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Abstract 

A major challenge for drug development and environmental or occupational 

health is the prediction of pharmacokinetic and pharmacodynamic interactions 

between drugs, natural chemicals or environmental contaminants. This article 

reviews briefly past developments in the area of physiologically-based 

pharmacokinetic (PBPK) modelling of interactions. It also demonstrates a systems 

biology approach to the question, and the capabilities of new software tools to 

facilitate that development. Individual SBML models of metabolic pathways can 

now be automatically merged and coupled to a template PBPK pharmacokinetic 

model, using for example the GNU MCSim software. The global model generated 

is very efficient and able to simulate the interactions between a theoretically 

unlimited number of substances. Development time and the number of model 

parameter increase only linearly with the number of substances considered, even 

though the number of possible interactions increases exponentially. 
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Introduction  

The mathematical modelling of interactions between drugs or toxicants is 

essentially motivated by a search for efficiency. While assessing or predicting the 

toxicity of single substances is difficult enough, considering them by pairs, 

triplets, etc. is daunting. Even though much advances have been made on in vitro 

systems [1-3], the experimental route suffers the "curse of dimensionality": 

Beyond pairs of interacting substances, factorial experimental designs of the order 

of size 2n are required to assess simply the sign and order of interactions between 

n drugs or environmental stressors [4]. Modelling, with the aid of computers, has 

the potential of being much faster, provided that adequate models are available. In 

that case, "adequate" does not only mean "correctly fitting the data", but also 

"correctly predicting future observations", a much stricter requirement which 

early on oriented research toward mechanistic models. The domain of validity of a 

mechanistic model is conditioned by its structure and parametric assumptions, 

while the same domain for empirical (data-fitting) models is restricted to the range 

of the available data. 

Therefore, this short review will leave aside empirical statistical models, such 

as population models [5], or semi-empirical dose-response models [6], however 

interesting they are. We will not review either qualitative or semi-qualitative data-

mining approaches [7, 8], even though they can be a useful first screen. If we 

simply examine mechanistic models, two classes emerge: A first group of 

mechanistic models aims at predicting interactions at the enzyme or receptor 

level, through molecular modelling or QSAR approaches, or a combination of 

both [9-11]. A second group of models, which will be the subject of this review, 
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integrates pharmacokinetic and enzyme or receptor pathways modelling. As this 

"physiological" or "systems biology" approach is the most comprehensive, it tends 

to couple with advances and tools or concepts from the above empirical and 

QSAR models [12]. To further reduce the scope of this paper without loosing 

generality, while still capturing some well-known sources of interactions among 

chemical substances, we will focus here on metabolic interactions. Those occur 

because a relatively limited number of enzyme species process a majority of 

xenobiotics and endogenous chemicals. For any of those reactions, the number of 

enzyme molecules is itself limited, leading to predictable bottlenecks in the 

detoxification or, conversely, in the activation of chemicals [3, 8]. 

We mentioned above that experimental methods suffer from the curse of 

dimensionality, but to be fair modelling also faces the same problem. However, 

new solutions are emerging from pathways' modelling, which is proceeding at a 

fast pace (see http://systems-biology.org) [13]. Although quite complex, 

pathways' modelling can actually reduce the dimensionality of the problem, as we 

will see in the following.  

Physiologically based pharmacokinetic (PBPK) models  

PBPK models are increasingly used in drug development and regulatory 

toxicology to predict the kinetics and metabolism of substances in the body [14-

19]. In these models, the body is represented by a set compartments corresponding 

specific organs or tissues, and the transfers or transports of drugs are dictated by 

various physiological flows (blood, bile, pulmonary ventilation, etc) [14]. A 

system of differential equations can be written, with parameters representing 

blood flow rates, organ volumes etc., for which information is available in the 
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published scientific literature or may be obtainable in vitro. Numerical integration 

of that differential system computes the quantity and concentration of the drug 

considered in each compartment, as a function of time and exposure dose. Indeed, 

such a description of the body is approximate, if not rough, but a balance has to be 

found between precision (and therefore complexity) and simplicity (ease of use). 

The first report of a PBPK model able to describe simultaneously 

administration, kinetics and metabolic interactions was for warfarin and 

bromosulfophtalein [20]. The application to drug-drug interactions did not really 

take on at that time, in part because PBPK model parameterisation was difficult 

and did not adhere to the standards of statistical model fitting that was imposed to 

pharmacokinetic data analysis.  

Interest in PBPK modelling then shifted to the regulatory toxicology arena, 

where data were scarce and predictive modelling (for low dose or inter-species 

extrapolations) much needed [21]. That shift led to sporadic applications of PBPK 

models to interactions between pairs of substances [22-29]. For reviews of the 

state of the art at that time, see [30, 31]. The study of more complex mixtures, up 

to the five-component mixture of dichloromethane, benzene, toluene, 

ethylbenzene, and xylene was an interesting advance [32, 33]. But, the exercise is 

quite painstaking and was not extended significantly afterward.  

The beginning of this century witnessed a renewed interest in PBPK modelling 

in the context of drug development, including for drug-drug interactions [34-36], 

albeit without much awareness of the work being pursued in environmental 

toxicology [37-40]. However, this is changing, but still, even recent publications 

focus primarily on binary drug-drug interactions [41-43].  
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Systems biology pathways modelling 

A problem faced by all the above investigators was to efficiently describe the 

cascades of reactions for the set of substances considered, in addition to the 

eventual transport and elimination of the metabolites. Assume that we describe 

each metabolic reaction by a set of four differential equations (for the formation 

of the enzyme-substrate complex and its dissociation into enzyme plus product), 

for 50 substances leading to 50 metabolites, all of them distributed primarily in 10 

organs or tissues of the body. The corresponding model would consist in about 

1200 equations and at least a thousand parameters. The difficulty or even the 

impossibility to manually develop and check such a model is obvious. 

Dealing with a large number of biological reactions is a problem faced daily by 

systems biologists. To solve it, a set of tools has been developed, and in particular 

the Systems Biology Markup Language (SBML), a conventional syntax for 

representing biochemical pathway models [44]. SBML can code for models of 

metabolism, signalling, transcription etc. An international community of software 

developers and users maintains SBML since the mid-2000 (cf. http://sbml.org).  

SBML defines a uniform symbolic coding system that enumerates reactants, 

products, parameters, reactions, their formulae etc., needed to define and simulate 

unambiguously the specified reactions. The model representation is symbolic and 

does not directly refer to a set of differential equations or any specific 

mathematical representation. That facilitates the interpretation of the model, and 

its automatic translation and integration into diverse software. SBML is de facto 

becoming a standard for model specification and exchange in systems biology 

[45]. 
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Automated coupling of PBPK and systems biology modelling 

To be able to deal with more complex mixtures, streamlining the process and 

taking advantage of the emerging tools of systems biology is a research avenue 

worth exploring. However, that exercise is still difficult when starting from a 

Henry-Michaelis-Menten description of metabolic reactions, because the number 

of parameters needed increases with the square of the number substances 

considered. In those conditions, modelling is not much more advantageous than 

experiments. 

The challenge is to efficiently describe together cascades of reactions and the 

eventual transport and elimination of intermediate and final metabolites. The 

associated model can be very complex, even if limited to pharmacokinetic and 

metabolic interactions, because the transport of each metabolite requires a set of 

differential equation of its own. The main steps of a newly proposed "divide and 

conquer" approach [46] are: 

- Develop for each substance and each of its metabolic reaction an SBML-coded 

model. It is necessary at this step to avoid simplifications of the Henry-

Michaelis-Menten type, and to account for the balance of the various quantities 

of enzymes and enzyme-substrate complex involved, hence using the 

individual reaction micro-constants, rather than aggregated Henry-Michaelis-

Menten constants. 

- Define a general PBPK model template, applicable to all the substances 

considered (for example, the model shown on Figure 1). Such a model is 

needed to describe the relationship between personal exposure and internal 

concentrations at the site metabolism, which condition the intensity of 

interactions between substances;  
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- Automatically build a global model of transport and metabolism of all the 

substances in the body, on the basis of the previously defined elements. 

- Use that model to perform predictive simulations of substances' interactions. 

The global model can be used to study the behaviour of complex mixtures, 

representative of the reality of human population exposures.  

The above steps can be performed with the help of version 5.3.1 of the GNU 

MCSim software. (http://www.gnu.org/software/mcsim) [47, 48]. GNU MCSim 

can use a PBPK model as a template for the description of the pharmacokinetics 

of each drug (and metabolites) involved in a reaction network. The template 

equations are copied for each chemical species and aggregated to form a large 

system of differential equations, able to describe the simultaneous 

pharmacokinetics and interactions of all the substances considered. Physiological 

parameters (for example the liver volume) keep the same value for all chemical 

species (see Table 1), but other parameter values may differ between chemical 

species. GNU MCSim recognises compartments defined in SBML models, maps 

them to the PBPK template compartments, and automatically locates the specified 

biochemical reactions in the correct organs. The substances placed (in SBML) 

outside of any physiological compartment are automatically distributed in all the 

compartments of the template PBPK model. 

Analysis of a PBPK-coupled metabolic network 

To illustrate the automated approach just described, and to explore the interaction 

properties of a sufficiently complex network, a set of primary metabolic reactions 

were simulated for a list of 50 hypothetical parent chemicals. For each of those, 

one or two metabolic reactions involving one of 10 possible enzymes were 
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randomly generated, each with equal probability. The differential equations 

corresponding to a given substrate (S) and enzyme (E) pair are: 

 
ESK

t

dP

ESKKESK
t

dES

ESKKESK
t

dE

ESKESK
t

dS

3

321

321

21

 (1) 

where ES represents the transient enzyme-substrate complex, P the reaction 

product, and the Ki the reactions' micro-constants. The product species were 

randomly drawn among the 50 parents (thereby generating cross-linked reactions) 

plus another 150 other species (purely terminal products). In addition 5 parent 

species (S18 to S20) were supposed to induce an increased synthesis of enzymes 7 

and 9, according to the following equations:  

 SKEK
t

dE
54 1  (2) 

The random draws mentioned above were all from discrete uniform 

distributions. The enzymes and enzyme-substrate complexes were supposed to 

stay local to the liver. Parent species and metabolites were defined as circulating, 

and therefore distributed according to the generic PBPK model of Figure 1. The 

metabolic network generated by that procedure is presented graphically in Figure 

2. The network is relatively complex and highly interconnected, like natural 

metabolic networks can be. That network was used as a basis for all the following 

simulations and results. 
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For simplicity, and without loss of generality, all substances were supposed to 

be non-volatile and excreted by the kidney, in addition to being eventually 

metabolised. Substances S1 to S20 (group A) were supposed to be natural 

chemicals, such as those present in food (phenols, etc.), absorbed daily at 

relatively high dose. Substances S21 to S50 (group B) were drugs absorbed at 

lower rate. The group C substances, with numbers between 51 and 200, 

correspond to terminal metabolites. There are only 46 of those metabolites 

because the random drawing of substances for possible reactions did not select all 

of the 150 possible choices. 

The PBPK model template shown in Figure 1 was used to describe the kinetics 

of group A, B and C substances in the human body. It corresponds to four 

differential equations (the lung exchange kinetics are modelled with a simple 

algebraic equation under an instantaneous equilibrium hypothesis) and ten 

physiological  parameters (see Table 1). The template model does not include the 

metabolic reactions affecting the substances to which the body is exposed, those 

were automatically generated, using equations 1 and 2 above, for all reactions of 

the network. The substance-specific parameters of the PBPK template (partition 

coefficients, urinary elimination clearance) and the metabolic rate constants were 

set to the arbitrary values given in Table 2. 

GNU MCSim version 5.3.1 (http://www.gnu.org/software/mcsim) was used to 

generate and simulate the global interaction model. That model had 466 state 

variables and differential equations for the quantities of parent species and 

metabolites in the various compartments of the PBPK model, and quantities of 

enzymes and enzyme-substrate complexes in the liver, and 818 parameters. 
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CellDesigner 4.0.1 was used to generate Figure 2. The other graphs were plotted 

with Kaleidagraph v4.02 and R v2.8.1. 

A first step is to evaluate the "extent" of the possible interactions between 

substances of the network presented on Figure 2. In that example case, every 

substance affects the metabolism of any other one either directly or indirectly 

(there is a path connecting every two nodes of Figure 2). Yet, the previous 

statement is qualitative and solely based on the structure of the metabolic 

network. In reality, to paraphrase Paracelsus, the dose makes the interaction. If we 

turn to quantitative analyses, Figure 3 shows the simulated time-course of venous 

concentrations of all substances during the co-administration of groups A and B 

substances. These results were obtained by numerical integration of the global 

model for joint pharmacokinetics and metabolism of the substances. Parameters 

were set the values given in Tables 1 and 2. The initial quantities of substances in 

the body were set to zero, except for the enzymes, set at an arbitrary initial liver 

concentration of 1 mM each. Ingestion rates per minute for group A and B 

substances were set at a high value (0,1 mM) for 4 hours and to zero afterward. 

Since the parameter values for all substances were the same in that simulation, the 

noticeable differences observed on Figure 3 between substances are entirely due 

to the cascading network structure and to interaction effects. The global model is 

able to predict the kinetics of parent and daughter species in any compartment of 

the associated PBPK model for any exposure schedule. Such a simulation only 

takes a fraction of second on an i686processor. 

To have an overview of the magnitude of the possible interactions, it is 

possible to compute an "interaction index" for each chemical species. For a given 

species, we define that index as the ratio of the concentration resulting from a 
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joint exposure to groups A and B substances over the sum of the concentrations 

resulting from separate exposures to the same substances, at the same dose. In the 

absence of interactions the index value is 1, it is superior to 1 if the joint exposure 

leads to a disproportionate increase in the concentration of the substance 

considered, and lower than 1 otherwise. Figure 4 gives that index for all species, 

as a function of the ingestion rate of substances of groups B (the same rate was 

used for all substances of that group), 24 hours after the start of 4-hour exposures. 

Substances of group A were administered at the rate of 0.1 mM/min. During 

exposure to the mixture, the internal concentrations of groups A and B substances 

were in general increased (we will call that "synergy"). On the contrary, 

metabolites (group C) had reduced concentrations on average (an effect we will 

term "antagonism"). Synergy (which would correspond to an increased toxicity if 

the substances were toxic) was observed in 60% of the cases. The concentration 

increase at 24 h, due to interactions, reached a factor 7 (substance S6). 

Antagonism (by inhibition of metabolite formation) lowered concentrations by a 

factor 2 at most (for S39, metabolite of S20). At lower doses of group B 

substances, interaction effects dampened. Maximal synergies went down to a 

factor 2 at most (still for S6). Antagonisms reached at most a factor 1,5 (for S59 

and S38), but interactions with group A substances (which are supposed to 

represent natural substrates, ingested at relatively high doses) were still observed, 

so that interactions indices did not return to 1. Note that for a few substances, the 

sign of the interaction changed with dose. 

The above results were obtained with a model whose metabolic parameter 

values were all set to the arbitrary values given in Table 2. They are simply results 

of a stylised case study, aimed at exploring the possible extent of interactions and 
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their behaviour in a realistically large metabolic network. In the real world, the 

parameters characterising each drug or substance might be very different and 

exposure levels and routes will be highly variable. To simulate such a variability, 

it is possible to perform Monte-Carlo simulations [49], by randomly sampling 

parameter values. Besides, the metabolic network studied here is only a plausible 

example and our results depend on it. A specific real world network would probably 

respond differently, and this should be the subject of specific investigations. 

Advantages of a micro-constants approach 

The potential complexity of interaction effects between drugs, food constituents, 

and environmental chemicals, is an open problem since many decades. From a 

sheer mathematical point of view it is clear that combinatorial approaches (e.g., 

exploring all possible pairs, triplets etc.), be they experimental, statistical or 

mechanism-based, are impractical as soon as the complexity of the mixtures 

considered exceeds a small handful of substances. Modelling approaches do also 

suffer that "curse of dimension" unless they decompose the problem and take 

advantage of their power for synthesis. Our approach tends toward that goal and 

takes advantage of recent advances in bioinformatics and biomathematics at three 

levels: Automatic reconstruction of a metabolic network on the basis of 

individual  reactions; Automatic coupling to an ADME prediction model; Fewer 

parameters through the use of reaction micro-constants (instead of the Henry-

Michaelis-Menten approximations). 

To illustrate the latest point, crucial to the feasibility of the proposed approach, 

Figure 5 shows the number of model parameters required by various approaches 

as a function of the number of interacting substances considered. When using 
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reaction micro-constants, the number of parameters required increases only 

linearly. The use Michaelis-Menten inhibition constants imposes at least a 

quadratic increase (when dealing only with pairs of chemicals, that is with order 

two interactions) and quickly becomes prohibitive. 

The above advantages translate in feasibility for large networks of substances, 

ease of development and rapidity. The development of the template PBPK model of 

Figure 1 took about an hour and that of SBML models about three hours (using 

JDesigner version 2.1c). The compilation of all SBML models with the PBPK 

template took about a second. Using the global model and the GNU MCSim software, 

10000 stochastic simulations can be run in 6 minutes on a i686 processor under 

GNU/Linux. The analysis and interpretation of the results take much longer. 

However, to be fully operational, the systems biology approach presented here still 

requires gathering qualitative and quantitative data on the individual metabolism of 

the target substances. In that context, going back to experimentation becomes useful, 

with the advantage of being better targeted and therefore more efficient. In particular, 

the reaction micro-constant required (K1, K2 and K3, in Table 2) are seldom available 

in the published literature, as everyone got used to Michaelian Vmax, Km, and Ki 

constants (which suffice when considering simple binary interactions). However, at 

least for some enzymes, simple modifications of standard activity measurements 

allow an easy determination of the micro-constants in vitro (work in progress in our 

laboratory.) We are also exploring quantum chemistry predictions of those micro-

constants. 

Perspectives 

The ab initio modelling of metabolic interactions in cocktails of drugs or 

substances is feasible and even promising. Computing can be fast and the 
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development of the model is limited to that of individual drug sub-models, 

reusable each time that that substance is to be included in a mixture. The latest 

developments of the systems biology approach presented here requires slightly 

different parameters than the Henry-Michaelis-Menten constants usually 

available, and its application to concrete cases will require a specific experimental 

effort, probably worth the investment on a medium to long term.  

This system biology approach can obviously be extended to the description of 

pharmacodynamic interactions arising from signalling and regulation cascades. 

However, while that approach gives access to the study of the behaviour of 

complex networks, the number of such networks and of realistic mixtures of 

drugs, food-borne chemicals and environmental contaminants is extremely large. 

The future in this area, with the new tools available, may well lie in formulating 

general and robust statements about complex mixtures, with specific 

investigations of a few very relevant ones. 
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Tables 

Table 1: Physiological parameter values for the PBPK model shown in Figure 1. 

Parameter (a) Symbol Value 
Total blood flow Ft 6.4 
Fractional blood flows   

Fat ff 0.09 
Liver fl 0.24 
Muscle and skin fm 0.18 
Viscera fv – (b) 

Volumes (c)  
Total body volume Vt 75 
Fat Vf 18 
Liver Vl 1.7 
Muscle and skin Vm – (d) 
Viscera Vv 6 

(a) Units: volumes are in litres, total blood flow in litres/min. 
(b) The fraction of blood flow to the viscera is computed by difference between 1 

and the sum of the fractional flows to the other compartments. 
(c) Those volumes correspond to those of a 30 years old woman [50]. 
(d) The volume of the muscle and skin compartment is computed by difference 

between the total body volume, 10% of it (corresponding to bones) and the 
other volumes. 
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Table 2: Values of the substance-specific non-physiological parameters. 

Parameter (a) Symbol Value 
Tissue over blood partition coefficients   

Fat Pf 1 
Liver Plf 1 
Muscle and skin Pm 1 
Viscera Pv 1 

Metabolic rate constants    
E + S  ES reaction K1 50 
ES  E + S reaction K2 50 
ES  E + P reaction K3 0.1 

Enzyme turn-over parameters   
Base rate K4 0.1 
Induction rate constant K5 1 

Renal clearance Ke 0.05 
(a) Units: Partition coefficients are unitless, metabolic rate constants are 

in min-1 and clearance in litres/min. 
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Figure legends  

Figure 1: Graphical representation of a physiologically based 

pharmacokinetic model of the human body. This model was used here as a 

template to describe the kinetics and interactions of substances in mixture. 

Urinary excretion takes place in the kidney, part of viscera. Metabolism is not 

figured, and is specified in separate Systems Biology Markup Language models. 

For symbols, see Table 1. 

Figure 2: Computer-generated hepatic metabolic network for 50 hypothetical 

substances. Parent substances (groups A and B, see text) and metabolites (group 

C) distribute in the body according to the physiologically based pharmacokinetic 

model of Figure 1 (distribution compartments are not figured, for clarity of the 

graph.) 

Figure 3: Simulated blood kinetics of the group A, B and C substances. The 

metabolic network is shown on Figure 2. Each parent and metabolites are 

distributed in the body according to the physiologically based pharmacokinetic 

model of Figure 1. Panel I: concentration of the groups A and B substances; panel 

II: group C of pure metabolites. All parent substances were administered together. 

Differences between profiles are entirely due to network structure and metabolic 

interactions. 

Figure 4: Interaction indices for the substances of groups A, B and C, as a 

function of the ingestion rate of group B substances. For a given chemical 

species, the interaction index is defined as the ratio of the concentration resulting 

from a joint exposure to groups A and B substances over the sum of the 
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concentrations resulting from separate exposures to the same substances, at the 

same dose. Exposure to all substances was supposed to last for 4 hours, simulated 

concentrations were recorded after 24 hours. 

Figure 5: Number of model parameters required by various approaches as a 

function of the number of interacting substances considered. Solid line: using 

reaction micro-constants; short dashes: using Michaelis-Menten inhibition 

constants for pair of chemicals; long dashes: using Michaelis-Menten higher order 

inhibition constants for triplets of chemicals. 
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Figure 1: Graphical representation of a physiologically based 

pharmacokinetic model of the human body. This model was used here as a 

template to describe the kinetics and interactions of substances in mixture. 

Urinary excretion takes place in the kidney, part of viscera. Metabolism is not 

figured, and is specified in separate Systems Biology Markup Language models. 

For symbols, see Table 1. 
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Figure 2: Computer-generated hepatic metabolic network for 50 hypothetical 

substances. Parent substances (groups A and B, see text) and metabolites (group 

C) distribute in the body according to the physiologically based pharmacokinetic 

model of Figure 1 (distribution compartments are not figured, for clarity of the 

graph.) 
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Figure 3: Simulated blood kinetics of the group A, B and C substances. 

The metabolic network is shown on Figure 2. Each parent and metabolites 

are distributed in the body according to the physiologically based 

pharmacokinetic model of Figure 1. Panel I: concentration of the groups 

A and B substances; panel II: group C of pure metabolites. All parent 

substances were administered together. Differences between profiles are 

entirely due to network structure and metabolic interactions. 
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Figure 4: Interaction indices for the substances of groups A, B and C, as a 

function of the ingestion rate of group B substances. For a given chemical 

species, the interaction index is defined as the ratio of the concentration resulting 

from a joint exposure to groups A and B substances over the sum of the 

concentrations resulting from separate exposures to the same substances, at the 

same dose. Exposure to all substances was supposed to last for 4 hours, simulated 

concentrations were recorded after 24 hours. 
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Figure 5: Number of model parameters required by various approaches 

as a function of the number of interacting substances considered. Solid 

line: using reaction micro-constants; short dashes: using Michaelis-Menten 

inhibition constants for pair of chemicals; long dashes: using Michaelis-

Menten higher order inhibition constants for triplets of chemicals. 

 


