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1 INTRODUCTION 

Probabilistic risk (or safety) assessments (PRA) pro-
vide a general framework for managing risks linked 
to engineering systems, notably in nuclear power 
plants, aerospace, and chemical industries. The main 
purpose of PRA is to identify the possible accidental 
scenarios, to rate their consequences, and to assess 
their likelihoods. An essential challenge is to deal 
with the system complexity, that is, to treat system 
interactions both efficiently and realistically. 

In the seventies, the event tree/fault tree method-
ology was introduced for PRA (US NRC 1975), fo-
cusing on system components and their “static” rela-
tionships. In the late eighties-early nineties, dynamic 
reliability (or probabilistic dynamics) methods were 
developed to explicitly handle the influence of time, 
process dynamics and human operations, on system 
failures and PRA scenarios. These approaches in-
clude dynamic discrete-time event trees (e.g. DY-
LAM, DETAM), the GO-FLOW methodology, 
Event Sequence Diagrams (ESD), the Dynamic 
Flowgraph Methodology (DFM), Markov models, 
and Petri Nets. Most of them have been presented, 
compared and discussed by Aldemir et al. (1994), 
Siu (1994), and Labeau et al. (2000). Although there 
is a broad consensus on the need for dynamic reliabil-
ity methods (Aldemir & Siu 1996), such approaches 
have not yet penetrated the arena of industrial appli-
cations (Labeau et al. 2000). Given reasons are the 
theoretical flavor and the lack of a generic platform 
for performing such analyses. 

The formal mathematical framework of dynamic 
reliability was established under the name of Con-
tinuous Event Tree (CET) theory, (Devooght & 
Smidts 1992a). The latter introduced two sets of 
variables to define the complete system state: 
 physical (continuous) variables of the process 

(e.g. level, pressure, temperature); 
 state (discrete) variables of the system compo-

nents (i.e. system configuration). 
The evolution of the process variables was character-
ized by a set of first order (non-stochastic) differen-
tial equations for each value of state variables. 
Changes in state variables were assumed stochastic, 
defined by transition rates, and dependent on process 
variables. Human operations were also included as 
additional variables (Devooght & Smidts 1992b). 

More recently, the use of digital safety-related 
systems has introduced new issues for dynamic reli-
ability modeling, especially due to the interactions 
between system components (Aldemir et al. 2006). 
Typical examples of such systems include the “intel-
ligent transmitters” which are able to exchange in-
formation, to perform internal data processing and 
advanced functionalities (Brissaud et al., sub.). 

The present paper focuses on the dynamic reliabil-
ity modeling of cooperating digital-based systems. 
First, the mathematical framework of dynamic reli-
ability is extended in Section 2 to deal with the spe-
cific characteristics of these systems. A formalized 
Petri-net approach is also proposed to perform the 
related reliability analyses. Finally, a case study in-
volving a nuclear reactor is presented in Section 3. 
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ABSTRACT: Dynamic reliability explicitly handles the interactions between the stochastic behavior of system 
components and the deterministic behavior of process variables. However, its industrial level applications are 
still limited, notably due to the inherent complexity of the theory and the lack of a generic modeling frame-
work. The increased use of digital-based systems has also introduced additional modeling challenges related to 
the interactions between cooperating digital components. For solving these challenges, the present paper first 
extends the mathematical framework of dynamic reliability to handle 1) information and data computed and ex-
changed between digital components; and 2) random parameter deviations. A formalized Petri net approach is 
then proposed to perform the corresponding reliability analyses, using a finite element method. Finally, the 
framework’s effectiveness is demonstrated on a simplified model of a nuclear reactor case study. 



2 DYNAMIC RELIABILITY FRAMEWORK FOR 
COOPERATING DIGITAL-BASED SYSTEMS 

2.1 Problem Formulation 
In addition to time t, four types of variables are used 
to describe the complete system state. The process 
and components state variables remain the same as 
those defined by Devooght & Smidts (1992a). Data 
variables are introduced in order to characterize digi-
tal systems; and deviation variables extend the possi-
bilities of failure modeling. All these variables are 
time-dependent. The process, data, and deviation 
variables are continuous and depicted by vectors of 
reals, respectively denoted x(t), y(t), and e(t). Com-
ponents state variables are discrete and depicted by a 
vector of integers, denoted i(t). (cf. Table 1). 

The process variables x(t) represent the physical 
variables involved in the system dynamics (e.g. pres-
sure, temperature, volume). They evolve determinis-
tically, given components state, and with deviations 
as parameters (e.g. the level in a tank is determined 
by the configuration of the valves, and the amount of 
leakage). The evolution of process variables may 
then usually be defined by a set of first order differ-
ential equations, indexed by the components state: 

dt
d x(t) = x’i(x, e, t) (1) 

The data variables y(t) represent any information or 
data which are computed, stored, and/or exchanged 
between system components (e.g. commands, meas-
urement results, diagnostic information). By nature, 
they do not directly affect process and deviation vari-
ables, but are used to change components state. The 
data variables may usually be expressed as a function 
of process and deviation variables, given components 
state (e.g. when a transmitter is in a non-fully operat-
ing mode i.e. a component state, its measurement re-
sults depend on the quantities to be measured i.e. 
process variables, and drifts i.e. deviation variables). 
The data variables may also depend on their previous 
values (e.g. stored data, locked signals), denoted       
–y(t), with –y(t) = y(t – ε) and ε which tends to 0+: 

y(t) = yi(x, –y, e, t) (2) 
The deviation variables e(t) represent continuous er-
rors or deviations in system properties, which evolve 
stochastically (e.g. system degradations, drifts), de-
pending on process variables and components state 
(e.g. the leak in a closed valve follows a random dis-
tribution influenced by the flow rate). Because the 
evolution of deviation variables is continuous, it may 
usually be defined by a set of first order differential 
equations which include random variables (e.g. the 
rate of crack growth is a random variable which de-
pends on the current crack level), indexed by the 
components states: 

 
 

Table 1.  Nomenclature __________________________________________________ 
Variable   Description __________________________________________________ 
t      time 
x(t)     vector of process variables at time t 
y(t)     vector of data variables at time t 
–y(t)     vector of previous values of y(t) up to time t 
e(t)     vector of deviation variables at time t 
i(t)     vector of components state variables at time t 
x’i(x, e, t) expression of derivatives of process variables 

at time t, given i(t), x(t), and e(t) 
yi(x, –y, e, t) expression of data variables at time t, given 

i(t), x(t), –y(t), and e(t) 
E’i( x, e, t) vector of random variable which provides the 

rate of change of deviation variables at time t, 
given i(t), x(t), and e(t) 

ik specific value of vector i(t), indexed by k 
p(ik→il | x,y,e,t) components transition rate from state ik to 

state il at time t, given x(t), y(t), and e(t) 
λik(x, y, e, t) total components transition rate from state ik 

at time t, given x(t), y(t), and e(t) 
Fik(τ | x, y, e, t) probability of leaving components state ik in 

time interval [t, t + τ[ 
Pi(x, y, e, t)T ∙ Ï product of vectors which determine randomly 

i(t+Δt) according to transition rates 
(i, x, y, e, t)  notation for (i(t), x(t), y(t), e(t)), description 
      of the complete system state at time t 
Δt      time step __________________________________________________ 
 

dt
d e(t) = E’i(x, e, t) (3) 

where E’i(x, e, t) is a (function of) random variable. 
The components state variables i(t) represent the 

structure (configuration) of the system and is a func-
tion of the states of its components (operating or 
failed) and of human operations (e.g. opening or 
closing a valve). The state of any system component 
(e.g. operational, degraded, or failed) can be de-
scribed by integers which are arranged in vector i(t). 
The components state variables may evolve both de-
terministically and stochastically, depending on proc-
ess and data variables (e.g. a valve is controlled by a 
signal; a transmitter failure rate depends on the tem-
perature), and deviations (e.g. after a certain level of 
degradation, a component transition occurs from a 
degraded mode into a fully non-operating mode). 
The components transition rate from state ik to state 
il at time t, given process, data, and deviation vari-
ables, is denoted p(ik → il | x, y, e, t). Then, the total 
components transition rate from state ik is: 

λik(x, y, e, t) = 
 kl ii

p(ik → il | x, y, e, t) (4) 

The transitions between components states are as-
sumed instantaneous. When the components state at 
time t is i(t) = ik, the probability that the components 
leave this state before time t + τ is therefore: 

Fik(τ | x,y,e,t) = 1 – exp 



 



0

λik(x,y,e,t+u)∙du 



 (5) 



2.2 Mathematical Solution Using a Finite Element 
Method 

For the numerical analyses of the complete system 
evolution according to time, a finite element method 
is adopted. A time step Δt is used which should be 
small enough to assume that variables x(t), y(t), e(t), 
and i(t) are constant in any time interval [t, t + Δt[ 
without loss of accuracy. These variables at time t + 
Δt can then be determined by their values at time t. In 
particular, a components state transition which oc-
curs between time t and time t + Δt is considered to 
occur exactly at time t + Δt. In the same way, the 
evolution of the process, data, and deviation vari-
ables between time t and time t + Δt are considered 
to occur as “jumps” exactly at time t + Δt. It is then 
possible to approximate the values of process and 
deviation variables at time t + Δt, according to the 
complete system state at time t, using the finite dif-
ferences of the derivatives given in Section 2.1: 

x(t + Δt) ≈ x(t) + Δt ∙ x’i(x, e, t) (6) 

e(t + Δt) ≈ e(t) + Δt ∙ E’i(x, e, t) (7) 
In addition, the probability that the components re-
main in their current state at time t, denoted i(t) = ik, 
up to time t + Δt, that is i(t + Δt) = ik, is: 

Pr[i(t + Δt) = ik | i(t) = ik, x, y, e, t] 
= 1 – Fik(Δt | x, y, e, t) ≈ 1 – Δt ∙ λik(x, y, e, t) (8) 
And similarly, the probability that the components 
leave their current state at time t, denoted i(t) = ik, 
for another specific state at time t + Δt, denoted i(t 
+Δt) = il, with ik ≠ il, can be approximated by: 

Pr[i(t + Δt) = il ≠ ik | i(t) = ik, x, y, e, t] 
≈ Δt ∙ p(ik → il | x, y, e, t) (9) 
Note that a deterministic (certain) transition can then 
be modeled using a rate equal to 1/Δt. 

The couple (Ï, Pi(x, y, e, t)) is defined, with Ï a 
vector composed of all possible combinations of 
components states, and Pi(x, y, e, t) a vector with all 
its components equal to 0 except one that is equal to 
1 whose components are determined randomly ac-
cording to Equations (8) and (9), in such a way that: 

i(t + Δt) ≈ Pi(x, y, e, t)T ∙ Ï (10) 
Once the components state, process and deviation 
variables are defined at time t + Δt, the data variables 
at time t + Δt can also be determined, using ε = Δt 
which implies that –y(t + Δt) = y(t): 

y(t + Δt) ≈ yi(x, –y, e, t + Δt) (11) 
Equations (6)-(11) show that the complete state of 
the system at time t + Δt, i.e. (i, x, y, e, t + Δt), can 
be fully determined according to its state at time t, 
i.e. (i, x, y, e, t), according to deterministic and sto-
chastic evolutions. The system is therefore a piece-
wise-deterministic process (PDP), (Davis 1993). 

2.3 Petri Net Formalism for Numerical Analyses 
Petri nets and their extensions, including stochastic 
and colored characteristics, provide natural and ef-
fective tools for modeling dynamic systems (David & 
Alla 1994), notably for risk analysis (Vernez et al. 
2003). Stochastic Petri nets were also used efficiently 
in dynamic reliability (Dutuit et al. 1997). In the pre-
sent paper, a Petri net formalism, using stochastic 
and colored properties, is proposed in order to pro-
vide a generic framework to: 
 flexibly model the dynamic reliability of a system 

with the help of a visual interface easy to handle; 
 simulate the evolution of the complete system 

state, using a finite element method. 
In the proposed approach, each place of the Petri net 
is associated to one set of variables, and vice-versa. 
The number of places then increases linearly accord-
ing to the number of variables, which avoids any 
combinatorial explosion. According to the nature of 
the variables (continuous or discrete, stochastic or 
deterministic), different representations are used for 
graphical convenience (cf. Figure 1). The values of 
the variables are given by the (colored) token, with 
real or integer numbers (according to the places) in-
side the corresponding places, and are changed by 
the transitions. Each place therefore always contains 
one and only one token, and thus, all the transitions 
are always enabled. Guards are then used for each 
transition and denoted sj[Δt], which means that the 
transition is fired at each time instant sj + k ∙ Δt, with 
k = 0, 1, 2,… 

Each transition of the Petri net is associated to a 
place, denoted “managed place.” This place is linked 
to the transition by an input arc, which means that 
the corresponding variables are changed by the tran-
sition (“the token is removed from the place”); and 
linked to the same transition by an output arc, which 
attributes to the variables their new values (“the to-
ken is deposited in the place”). An expression is 
given on this output arc to specify these new values, 
which may depend on the previous values of the 
variables (handled by the input arc) and also on vari-
ables from other places. The latter places are then 
denoted “dependence places” and are linked to the 
corresponding transition by bi-directed arcs, which 
means that the values of their variables may be used 
by the transition, but are not changed. 

The new values of variables (specified by the out-
put arcs from the transitions to their “managed 
places”) may also depend on random variables. Con-
trarily to the “classical” stochastic Petri nets, the sto-
chastic aspects therefore do not relate to time in-
stants, but to values of variables (i.e. the token 
“color”). In this approach, the time, as a variable, is 
modeled by a place. Besides, all the transitions are 
fired at deterministic time instants (specified by the 
transition guards). This approach can therefore be 
classified as an “untimed stochastic (and colored) 
Petri net.” 



 
Figure 1. Petri net tool box. 
 
A generic Petri net for the dynamic reliability model-
ing of systems is depicted in Figure 2, using the ele-
ments described in Figure 1. The five types of vari-
ables defined in Section 2.1 are modeled, and 
depicted using different varieties of places. In Figure 
2, the variables are represented by vectors (except 
for time t). For more detailed models, it is also possi-
ble to split these vectors into subsets with one place 
for each (subset), and to treat them separately. 

Each transition is fired at every time step Δt, 
changing the variables modeled by the corresponding 
“managed place,” according to the equations given in 
Section 2.2 and specified on the output arcs. The 
transition that changes the time variable t is not 
linked to any “dependence place” and is simply used 
to increment time t by Δt at each solicitation. On the 
other hand, the components state variables i(t) are 
changed by random variables defined by Equation 
(10), which depend on all the variables. 

 
Figure 3. Meta-transition for Petri net. 
 
In each time interval [t, t + Δt], all the values of vari-
ables at time t + Δt are computed following a specific 
order defined by the sj (cf. top of Figure 2). (Such 
specific orders may also be required to deal with de-
pendencies between subsets of variables.) Note that 
the values of variables at time t + Δt depend on val-
ues at time t (cf. Equations (6)-(11)). In particular, 
x(t + Δt) and e(t + Δt) both depend on x(t) and e(t). 
To avoid “losing” the values of x(t) (resp. e(t)) after 
computing x(t + Δt) (resp. e(t + Δt)), “Meta-
transitions” are introduced. They are used to first 
compute all the derivatives at time t (i.e. x’i(x, e, t) 
and E’i(x, e, t)), storing them as additional variables 
(cf. Figure 3), and then to change the variables of the 
complete system state. A “Meta-transition” has 
therefore a double guard denoted (sj, sk)[Δt], which 
means that the derivative is computed at each time 
instant sj + k ∙ Δt, and the variables of the “managed 
place” at sk + k ∙ Δt.

 

 
Figure 2. Generic Petri net for the dynamic reliability modeling of systems. 



3 CASE STUDY OF A FAST REACTOR 

3.1 The Europa Fast Reactor 
The case study is the primary circuit of the Europa 
fast reactor. This system has been proposed as a 
benchmark problem on accident sequences (Wider et 
al. 1989). Several dynamic reliability analyses have 
been also performed on this application (Amendola & 
Reina 1984, Smidts & Devooght 1992, Swaminathan 
& Smidts 2000). A comprehensive description of the 
system is provided by Smidts & Devooght (1992). In 
the present paper, the physical variables have been 
simplified to allow us to focus more specifically on 
other aspects. In particular, new transmitter features 
have been introduced (communications and drift cor-
rections), and deviation variables. 

The simplified model of the primary circuit of the 
Europa fast reactor is depicted in Figure 4. This sys-
tem is comprised of two channels (C1 and C2) where 
sodium is introduced as a coolant by a pump (PM). 
The lack of coolant, for example in case of a pump 
failure, increases the temperature in the channels and 
may yield hazardous events. The sodium tempera-
tures in the channels (T1 and T2) are therefore moni-
tored by transmitters (ST1 and ST2) which send their 
results (T1s and T2s) to a common controller (CT). 
Similarly, the flow rate (G) is monitored by a third 
transmitter (SG) which sends its result (Gs) to an-
other controller (CG). CT and CG send their signals 
(yCT and yCG) to a central controller (SDL). If a high 
temperature threshold (Tmax) or a low flow rate 
threshold (Gmin) is detected, then SDL sends a signal 
(ySDL) which should activate an emergency shutdown 
(SCM). This safety device, commonly named 
SCRAM, consists in inserting (under gravity) control 
rods into the core which quickly stop the nuclear re-
action by absorbing neutrons. The system variables 
are described in Sections 3.2 to 3.5. 

 

 
Figure 4. The Europa Fast Reactor 

3.2 Components State Variables 
The state of each of the eight system components is 
represented using a finite integer and constitutes one 
of the components of vector i(t), i.e. i(t) = (SPM(t), 
SSG(t), SCG(t), SST1(t), SST2(t), SCT(t), SSDL(t), 
SSCM(t)). In the following, and in accordance with 
the formalism presented in Section 2, each compo-
nent of vector i(t) is modeled separately. The com-
ponents state variables are then defined in Table 2. 

The normal (full) operating modes of the compo-
nents are represented by state variables equal to 1. 
When a component state variable is equal to 0, the 
corresponding failure mode is “dangerous,” that is, it 
may directly yield an inability of the system to per-
form its safety function (i.e. inserting the control rods 
into the core). On the contrary, when a component 
state variable is equal to 2, the corresponding failure 
mode is “safe,” that is, it may directly yield a spuri-
ous activation of the safety function. Other values of 
component state variables (3 or 4) correspond, for 
example, to “degraded” modes of operation. 

The state variables of the “mechanical” compo-
nents, that is, the pump and the SCRAM, directly af-
fect process variables as described in Section 3.3. On 
the other hand, the state variables of the controllers 
and transmitters directly determine data variables de-
fined in Section 3.4. Finally, the effects of the “de-
graded” modes of operations are modeled using de-
viations variables defined in Section 3.5. 

The transition rates between the possible states of 
each component are given in Table 3. Note that tran-
sition rates depend on time t, process variables, de-
viation variables, and states of other components. A 
deterministic (certain) transition is also assumed for 
the SCRAM activation (using a rate equal to 1/Δt). 
 
Table 2.  Components state variables __________________________________________________ 
System   State   Possible value with description 
component  variable  __________________________________________________ 
pump   SPM(t)  = 1 normal operation 
 (PM)       = 0 full failure 
         = 3 degraded operation 
flow rate  SSG(t)  = 1 perfect results 
 transmitter     = 0 results locked to current value 
 (SG)        = 2 results locked to low value 
flow rate  SCG(t)  = 1 correct signals 
 controller      = 0 signals locked to “unsafe” value 
 (CG)       = 2 signals locked to “safe” value 
temperature SSTi(t)  = 1 perfect results 
 transmitters     = 0 results locked to current value 
 (STi)       = 2 results locked to high value 
 with i = 1, 2     = 3 results subject to negative drifts 
         = 4 results subject to positive drifts 
temperature SCT(t)  = 1 correct signals 
 controller      = 0 signals locked to “unsafe” value 
 (CT)       = 2 signals locked to “safe” value 
central   SSDL(t)  = 1 correct signals 
 controller      = 0 signals locked to “unsafe” value 
 (SDL)       = 2 signals locked to “safe” value 
SCRAM  SSCM(t) = 1 normal operation 
 (SCM)       = 0 full failure 
         = 5 SCRAM activation __________________________________________________ 



Table 3.  Transition rates between components states __________________________________________________ 
State   From   To   Transition rate* [s-1] 
variable  state   state __________________________________________________ 
SPM(t)  1 or 3  0    1∙10-3 ∙ exp(δM(t) ∙ 5∙10-5) 
    1    3    1∙10-2 

SSG(t)  1    0    2∙10-3 
    1    2    2∙10-4 

SCG(t)  1    0 or 2  1∙10-5 
SST1(t)  1, 3 or 4 0   4∙10-4∙(1+Ι1(SST2(t)=0))∙r(T1(t)) 
    1, 3 or 4 2   4∙10-5∙(1+Ι1(SST2(t)=2))∙r(T1(t)) 
    1    3 or 4  1.5∙10-2 

SST2(t)  1, 3 or 4 0   4∙10-4∙(1+Ι1(SST1(t)=0))∙r(T2(t)) 
    1, 3 or 4 2   4∙10-5∙(1+Ι1(SST1(t)=2))∙r(T2(t)) 
    1    3 or 4  1.5∙10-2 

SCT(t)  1    0 or 2  1∙10-5 
SSDL(t)  1    0 or 2  1∙10-6 
SSCM(t) 1    0   3.125∙10-8 ∙ t ∙ r((T1(t)+T2(t))/2) 
    1    5    (1/Δt) ∙ Ι1(ySDL(t)=1) __________________________________________________ 
* T1(t) and T2(t) are process variables defined in Section 3.3, 
δM(t) is a deviation variable defined in Section 3.5, 
Ι1(.) and r(.) are functions defined by Equations (12) and (13). 

 
The following function is used to model the effect of 
the temperature process variables (T1 and T2) on 
transition rates (cf. Table 3): 
r(T) = 6.17∙10-2 ∙ exp(5.21∙10-3 ∙ T) (12) 
The following function is used to model dependen-
cies with component states (e.g. between the tem-
perature transmitters, cf. Table 3): 
Ι1(A) = 1 if assertion A is true, and 0 otherwise (13) 

 
Figure 5. Flow rate evolution according to time t (G(t)), in sce-
narios s1, s2 (equivalent to s1), and s3, cf. Section 3.3 

 

 
Figure 6. Temperature evolution according to time t (T1(t) and 
T2(t)), in scenarios s1, s2, and s3, cf. Section 3.3 

3.3 Process Variables 
The thirteen process variables are x(t) = (ω(t), G(t), 
Tc,1(t), Tc,2(t), T1(t), T2(t), P(t), C1(t), C2(t), C3(t), 
C4(t), C5(t), C6(t)) and defined hereafter. Expressions 
of the derivatives are given by the following equa-
tions, with the initial conditions at time t0 = 0. The 
parameters and their values are reported in Table 4. 

Angular speed of the pump, denoted ω(t) [rad/s]: 
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where δM(t) is the pump torque deviation defined 
in Section 3.5, and SPM(t) is the pump state variable 
defined in Section 3.2 (cf. Table 2). 

Sodium linear momentum flow rate, denoted G(t) 
[kg/m²s]: 
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Fuel temperature in channel i, denoted Tc,i(t) [K], 
with i = 1, 2: 
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Table 4.  Parameters __________________________________________________ 
Parameter with value  Description __________________________________________________ 
CM = 60,000 N.m  nominal pump torque 
K  = 10 kg.m²/s   constant for pump friction 
I  = 10 kg.m²   pump moment of inertia 
υ  = -5.00∙10-2 s-1  constant for flow rate evolution 
Cnt2 = 5.56∙10-6 kg/m² constant for flow rate evolution 
R  = 9.521∙10-7 K/W thermal resistance 
w1  = 0.41175    proportion of power generated by C1 
w2  = 0.58825    proportion of power generated by C2 
Te  = 653 K    sodium reactor inlet temperature 
τ1(T) = 1.1223+1.5215∙10-3∙T–1.0471∙10-6∙T2+2.7476∙10-10∙T3 
τ2(T) = 1.5714+2.1303∙10-3∙T–1.4661∙10-6∙T2+3.8470∙10-10∙T3 
A1  = 0.518867 m²  section of sodium passage in C1 
A2  = 0.741238 m²  section of sodium passage in C2 
CR(T)= 1629–8.3290∙10-1∙T  sodium specific heat 
γSCM  = 4.40∙10-1 s-1  reactivity induced by control rods 
β1  = 8.2100∙10-5   delayed neutron fraction 
β2  = 7.4480∙10-4   delayed neutron fraction 
β3  = 6.6150∙10-4   delayed neutron fraction 
β4  = 1.3277∙10-3   delayed neutron fraction 
β5  = 6.1480∙10-4   delayed neutron fraction 
β6  = 1.8940∙10-4   delayed neutron fraction 
Γ  = 3.98∙10-2 s   mean neutron production lifetime 
γ1   = 1.29∙10-2 s-1  precursor decay constant 
γ2   = 3.11∙10-2 s-1  precursor decay constant 
γ3   = 1.34∙10-1 s-1  precursor decay constant 
γ4   = 3.31∙10-1 s-1  precursor decay constant 
γ5   = 1.26 s-1    precursor decay constant 
γ6   = 3.21 s-1    precursor decay constant __________________________________________________ 



Sodium temperature in channel i, denoted Ti(t) 
[K], with i = 1, 2: 
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Power generated by the core, denoted P(t) [W]: 
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where SSCM(t) is the SCRAM state variable de-
fined in Section 3.2 (cf. Table 2). 

Precursor concentration, denoted Ci(t) [W], with i 
= 1, 2, 3, 4, 5, 6: 
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Note that the introduction of function Ι1(A) allows 
the use of only one set of differential equations, 
which depend on components state variables as pa-
rameters. These equations also depend on deviation 
variables. Finally, Equations (14)-(19) are appropri-
ate for the analyses presented in the present paper, 
but are not applicable to any other cases. 

To illustrate the evolution of the flow rate G(t) 
and temperatures T1(t) and T2(t), three scenarios are 
assumed and depicted in Figures 5 and 6: 
 s1: SPM(t) = 3, and SSCM(t) = 0 for any time t; 
 s2: SPM(t) = 3 for any time t, and SSCM(t) = 1 

up to time t = 53 s, then SSCM(t) = 5; 
 s3: SPM(t)=3 up to time t = 30 s, then SPM(t)=0, 

and SSCM(t) = 1 up to time t = 33 s, then 
SSCM(t) = 5. 
In addition, the pump torque deviation δM(t) has 

been simulated according to Equation (26), using the 
same results for all these scenarios. 
 
Table 5. Relationships between processing data αi(t), and 
measurement results Ti

s(t) and Gs(t), with i = 1, 2 __________________________________________________ 
Measurement results        αi(t) __________________________________________________ 
Ti

s(t) = Ti(t) & Gs(t) = G(t)      αi(t) = 0 
Ti

s(t) < Ti(t) or Gs(t) > G(t)      αi(t) < 0 
Ti

s(t) > Ti(t) or Gs(t) < G(t)      αi(t) > 0 __________________________________________________ 

3.4 Data Variables 
The ten data variables are y(t) = (Gs(t), T1

s(t), T2
s(t), 

yCG(t), yCT(t), ySDL(t), α1(t), α2(t), T1
c(t), T2

c(t)), and 
defined by the following equations. (cf. Table 2). 

Measurement results, denoted Gs(t) [kg/m²s], and 
Ti

s(t) [K], with i = 1, 2: 
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where δDi(t) are drifts defined in Section 3.5. Note 
that data variables at time t depend on their values at 
time t – Δt (cf. Sections 2). 

Controller signals, denoted yCG(t), yCT(t), ySDL(t): 

   
 2)(

1)()()(

1

1min1




tSCG
tSCGGtGty s

CG  (22) 

 
   2)(1)(

)()()(

11

max2max11




tSCTtSCT
TtTorTtTty ss

CT  (23) 

   
 2)(

1)(1)(1)()(

1

11




tSSDL
tSSDLtyortyty CTCGSDL  (24) 

Processing data, denoted αi(t) with i = 1, 2, are 
computed by the temperature transmitters according 
to other data variables (using communications be-
tween transmitters), in order to deduce characteris-
tics on measurement results (cf. Table 5). These data 
are based on the derivatives of measurement results, 
compared to theoretical values (cf. Section 3.3): 
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According to αi(t), parameters of drifts correction, 
denoted Ti

c(t), with i = 1, 2, are then defined accord-
ing to the rules given in Table 6, assuming T1(t) = 
T2(t) before SCRAM activation (cf. Figure 6). 
 
Table 6. Computation of Ti

c(t) according to αi(t), with i = 1, 2 __________________________________________________ 
Criteria* on αi(t)      Computation of Ti

c(t) __________________________________________________ 
|α1(t)| > αref & |α2(t)| < αref   T1

c(t) = T2
s(t) – T1

s(t) 
             & T2

c(t) = T2
s(t – Δt) 

|α1(t)| < αref & |α2(t)| > αref   T2
c(t) = T1

s(t) – T2
s(t) 

             & T1
c(t) = T1

s(t – Δt) 
α1(t) < –αref & α2(t) > αref   T1

c(t) = ((T2
s(t) – T1

s(t))/2) 
 or α1(t) > αref & α1(t) < –αref   & T2

c(t) = ((T1
s(t) – T2

s(t))/2) 
otherwise         Ti

c(t) = Ti
s(t – Δt) with i=1,2 __________________________________________________ 

* For the basic case: αref = 1 



3.5 Deviation Variables 
The three deviation variables are e(t) = (δM(t), δD1(t), 
δD2(t)) and are defined by the following equations. 

The pump torque deviation, denoted δM(t) [N.m]: 

     3)()(,)( 11  tSPMCtEt
dt
d

MMMM  (26) 

with EM(µ, σ) a random variable which follows a 
Log-Normal distribution of parameters µ = 5, σ = 1. 

The drifts, denoted δDi(t) [K], with i = 1, 2: 
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with ED(δDi(t), Ti(t)) a random variable which fol-
lows an Exponential distribution of parameter 
3∙104/(Ti(t) ∙ δDi(t) + 20), with i = 1, 2. 

3.6 Results 
The threshold values used for the analyses are Tmax = 
923 K and Gmin = 3345 kg/m²s. At time t0 = 0, all the 
system components are in the full operating modes 
(the components state variables are equal to 1), ex-
cept for the pump which is in the “degraded” mode 
of operation (SPM(t0) = 3); the process variables are 
in the initial conditions defined in Section 3.3; the ini-
tial values of data variables are defined by Equations 
(20)-(25); and deviation variables are nil. 

The system has been modeled using the formalism 
presented in Section 2, and its evolution has been 
simulated using CPN tools (Jensen et al. 2007), a 
Petri net software which provides all the characteris-
tics required for the proposed modeling approach 
(including the color properties, the specification of 
random functions, and the definition of “meta-
transition”). The scenarios of system evolution are 
then classified according to the temperatures in the 
reactor channels. If the SCRAM is activated while 
both T1 and T2 are lower than Tmax – 5 = 918 K, then 
a “spurious trip” is assumed. On the other hand, if ei-
ther T1 or T2 exceeds Tmax + 10 = 933 K for more 
than 5 s, then a “hazardous event” is assumed. In the 
other cases, the system is “under control.” 

The analyses have been performed by Monte 
Carlo simulations (cf. Equation (10) and Section 
2.3), and the results are reported in Table 7. To as-
sess the effects of the “intelligent transmitter” fea-
tures (the possibility to exchange information, to 
process data, and to offset drifts), a case without 
drift correction (i.e. αref = ∞) is also presented. It is 
then shown that the use of such “intelligent transmit-
ters” allows a greater percentage of “under control” 
cases, obtained by a reduction of the number of “spu-
rious trips.” However, a drawback of decreasing the 
probability of “spurious trips” is a slight increase of 
the percentage of “hazardous events.” It is therefore 
deduced that adjustments of parameter αref should be 
used to balance reliability and safety. 
 

Table 7.  Percentage* of scenario realizations __________________________________________________ 
Scenario      αref = ∞    αref =  1.0 __________________________________________________ 
under control     49.1     58.4 
spurious trip     49.3     39.3 
hazardous event    01.6     02.3 __________________________________________________ 
* Obtained through 1,000 Monte Carlo simulations trials. 
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