H is the regularization operator and λ denotes the regularization parameter. 

Thus, the tomographic reconstruction is a compromise between minimization of the residual 

and regularization of the solution. A vector derivation of equation (3) allows determining the 

solution ε0: 



𝜺𝟎 = ( 𝑇. 𝑇 + 𝜆𝐻𝑡 )
−1
. 𝑇𝑡 . 𝒎        (4) 

The regularization parameter λ is a free parameter that quantifies the level of ‘‘smoothness” of 

the reconstructed profile. As it will be shown in the section 3.3, λ can be determined thanks to 

an empirical method or by adjusting χ² according to the experimental noise level, or even via 

L-curve method. In the following subsections the two methods of SXR emissivity 

reconstruction: i) based on Phillips-Tikhonov regularization with smoothness constraints 

imposed on the second derivative and ii) based on the minimization of the Fisher Information, 

are briefly described. 

2.2. Second order Phillips-Tikhonov Regularization (PTR) method 

The PTR method used here and initially developed at JET for neutron tomography [6] aims at 

minimizing the curvature 𝜵² of the solution, see also [8]. Operator 𝐿 = 𝛻2 is a discrete 

approximation of the Laplacian that imposes a smoothness constraint of the reconstructed 

solution. In this case, the second-order regularization selects the solution with the least 

curvature and operator HPTR is: 

𝐻𝑃𝑇𝑅 = 𝛻²𝑡 . 𝛻²          (5) 

However more advanced constraints on the solution can be applied in a similar way, see e.g. 

[6]. Additional a priori information that the SXR emissivity should vanish outside the 

vacuum vessel considered to be at the radial position r = 0.8 m is included into the 

reconstruction method. The Generalized Singular Value Decomposition (GSVD) is applied to 

matrices T and L to calculate the solution: 

𝑇 = 𝑈. Σ. 𝑋−1,  𝐿 = 𝑉.𝑀. 𝑋−1    (6) 

where U is Nm× Np
2
 orthogonal matrix, V is Np

2
× Np

2
 orthogonal matrix, X is Np

2
× Np

2
 

nonsingular matrix and Σ and M are Np
2
× Np

2
 diagonal matrices:  

Σ = 𝑑𝑖𝑎𝑔(𝜎1, … ,  𝜎𝑁𝑝2),   𝑀 = 𝑑𝑖𝑎𝑔(𝜇1, … ,  𝜇𝑁𝑝2)    (7) 

The diagonal entries of  and M are non-negative and ordered such that:  

0 ≤  𝜎1 ≤ ⋯ ≤ 𝜎𝑁𝑝2 ≤ 1,       1 ≥ 𝜇1 ≥ ⋯ ≥ 𝜇𝑁𝑝2 ≥ 0    (8) 

Moreover they are normalized such that:  

(𝜎𝑖)
2 + (𝜇𝑖)

2 = 1, 𝑓𝑜𝑟 𝑖 = 1…𝑁𝑃
2     (9) 

They define the generalized singular values of the matrix pair (T, L) as ratios 𝜎𝑖/𝜇𝑖 (for 

i=1...Np
2
), that reflect the level of ill-conditioning of the reconstruction problem. In Equation 

(6) U and V are the matrices of singular vectors of the matrix T. L
 -1

. 

Then, the regularized solution can be calculated according to the following equation: 



 𝜺𝟎 = { 𝑇. 𝑇𝑡 + 𝜆𝐻𝑃𝑇𝑅}
−1. 𝑇𝑡 .𝒎 = ∑

<𝑼𝒊,𝒎>𝜎𝑖

𝜎𝑖
2+𝜆𝜇𝑖

2 

𝑁𝑝
2

𝑖=1
𝑿𝒊        (10) 

where Xi is i-th column vector of X, Ui is i-th column vector of U and <…> denotes the inner 

product. 

2.3. Minimum Fisher Information (MFI) method 

The SXR tomography method presented here has been developed for TS and a more detailed 

description can be found in [4], see also [5]. For a given probability distribution g(x), the 

associated Fisher information is defined as: 

 𝐼𝐹(𝑔) = ∫
𝑔′(𝑥)2

𝑔(𝑥)
𝑑𝑥     (11) 

where the prime denotes the derivative with respect to x. Considering a discretized inversion 

problem, it results in the following equation (12) below for the regularization operator HMFI: 

𝐻𝑀𝐹𝐼 = 𝛻𝑡 . 𝑊. 𝛻         (12) 

where 𝜵 denotes a discrete approximation of the gradient and the ponderation matrix W is 

defined as: 

{
𝑊𝑖𝑗 =

1

𝜀𝑖
𝛿𝑖𝑗 ,            휀𝑖 > 휀𝑚𝑖𝑛 

𝑊𝑖𝑗 =
1

𝜀𝑚𝑖𝑛
𝛿𝑖𝑗 ,        휀𝑖 < 휀𝑚𝑖𝑛

    (13) 

where 𝛿𝑖𝑗 is Kronecker’s delta and εmin > 0 the lower bound used for calculation of the 

weights. The matrix W imposes flatness at plasma edge where the emissivity is close to zero, 

and decreases the constraint on the first derivative at plasma core where the emissivity is 

maximal, for the observation of irregular structures in the core. Similarly to the PTR method, 

SXR emissivity is constrained to zero outside the vacuum vessel. Since the regularization 

operator HMFI depends on the unknown emissivity ε, an iterative algorithm is needed to 

converge to a stable solution, usually in n ~ 4 - 6 steps from a first uniform guess ε
(0)

. For the 

k-th iteration step (k [1, n]): 

{
 
 

 
 𝑊𝑖𝑗

(𝑘)
= min(

1

𝜀
𝑖
(𝑘−1) ,

1

𝜀𝑚𝑖𝑛
)𝛿𝑖𝑗

𝐻𝑀𝐹𝐼
(𝑘)

= 𝛻𝑡 .𝑊(𝑘). 𝛻

𝜺(𝒌) = ( 𝑇. 𝑇 + 𝜆(𝑘) 𝜺(𝒌−𝟏)𝒕 . 𝐻𝑀𝐹𝐼
(𝑘)
. 𝜺(𝒌−𝟏)𝑡 )

−1

. 𝑇𝑡 .𝒎

   (14) 

Any 휀𝑖
(𝑘)
< 0 which could appear between two iteration steps is automatically set to zero to 

avoid unphysical solution. The choice of 𝜆(𝑘) will be detailed in section 3.3. The iterative 

procedure continues until 𝜺(𝒏) ≈ 𝜺(𝒏−𝟏) and 𝜺(𝒏) is taken as the solution for the current time 

step t. For real time tomography, the number of steps can be reduced to 1 - 3 by using the 

solution at each time step to determine the initial ponderation matrix of the next time step, 



considering that SXR plasma emissivity is slowly evolving compared to the time resolution of 

the SXR diagnostic. 

 

3. Benchmarking of the PTR and MFI methods 

3.1. Procedure of comparison 

The procedure described in this section has been used to compare respective performances of 

the MFI and PTR tomographic methods. Analytic emissivity phantom models are used to 

mimic plasma SXR emissivity and then to produce synthetic measurements that will be taken 

as input in the tomographic inversion algorithms as shown in figure 2. After performing the 

tomographic reconstruction, consistency between model and reconstruction is checked for 

both local emissivity and measurements. Such tomographic tests are useful to assess the 

performances and limits of the algorithms, giving the advantage of knowing the initial 

emissivity profile in comparison with experimental reconstructions. 

Quality of the reconstruction is assessed with the two figures of merits RMSem and RMSpr, 

which represent the root mean square of the error respectively on the reconstructed emissivity 

and measurements. 

𝑅𝑀𝑆𝑒𝑚 = √
1

𝑁𝑝
2∑ (휀𝑖

(𝑚𝑜𝑑)
− 휀𝑖

(𝑟𝑒𝑐)
)
2

𝑖     (15) 

where εi
(mod)

 denotes the emissivity in the i-th element of the model, εi
(rec)

 is the emissivity in 

the i-th element of the reconstruction result, and Np² is the total number of pixels.  

𝑅𝑀𝑆𝑝𝑟 = √
1

𝑁𝑚
∑ (𝑚𝑖

(𝑚𝑜𝑑)
−𝑚𝑖

(𝑟𝑒𝑐)
)
2

𝑖     (16) 

where mi
(mod)

 is the signal at the i-th detector calculated from the phantom model and 

𝑚𝑖
(𝑟𝑒𝑐)

= ∑ 𝑇𝑖𝑗휀𝑗
(𝑟𝑒𝑐)

𝑗  is the signal at the i-th detector based on the reconstructed emissivity. 

Nm = 82 is the number of measurements (LoS). 

It should be noted that discretization of the emissivity profile in a limited number of grid 

points induces a discrepancy between the resulting synthetic measurements and what should 

be expected from a continuous emissivity profile, in particular at low spatial resolutions. In 

order to avoid such discretization issues, emissivity profiles have been systematically linearly 

interpolated on a fixed grid Np² = 100×100 (high resolution for TS plasmas) for the production 

of synthetic measurements and comparison at different spatial resolutions Np.  

3.2. Phantom models of SXR emissivity 

Three different sets of phantom models are used to mimic various experimental cases such as 

impurity injections or poloidal asymmetries. One example for each model – Gaussian, hollow, 

and banana shape - is presented in figure 2. The simple Gaussian model is given by the 

following formula: 



𝔖(𝑅, 𝑍) = 𝑒𝑥𝑝 (−
(𝑅−Δ𝑅)2

2𝜎2
−
(𝑍−Δ𝑍)2

2𝜎2
)   (17) 

where (ΔR, ΔZ) are the plasma center coordinates and σ represents the standard deviation of 

the Gaussian. The hollow model is obtained by subtracting two Gaussian phantoms with the 

same emissivity center but different variances 𝜎1
2 > 𝜎2

2: 

ℋ(𝑅, 𝑍) = 𝔖1(𝑅, 𝑍) − 𝔖2(𝑅, 𝑍)    (18) 

Then, the banana model is derived from the hollow model with introduction of a Low-Field 

Side (LFS) or High-Field Side (HFS) poloidal asymmetry as follows: 

ℬ(𝑅, 𝑍) = ℋ(𝑅, 𝑍) ∗ 𝑒𝑥𝑝 (−
(𝑅−Δ𝑅𝑎𝑠𝑦𝑚)

2

2𝜎𝑎𝑠𝑦𝑚2 −
(𝑍−Δ𝑍𝑎𝑠𝑦𝑚)

2

2𝜎𝑎𝑠𝑦𝑚2 )   (19) 

where the point (ΔRasym, ΔZasym) denotes the center of the asymmetry chosen on the corona of 

the corresponding hollow profile, and σasym represents the asymmetry spatial extent. 

Emissivity profiles are normalized such that RMS equal to one represents 100% of global 

reconstruction error and zero represents a perfect reconstruction. 

 
Figure 2. SXR emissivity phantoms and associated TS synthetic measurements for (a) Gaussian (b) hollow and 

(c) LFS banana models. The black curve denotes the vacuum vessel limit and LoS are indicated in dashed white 

lines. 



3.3. Choice of the regularization parameter 

As mentioned in section 2.1, the regularization parameter λ quantifies the level of 

‘‘smoothness” of the reconstructed profile and corresponds to a balance between overfitting 

of measurements and oversmoothing of the solution. For the PTR method λ is selected using 

L-curve method [11]. The method is based on a plot, for all valid regularization parameters, of 

the magnitude of the regularized solution versus the magnitude of the corresponding residual. 

The L-curve when plotted in log-log scale has usually a characteristic L-shaped appearance 

with a distinct corner separating the vertical and horizontal parts of the curve. The idea is 

schematically illustrated in figure 3(a). In this way, the L-curve displays the optimum of the 

minimization of these two quantities, which is the key of the regularization method. The 

optimal choice of the regularization parameter corresponds to the L-curve’s corner. An 

application of the method for selection of the optimal regularization parameter for a Gaussian 

emissivity model reconstruction is shown in figure 3(b). 

 

 
Figure 3. Illustration of the L-curve corner method for (a) an ideal L-curve shape and (b) a Gaussian phantom 

emissivity model (PTR method) with σ = 0.2 m. Optimal value of regularization parameter λ is a balance 

between overfitting of measurements and oversmoothing of the solution. 

For the MFI method 𝜆(𝑘) (see equation (14)) is determined at each iteration step using a fast 

empirical method on the matrix traces which has given satisfactory results so far: 

𝜆(𝑘) =
𝑇𝑟( 𝑇𝑡 .𝑇)

𝑇𝑟(𝐻𝑀𝐹𝐼
(𝑘)

)
       (20) 

A dynamic regula-falsi method has also been recently implemented according to the work 

performed in [12]. In this case the regularization parameter is optimized such that smoothness 

of solution matches the noise level in measurements. This is achieved by defining a new 

residual: 

𝜒𝑁
2 =

1

𝑁𝑚
∑

(𝑚𝑖 − 𝑚𝑖
(𝑟𝑒𝑐)

)
2

𝜎𝑖
2𝑖  ≈ 1      (21) 



where 𝜎𝑖
2 denotes the variance of the expected noise level on the i-th channel. Tolerance on 

𝜒𝑁
2  convergence to 1 is set to 5%. Figure 4 shows the evolution of the residual in blue and the 

regularization term in red as a function of the regularization parameter λ for a Gaussian 

phantom emissivity model with σ = 0.2 m and Np = 50 (a) without and (b) with addition of 

10% zero-mean white Gaussian noise in each channel. Corresponding emissivity 

reconstruction error RMSem is plotted in green. The second definition of the residual from 

equation (21) is only used for non-zero characterized noise level. Green squares denote λ 

optimization for both traces ratio and regula-falsi methods. As a result, the empirical traces 

ratio method is satisfying in terms of RMSem in absence of noise but tends to overfit 

measurements, while the second method is more suitable in case of known non-zero noise 

level. Experimental noise level in SXR measurements on Tore Supra is usually about a few 

percent. In the following sections zero noise level has been assumed in synthetic 

measurements for simplicity, thus the traces ratio method is used for λ computation (MFI 

method). The PTR method uses the L-curve’s corner method as presented in figure 3. Further 

details about robustness of the PTR method against the noise level can be found in [6]. 

Figure 4. Application of regula-falsi and traces ratio method on a Gaussian phantom emissivity model with σ = 

0.2 m, where the emissivity error RMSem (in green), the regularization term R (in red), and the residual (in blue) 

(a) 𝜒2 without noise and (b) 𝜒𝑁
2  with 10% zero-mean white Gaussian noise are plotted against the regularization 

parameter λ (MFI method).  

 

3.4. Results 

The results of the tomographic reconstruction test are presented in figure 5 for each of the 3 

phantom models and both PTR and MFI methods. While the reconstruction of the Gaussian 

shape emissivity profile in figure 5(a) gives very satisfactory results, reconstructions of less 

regular shapes like corona emissivity in figure 5(b) or LFS asymmetry in figure 5(c) are not 

perfect due to the limited number of projections (2 cameras with 82 LoS in total). In fact, 

information tends to concentrate into poles of emissivity defined by the geometry of the LoS. 

Nevertheless, global features like corona or LFS asymmetry are still clearly identifiable. 

 



 
Figure 5. Tomographic reconstruction tests with PTR and MFI methods for (a) Gaussian, (b) Hollow and (c) LFS 

Banana centered emissivity phantom models with σ = 0.2 m. Vacuum vessel is plotted in black and edge LoS are 

indicated in white. 

Quality of reconstruction versus plasma emissivity extent σ. Here tomographic 

reconstruction capacities are studied for regular centered Gaussian phantom models with a 

scan of the standard deviation σ from 0.1 m to 0.3 m, see figure 6. Values of σ greater than 0.3 

m are not considered as relevant with respect to the available plasma volume inside the 

vacuum vessel. The grid size was arbitrary fixed to Np = 40, see the next paragraph for the 

effect of the spatial discretization on the reconstruction. The usual range of experimental SXR 

emissivity extent observed on TS is also indicated in black. It can be seen that for TS plasmas 

both MFI and PTR methods are satisfying and give similar results with RMSem ~ 1%, with a 

slightly better quality for the MFI method in the TS range. This trend seems to reverse for 

higher σ values, which can be explained by the different regularization operators of the two 

methods. Indeed, the PTR method simply minimizes the curvature (second derivative) of the 

solution while in the MFI method the ponderation matrix W flattens the gradient at the plasma 

edge. This can degrade the MFI reconstructions for high SXR emissivity extents with respect 

to the considered plasma volume, where the SXR emissivity level is still substantial at the 

very plasma edge. Nevertheless, it should be noted that such situations with high emissivity 

extent were not encountered experimentally so far.    



Figure 6. Quality of reconstruction versus emissivity extent σ for the PTR and MFI methods and the Gaussian 

phantom model with (a) error on the emissivity RMSem and (b) error on the projections RMSpr. 

Quality of the reconstruction versus the grid size Np. In figure 7 the two regularization 

processes are compared using a set of 108 phantoms per grid point, including the 3 plasma 

models for different plasma sizes from σ = 0.15 m to 0.25 m and for different positions (ΔR, 

ΔZ) from -0.2 m to +0.2 m around the vessel center, in order to cover all the possibilities 

inside the available plasma volume. As a general trend, it is clearly seen that a finer grid leads 

to better reconstructions, see figures 7(a) and 7(b), but with an extra cost of the computational 

time per inversion, see figure 7(c). Different but comparable computing units were used for 

the calculations: a standard core i5 laptop for the PTR method and a core i7 laptop for the 

MFI method. Grids finer than Np² = 50×50 do not give better reconstructions than RMSem ~ 2 - 

5% while the computational time is an increasing exponential function of Np. It is found that 

the PTR method is globally slightly more accurate in terms of RMSem while the MFI method 

is 1 to 2 orders of magnitude faster but tends to overfit measurements, see figure 7(b), due to 

the λ optimization method described in section 3.3. For the PTR method most of the 

computational time is spent in GSVD applied to T and L matrices. This time was taken into 

account for each reconstruction. This approach enables to assess the more general case when 

matrix L is time dependent (e.g. depends on magnetic configuration as presented in [6]). In 

such a case L has to be computed individually for every time interval of interest in the plasma 

discharge. For the MFI method the computational time is ~ 10 ms – 100 ms per inversion for 

20 < Np < 30, useful for fast and robust inversions, and ~ 1 s per inversion for finer analysis at 

Np = 50. These results remain in agreement with previous results in [5].  

Figure 7. Quality of reconstruction versus grid size for the PTR and MFI methods applied to a set of phantom 

emissivity models with (a) error on the emissivity RMSem (b) error on the projections RMSpr and (c) associated 

computational time per tomographic inversion. 



HFS asymmetry on TS shot #46564 with tungsten (W) Laser Blow-off (LBO). As seen 

above in this section, due to the low number of projections tomographic inversions do not 

give perfect reconstructions and poles of emissivity appear for non-regular emissivity shapes. 

A HFS asymmetry was observed with DTOMOX in TS#46564 during W LBO with two local 

emissivity maxima on the HFS, which is reprocessed here with the MFI method and presented 

in figure 8. The obtained results are in good agreement with [5]. The increase in SXR 

emissivity during the LBO time interval indicated in figure 8(a) is attributed to W radiation, 

thus background is subtracted from the SXR signal in figure 8(b) and resulting tomographic 

inversion is presented in figure 8(c). A HFS banana phantom model in figure 8(d), for which 

synthetic measurements fit rather well to the experimental ones in figure 8(b), has been used 

to investigate if the presence of a HFS asymmetry was consistent with the experimental 

tomogram. The experimental reconstruction in figure 8(c) is thus compared with the 

reconstructed emissivity profile shown in figure 8(f) obtained from the phantom model, figure 

8(d). As a result, the two tomograms show a similar pattern of poles of emissivity in terms of 

both position and intensity, validating the presence of an experimental HFS asymmetry in W 

radiation. 

Figure 8. W LBO during TS shot #46564 with (a) time evolution of the SXR measurements, (b) background-

subtracted measurements taken at tLBO and respective HFS banana model, (c) experimental tomographic 

reconstruction, (d) HFS banana emissivity model and associated (e) reconstruction error on emissivity and (f) 

emissivity reconstructed from the model. 

 

4. Conclusion and perspectives for WEST 

In this paper, the 2
nd

 order Phillips-Tikhonov Regularization and the Minimum Fisher 

Information method for SXR plasma tomography at Tore Supra have been compared. The two 

inversion methods are both found to be suitable for TS plasma tomography and the 

benchmarking between the two methods is encouraging. The importance of the choice of the 

regularization parameter and of the discretization of the plasma domain has been highlighted. 

The benchmarking results show that the MFI method is one to two orders of magnitude faster 



while the presented PTR method is overall slightly more accurate. The global accuracy of the 

tomographic reconstructions is around 1 - 5%, with best reconstructions reached for regular 

Gaussian emissivity shapes. Both, robust and fast inversions ~10
-3 

s at Np ~ 30 in the prospect 

of real time control with faster computing unit such as FPGAs, as well as longer but finer 

analysis ~ 10
-2

 s - 1 s at Np ~ 40 - 50 are feasible. 

It has also been shown with phantom models that perfect tomograms cannot be obtained due 

to the low number of projections, especially for emissivity profiles diverging from a regular 

Gaussian shape. Nevertheless, the physical information on SXR emissivity is still present on 

tomograms and gives useful information on poloidal asymmetries and impurity radiation. 

Thus, tomographic reconstructions will be valuable for impurity transport studies (tungsten in 

particular) on WEST. The SXR diagnostic of WEST will be composed of two GEM cameras 

[13] with a tunable spectral response and installed in the same poloidal cross-section as shown 

in figure 9. The plasma coverage will be ensured by a total of 200 LoS with a spatial 

resolution < 1 cm at the plasma core, to be compared with ~ 3 cm for TS diodes, and with a 

smaller plasma volume due to the new divertor configuration. Thus, a global better spatial 

resolution is expected in WEST than in TS for SXR plasma tomography. 

 

 
Figure 9. SXR diagnostic geometry planned for WEST represented in a 2D poloidal cross-section, with a total of 

~200 LoS (in blue). The black line represents the new chamber wall in divertor configuration. Last-closed flux 

surface and magnetic axis are plotted in red. 
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