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Abstract 

The derivation of thresholds for lethal effects for inhaled chemicals is a key issue in 

accidental risk management because they largely determine the outcome of land use planning, 

among which localization of habitations in the vicinity of a factory. This derivation is 

generally performed on the basis of rodent lethality data analyzed by statistical models able to 

extrapolate effects for different times and concentrations of exposure. A model commonly 

used in France is the standard probit model. In this model, effects is related to exposure 

concentration and duration according to the Haber's law and considers that individual 

thresholds, corresponding to the maximum tolerated effects before dying, are log-normally 

distributed among the population. This approach has been criticized for its lack of biological 

parameters and its inability to treat data characterized by only one time of exposure. In order 

to improve the current state of modeling, we proposed three alternative models. Two of them 

(DEBtox and Haber TKTD models) incorporate the kinetics of the chemicals. The third one 

(Loguniform model) is a linearization of the standard probit model. We evaluated their 

performance by analyzing real data and simulated data generated with each model. For data 

characterized by several times of exposure, the standard probit model outperformed all other 

models in terms of goodness of fits and estimation of parameters. For data characterized by 

only one time of exposure, only DEBtox model was able to fit the data and estimate 

parameters, provided we dispose of several observation times, typically just after exposure 

and a long period afterwards.  

 

Keywords: accidental risk; modeling; lethality data; parameters estimation; probit. 
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1. Introduction 

To prevent risks related to accidental releases of dangerous chemical substances in the 

atmosphere, risk managers need acute toxicity thresholds in association with accident 

scenarios to produce safety reports and design emergency plans. In France, they usually 

determine the zones of lethal, irreversible and reversible effects relative to the location of 

plants storing, producing or using toxic substances, especially for land use planning. The 

lethality threshold is related to a certain percentage of death occurring during the experimental 

test or in the following fourteen days post exposure (including animal sacrificed for ethical 

reasons). The "irreversible effects" correspond to the persistence over time of a lesion or a 

functional damage induced by an exposure. Three types of irreversible effects are pointed out, 

lesion without functional repercussions, lesion with functional repercussions (like 

bronchopneumopathy, pulmonary fibrosis, necrosis of olfactory epithelium with anosmia) and 

the functional irreversible impairment (like asthma). The "reversible effects" correspond to a 

return to the level of health prior to exposure (immediately or in a reasonable time after).  

It is therefore crucial to evaluate properly the thresholds, because they determine the distances 

of effects. Indeed, if the thresholds are overestimated, distances are overprotective with 

economic impact. In contrast, if the thresholds are underestimated, the health of the exposed 

population is threatened. 

A French methodology was developed to evaluate the quality of the data available and to 

deduce from these data acute toxicity thresholds. It comprises many steps. The first step is the 

selection of an experimental key study (mainly, an animal study) for each effect, based on the 

method developed by Klimisch et al. (1997) for quality assessment and on expert judgment 

for relevance of the observed effects related to the type of threshold. The second step consists 

in finding the relevant critical toxic effect for the two types of effects which are considered in 

addition to lethal effects, i.e. irreversible and reversible effects. The third step is the data 
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analysis based on a statistical model. The fourth step considers the extrapolation from animals 

to humans (with or without uncertainty factors). Here we focus on lethality data only. 

Usually, the data to analyze are rodent lethality measurements for different exposure 

concentrations and different exposure durations, observed after at least a fourteen-day period. 

It can however happen that the information is available only for single exposure duration.  

Standard dose-response models are generally based on the Haber’s law, or its generalizations 

(ten Berge et al., 1986). These generalizations state that the effect for exposure to 

concentration C during a period of time t is a function of (Cnt), named fixed effect level 

(Jarabek, 1995), where n is called the Haber constant. Thus, in the standard probit model, the 

probability of death equals: 

)
))log()log(

()( 
µtCn

FdeathP
  

where F is the cumulative distribution function of a normal distribution with mean µ and 

standard deviation σ (Diack and Bois, 2005). In this formulation, each individual has a given 

threshold, log-normally distributed. If he is exposed to an effect level exceeding this 

threshold, death will occur.  

There are many limits to this model. First, it is not possible to analyze data for which only one 

exposure time is available, because only two combinations of parameters (n/σ and (log(t)-

µ)/σ) could be identified in this case. This model has also been criticized for its lack of 

biological parameters by Diack and Bois (2005) who have proposed an alternative model (the 

so-called PKPD model). However, the model they propose has even more limitations in a risk 

assessment perspective.  

First, the gain in terms of realism compared to the standard probit approach is far from 

obvious. Indeed, the proposed equation for kinetics is the following one: 

keQkaC
dt

dQ n   
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with Q the internal quantity of substance in the tissue, C the exposure concentration, ka the 

pulmonary ventilation rate, ke the elimination rate, and n an unknown parameter analogous to 

the Haber constant. This is a very unusual kinetics equation, because there is no reason for the 

parameter n to be different from 1, i.e. for the intake rate of the substance not to be 

proportional to its concentration in the air. Authors try to justify their equation with some 

biological consideration in their discussion, but their reasoning would be acceptable only for 

very rapid kinetics. 

Second, there are five parameters to estimate (ka, ke, n, but also µ and σ as in the probit 

model), compared to the three ones in the probit approach. In practice, when analyzing data 

for accidental risk assessment, with both the PKPD model and the standard probit model, we 

found that the common parameters have similar estimates but that the remaining parameters 

have large confidence intervals. This observation indicates an excessive number of parameters 

to estimate. In particular, the estimation of the kinetics parameters is not feasible when only 

data for one time of exposure are available.  

Here, we propose to evaluate three alternative models. These models have the same numbers 

of parameters (three) as the standard probit model. The first two models incorporate chemical 

kinetics through a one-compartment model to add realism relative to compound uptake and 

elimination. They differ in the toxicodynamics part. The first one, which is called DEBtox 

(Kooijman and Bedaux, 1994), is based on a threshold approach which has already been used 

in ecotoxicology. The second one is based on the Haber’s law and will be here referred to as 

Haber TKTD. The third approach we propose is an approximation of the probit standard by 

using a loguniform statistical distribution for F instead of a normal one. The comparison of 

the models we propose is based on the analysis of datasets generated from simulations with 

each of the models and on actual data which have already been used to derive toxicity 

threshold for accidental risk assessment.  
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2. Materials and Methods 

2.1 Mathematicals models to analyse survival data 

2.1.1 Standard probit 

As already presented in the introduction, in the standard probit model, the probability of death 

equals: 

)
)log()log(

()( 
 tCn

FdeathP  

where F is the cumulative distribution function of a normal distribution with mean µ and 

standard deviation σ. It consequently assumes that the individual threshold for response 

follows a lognormal distribution. When the product Cnt exceeds its threshold, the individual 

dies.  

2.1.2 Loguniform model 

In this model, the probability of death equals: 

)
)log()log(

()(
ab

atCn
FdeathP 

  

where F is the cumulative distribution function of an uniform distribution with lower and 

upper bounds 0 and 1, and where a and b are bounds of the response. As for the standard 

probit, when the product Cnt exceeds the threshold of an individual, the individual dies. There 

is no individual having a threshold below a and above b, which means that no individual are 

expected to die for Cnt values below a and no individual are expected to survive for Cnt values 

over b. The Loguniform model can be seen as a linearization of the standard probit model. 

The comparison will permit to assess the relevance of the choice of the statistical distribution 

for F.  

2.1.3 DEBtox model 
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DEBtox model is a mathematical model that has first been developed to analyse aquatic 

ecotoxicological survival data. It has been proposed by Kooijman and Bedaux (1996). It is 

particularly adapted for the analysis of toxicological data obtained under time varying 

exposures (Pery et al., 2001; Pery et al., 2002). 

In DEBtox model, a kinetics module, accounting for the dynamics of compound body 

concentration is coupled with an effects module. To keep the same number of parameters as 

for the standard probit, we assumed, as in the standard DEBtox model, that all individuals 

have a common threshold for effects. Once this threshold is exceeded by the dose at target 

organ level, the probability to die is not 100% but increases linearly as a function of this dose.   

Dose at target level is described using the following linear one-compartment kinetics model: 

))()(()( tctCkt
dt

dc
ie

i   

where ke is the elimination rate, C is the concentration measured in exposure air, and ci the 

scaled body concentration. This parameter corresponds to the ratio of the amount of 

compound in the whole body to the body volume. It is scaled by the bioconcentration factor (a 

constant corresponding to the ratio of the concentration in the target organ to the 

concentration in air at toxicokinetics steady state) in order to ensure the feasibility of 

parameters estimation. Toxic effects occur only when ci(t) exceeds a threshold, the NEC (No 

Effect Concentration), which corresponds to the maximal toxicant concentration at target 

organ level that can be handled by regulation systems without generating detectable effects on 

mortality. Survival probability in exposed organisms is described based on ci(t), which drives 

toxicodynamics. Death being assumed to be a stochastic process, the probability q(t) to 

survive until time t is defined as: 

 t

dhtq
0

))(exp()(   
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where h(τ) is the hazard rate at time τ. For a small time interval dτ, h(τ) dτ represents the 

probability of dying between τ and τ+dτ, for an organism which has survived until time τ. 

Toxicant hazard linearly increases with the difference between ci(t) and the threshold value 

when this threshold is exceeded: 







0)(),)((

))(()(),)((

thNECtcif

NECtcbthNECtcif

i

ii  

where b is the killing rate, a descriptor of the intensity of effects. The effects data permit both 

to estimate the parameters b and NEC, but also the kinetics parameter. For instance, under 

constant exposure, it is related to the time at which the level of effects reaches a constant 

value.  

2.1.4 Haber-TKTD model 

This model has the same kinetics module as the DEBtox model. It differs from the latter 

model in the effects module, with the following definition for h: 

ntbCth )()(   

where b is a proportionality constant, and n is the Haber constant. 

It is noteworthy to realize that, in case of n=1, we have, for high values of t, corresponding for 

instance to observation times (typically 14 days, whereas exposure is limited to 8 hours 

maximum): 

q(t)=exp(-bCt) 

whatever the value for ke. This means that, in this case, effects are related to the Haber's law, 

regardless of the actual compound kinetics. 

2.2 Data analyzed in this study 

2.2.1 Simulated data 

To test the ability of the models for data analysis, we simulated datasets according to each 

model and analyzed these data with all the models. We aimed at producing realistic data, with 
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small effects for low exposure times and low exposure concentrations and high effects for 

high exposure times and high exposure concentrations. We used four concentrations (50, 100, 

200 and 300 ppm) and four times of exposure (30, 60, 120 and 240 minutes). We generated 

twenty different data sets per model. For each condition in each dataset, we simulated the 

results for 10 individuals. First, we calculated the mean probability for an individual to be 

dead at the observation time. Using a random generator (from the commercial software 

Excel), we simulated mortality data by comparing, for each individual, the number generated 

(between 0 and 1) and the probability to be dead. If the random number was below this 

probably, the outcome for this individual was death. 

For better comparison of performance of the different models, we chose parameters so that the 

theoretical value for the 5% letal concentration (5%LC30 min, which is the concentration for 

which the mean expectation is 5% mortality after 30 minutes of exposure) is 100 ppm for all 

the simulations. The 5%LC30 min is of great interest in accidental risk assessment.  

For each model, two sets of parameters values were used. The parameters values we selected 

for the simulations were n = 3, µ = 7.43, σ = 1, and n = 1, µ = 3.43, σ = 1, for the simulations 

based on standard probit model. This permits to cover the two options generally applied when 

fixing arbitrarily a value for n to extrapolate between doses (ten Berge et al., 1986). With the 

same rationale, we chose n = 3, a = 5.38, b = 7.38, and n = 1, a = 1.38, b = 3.38 for the 

Loguniform model. For DEBtox model, we chose ke = 0.01 min-1, b = 0.0003 min-1ppm-1, 

NEC = 25 ppm, and ke = 10 min-1, b = 0.0000228 min-1ppm-1 , NEC = 25 ppm, to have a 

simulation with slow kinetics and one with rapid kinetics. With the same rationale, we chose 

ke = 0.01 min-1, b = 0.0000022 min-1ppm-1, n = 2, and ke = 10 min-1, b = 0.000000304 min-

1ppm-1, n = 2, for the Haber-TKTD model.  

We then evaluated if the models were able to fit correctly the data, to estimate the parameters, 

and to estimate properly the 5%LC30 min. 
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2.2.2 Real data 

We analyzed data obtained for rats exposed to chemicals, with many times of exposure 

available to be able to use all our models, including those with kinetics. We had data for 

arsine (3 times of exposure, 5 to 7 concentrations, 10 female rats per condition) (IRDC, 

1985a; IRDC, 1985b; IRDC, 1985c), cyanhydric acid (1 to 5 times of exposure, 4 to 39 

concentrations, 10 rats per condition) (Ballantyne, 1994; Blagden, 1994; Higgins et al., 1972), 

sulfuric acid (4 times of exposure, 3 or 4 concentrations, 10 to 14 mice per condition) 

(Runckle and Hahn, 1976), hydrogen sulfide (1 to 4 times of exposure, 3 to 7 concentrations, 

10 mice per condition) (Vernot and Mac Ewan, 1976; Zwart and Klokman, 1990), nitrogen 

dioxide (10 times of exposure, 7 concentrations, 5 to 14 mice per condition) (Hine et al., 

1970), vinyl chloride (2 to 4 times of exposure, 3 to 14 concentrations, 5 to 90 mice per 

condition) (Mastromatteo et al., 1960; Prodan et al., 1975) and sulphur dioxide (3 to 4 times 

of exposure, 3 concentrations, 14 to 70 mice per condition) (Bitron and Aharonson, 1978). 

These data have already been used, with the standard probit approach, to derive thresholds 

used in accidental risk management.  

2.3 Estimation of parameters 

Parameters were estimated by maximizing the logarithm of the likelihood of the data, 

))1ln()()ln((
1

jjj

k

j
jj pnmpnL   where pj is the mean probability to be dead at the 

time of observation (14 days) for concentration cj , calculated with the model selected for data 

analysis, k the number of tested concentrations, nj the number of organisms dead at the time of 

observation for concentration cj, mj the number of exposed organisms for concentration cj, . 

To perform that maximization, we coded a program in C++, which calculates the likelihood 

for combinations of large ranges of parameters, and selects the parameters providing the 

highest value. It is not time-saving but very robust, so that we avoid the selection of local 

maximums.  
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3. Results 

3.1 Simulated data 

Table 1 presents the results of the analysis of the simulated data. Except in two cases (data 

simulated with Loguniform model n=1 and DEBtox with rapid kinetics), regardless of the 

model we used to simulate data, the standard probit model provides the best fit of the data. 

Moreover, the estimate of n is never significantly different from the theoretical value 

(Wilcoxon test, p<0.05). Regarding the estimate of 5%LC30 min, it is significantly different 

from the theoretical value only for one simulation (DEBtox and slow kinetics).  

DEBtox and Haber-TKTD models provide correct fits and parameters estimation only when 

they have generated the data they analyze. It is important to note that, for data generated by 

DEBtox in case of rapid kinetics, it outperforms all other models. For the other simulations, 

fits are of very bad quality (with more than twice the sum of the squares of the deviations 

(SSD) of standard probit model). 

Despite a relative good fit of the data (low SSD values), the Loguniform model provides 

biased estimates (significant differences between theoretical value and estimated values, for 

the 5%LC30 min in 6 of the 8 simulations), even when data have been generated with this 

model (case n=3).  

Other simulations with different σ and a values (data not presented here) did not modify our 

conclusions.  

3.2 Real data 

Table 2 and 3 present the results of the analysis of the real data. To permit to compare the 

performance of fits between experiments, the SSD has been normalized by the number of 

animals used in the study. Except for cyanhydric acid, the fit is better using the standard 

probit model than the other ones. In contrast, Haber-TKTD model always provide the worst 
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fits. The second best model is DEBtox in 5 cases over 7 ones and the Loguniform model in 2 

cases over 7 ones. These results are in accordance with the analysis of simulated data. The 

value of n estimated with the Loguniform model is close to the one estimated with the 

standard probit model except for sulfuric acid. From this point of view, the Loguniform model 

performs better than our expectations based on the study with simulated data. 

3.3 Possible use of the models in case of one exposure time only available 

As we showed in the introduction, it is not possible to estimate the parameters of the standard 

probit model for data characterized by only one time of exposure. This is also the case for the 

Loguniform model. Even setting the lower bound at a fixed value (corresponding, for 

instance, to an available NOAEL) would not permit to estimate the two remaining parameters. 

In contrast, for models with kinetics module, like DEBtox or Haber-TKTD, the parameters 

could be estimated in case of only one time of exposure, provided there are several 

observation times. We performed two additional datasets simulations, for each model, with 6 

exposure concentrations (50, 100, 150, 200, 250 and 300 ppm), only one time of exposure (60 

min) but two observation times (60 min and 15 days). We used the same parameters as for the 

previous simulations in case of slow kinetics and produced 20 datasets per model. The 

estimation of the parameters of the Haber-TKTD model was not satisfactory with a huge 

variability. In contrast, DEBtox parameters were adequately estimated. The NEC estimate 

was 25 ± 7 ppm, and the 5%LC30 min estimate was 99 ± 8 ppm (the theoretical value is 100 

ppm), which is a better estimate than the one obtained for only one time of observation but 

several times of exposure (Table 1).  

 

4. Discussion 

When the data for many times of exposure are available, the standard probit model performed 

at best relative to goodness of fit. The description was the closest for real and simulated data, 
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even, in the latter case, when the data have been simulated with other models. In contrast, the 

Haber-TKTD model was the worst of all the models we tested. DEBtox model was also not 

able to provide satisfactory fits in most simulated cases but was often the second best model 

when analyzing real data. The Loguniform model provided fits with a quality close to the one 

of the standard probit model, but it suffered from biases in the estimation.  

For the analysis of the data usually used in an accidental risk assessment context, i.e. data 

with only one observation time but several times of exposure, we can conclude that better fits 

are obtained when accounting for variability of response between individuals than for kinetics 

during exposure and post-exposure period. This is coherent with our remark that the 

mathematical description of effects with the Haber-TKTD model does not depend on ke when 

n equals 1 (See 2.1.4), as a consequence of measuring the data only when there is no more 

compound in the body. Models like DEBtox perform well when there are many measurements 

for different times of exposure, even if exposure concentrations are time-varying (Pery et al., 

2001; Pery et al., 2002). For rodent lethality, measuring effects just after exposure and much 

later may be enough to improve the estimation of the kinetics parameter. Unfortunately, such 

data are seldom available. In the data we have, only those relative to Sulfur dioxide comprise 

several times of observation. We analyzed these data with DEBtox model. Sulfur dioxide was 

the chemical for which DEBtox performed at worst with data characterized by only one time 

of observation. However, with several observations throughout time, the sum of the squares of 

the deviations between mortality predictions and actual data normalized by dividing by the 

total number of exposed organisms in the study was divided by 1.8 compared to Table 2. 

Moreover, the estimate for the 5%LC30 min was 986 ppm, which is very similar to the estimate 

value using the standard probit model (1025 ppm). 

The standard probit model is not able to analyze data for which only one time of exposure is 

available. In this case, the methodology used in France recommends the use of the probit 
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standard to derive dose response for the only time of exposure available and the extrapolation 

of the results using Haber's law with n=1 for longer duration than the one available, and n=3 

for shorter duration (ten Berge et al., 1986).  

Among the models we studied, only DEBtox model would be able to analyze data 

characterized by only one time of exposure, provided mortality is reported at least two times, 

typically just after and long after exposure. However, it will be necessary to perform 

comparisons between DEBtox and standard probit models with real data and at least two 

observation times and several exposure times. This will permit to assess if the thresholds 

needed for accidental risk assessment are estimated with the same accuracy when applying 

DEBtox to data with several times of observation or applying the standard probit model to 

data with several times of exposure. Unfortunately, we could not find such data.  

To conclude, it is recommended to use the standard probit model to analyze lethality data for 

accidental risk assessment, when data are available for many times of exposure. In contrast, 

there is no model that could replace the extrapolation with n=1 and n=3 to analyze data for 

only one time of exposure and extrapolate to other times if only one time of observation is 

available. 
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Table 1 Mean and standard deviations for the estimates of 5%LC30 min (in ppm) and sum over all the simulated tests of the squares of the 

deviation (SSD) between mortality predictions and actual data. The different columns account for the different models used for the simulations, 

and the different lines for the different models used to analyze the simulated data. For the models in which the Haber constant is involved, the 

estimates for n are presented. 

 Standard Probit n=3 Standard Probit n=1 Loguniform n=3 Loguniform n=1 
 5%LC30 min n SSD 5%LC30 min n SSD 5%LC30 min n SSD 5%LC30 min n SSD 
Standard Probit 97 ± 17 3.5 ±1.6 325 92 ± 21 1±0.3 288 92 ± 17 3±1 241 95 ± 19 1.1±0.3 256 
Loguniform 78 ± 16 6 ±1.2 459 85 ± 18 1.3±0.4 413 86 ± 13 4.5±1.4 247 91 ± 16 1.1±0.2 241 
DEBtox 69 ± 54  5095 65 ± 34  3721 129 ± 19  4289 107 ± 14  1251 
Haber TKTD 23 ± 25 1 ± 0 6451 26 ± 24 1±0.1 6274 31 ± 20 2±0.2 6125 71 ± 39 1±0.1 4814 
 DEBtox slow kinetics DEBtox rapid kinetics Haber TKTD slow kinetics Haber TKTD rapid kinetics 
 5%LC30 min SSD 5%LC30 min SSD 5%LC30 min n SSD 5%LC30 min n SSD 
Standard Probit 89 ± 19 391 94 ± 9 331 109 ± 21 2±0.3 507 111 ± 22 2±0.2 498 
Loguniform 75 ± 18 515 87 ± 11 452 91 ± 26 4.2±2 888 83 ± 24 4±2 861 
DEBtox 103 ± 22 954 101 ± 7 265 117 ± 35  1158 117 ± 35  1090 
Haber TKTD 15 ± 3 7024 14 ± 3 6127 101 ± 10 2±0.2 515 100 ± 11 2±0.2 501 
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Table 2 Sums of the squares of the deviations between mortality predictions and actual data normalized by dividing by the total number of 

exposed organisms in the study.  

 Standard Probit Loguniform DEBtox Haber-TKTD 
Cyanhydric acid 3.4 3.9 2.7 12.6 
Sulfuric acid 0.8 4.4 31.7 46.7 
Arsine  2.7 5.3 3.6 5.3 
Vinyl chloride 0.1 32.7 0.2 19 
Nitrogen dioxide 0.5 3.3 2.2 16.7 
Sulphur dioxide 10.9 19.6 100.8 260.6 
Hydrogen sulfide 1.3 4.4 2.8 34.8 
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Table 3 Estimates of n using standard probit or Loguniform models, with for the latter either all the data available or only those for 60 minutes of 

exposure. 

 Standard Probit Loguniform with all times 
Cyanhydric acid 1.77 1.79 
Sulfuric acid 2.92 4.42 
Arsine  1.19 1.23 
Vinyl chloride 2.38 2.41 
Nitrogen dioxide 4.42 4.52 
Sulphur dioxide 3.90 3.74 
Hydrogen sulfide 2.93 2.35 
 


