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Abstract 

Pesticides have been suspected to act as endocrine disruptive compounds (EDCs) through 

several mechanisms of action, however data are still needed for a number of currently used 

pesticides. In the present study, 30 environmental pesticides selected from different chemical 

classes (azole, carbamate, dicarboximide, oganochlorine, organophosphorus, oxadiazole, 

phenylureas, pyrazole, pyrimidine, pyrethroid and sulfonylureas) were tested for their ability 

to alter in vitro the transcriptional activity of the androgen receptor in the MDA-kb2 reporter 

cell line. The responsiveness of the system was checked by using a panel of reference ligands 

of androgen and glucocorticoid receptors. When tested alone at concentrations up to 10 µM, 

none of the studied pesticides were able to induce the reporter gene after a 18 hour exposure. 

Conversely, co-exposure experiments with 0.1 nM dihydrotestosterone (DHT) allowed 

identifying 15 active pesticides with IC50 ranging from 0.2 µM for vinclozolin to 12 µM for 

fenarimol. Fipronil and bupirimate were here newly described for their AR antagonistic 

activity. 

Keywords: reporter gene assay, pesticides, androgen and glucocorticoid receptors, anti-

androgenic potency. 
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1. Introduction 

A number of environmental chemicals, the so-called endocrine disruptive chemicals 

(EDCs), can alter the normal functioning, synthesis and metabolism of endogenous hormones, 

and thereby affect growth, development and reproduction in wildlife and humans (Colborn 

1995). EDCs are supposed to be active through several molecular mechanisms of action, 

among which the binding to and subsequent (in)activation of nuclear receptors, including the 

estrogen (ER) and androgen receptors (AR), has been identified as an important mechanism 

that mediates endocrine disrupting effects. These receptors are transcriptional factors that play 

crucial role in the regulation of target gene expression in physiological processes like 

development, sex differentiation, reproduction, as well as neuro-endocrine system 

functioning. 

A large diversity of environmentally occurring chemicals, including natural and synthetic 

steroids, pharmaceuticals, industrial and phytopharmaceutical chemicals, have been described 

as ligands of nuclear receptors (Vos et al., 2000). Among them, the risks for wildlife and 

human health posed by pesticides is currently a major cause for concern (Colborn and Carroll 

2007; McKinlay et al., 2008). Pesticides encompass a large panel of chemical classes that are 

widely used in both agricultural and non-agricultural applications, and wildlife and human 

may be exposed through multiple routes including atmosphere, water, occupational, domestic 

and food consumption. While certain environmental pesticides (e.g. vinclozolin and 

methoxychlor) or pesticide metabolite (e.g. p,'p-DDE) have been early identified as potent 

anti-androgen and/or estrogen mimicking compounds (Kelce et al., 1995; LeBlanc et al., 

1997), the evaluation of currently used pesticides is of more recent concern besides (Andersen 

et al., 2002; Kojima et al., 2004; Lemaire et al., 2004). McKinlay et al. (2008) recently listed 

127 pesticides as having endocrine disrupting properties through various modes of molecular 

actions in in vitro or in vivo systems. Although some of the listed pesticides were banned or 

restricted for use, they are still found in the aquatic environment (Baugros et al., 2008; Kinani 

et al., 2010). In addition, many pesticides that are authorised for use are now detected in water 

bodies and may pose a risk to exposed population (Comoretto et al., 2007; IFEN 2007). 

However, there is still a lack of information on the ED potency of a number of currently used 

pesticides. In this context, the use of in vitro screening assays that inform on specific ED-

related mechanisms of action can provide rapid and relevant toxicological information in 

order to characterise ED property of not yet evaluated pesticides. 

mailto:Francois.Brion@ineris.fr
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In a previous study, we have reported that several currently used pesticides were able to 

interfere with steroid hormone biosynthesis by altering aromatase enzymatic activity and gene 

expression in a human placental cell line (Laville et al., 2006). In order to gain further 

information on their ED potency, these compounds (listed in Table 1) were tested in the 

present study for their ability to alter the transcriptional activity of the androgen receptor (AR) 

in the MDA-kb2 reporter cell line (Wilson et al., 2002). This cell line is derived from MDA-

MB-453 cells that were stably transfected by the luciferase reporter gene driven by the 

MMTV promoter. In these cells, this promoter is up-regulated by two endogenous nuclear 

receptors, AR and glucocorticoid receptors (GR). After calibration of the reporter system in 

our test conditions using reference AR and GR ligands, the agonistic and AR antagonist 

actions of pesticides were screened. 

 

2. Materials and methods 

2.1. Chemicals 

Flutamide, testosterone, 5 -dihydrotestosterone (DHT), androstenedione, dexamethasone, 

RU846 and pesticides (listed in Table 1) were purchased from Sigma-Aldrich (Saint Quentin 

Fallavier, France), except azimsulfuron (DuPont de Nemours, France) and sodium arsenite 

(Alpha Aesar, France). Stock solutions (10 mM) of chemicals were made up in 

dimethylsulfoxide (DMSO) and stored at –20°C.  

2.2. Cell culture and reporter gene assay 

The MDA-kb2 cell line (ATCC #CRL-2713) was obtained from LGC Promochem 

(Molsheim, France). The cells were routinely grown at 37°C under humidified air atmosphere 

in phenol red containing L15 Medium (Sigma) supplemented with 10 % foetal calf serum 

(FCS), 1 % (v/v) non essential amino acids, penicillin/streptomycin (50 U/ml each) and 0.1 

mg/ml geneticin (Invitrogen, France). The assay procedure for chemical testing is given as 

follows, accordingly to preliminary assays done in our laboratory in order to optimise assay 

conditions. Briefly, the cells were seeded at a density of 10
4
 cells per well of 96-well white 

opaque tissue culture plates, and left to incubate for 24 hours at 37°C. Then, for each plate, 

the cells were dosed in triplicates with solvent alone (negative control), 1 nM and 0.1 nM 

DHT (as positive controls for AR agonism), 0.1 nM DHT plus 1 µM flutamide (as positive 

control for AR antagonism), and a range of concentrations of test chemical administrated 
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either alone (for AR/GR agonistic activity) or in the presence of 0.1 nM DHT in culture 

medium (for AR antagonistic activity). A screening approach was first used by exposing cells 

to 1 and 10 µM of test chemicals in order to identify active chemicals. After confirmation of 

biological effect in second experiments, active compounds were further tested using larger 

range of concentration (0.01 to 10 µM, up to 30 µM for fenarimol) to establish complete 

dose-response curves allowing determination of median effective concentration (see section 

2.4.). Overall, each chemical has been tested in at least three independent experiments. The 

final solvent concentration in the medium never exceeded 0.1 % (v/v). At this concentration, 

DMSO did not alter either luciferase activity or cell viability. After 24 h incubation at 37°C, 

the medium was removed and replaced by 50 µl of phenol red free medium containing 3.10
4
 

M D-luciferin (Sigma) and the luminescence signal in living cells was read after 5 minutes 

with a microtiter plate luminometer (µBeta, Wallac). Results were expressed as percent of 

maximal luciferase induction by 10 nM DHT. Anti-androgenic activity was examined after 

co-exposure of the cells to both 0.1 nM DHT and the test chemical. At this concentration, 

DHT induced about half-maximal luciferase activity in our experiments. 

2.3. Cytotoxicity assay 

The cellular viability was assessed in independent experiments by using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, as described by 

(Mosmann 1983), with slight modifications. Briefly, cells were seeded at density of 10
4
 

cells/well in 96-wells culture plates, left to grown for 24 hours, and exposed in triplicates to 1 

and 10 µM of test chemicals for 18 hours. After exposure, culture medium was removed and 

0.5 mg/ml MTT dissolved in culture medium was added to the wells. After two hours of 

incubation at 37°C, the medium was removed and the purple formazan product was dissolved 

by isopropanol addition. Plates were read at 570 nm against a 660 nm reference wavelength 

with a microplate spectrophotometer reader (BioTek Instruments, France). Cell viability was 

expressed as a percentage of the value measured in untreated control cells (solvent control). 

2.4. Data analysis 

Statistical significance of the effects of chemicals was assessed by using the non 

parametric Mann-Whitney test. A value of p < 0.05 was considered significant. The SPSS™ 

software version 10.1 for Windows was used for the statistical analysis. For reporter gene 

response, dose-response curves were modelled by using the Regtox 6.3 Microsoft Excel 

macro (Vindimian 2010), which allows calculation of EC50 (concentration that induces 50 % 
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of maximal response) and IC50 (concentrations that inhibits 50 % of maximal response). The 

relative anti-androgenic potency (RAAP) was determined as the ratio of IC50 value of 

flutamide to that of test compound.  

3. Results 

3.1. Activity of reference AR and GR ligands 

In order to calibrate the use of the MDA-kb2 cell line in our laboratory conditions, reference 

AR and GR ligands were first tested. Typical dose-response curves that were obtained for AR 

agonists and antagonists are shown in Figures 1 and 2, respectively. In these experiments, 

DHT was the most potent AR agonist, followed by testosterone (T), methyltestosterone (MT) 

and androstenedione (AD), in a decreasing potency order. Maximum fold-induction of 

luciferase by AR full agonists varied from 5 to 10 across experiments, while the GR agonist 

dexamethasone induced luciferase 50 to 80 times as compared to untreated control cells (not 

shown). The EC50 and the ranges of fold-induction of luciferase determined in our study for 

both well-known AR and GR ligands were in line with those previously published using the 

same cellular model (summarised in Table 2, references therein). These results validated the 

use of this cell model in our experimental conditions, which involves slight differences in the 

assay procedure (i.e. detection of luciferase activity in living cells) comparing to that 

previously described for the use of this reporter cell line for the testing of chemicals (Wilson 

et al., 2002).  

3.2.  (Anti-)androgenic activity of pesticides 

At 10 µM, no significant cytotoxicity was observed after exposure to individual pesticides, as 

determined by the MTT assay (data not shown). When tested alone for their agonist activity, 

none of the pesticides significantly induced the luciferase activity in MDA-kb2 cells (data not 

shown). Conversely, 14 out of 30 pesticides behaved as AR antagonists as they were able to 

significantly inhibit DHT-induced luciferase in a concentration dependent manner. Active 

compounds were arbitrarily grouped in two groups of chemicals according to their inhibitory 

potencies, i.e. as moderate (chemicals that inhibited less than 50 % of DHT-induced luciferase 

at 10µM) (Figure 3), and potent anti-androgenic pesticides (chemicals that inhibited more 

than 50% of DHT-induced luciferase at 10µM) (Figure 4). Their IC50 ranged from 0.19 µM 

for vinclozolin, the most potent pesticide, up to 12 µM for fenarimol (Table 1). By regards to 

their relative anti-androgen potency (RAAP), most of the pesticides were found 3 (o,p'-DDE) 
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to 100 (fenarimol) times less potent than the reference anti-androgen flutamide (Table 1), 

except for vinclozolin and the methoxychlor metabolite HPTE, that were more or equally 

potent than flutamide, respectively. Interestingly, bupirimate and fipronil were newly 

identified as potential antiandrogens.  

It is noteworthy that flutamide is a moderate anti-androgen but is metabolised in vivo in 

hydroxyflutamide (HF), a stronger anti-androgen. Using this compound as a reference to 

determine RAAP of a given compound could be misleading as it is not known whether MDA-

kb2 cells can metabolise it. However, Ma et al. (2002) reported that HF was about ten times 

more potent than flutamide suggesting that metabolism of flutamide in this cell system has 

minor influence on its anti-androgenic activity. Nonetheless, in the present study, RAAP 

based on flutamide as a reference should first be viewed as an index allowing relative ranking 

of active chemicals rather than as an absolute value of their intrinsic anti-androgenic activity. 

 

4. Discussion 

By using the MDA-kb2 cell line established by (Wilson et al., 2002), we were able to assess 

the ability of various selected pesticides to interact with the human AR transcriptional 

pathway. This study shows the usefulness of the MDA-kb2 cell line to detect AR antagonistic 

property of several pesticides. The main outcomes of this study are: 

- the suitability of the MDA-kb2 cell line to detect anti-androgenicity of pesticides in a 

screening approach, 

- the anti-androgenicity of 15 out of the 30 tested pesticides from various chemical classes, 

among which several were previously poorly or not described as such, 

- the newly identified anti-androgenic property of two currently used pesticides, fipronil 

and bupirimate. 

In first experiments using reference AR and GR ligands, we could establish a very good 

adequacy between our results and those previously published by using the same cellular 

model (Table 2). Moreover, the use of a slightly divergent procedure assay (i.e. detection of 

luciferase activity in living cells) than that one originally described by Wilson et al (2002) did 

not yield divergent results when comparing the IC50 values for the reference compounds. In a 

practical way, the detection of luciferase in living cells has been previously reported for the 

assessment of luciferase activity in other reporter cell lines (Balaguer et al., 2001; Cosnefroy 

et al., 2009; Creusot et al., 2010; Pillon et al., 2005) and can thus be recommended to enhance 

the screening capacity of stable luciferase reporter assays using MDA-kb2 cells. This 
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comforted the validity of the MDA-kb2 assay in our laboratory conditions and allowed us to 

further explore the effects of pesticides of environmental interest.  

When tested alone, none of the studied pesticides significantly induced the luciferase activity 

in MDA-kb2 cells (data not shown), which is not an unexpected finding. Indeed, the lack of 

AR agonistic activity by the tested pesticides is in line with the frequently reported absence of 

in vitro androgenic potency for a large range of organic environmental contaminants, such as 

pesticides from various chemical classes (Kojima et al., 2004; Lemaire et al., 2004; Xu et al., 

2008), benzophenone derivatives (Molina-Molina et al., 2008), alkyphenols and parabens 

(Satoh et al., 2005). Additionally, by using the in vitro AR-EcoScreen reporter gene assay, 

(Araki et al., 2005) reported that only two out of 253 tested industrial chemicals exerted slight 

AR agonist activity. 

Conversely to the absence of agonistic effects, fifteen out of 30 tested pesticides were able to 

inhibit in a concentration dependent manner the DHT-induced luciferase in MDA-kb2 cells 

(Figure 2, Table 1). Vinclozolin and HPTE, which are well-described antagonists of the AR in 

various cellular models (Andersen et al., 2002; Kelce et al., 1994), were the most active 

compounds with experimental IC50s equal to (HPTE) or lower (vinclozolin) than the reference 

AR antagonist flutamide. The 12 other active pesticides presented lower affinities for the AR 

than flutamide, with relative potencies ranging from 31.5 % for o,p'-DDE to 4.3 % for 

fenarimol. Some of them, such as o,p'-DDT, o,p'-DDE, endosulfan, methoxychlor, fenarimol 

or prochloraz, are well known EDCs and their in vitro anti-androgenic potency has been 

previously reported, albeit in different cellular models, which confirms our results (see Table 

1 for references).  

HPTE was more potent than its parent compound methoxychlor to act as an AR antagonist in 

MDA-kb2 cells. HPTE is a di-hydroxylated metabolite that is generated in vivo by 

demethylation of methoxychlor by cytochrome P450 monooxygenases (van den Berg et al., 

2003). Thus, the comparison of their effects in MDA-kb2 cells suggest that this cell line does 

not bioactivate such xenobiotic compounds, likely due to low phase I metabolic capacities. To 

our knowledge however, no information is available regarding xenobiotic metabolic of this 

cell line. 

In MDA-kb2 cells, few recent studies have reported the AR antagonist activity of pesticides. 

Tamura et al (2006) reported the anti-androgenic activities for fenarimol and methoxychlor in 

this cell line, although with higher IC50 than in our study. Chlordane was not active in our 

study, confirming its lack of anti-AR activity recently reported in MDA-kb2 cells (Tamura et 

al, 2006), while it has been shown to slightly inhibit R1881-induced luciferase activity in 
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other cell models, like the stable reporter PALM cells (Lemaire et al., 2004) and CHO using a 

transient transfection assay (Kojima et al., 2004). These discrepancies may be due to the use 

of different cellular models, which have been largely unexplored for in vitro AR-luciferase 

assays. 

Permethrin and cypermethrin were ineffective to exert either estrogenic or (anti)androgenic in 

rat in vivo (Kunimatsu et al., 2002). Other authors recently reported the ability of the two 

pesticides to partially inhibit DHT-induced luciferase at 10 µM in an androgen-responsive 

reporter cell line (Xu et al., 2008). In our study, no effect was observed at 10 µM for both 

pesticides. 

Fipronil and bupirimate were newly identified as possible anti-androgen chemicals. Fipronil is 

a phenylpyrazole insecticide and is currently authorised for use in many applications in 

Europe and other areas. Apart from its potency to interfere with the AR signalling pathway, 

fipronil is also able to activate pregnane X receptor (PXR) activity in vitro (Lemaire et al., 

2006). Since it has been well described as both environmental (surface waters, soil) and food 

chemical contaminant, the present data reinforce the need to consider environmental hazard 

due to fipronil with regards to its endocrine disrupting potential. Bupirimate is a pyrymidine 

fungicide that acts by inhibiting fungal growth through interference with auxines. To our 

knowledge, almost no data are available regarding its endocrine disrupting potency. It has 

only been described as a potent PXR activator in vitro (Lemaire et al., 2006). We show here 

that it may also potentially interfere with the AR signalling pathway.  

Overall, it is noted that several of identified active chemicals only partially inhibited DHT-

induced luciferase at high concentrations, hence posing the question of possible false 

positives. Although no cytotoxic effect was noted at the highest tested concentration and no 

alteration of basal luciferase expression was observed in cell exposed to pesticides alone, it 

cannot be excluded that some of the observed effects could be related to unspecific inhibition 

of reporter enzyme independently from the AR signalling pathway. Further experiments, such 

as AR competitive binding assay, would thus be useful to confirm the data reported in the 

present study and elucidate underlying mechanisms. 

In summary, this study shows the suitability of the MDA-kb2 cell line for a screening purpose 

to assess anti-androgenic property of chemicals, including pesticides. Among the pesticides 

that were found active in this study, several are still in use despite data on their endocrine 

disrupting potencies are very recent or scarce. It is however acknowledged that the present 

assay describes potential (anti)androgens and does not necessarily inform on global endocrine 

disruptive potential of test chemical. In addition, weakly active pesticides in vitro are likely to 
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exert limited anti-androgenic effect in vivo. However, together with other previous studies 

that addressed the effects of this set of molecule on other molecular targets of EDCs (Laville 

et al, 2006, Lemaire et al, 2006), our present results strengthen the need to further explore 

their endocrine disruptive effects in vivo, especially for chemical that are able to alter multiple 

targets for EDCs. 
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Figure 1: Luciferase induction by the reference AR ligands. MDA-kb2 cells were exposed for 

18 h to testosterone (T), 5 -dihydrotestosterone (DHT), 17 -methyltestosterone (MT) and 

androstenedione (ATD). Data are representative of at least three independent experiments. 
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Figure 2: Luciferase inhibition by reference AR antagonists in MDA-kb2 cells. The cells 

were co-exposed DHT 0.1nM and various concentration of antagonist (flutamide or 

vinclozolin) for 18 hours. The results are expressed percentage of luciferase induced by DHT 

alone Data are representative of at least three independent experiments. 
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Figure 3: Dose-response curves of luciferase inhibition by moderately active pesticides in 

MDA-kb2 cells. The cells were co-exposed for 18 hours to both 0.1 nM DHT and various 

concentrations of pesticides. Calculated IC50s are reported in Table 1. *: different from 

solvent control (p<0.05). Data are representative of at least three independent experiments. 
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Figure 4: Dose-response curves of luciferase inhibition by the most active pesticides in 

MDA-kb2 cells. The cells were co-exposed for 18 hours to both 0.1 nM DHT and various 

concentrations of pesticides. Calculated IC50s are reported in Table 1.  *: different from 

solvent control (p<0.05). Data are representative of at least three independent experiments.
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 Table 1: Summary of anti-androgenic potency of pesticides tested in MDA-kb2 cells and 

comparison with previously published activities using other in vitro biological models
a
. 

Pesticides CAS # IC50 

(µM)
 b
 

RAAP (relative 

to flutamide) 

Reported anti-androgenicity  

(in vitro cell model) 

Ref. 
c
 

Flutamide 13311-84-7 0.51 1   

Vinclozolin 50471-44-8 0.19 2.68 A- 1 

HPTE 2971-36-0 0.54 0.94 A- (CHO) 3 

o,p'-DDE 3424-82-6 1.62 0.32 A- 4 

Prochloraz 67747-09-5 3.09 0.17 A- (CHO) 3, 5 

o,p’-DDT 50-29-3 3.32 0.15 A- (CHO) 5 

Methyl Parathion 298-00-0 4.26 0.12 A- (CHO, HepG2) 5, 6 

Methoxychlor 72-43-5 4.43 0.12 A- (CHO, PALM) 5, 7  

Bupirimate 41483-43-6 4.80 0.11 no data  

Pretilachlor 51218-49-6 5.46 0.093 n.e. (CHO) 5 

Fipronil 120068-37-3 6.82 0.075 no data  

Diuron 330-54 6.83 0.075 A- (CHO)  5 

Propiconazole 262-104-4 7.71 0.066 A- (CHO) 5 

Endosulfan 115-29-7 8.74 0.058 A- (CHO) 3, 5 

Metolachlor 51218-45-2 9.92 0.051 n.e. (CHO) 5 

Fenarimol 60168-88-9 11.80 0.043 A- (CHO) 3, 5 

Aldrin 309-00-2 n.e. n.e. A  (CHO, PALM) 5, 7 

Atrazine 1912-24-9 n.e. n.e. n.e. (PALM) 5, 8 

Benomyl 17804-35-2 n.e. n.e. n.e. (HeLa) 5, 9 

Chlordane 57-74-9 n.e. n.e. A- (CHO, PALM) 5, 7 

Cypermethrin 67375-30-8 n.e. n.e. weak A- (CV-1) 10 

Heptachlor 76-44-8 n.e. n.e. n.e. (CHO) 5 

Permethrin 52645-53-1 n.e. n.e. weak A- (CV-1) 10 

Toxaphene 8001-35-2 n.e. n.e. n.e. (binding assay) 11 

Aminotriazole 61-82-5 n.e. n.e. no data   

Arsenite Na 7784-46-5 n.e. n.e. no data   

Azimsulfuron 120162-55-2 n.e. n.e. no data  

Fenbuconazole 114369-43-6 n.e. n.e. no data  

Isoproturon 34123-59-6 n.e. n.e. no data  

Mecoprop 16484-77-8 n.e. n.e. no data  

Oxadiazon 19666-30-9 n.e. n.e. no data  

a: RAAP: relative anti-androgenic potency; A : described as either agonist or antagonist for 

the AR; A-: AR antagonist; n.e. : non effective pesticide; no data : no data could be found in 

literature. 
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b: Reported IC50 were derived from single experiments (Figures 3 and 4); anti-androgenic 

activity of pesticides have been confirmed in at least three independent experiments. 

c: 1: (Kelce et al., 1994); 2: (Sohoni and Sumpter 1998); 3: (Andersen et al., 2002); 4: (Kelce 

et al., 1995); 5: (Kojima et al., 2004); 6: (Tamura et al., 2003); 7: (Lemaire et al., 2004), 8: 

(Sultan et al., 2001); 9: (Yamada et al., 2005); 10: (Xu et al., 2008); 11: (Scippo et al., 2004). 



 20 

 

 

Table 2: EC50 or IC50 of reference AR and GR ligands in MDA-kb2 cells. Comparison with 

data from previous studies using the same cellular model. 

Reference ligands EC50 (nM) S.D. IC50 (nM) S.D. n 
a
 

Bibliographic 

data (EC50 or IC50 

in nM) 

AR ligands 
    

5 -dihydrotestosterone 0.15  0.07 - 9 0.21 
b
, 0.136

 c
, 

0.6 
d
 

Testosterone 0.40 0.07 - 5 1.3 
d
 

17 -methyltestosterone 0.57; 0.44 - 2 0.53 
b
, 1.25 

c
 

Androstenedione 37.9  28.2 - 3 140 
b
, 73.5 

c
 

Flutamide - 512  102 3 788 
c
 

Vinclozolin - 187  55 3 110 
b
, 109 

c
 

GR ligands 
    

Dexamethasone  4.40  0.62 - 6 12.6 
c
 

RU486 - 8.8  4.1 3 - 

a : n : number of independent experiments 

b (Korner et al., 2004)  

c (Ma et al., 2003) 

d (Satoh et al., 2005) 

 

 


