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Abstract 

The design of toxicological testing strategies aimed at identifying the toxic effects of 

chemicals without (or with a minimal) recourse to animal experimentation is an important 

issue for toxicological regulations and for industrial decision-making. This article describes 

an original approach which enables the design of substance-tailored testing strategies with a 

specified performance in terms of false-positive and false-negative rates. The outcome of 

toxicological testing is simulated in a different way than previously published articles on the 

topic. Indeed, toxicological outcomes are simulated not only as a function of the performance 

of toxicological tests but also as a function of the physico-chemical properties of chemicals. 

The required inputs are QSAR predictions for the LOAELs of the toxicological effect of 

interest and statistical distributions describing the relationship existing between in vivo 

LOAEL values and results from in vitro tests. 

Our methodology is able to correctly predict the performance of testing strategies designed to 

analyze the teratogenic effects of two chemicals: Di(2-ethylhexyl)phthalate and 

Indomethacin. The proposed decision-support methodology can be adapted to any 

toxicological context as long as a statistical comparison between in vitro and in vivo results is 

possible and QSAR models for the toxicological effect of interest can be developed.  

Keywords: Decision Analysis, QSAR, teratogenicity, Integrated Testing Strategies, Test 

batteries, Uncertainty 
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1. Introduction 

 

In the framework of the European REACH (Registration, Evaluation, and Authorization of 

Chemicals) regulation it is expected that predictive tools will offer support in the screening 

and prioritization of chemicals for further toxicological testing (Benfenati, 2007). It is also 

expected that information obtained via alternatives to conventional animal testing should be 

considered during the different stages of decision-making provided that its reliability and 

pertinence can be proved (Grindon et al., 2006).  

In this context it is clear that computational models designed to simulate results generated by 

in vitro and in vivo toxicological tests could effectively support these expectations thanks to 

the insight they could provide before any experimental testing is carried out.    

The suitability of this computational approach is not limited to a regulatory framework but it 

can also be a valuable decision-support tool during the selection of candidate chemicals for 

the design of new products. Usually, several candidates show interesting properties but only a 

minority among them will maximize the desired property while minimizing unwanted 

toxicological side effect.  It is therefore crucial to weigh the pros and cons relative to options 

such as the cessation of a research project (because of unmanageable toxicological concerns) 

or the beginning of a thorough and costly toxicological investigation on few selected 

chemicals. 

Quantitative approaches for decision-making proved to be useful when applied to complex 

decisions in the toxicological field (Burman and Senn, 2003) but these methods in drug or 

chemical development are still in their infancy.  
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Currently, the problem is dealt with by having recourse to testing strategies that integrate 

different sources of toxicological information, such as data from in vivo, in vitro and in silico, 

approaches within a sound decision-making framework (Grindon et al. 2006).   

This overall approach can permit the toxicological characterization of chemicals with a 

minimal recourse to animal testing while ensuring a better protection of human health and the 

environment thanks to an efficient prioritization of chemicals for further toxicological testing.   

However, it is important noting that, during these stepwise procedures, information obtained 

at a given point of the strategy is not used to optimize the subsequent evaluation steps. In our 

opinion, an optimal tiered system would be a system in which the decision to be made after 

the completion of a step would not only be a choice between “stop testing” or “continue 

testing” but also a choice aimed at the rational selection of the test to be adopted for the 

subsequent evaluation. 

A theoretical basis for tiered tests has already been proposed based on a classical decision-

theoretical framework (Hansson and Ruden, 2007). It consists in utility maximization, this 

utility being a function of the values of true positives and true negatives and the disvalues of 

false negatives and false positives. The probability of true positives, true negatives, false 

positives and false negatives is assumed to be test dependent.  

In contrast, the methodology we propose in this paper computes these probabilities as a 

function of both the performance of toxicological tests and the physico-chemical properties of 

the chemicals to be analyzed. The rational for this approach is that the statistical simulation of 

toxicological testing can be carried out with increased certainty if a QSAR prediction can be 

obtained for a chemical of interest as we will describe in detail in section ****., 

Therefore, according to our methodology, an effective simulation of toxicological test results 

requires the quantification of the ability for a given test to detect toxicity as a function of the a 

priori probability for a chemical to be toxic.  
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An essential part of our approach relies, on the simulation of in vitro and in vivo test results 

by means of Monte Carlo sampling of two statistical distributions: the distribution that 

describes how the results yielded by alternative tests compare with results from a 

toxicological “gold standard” (in vivo results obtained via OECD guidelines for this article) 

and the distribution (obtained by means of QSAR modeling) describing the distribution of 

“gold standard” Lowest Observed Adverse Effect Levels (LOAELs) for the chemical under 

investigation. Thanks to this procedure the expected rate of false positives and false negatives 

is therefore derived for the chemical of interest. During the computational simulations, the 

uncertainties relative to the results of QSAR modeling and the simulation of toxicological 

testing are accounted for. At the end of the simulations, the testing strategies whose false 

positives and false negatives rates are below a specified threshold are selected. 

In order to illustrate our methodology, we devised testing strategies with respect to 

teratogenesis for two molecules: Di(2-ethylhexyl) phthalate (DEHP, used as a plasticizer in 

polyvinyl chloride plastics) and indomethacin (a non-steroidal anti-inflammatory drug).    

 

The evaluation of offspring for structural abnormalities comprising external, visceral and 

skeletal examinations is an essential branch of reproductive toxicology (OECD, 2000) and, as 

of now, three in vitro tests for developmental toxicity testing have been validated by the 

European Center for the Validation of Alternative Methods (ECVAM) for embryotoxicity 

screenings. The predictive performance of the tests was deemed to be generally satisfactory. 

These tests are the embryonic stem-cell test (EST, Genschow et al., 2004), the post-

implantation rat whole-embryo culture test (WEC, Piersma et al., 2004) and the micromass 

test (MMT, Spielmann et al., 2004). Although they are not capable of completely replacing 

the in vivo developmental toxicity tests, their use as screening tests (where positive results 

would negate the need for further testing) within a testing strategy could reduce the number of 
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animals required (Grindon et al., 2008) and the cost of the assessment of the developmental 

toxicity of substances requires by the REACH regulation. 

 

2. Materials and Methods 

 

2.1 Selection of chemicals for QSAR modeling 

Chemicals were selected from the database Registry of Toxic effects of Chemical Substances 

(RTCES). It is a database of toxicological information compiled, maintained, and updated by 

the National institute for Occupational Safety and Health (NIOSH). From RTECS we 

construct a database in the following way: first select the chemicals having an effect on 

embryo or fetus development (specific developmental abnormalities following a gavage 

administration of female rats). Second, we converted lowest published toxic doses (TDLo, the 

total dose amount administered to the pregnant female) in LOAELs (mg/kg bw/day).  

We only selected compounds which have been tested during the pregnancy of animals and the 

smallest LOAEL was retained if for the same compound, multiple LOAELs were available. 

LOAELs corresponding to single day exposures were discarded if data on multiple-day 

exposures were available. 

We based our work on LOAEL instead of NOAEL (No observed Adverse Effect Level) 

mainly because the availability of NOAEL values is rather limited. Secondly, a NOAEL that 

is not defined with respect to a LOAEL is not helpful. To be useful, NOAEL values have to 

be characterized as the highest level of exposure at which no adverse effects are detected and 

it is difficult to ascertain if this threshold has been reached without having defined the level of 

exposure at which the adverse effects begin to appear (WHO, 2000). Opinions on this subject 

differ, but the working consensus is that the level of exposure of concern in terms of human 

health is more adequately described by LOAEL values and this parameter was therefore 

adopted for our methodology. 
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2.2 QSAR modeling 

The 38 chemicals used to derive a QSAR model are reported in Table 1. LOAEL values were 

converted into decimal logarithmic values. Chemical structures were built and energy-

minimized thanks to the software “Molecular Modeling Pro Plus” licensed by ChemSw inc. 

Fairfield, CA (USA) and its quantum or molecular-mechanics modules.  

Molecules were processed with hydrogens and their stereochemistry coincides with the 

chirality information displayed by the website ChemIDplus lite 

(http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp).  

The simulations were carried out in a vacuum (i.e. without any water molecule around the 

organic molecules) and conformational analysis was carried before energy minimization by 

using the conformational energy routine of the software Molecualr Modeling ProPlus 

iteratively before the energy minimization with the MM2force field. 

After energy minimization, the MOPAC/AM1 semiempirical quantum mechanical 

calculations were used to generate atom partial charges and further optimize molecular 

conformations.  

 

2.2.1 Molecular descriptors. The majority of the selected chemicals are likely to induce 

teratogenic effects trough binding to diverse nuclear receptors but, as previous work showed 

(Liu et Gramatica, 2007; Giorgi et al., 2009; Wang et al. , 2008), binding to receptors can be 

adequately described without molecular docking calculations. Therefore, we adopted a 

receptor-independent approach and adopted the software DRAGON version 5.3 licensed by 

Talete srl, Milan (Italy) to compute molecular descriptors. Descriptors with a standard 

deviation less than 5% of the mean were deleted and the remaining 1352 descriptors were 

used for the subsequent analysis.  

 

http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp
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2.2.2 Selection of Training and Validation sets. Chemicals were hierarchically clustered 

according to descriptor similarity by means of the open source software “Cluster 3.0” 

downloaded from the webpage of the “Laboratory of DNA information analysis” at the Tokyo 

University (http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm). Descriptors were 

autoscaled before analysis. Centered correlation was adopted as similarity metrics when 

evaluating the clusters. Distances among items were computed by means of an average 

linkage. Eleven chemicals were chosen from the final branches of the hierarchical tree in 

order to cover both the descriptor space and the response range (i.e. the dependent variable).  

 

2.2.3 Genetic Algorithms. In order to select the descriptors that better correlates with the 

LOAEL to be modeled, we used Partial Least Squares regression and Genetic Algorithms 

(PLS-GA) that are implemented within the “PLS-toolbox” licensed by Eigenvector Research, 

Inc., WA (USA). The basic parameters used during the selection of the variables were as 

follows: 120 individuals, mutation rate =0.006 and double cross-over. Maximal number of 

generations and convergence were kept at a medium level (100% and 50% respectively) to 

avoid overfitting. The percentage of terms included in the initial variable subsets was set at 

10% with a penalty slope for the fitness equal at 0.05 in order to limit the number of variables 

included in the final model.  

The fitness function was implemented as the root-mean-square error of cross validation 

computed after a PLS regression that was allowed to include a maximum number of 3 latent 

variables. During the GA the PLS models were validated by means of leave several out cross-

validation computed by randomly splitting the dataset into 7 groups. The number of iterations 

for each cross-validation cycle was set at 10. Leave-several-out (7-groups) cross-validated R2 

(Q2) values and Response permutation analysis (y-scrambling, 100 permutations) were 

obtained using the SIMCA-P software version 11.0 licensed by Umetrics, Umea (Sweden).   

 

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm


9 
 

 

2.2.4 Probabilistic QSAR modeling. The orthogonal latent variables retained after the GA 

selection were used to define a Euclidean space that allowed us to derive a QSAR model that 

yielded predictions in terms of probability for a given chemical to be toxic together with its 

intrinsic certainty (ranging from 0 to 1) as described in Pery et al. (2009).  

In short, training set chemicals were divided into two categories (safe and toxic chemicals) 

according to a given threshold for LOAEL values. After this categorization, predictive 

certainty was described by Gaussian functions centered on each training set chemical so that 

certainty quickly decreased to zero for query chemicals that were far away from the training 

set. Each training set chemical contributed to predict the probability for the query chemical to 

be toxic and its contribution to predictive certainty was weighted with respect to the 

Euclidean distances (measured in the space described by the latent variables) separating the 

training set chemicals from the query chemical.  

The remaining uncertainty (equals to 1 minus the sum of the contributions to certainty from 

the training set) contributed to the prediction of toxicological probabilities by multiplying the 

fraction of toxic molecules in the training set. According to this procedure if uncertainty is 

equal at 1 (i.e. a non-informative QSAR) the toxicological probability coincides with the 

fraction of toxic molecules within the training set. The estimation of the width  of the 

Gaussians representing predictive certainty is obtained by maximizing the toxicological 

likelihood of the training set. The magnitude of  is related to the spatial organization of the 

space described by the latent variables. According to this methodology, when little can be 

inferred on the basis of chemical similarity, value and predictive certainty are very low and 

the predicted probability for a chemical to be toxic approaches the percentage of toxic 

chemicals in the training set. 

It is important to observe that QSAR modeling in our methodology is also used to construct a 

statistical distribution that describes how predictive certainty relates to the LOAEL values of 
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training set chemicals. This distribution has a central role during the simulation of testing 

strategies as described later in the article.  

 

2.3 Toxicological Tests for Teratogenesis 

We used data from teratogenic substances evaluated with OECD Guideline 414 and with the 

three validated in vitro assays (EST, WEC and MMT). 

The EST is based on the determination of inhibition of differentiation and growth. The 

embryotoxic potential of chemicals is determined by the evaluation of the inhibition of 

cardiac muscle differentiation of embryonic stem (ES) cells and the inhibition of growth of 

ES and 3T3 cells. The EST is performed with permanent cell lines from the mouse. 

In the WEC, post implantation rat embryos at early stages of organogenesis are cultured. At 

day 10 of gestation, pregnant rats are killed and embryos are isolated. Embryos are cultured 

for 48 hours in culture vessels and subsequently scored. This allows the identification of 

chemicals that induce embryotoxicity and malformations. 

The MM assay is a simple cell culture system, in which development and differentiation of 

embryonic limb buds cells are studied. Single cell suspensions are prepared from limb buds 

isolated from 13-days-old embryos. Undifferentiated mesenchyme cells of limb buds will 

form differentiation of foci of chondrocytes in micromass culture. Teratogenic compounds 

inhibit the formation of foci and can therefore be detected by a reduced number of foci, or a 

reduced number of cells within foci. Data which permit to compare in vivo and in vitro results 

are presented in Table 2. 

 

 

2.4 Simulation of testing strategies 

In tiered strategies, it is crucial to select test methods for lower tier test that minimize the 

probability of false negatives, while allowing for some false positives. False negatives can be 
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corrected at higher tiers, whereas false positives will not be corrected since they do not reach 

higher tiers (Hansson and Ruden, 2007).  

The aim of the decision-support methodology we propose is to simulate the final results of 

testing strategies, by integrating probabilistic QSAR model to the statistical simulation of 

toxicological testing in order to select only the testing strategies for which the levels of false 

positives and false negatives are below defined thresholds.  

A testing strategy is composed of successive tests to be executed in chronological order. At 

each step, if the result of the test is positive (i.e. the chemical is flagged as being toxic), then 

the strategy ends. If the result of the test is negative, then the following step is performed. 

Once that all the possible tests have been carried out the chemical is considered as not being 

toxic. In the framework of our methodology, the distinction between toxic and safe chemicals 

is determined by a comparison between the LOAEL (from in vivo rat experiments) values 

characterizing the chemicals and a given toxicological threshold, which could be, for instance 

an expected maximum exposure concentration. Chemicals for which LOAEL value is below 

this threshold are considered as toxic.  

 

The key question that our approach helps to answer is the following: “what battery of tests 

can assess the toxicity of chemicals of interest while ensuring a desired performance in terms 

of false positive and negative rates?” 

 

*.* The assumptions of the methodology 

The methodology we propose is based on five assumptions  

1) LOAEL values referring to the same sex, species and route of administration (rat, 

female and gavage in our case) adequately describe the toxicity of a molecule. 

2) Chemicals can be categorized as “safe or “toxic” according to a given LOAEL 

threshold.  
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3) A probability distribution for the LOAEL of a chemical can be derived by QSAR 

modeling 

4) The relative performance of an alternative test with respect to the in vivo “gold-

standard” (OECD guidelines in our case) can be adequately characterized by statistical 

distributions that describe the ratio between “gold-standard” LOAEL and results from 

an in vitro tests for a given set of molecules that have been tested by both methods.   

5) A testing strategy is composed of successive tests to be executed in chronological 

order. When the result of a test is positive (i.e. the chemical is flagged as being toxic), 

the strategy ends. If the result of the test is negative, a following step is simulated.  

 

 

*.* The underlying logic of the methodology 

A statistical distribution is derived for a given set of molecules that has been tested both in 

vivo and in vitro. This distribution describes the ratios of in vivo vs. in vitro results for each 

molecule composing the aforementioned set and they are an essential input of our 

methodology. Its role is to enable a comparison of the results yielded by in vitro tests and in 

vivo tests that are expressed in different units.  

In order to compute false positive/negative rates, the in vitro result obtained by means of MC 

sampling of this distribution (hereafter referred to as sim-LOAEL) has to be compared with 

the LOAEL that an in vivo experiments would yield if carried out for the query chemical 

(hereafter referred to as ref-LOAEL). The latter LOAEL value is obtained thanks to the 

sampling of a probability distribution for the in vivo LOAEL of the chemical under 

investigation that is determined by QSAR modeling. 

The simultaneous Monte Carlo sampling of these two distributions enables the simulation of 

the LOAEL values that an in vitro test and the gold-standard test would yield if carried out on 

the chemical under investigation (more details on the protocol are given in section *** and 
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***). In conclusion, the in vitro result is recognized as being a true/false positive or a 

true/false negative thanks to a comparison with the in vivo LOAEL and a user-defined 

LOAEL threshold that discriminates between safe and toxic chemicals. 

 

2.5 Simulation of “gold-standard” in vivo testing. Ref-LOAEL values for the query chemicals 

were simulated on the basis of the predictive certainties that characterize each chemical of the 

QSAR training set (calibrated with respect to “gold-standard” LOAELs) and that measures 

the predictive influence of each of them on the final prediction for the query chemical as 

described at paragraph 2.2.4.  

Thanks to this distribution of predictive certainties, the derivation of ref-LOAEL values was 

then performed in two steps. First, a random number between 0 and 1 is generated. If this 

number is below the percentage of predictive uncertainty estimated for the query chemical 

then a LOAEL (referred to as ref-LOAELfirst) is equiprobabilistically drawn from the 

LOAELs characterizing the chemicals that form the QSAR training set. If the number exceeds 

the percentage of uncertainty, the LOAEL is randomly selected among the LOAELs of the 

database with a frequency that will be proportional to the predictive certainties (Ct) estimated 

by QSAR modeling.  

In order to better approximate empirical testing we also introduced an extra source of 

uncertainty. Indeed, performing two times the same test (even a “gold standard”) would very 

likely result in slightly different outcomes. For this reason, the final ref-LOAEL value (ref-

LOAELfinal) is then sampled from a statistical distribution describing the ratio between two 

“gold-standard” LOAELs determined for the same chemical during two different runs of the 

same experimental protocol. To represent this experimental variability for the “gold-standard” 

test, we selected a loguniform distribution (i.e. the logarithm is uniformly distributed) 

centered on ref-LOAELfirst and with bounds equal at this value multiplied by three (upper 
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bound) and divided by three (lower bound). This choice is related to a gold standard test with 

selected exposure concentration in geometrical progression with a factor of three.    

 

2.6 Simulation of in vitro testing  

We simulated results of the gold standard in vivo test and of the three in vitro tests described 

at paragraph *.*. Before carrying out these simulations the distribution of the ratio between 

results of in vitro tests and the “gold-standard” test had to be described for a given set of 

reference chemicals. The sets of chemicals that were adopted for this pairwise comparison are 

reported in table 2.  

Two different statistical distributions were evaluated for the fitting of the ratios: loguniform 

and lognormal. The goodness of fit was determined by Chi-square tests and by a method 

specifically designed to assess uniformity of distribution even in the case where the data seem 

to be asymmetrically distributed (Afonso and Duarte, 1992). After the distribution was fitted, 

a ratio was randomly sampled. The sampled ratio was then multiplied by the median of the 

distributions to obtain “sim-LOAEL since results for in vitro tests are not expressed in the 

same units as “gold-standard” LOAELs”.  

When all this information was available, it was then possible to assess if the predicted 

LOAEL is a true positive, a true negative, a false positive or a false negative, by means of a 

comparison between ref-LOAELfinal, sim-LOAEL and the adopted toxicological threshold. 

For instance, if we have a LOAEL threshold equal at 50 mg/kg/day, a ref-LOAELfinal equal at 

40 mg/kg/day and a sim-LOAEL (e.g. from an in vitro test) equal at 80 mg/ml/day, the 

prediction will be regarded as being a false negative. A flowchart summarizing our 

methodology is reported in Figure 1.   

 

[FIGURE 1 HERE] 
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For a given toxicological threshold, we performed 10,000 simulations of LOAELs test results 

to estimate the rates of false positives and negatives for each test. The false positives and false 

negatives rates of the battery of tests were calculated as follows. The false negatives rate was 

equal at the product of the false negative rates of all tests in the battery, whereas the false 

positives rate of the testing battery was equal at one minus the product of one minus the false 

positive rate of each test. For instance, for a battery of tests composed by two tests 

characterized by a false positive and false negative rate equal at 0.1, the testing strategy would 

have a false negative rate of 0.01 and a false positive rate of 1-(1-0.1)*(1-0.1))= 0.19.  

 

2.7 Case study: DEHP  

DEHP, CAS RN 117-81-7) is a high production volume chemical used as a plasticizer in 

polyvinyl chloride plastics. It is found in a wide variety of consumer products, such as 

building products, car products, clothing, food packaging, children’s product, and in some 

medical devices made of polyvinyl chloride (Kavlock et al., 2006).  

We carried out our simulation of testing strategies as if no other information than QSAR 

predictions and statistical distributions describing the performance of toxicological tests were 

known. The results we obtained were finally compared with available in vivo and in vitro 

(WEC test, (Rhee et al., 2002)) data. 

We tested four exposure scenarios based on NTP-CERHR Expert panel report on the DEHP 

(2000). The first one corresponds to the range of general population exposure (3-30 10-3 

mg/kg/day), the second one (0.6 mg/kg/day) to long term exposure for adult hemodialysis, the 

third one to the highest possible exposure for medical use (3 mg/kg/day) and a fourth one 

corresponding to this latter use with a safety factor of 10.  

 

2.8 Case study 2: Indomethacin 
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Indomethacin (CAS RN 56-86-1) is a non-steroid anti-inflammatory and antipyretic agent 

(Hart and Boardman, 1963). It works by inhibiting the synthesis of prostaglandins in various 

tissues. It is known that it can cause constriction of the ductus arteriosus with pulmonary 

hypertension and right ventricular dysfunction in some fetuses and consequently the use for 

children is considered as dangerous (Lione and Scialli, 1995).  

Similarly to what was previously described for DEHP, we simulated testing strategies by 

integrating information yielded by QSAR modeling and then determined what testing strategy 

would keep the percentage of false positives and negatives at a reasonable level. This was 

finally compared with available in vivo and in vitro (WEC test) data.  

We tested four scenarios of exposure. The first one corresponds to the recommended use for 

an adult (about 25 mg per day, which we translated into 0.5 mg/kg/day). The second one 

corresponds to the maximum recommended use (200 mg per day, which we translated into 4 

mg/kg/day). The third and the fourth one correspond to maximum recommended use with 

safety factors of 10 and 100.  

 

3. Results 

 

3.1 Statistical distributions for the in vitro tests outputs 

Distributions parameters were estimated through mean and standard deviation estimates for 

the logarithm of the ratio values. For an uniform distribution [-A; A], the standard deviation 

equals A divided by the square root of 3. Statistical tests did not permit to reject neither 

lognormal or loguniform distributions but, when comparing the grouping of substances by 

groups of 5 and the statistical predictions, the loguniform distribution provided a better fit to 

the data. We obtained, respectively for WEC, MM and EST tests, the following intervals for 

uniform distribution of the logarithms of the ratio values, [-1.78; 2.58], [-2.42; 2.66] and [-
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2.55; 2.73] with result of the in vivo test expressed in mg/kg/day, and the result of in vitro 

tests in µg/ml. 

 

3.2 QSAR Modeling 

3.2.1 Partial Least Squares analysis 

We derived a PLS QSAR model as described in the materials and methods section. The model 

was characterized by two latent variables and its internal cross-validation (by leave-many-out 

validation) yielded a cross validated coefficient Q2
lso equal at 0.68 indicating an internally 

predictive model. The response permutation plot displayed an R2Y intercept equal at 0.24 and 

a Q2Y intercept equal at -0.28 confirming the statistical significance of the model (Eriksson et 

al. 2003). An inspection of the plot representing the orthogonal latent variables (Fig. 2) 

revealed that Tetrachlorodibenzodioxin (TCDD) was an outlier whose leverage on the model 

is very high. Indeed, if this chemical was removed the inclusion of a second latent variable 

was still useful but Q2lso fell at 0.40. The probabilistic analysis of the outlier chemical that 

limited its influence in a rational way (i.e. by defining an applicability domain) will be 

described in the following paragraph together with the predictions for the external test set of 

chemicals.  

 

[FIG. 2 HERE] 

 

3.2.2 Probabilistic QSAR modeling 

The chemical space defined by the two latent variables of the PLS model allowed the 

application of the methodology described in Pery et al. (2009). A prerequisite for this 

methodology is that a toxicological threshold has to be defined in order to categorize 

molecules as being safe or toxic. For DEHP and Indomethacin the thresholds described in the 

Materials and Methods section were adopted and such a binarization allowed the estimation 
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of different values for the  parameter as reported in Table 3 and the prediction of 

toxicological probabilities and intrinsic certainty for the validation set as reported in Table 4. 

The values of the sigma parameter showed that the chemical space was structured and its 

smallest value is 0.24 times the average distance among all the molecules indicating a 

reasonable predictive quality of the dataset. Moreover, four phthalates populate the immediate 

neighborhood of DEHP (a phtalate belonging to the validation set) confirming the rational 

organization of the chemical space.  

Only predictions characterized by a certainty equal at 1 were regarded as belonging to the 

applicability domain of the model. This definition limited the validity of predictions only for 

query chemicals located in close proximity of the training set molecules. More importantly, it 

reduced the predictive influence of TCDD only at a region in the space immediately 

surrounding it (Fig. 2).  

Virtual query chemicals located in empty regions of the chemical space (Fig. 2, Table 5) 

were, as expected, characterized by low certainty values.  

Nine out of eleven chemicals initially selected for the validation set had a certainty equal at 1 

(including DEHP and Indomethacin) for all the values of the sigma parameter and could 

therefore be regarded as belonging to the applicability domain of the model. Predictions for 

DEHP and Indomethacin were always correct and the number of toxic chemicals 

characterized by a probability lower than 0.5 (i.e. false negatives) and safe chemicals 

characterized by a probability larger than 0.5 (i.e. false positives) were in the worst cases 

(Table 4) equal at two. Therefore we considered that the external predictivity of the model 

was satisfactory for the purpose of this article.  

 

3.2.3 Interpretation of molecular descriptors 

The model was characterized by the descriptors reported in table 6 together with their 

regression coefficients (referring to scaled and centered descriptors and scaled response 
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values). There is not a coefficient that clearly dominates the model. The descriptors try to 

capture different molecular characteristics (2-D autocorrelations, distribution of 

electronegativity, topology, shape, distribution of atomic mass) that statistically correlate with 

LOAEL values without indicating any clear mechanistic rationale for the biological activity.  

For instance, 2-D autocorrelations (Todeschini and Consonni, 2000) indicate that a positive 

autocorrelation between atomic masses at a path length of 4 (MATS4m, largest coefficient) 

and a negative autocorrelation between van der Waals volumes at a path length of 5 

(GATS5v) increases the LOAEL. The association of these fragments to a given toxicological 

mechanism is very difficult because of the structural heterogeneity of the dataset. Similarly, 

the E3e descriptor that is related to the atom distribution along the third axis for the electronic 

Sanderson electronegativities (Todeschini and Consonni, 2000) indicates that the three 

dimensional arrangement of halogens plays a role in modulating the LOAEL. Despite these 

observations, the three-dimensional arrangement of electronegative atoms for the training set 

chemicals cannot be directly associated with a unique class of chemical reactivity because the 

different functional groups that characterize the molecules.  

The descriptor RDF050m, that posses the largest negative coefficient, does not provide any 

clear mechanistic insight either. It simply takes into account the occurrence of some linear 

dependence between the LOAEL of the chemicals and the molecular distribution of atomic 

mass calculated at a radius of 0.5 Å, from the geometrical center of each molecule 

(Todeschini and Consonni, 2000).  

WHIM descriptors G2u and G2m (Todeschini and Consonni, 2000) encode information 

about the symmetry of the molecule and their negative coefficients indicates that the higher 

the molecular symmetry the smaller the LOAEL values without identifying any mechanistic 

basis for the model. 

The QSAR model developed for this article is therefore purely statistical mainly because of 

the structural heterogeneity of the training set. Indeed, the training set chemicals could act by 
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means of large number of possible toxicological mechanisms whose thorough description by 

means of a QSAR model would require a much larger training set. In addition, the fact that 

LOAEL values cover a broad range of teratogenic effects also renders difficult any possible 

mechanistic interpretation. Indeed, complex endpoints such as teratogenesis are predictable 

through QSAR models only to a limited extent mainly because of the high number of 

potential toxicological mechanisms characterizing the available sets of chemicals  

(Grindon et al., 2008 ; Enoch et al. 2009). As a consequence, the possibilities of taking 

decisions on the only basis of QSAR information are markedly reduced, but QSAR models 

can still be useful in planning further testing, using the method we propose in this paper.  

 

3.3 Simulation of testing strategies 

For the two selected molecules, we evaluated all possible strategies whose number of tests 

ranged from one to four (chosen among the three in vitro tests and the reference in vivo test). 

Table 7 presents the results we obtained for each test. The performances of the in vitro tests, 

in terms of false positive and false negative rates were relatively similar.  

For DEHP and threshold concentrations from 3 10-3 to 0.6 mg/kg/day (-1.52 and -0.22 on a 

logarithmic scale), the simulation of testing strategies indicated that performing one test (in 

vitro or in vivo) was enough to confirm the absence of toxicity, with false negative rate of 0 

and false positive rate below 5%, which can be considered as acceptable. In contrast, for 

exposure concentrations 3 and 30 mg/kg/day, the simulation of testing strategies indicated 

that only the execution of the in vivo test could confirm the absence of toxicity with false 

negative rates and false positive rates below 10%. Using in vitro testing in a test strategy 

would generate a false positive rate over 20%, which may be unacceptable.  

The actual in vivo LOAEL for DEHP was measured at 100 mg/kg/day. Moreover, we dispose 

of results from a WEC test (Rhee et al., 2002), according to which the predicted LOAEL 
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(obtained by applying to the WEC test result the median ratio of the distribution of ratios 

between WEC test outputs and actual LOAELs) would be 2.5 mg/kg/day. 

Basing decision on WEC test output would result in a true negative for exposure 

concentrations from 3 10-3 to 0.6 mg/kg/day, but in a false positive for the two other 

scenarios. This is coherent with the estimation of statistical performance resulting from our 

strategies based on QSAR modeling.  

For indomethacin and exposure scenarios 0.5 and 4 mg/kg/day (-0.3 and 0.6 on a logarithmic 

scale), simulation of testing strategies indicated that performing only the in vivo test alone can 

permit to have false positive and negative rates below 0.05. Simulations for a single in vitro 

test indicated a false negative rate of about 0.1 and false positive rates beyond 0.2. For 

exposure concentration of 40 mg/kg/day (1.60 on a logarithmic scale), performing the in vivo 

test alone can permit to have false positive and negative rates below 0.06. Performing two in 

vitro tests would result in a false positive rate of about 0.16 and false negative rate of about 

0.065, which could be reasonable. Performing only one in vitro test would increase the false 

negative rate beyond 0.25 which could be problematic. Performing the three in vitro tests 

would be counterproductive, as the rate of false positive would be over 0.25. For exposure 

concentration of 400 mg/kg/day, performing two in vitro tests would permit to have false 

positive rate at 0 and false negative rates below 0.03. Performing reference test would lead to 

false positive rate of 0 and false negative rate around 0.01. Performing only one in vitro test 

would result in a false negative rate above 0.15.   

The experimental in vivo LOAEL for indomethacin was measured at 1 mg/kg/day and we 

could therefore compare our results with experimental findings from a WEC test, according to 

which the estimated LOAEL would be 2.5 mg/kg. Basing decision on WEC test output would 

consequently yield only true negatives and true positives for the threshold we selected. This is 

coherent with the conclusions of our simulation study. 
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As a final remark it is important to point out the added value of simulating testing strategies 

on the basis of QSAR predictions. Indeed, if toxicological probabilities are simply equal to 

the percentage of toxic molecules in the dataset (i.e. if nothing could be inferred on the basis 

of structural similarity) the simulation of testing strategies is less accurate. For instance, for a 

threshold equal at 0.6 mg/kg/day the simulation of testing strategies for DEHP in the absence 

of QSAR modeling would indicate that the WEC test is the only valuable in vitro test to be 

performed. Such a result is not accurate. Indeed, the actual LOAEL value for DEHP is 167 

times higher than the threshold. This means that all in vitro tests would have a rate of false 

positive below 0.1, as we showed when basing testing strategies simulations on QSAR 

information.   

As far as indomethacin is concerned, the simulation of testing strategies without the support 

of QSAR results for a threshold of 0.5 mg/kg/day would indicate that performing only a WEC 

test is enough in order to have a false positive/negative rate below 10%. Interestingly, 

simulations of test results integrating the information coming from QSAR modeling, indicated 

that an in vivo test is necessary. The latter result is more consistent with experimental results 

since the adopted threshold is twice as lower than the gold-standard LOAEL (1 mg/kg/day) 

and carrying out only the WEC test (LOAELWEC = 2.5 mg/kg/day) would lead to a much 

higher false positive rate (43%). Moreover, for a threshold equal at 40 mg/kg/day the 

simulation of testing strategies for Indomethacin without QSAR information would suggest 

that only an in vivo test could yield a false positive/negative rate below 10%. On the other 

hand, the integration of QSAR information shows that performing two in vitro tests could be 

an acceptable solution. This result is confirmed by the fact that performing a small test battery 

composed by the WEC test and any other in vitro test would prove that Indomethacin is toxic 

at 40 mg/kg.  

 

4. Discussion 
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Our methodology enables to integrate QSAR and simulation of testing strategies within a 

structured workflow. Decision-making could therefore be driven by tests outputs simulated as 

a function of the physico-chemical properties of the molecule and permitted the selection of 

the most convenient testing strategy. Our methodology can contribute to the reduction of 

animal testing requirements by proposing alternatives each time that it is statistically 

acceptable in terms of toxicological performances.  

In their paper about tiered testing strategies, Grindon et al. (2008), propose a toxicological 

evaluation with the three embryotoxicity assays we use in our study. According to their 

proposition, if any of these tests gives a positive result, then a decision on Classification and 

Labeling and/or Risk Assessment should take place and during their discussion they consider 

that the probability to give unacceptably high levels of false negative data is low. As 

complementary information to their work, the present study shows that the rate of false 

positive of the approach by Grindon et al. (2008) can become unacceptable, in particular 

when all the three in vitro tests are performed as we showed, for instance, for indomethacin 

(false positive rate greater than 25% for an exposure concentration equal at 40 mg/kg/day). 

Overtesting should be avoided and only one or two in vitro tests should be carried out when in 

vivo tests can be replaced. 

Since the statistical performances of the in vitro tests are relatively similar, when the 

simulation of testing strategies indicates that one in vitro test would be sufficient, the 

selection of the test to be adopted cannot be based on statistical performances. Therefore, 

another criterion should be used (i.e. monetary and/or ethical cost). For instance, Grindon et 

al. (2008) showed that the EST test should be preferred to the two other tests because it is the 

only one that can be adapted to high-throughput studies without involving the killing of large 

numbers of pregnant animals. 

The QSAR model we derived organized the chemical space in a way that enabled the 

derivation of reasonable predictions for toxicological probabilities. However, the adopted 
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model was very local and it was therefore crucial to define its applicability domain thanks to 

the methodology described in Pery et al. (2009). In particular, this methodology, allowed to 

define the applicability domain of the model for a chemical space that yields reliable 

predictions by strongly limiting the number of prediction outliers thanks to Gaussians 

distribution for predictive certainty centered on each training set chemicals 

Thanks to this approach it was therefore possible to derive correct probabilistic predictions for 

the two analyzed molecules while being sure that query chemicals located far from the 

training set chemicals were characterized by a high predictive uncertainty. As can be seen in 

Figure 2, the predictive influence of TCDD was limited to the region immediately 

surrounding the chemical and virtual query chemicals probing empty spaces lying between 

TCDD and the rest of the training set are characterized by a predictive certainty lower than 1 

and therefore outside the applicability domain of the model. (Table 4, Fig. 1).     

Our methodology can be adapted to any other toxicological endpoint, provided that a relevant 

QSAR model can be derived together with available in vitro information for several 

chemicals (about 20) with both reference test (i.e. “gold standard” in vivo test) and in vitro 

results. The methodology we presented can also be adapted to toxicological “gold standard” 

other than tests on animals, such as thresholds derived from clinical trials.  

In conclusion, our paper presents an original method coupling QSAR modeling and 

simulation of toxicologial testing. The selection of a relevant testing strategy is driven not 

only by test performance, but also by the particular physico-chemical properties of the 

molecules under investigation. The selection of the optimal testing strategy is then a trade-off 

between minimization of false statistical results, regulatory considerations, and ethic and 

monetary costs. 

 

Acknowledgements 



25 
 

This work was supported by the National French Agency for scientific research (ANR) in the 

framework of the CP2D program (Chimie et Procèdes pour le Développement Durable). 

  



26 
 

References 

Afonso L.A., Duarte P. 1992. Un nouveau test pour la distribution uniforme. Rev Statistiques 

Appliquée 40, 77-79.  

 

Ahlers J., Stock F., Werschkun B. 2008. Integrated testing and intelligent assessment-new 

challenges under REACH. Environ Sci Pollut Res 15, 565-572. 

 

Benfenati E. 2007. Predicting toxicity through computers: a changing world. Chem Cent J 1, 

32.  

 

Bowden H.C., Tesh J.M., Ross F.W. 1993. Effects of female sex hormones in whole embryo 

culture. Toxicol. In Vitro 7, 799-802. 

 

Burman C.F., Senn S. 2003. Examples of option values in drug development. Pharm Stat 2, 

113-125. 

 

Cicurel L., Schmid B.P. 1988. Postimplantation embryo culture for the assessment of the 

teratogenic potential and potency of compounds. Experientia 44, 833-840. 

 

Cosenza M.E., Bidanset J. 1995. Effects of chlorpyrifos on neuronal development in rat 

embryo midbrain micromass cultures. Vet. Hum. Toxicol. 37(2), 118-121. 

 

Cumberland P.F.T., Richold M., Parsons J.F., Pratten M.K. 1994. Further evaluation of a 

teratogenicity screen unsing an intravitelline injection technique. Toxicol. In Vitro 8(2), 153-

166. 



27 
 

Enoch, S.J., Cronin, M.T.D., Madden, J.C., Hewitt, M. 2009. Formation of Structural 

Categories to allow for Read-Across for Teratogenicity. QSAR Comb. Sci. in press.  

 

Genschow E., Spielman H., Scholz G., Pohl I., Seiler A., Clemann N. Bremer S., and Backer 

K. 2004. Validation of the embryonic stem cell test in the international ECVAM validation 

study on three in vitro embryotoxicity tests. ATLA 32, 209-244. 

 

 

Golbraikh,A., Tropsha, A. 2002. Beware of q2! J Mol Graph Model. 20, 269-276. 

 

Gramatica, P. 2007. Principles of QSAR models validation: internal and external. QSAR 

Comb. Sci., 26, 694 – 701. 

 

Gramatica, P. 2004. Evaluation of different statistical approaches to the validation of 

Quantitative Structure - Activity Relationships.  Available online at: 

http://ecb.jrc.it/DOCUMENTS/QSAR/Report_on_QSAR_validation_methods.pdf,"  

 

Grindon C., Combes R., Cronin M.T.D., Roberts D., Garrod J.F. 2006. Integrated testing 

strategies for use in the EU REACH system. ATLA 34, 407-427. 

 

Grindon C., Combes R., Cronin M.T.D., Roberts D., Garrod J.F. 2008. Integrated decision-

tree testing strategies for developmental and reproductive toxicity with respect to the 

requirements of the EU REACH legislation. ATLA 36, 65-80. 

Hansen D.K., Grafton T.F. 1994. Comparison of dexamethasone-induced embryotoxicity in 

vitro in mouse and rat embryos. Teratog. Carcinog. Mutag. 14, 281-289. 

 



28 
 

 

Eriksson, L. Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M. and Gramatica, P. 

2003. Methods for reliability and uncertainty assessment and for applicability evaluations of 

classification and regression-based QSARs. Environ Health Perspect. 111, 1361-1375 

 

Flint O.P., Orton T.C. 1984. An in vitro assay for teratogens with cultures of rat embryo 

midbrain and limb bud cells. Toxicol. Appl. Pharmacol. 76, 383-395. 

 

Hansson S.O., Ruden C. Towards a theory of tiered testing. Regul Toxicol Pharmacol 48, 35-

44. 

 

Kavlock R., Barr D., Boekelheide K., Breslin W., Breysse P., Chapin R., Gaido K., Hodgson 

E., Marcus M., Shea K. and Williams P. 2006. NTP-CERHR Expert Panel update on the 

reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol 22, 

291-299. 

 

 

Lione A., Scialli A.R. 1995. The developmental toxicity of indomethacin and sulindac. 

Reprod Toxicol 9, 7-20. 

 

Menegola E., Broccia M.L., Di Renzo F., Giavini E. 2001. Acetaldehyde in vitro exposure 

and apoptosis: a possible mechanism of teratogenesis. Alcohol 23, 35-39. 

 

Morris G.M., Steele C.E. 1976. Comparison of the effects of retinol and retinoic acid on 

postimplantation rat embryos. Teratology 15, 109-120. 

 



29 
 

Newall D.R. and Beedles K.E. 1996. The stem-cell test: an in vitro assay for teratogenic 

potential. Results of a blind trial with 25 compounds. Toxicol In Vitro 10, 229-240. 

 

NTP-CERHR Expert Panel report on Di(2-ethylhexyl) phthalate. October, 2000. NTP-

CERHR-DEHP-00. Available online at: http://cerhr.niehs.nih.gov/chemicals/dehp/DEHP-final.pdf 

 

OECD. 2000. Guideline for testing of Chemicals. 414 Updated. Prenatal developmental 

toxicity study. 

 

Pery, A.R.R., Henegar, A., Mombelli E. 2009. Maximum-Likelihood Estimation of Predictive 

Uncertainty in Probabilistic QSAR modeling. QSAR Comb. Sci. 28, 338-344. 

 

Piersma A.H., Grenschow E., Verhoef A., Spanjersberg M.Q.I., Brown N.A., Brady M., 

Burns A., Clemann N., Seiler A. and Spielmann H. 2004. Validation of the post-implantation 

rat whole-embryo culture test in the international ECVAM validation study on three in vitro 

embryotoxicity tests. ATLA 32, 275-307. 

 

Renault J-Y., Meicion C., Cordier A. 1989. Limb bud cell culture for in vitro teratogen 

screening: Validation of an improved assessment method using 51 compounds. Teratog. 

Carcinog. Mutag. 9, 83-96. 

 

Rhee G.S., Kim S.H., Kim S.S., Sohn K.H., Kwack S.J., Kim B.H., Park K.L. 2002. 

Comparison of embryotoxicity of ESBO and phthalate esters using an in vitro battery system. 

Toxicol in vitro 16, 443-448.  

 

http://cerhr.niehs.nih.gov/chemicals/dehp/DEHP-final.pdf


30 
 

Ritchie H.E., Webster W.S., Eckhoff C., Oakes D.J. 1998. Model predicting the teratogenic 

potential of retinyl palmitate, using a combined in vivo/in vitro approach. Teratology 58, 113-

123. 

 

Schuurmann, G., Ebert, R. U., Chen, J., Wang, B., Kuhne, R.2008 External validation and 

prediction employing the predictive squared correlation coefficient test set activity mean vs 

training set activity mean. J Chem Inf Model. 48, 2140-2145. 

 

 

Spielmann H., Pohl I., Döring B., Liebsch M., Moldenhauer F. 1997. The embryonic stem cell 

test, an in vitro embryotoxicity test using two permanent cell lines: 3T3 fibroblasts and 

embryonic stem cells. In Vitro Toxicol. 10(1), 119-127. 

 

Spielmann H., Genschow E., Brown N.A., Piersma A.H., Verhoef A., Spanjersberg M.Q.I., 

Huuskonen H., Paillard F. and Seiler A. 2004. Validation of the rat limb bud micromass test 

in the international ECVAM validation study on three in vitro embryotoxicity tests. ATLA 

32, 245-274. 

 

Todeschini, R., Consonni, V. 2000. Handbook of Molecular Descriptors. Methods and 

Principles in Medicinal Chemistry (Volume 11). Edited by Mannhold, R. Kubinyi, H. and 

Timmerman, H. Wiley-VCH Verlag (Germany) 

 

Tropsha, A., Gramatica, P., Gombar, V. K. 2003. The Importance of Being Earnest: 

Validation is the Absolute Essential for Successful Application and Interpretation of QSPR 

Models. QSAR Comb. Sci. 22, 69-77.  

 



31 
 

WHO Regional Publications, European Series, Second Edition. 2000. Air quality guideline 

for Europe. No 91, 273 pages. 

 

Zur Nieden, N.I., Ruf, L.J., Kempka, G., Hildebrand, H., Ahr, H.J. 2001. Molecular markers 

in embryonic stem cells. Toxicol in vitro 15, 455-461. 

 

 

 

 



32 
 

Table 1 Chemicals used to develop and test the QSAR model adopted for our investigation. 

Activities are given as decimal Log of the LOAEL expressed in mg/kg/day. Training set 

molecules belongs to set 1 and validation set molecules to set 2. 

 

 
CAS number 

 
Name 

 
LOG LOAEL 

 
Set 
 

 
119-61-9 

 
Benzophenone 

 
2.00 

 
1 

131-70-4 Monobutyl phthalate 2.40 1 
138261-41-3 Imidacloprid 1.93 1 
1746-01-6 Tetrachlorodibenzodioxin -3.30 1 
17804-35-2 Benomyl 1.75 1 
1836-75-5 Nitrofen 0.80 1 
22071-15-4 Ketoprofen 0.00 1 
24602-86-6 Tridemorph 0.00 1 
26171-23-3 Tolmetin 1.31 1 
26761-40-0 Diisodecyl phthalate 3.00 1 
28553-12-0 Diisononyl phthalate 2.88 1 
35065-27-1 2,4,5,2',4',5'-

Hexachlorobiphenyl 
1.30 1 

50-06-6 Phenobarbital 1.60 1 
50471-44-8 Vinclozolin 2.00 1 
5104-49-4 Flurbiprofen 1.00 1 
52315-07-8 Cypermethrin 1.70 1 
53164-05-9 Acemetacin -0.30 1 
58-08-2 Caffeine 0.78 1 
58-89-9 Lindane 1.30 1 
68-22-4 Norethindrone 1.40 1 
83-05-6 2,2-Bis(4-chlorophenyl)acetic 

acid (DDA) 
1.70 1 

83-79-4 Rotenone 0.70 1 
84-69-5 Diisobutyl phthalate 2.70 1 
84-74-2 Dibutyl phthalate 2.70 1 
87237-48-7 Haloxyfop-etotyl 1.00 1 
87-51-4 Indoleacetic acid 1.70 1 
94361-06-5 Cyproconazole 2.00 1 
107534-96-3 Tebuconazole 1.78 2 
117-81-7 Diethylhexyl phthalate 2.00 2 
13710-19-5 Tolfenamic acid 0.00 2 
32774-16-6 3,4,5,3',4',5'-

Hexachlorobiphenyl 
-1.52 2 

53-86-1 Indomethacin 0.00 2 
54-31-9 Furosemide 1.70 2 
58138-08-2 Tridiphane 2.00 2 
69806-50-4 Fluazifop-butyl 2.30 2 
76-44-8 Heptachlor 0.48 2 
84-66-2 Diethyl Phthalate 3.39 2 
85-68-7 Butyl benzyl phthalate 2.43 2 
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Table 2. Toxicological data that allowed the derivation of statistical distributions describing 

the ratio between in vitro and in vivo results. Such distributions are necessary in order to make 

possible a comparison between results yielded by different experimental systems which are 

expressed in different units.  

CAS 
Number Name LOAEL 

In vitro effect 
level 

In vitro 
test Reference 

79-81-2 retinol palmitate 206 mg/kg/day 25 µg/ml WEC Ritchie et al., 1998. 

4759-48-2 13-cis-retinoic acid 50 mg/kg/day 0,5 µg/ml WEC Ritchie et al., 1998. 

68-26-8 vitamin A 37,5 mg/kg/day 375 ng/ml WEC Ritchie et al., 1998. 

302-79-4 all-trans retinoic acid 5 mg/kg/day 0,5 µg/ml WEC Morris et al., 1976. 

50-78-2 aspirin 250 mg/kg/day 10 µg/ml WEC Cicurel et al., 1988. 

50-02-2 dexamethasone 0,08 mg/kg/day 5 µg/ml WEC Hansen et al., 1994 

53-86-1 methazine 1 mg/kg/day 1 µg/ml WEC Cuberland et al., 1994. 

147-24-0 diphenhydramine 100 mg/kg/day 1 µg/ml WEC Cuberland et al., 1994. 

58-08-2 caffeine 6 mg/kg/day 100 µg/ml WEC Cicurel et al., 1988 

305-03-3 chlorambucil 6 mg/kg/day 10 µg/ml WEC Cicurel et al., 1988 

66-81-9 cycloheximide 1 mg/kg/day 0,03 µg/ml WEC Cicurel et al., 1988 

50-02-2 dexamethasone 0,08 mg/kg/day 270 µg/ml WEC Cicurel et al., 1988 

439-14-5 diazepam 500 mg/kg/day 100 µg/ml WEC Cicurel et al., 1988 

57-41-0 diphenylhydantoin 100 mg/kg/day 100 µg/ml WEC Cicurel et al., 1988 

96-45-7 N,N'-ethylene 
thiourea 30 mg/kg/day 100 µg/ml WEC 

Cicurel et al., 1988 

51-21-8 fluorouracil 5 mg/kg/day 0,6 µg/ml WEC Cicurel et al., 1988 

50-35-1 thalidomide 100 mg/kg/day 1000 µg/ml WEC Cicurel et al., 1988 

58-55-9 theophylline 258,6 mg/kg/day 100 µg/ml WEC Cicurel et al., 1988 

75-07-0 acetaldehyde 240 mg/kg/day 45 µg/ml WEC Menegola et al., 2001. 

84-74-2 dibutylphtalate  500 mg/kg/day 10 µg/ml WEC Rhee et al., 2002. 

50-28-2 estradiol 0,225 mg/kg/day 30 ug/ml WEC Bowden et al., 1993. 

4759-48-2 13-cis-retinoic acid 50 mg/kg/day 0,08 µg/ml MM Renault et al., 1989. 

127-07-1 hydroxycarbamide 200 mg/kg/day 14,3 µg/ml MM Renault et al., 1989. 

50-78-2 aspirin 250 mg/kg/day 1436 µg/ml MM Renault et al., 1989 

50-02-2 dexamethasone 0,08 mg/kg/day 30,5 µg/ml MM Renault et al., 1989 

53-86-1 methazine 1 mg/kg/day 4 µg/ml MM Flint et al., 1984. 

147-24-0 diphenhydramine 100 mg/kg/day 48,8 µg/ml MM Renault et al., 1989 

84-74-2 dibutylphtalate 500 mg/kg/day 27,47 µg/ml MM Rhee et al., 2002. 

85-68-7 benzylbutyl hthalate 270 mg/kg/day 412,24 µg/ml MM Rhee et al., 2002 

305-03-3 chlorambucil 6 mg/kg/day 2,6 µg/ml MM Renault et al., 1989 

56-75-7 chloramphenicol 2500 mg/kg/day 230 µg/ml MM Flint et al., 1984. 

2921-88-2 chlorpyrifos 3 mg/kg/day 16 µg/ml MM Cosenza et al., 1995. 

50-18-0 cyclophosphamide 10 mg/kg/day 325 µg/ml MM Flint et al., 1984. 

439-14-5 diazepam 500 mg/kg/day 150 µg/ml MM Flint et al., 1984. 

60-00-4 Ethylenediaminetetra 
acetic acid 954 mg/kg/day 2,8 µg/ml MM 

Flint et al., 1984. 

50-00-0 Formaldehyde 8 mg/kg/day 5,3 µg/ml MM Renault et al., 1989. 

302-79-4 all-trans retinoic acid 5 mg/kg/day 0,000105 µg/ml EST Spielmann et al., 1997. 

127-07-1 hydroxycarbamide 200 mg/kg/day 1,7 µg/ml EST Spielmann et al., 1997. 

50-78-2 aspirin 250 mg/kg/day 248 µg/ml EST Spielmann et al., 1997. 

50-02-2 dexamethasone 30,5 µg/ml 18,3 µg/ml EST Spielmann et al., 1997. 

53-86-1 methazine 1 µg/ml 66 µg/ml EST Spielmann et al., 1997. 

147-24-0 diphenhydramine 1 µg/ml 6,7 µg/ml EST Spielmann et al., 1997. 

58-08-2 caffeine 100 µg/ml 185 µg/ml EST Spielmann et al., 1997. 

50-18-0 cyclophosphamide 325 µg/ml 21 µg/ml EST Newall et al., 1996. 

55-98-1 busulfan 100 mg/kg/day 4,6 µg/ml EST Spielmann et al., 1997. 

51-21-8 fluorouracil 0,6 µg/ml 0,029 µg/ml EST Spielmann et al., 1997. 

50-35-1 
thalidomide 1000 µg/ml 67 µg/ml EST 

Zur Nieden et al., 
2001. 

57-41-0 phenytoin 100 µg/ml 5,8 µg/ml EST Newall et al., 1996. 
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Derive distribution for « gold-standard » 

LOAEL on the basis of Euclidean

distances separating the query chemical

from training set molecules

Convert the simulated toxicological

result into same units of 

measurement as the gold-standard 

LOAEL and obtain « sim-LOAEL»
Sample a LOAEL value  from this

distribution: ref-LOAELstart

Add Uncertainty due to experimental variability and 

obtain a new value for ref-LOAELfirst : ref-LOAELfinal

Determine if the prediction is a false/true

positive/negative by comparing the three

following values:  ref-LOAELfinal sim-

LOAEL and arbitrary toxicological threshold

Simulate the result of a toxicological test 

thanks to the sampling of a statistical

distribution describing the ratio between

in vivo gold-standard results and results

from the alternative test

Choose an arbitrary LOAEL threshold to 

discriminate between safe and toxic

chemicals

 

 

Fig. 1 Flowchart representing the essential steps of the simulation of a battery of toxicological 

tests.  
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Fig. 2. Plot of the orthogonal latent variables LV1 and LV2. Training set chemicals are represented by black diamonds, DEHP and Indomethacin 

are represented as a white square and a white circle respectively. The isolated point on the left represents TCDD and the dashed circle represents 

. A query chemical located at a distance equal at  (i.e. on the dashed lines) from TCDD will be characterized by a predictive certainty 

equal at 1/e ≈ 0.37 where e is the Neperian number. The grey dots represent virtual query chemical probing empty spaces: for all of them the 

predictive certainty is lower than 1. The dotted ellipse represents the 95% confidence region of the model according to Hotelling’s T2. 

c1
c2

c4

c3

TCBD

DEHP

Indomethacin

LV2

LV1
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Table 3 LOAEL thresholds and estimated sigma values for the two DEHP and Indomethacin.  

 

 

 

DEHP 
 

 
Indomethacin 

 
 
Threshold for Log 
LOAEL  
 


 
Threshold for Log 
LOAEL 



-1.52 2.7 -0.3 0.7 
-0.22 0.7 0.6 1.97 
0.48 1.97 1.6 1.24 
1.48 
 

1.24 2.6 0.77 
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Table 4 Toxicological probabilities for the test set corresponding to the different scenarios for 
DEHP and Indomethacin. Chemicals for which the LOAEL is below the threshold (i.e. toxic 
chemicals) are indicated in bold.  
 
CAS 

 
Probability 

 
Certainty 

 
CAS 

 
Probability 

 
Certainty 

 
DEHP Threshold=-1.52 

 
Indomethacin Threshold=-0.3 

107534-96-3 0 1 107534-96-3 0 1 
117-81-7 0 1 117-81-7 0 1 
13710-19-5 0 1 13710-19-5 0 1 
32774-16-6 0.04 0.14 32774-16-6 0.07 0 
53-86-1 0 1 53-86-1 0 1 
54-31-9 0 1 54-31-9 0 1 
58138-08-2 0 1 58138-08-2 0 1 
69806-50-4 0 1 69806-50-4 0 1 
76-44-8 0 1 76-44-8 0.04 0.48 
84-66-2 0 1 84-66-2 0 1 
85-68-7 0 1 85-68-7 0 1 
 
DEHP Threshold=-0.22 

 
Indomethacin Threshold=0.6 

107534-96-3 0 1 107534-96-3 0.04 1 
117-81-7 0 1 117-81-7 0.05 1 
13710-19-5 0 1 13710-19-5 0.12 1 
03274-16-6 0.07 0 03274-16-6 0.15 0 
53-86-1 0 1 53-86-1 0.24 1 
54-31-9 0 1 54-31-9 0.16 1 
58138-08-2 0 1 58138-08-2 0.01 1 
69806-50-4 0 1 69806-50-4 0.07 1 
76-44-8 0.04 0.48 76-44-8 0.01 0.93 
84-66-2 0 1 84-66-2 0.03 1 
85-68-7 0 1 85-68-7 0.06 1 
 
DEHP Threshold=0.48 

 
Indomethacin Threshold=1.6 

107534-96-3 0.04 1 107534-96-3 0.18 1 
117-81-7 0.05 1 117-81-7 0.10 1 
13710-19-5 0.12 1 13710-19-5 0.56 1 
32774-16-6 0.15 0 32774-16-6 0.48 0 
53-86-1 0.24 1 53-86-1 0.76 1 
54-31-9 0.16 1 54-31-9 0.73 1 
58138-08-2 0.01 1 58138-08-2 0.1 1 
69806-50-4 0.07 1 69806-50-4 0.3 1 
76-44-8 0.01 0.93 76-44-8 0.91 0.83 
84-66-2 0.03 1 84-66-2 0.19 1 
85-68-7 0.06 1 85-68-7 0.22 1 
 
DEHP Threshold=1.48 

 
Indomethacin Threshold=2.6 

107534-96-3 0.18 1 107534-96-3 0.88 1 
117-81-7 0.10 1 117-81-7 0.42 1 
13710-19-5 0.56 1 13710-19-5 1 1 
32774-16-6 0.48 0 32774-16-6 0.85 0 
53-86-1 0.76 1 53-86-1 1 1 
54-31-9 0.73 1 54-31-9 1 1 
58138-08-2 0.1 1 58138-08-2 1 1 
69806-50-4 0.3 1 69806-50-4 1 1 
76-44-8 0.91 0.83 76-44-8 0.93 0.55 
84-66-2 0.19 1 84-66-2 0.99 1 
85-68-7 0.22 1 85-68-7 0.82 1 
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Table 5 Predictive certainty for virtual query chemicals computed for  = 1.24. All the 

certainties are lower than 1.  

 

 
Chemical 
 

 
Certainty 

 

C1 < 0.1 

C2 < 0.1 

C3 0.23 

C5 

 

0.27 
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Table 6 Retained descriptors and regression coefficients of the retained QSAR model. 

Coefficients refer to scaled and centered descriptors and scaled response values.  

 

 
Descriptor 
 

 
Category 

 
Coefficient 

 

MATS4m 2D-autocorrelation  0.19377 

E3e WHIM  0.17081 

JhetZ Topological   0.158696 

RDF050m RDF -0.149818 

G2m WHIM -0.144327 

GATS5v 2D-autocorrelation -0.138099 

G2u WHIM -0.135932 

RDF080m RDF -0.11942 

G(O..Cl) Geometrical -0.114555 

GATS4v 2D-autocorrelation -0.110849 

Mor31u 3d-Morse  0.10955 

E1v WHIM -0.0825062 

Mor19v 3d-Morse  0.0607 

G1m WHIM -0.0532846 

R1e GETAWAY  0.0464452 

BELe7 Burden Eigenvalues -0.0253866 

H3m 

 

GETAWAY 

 

-0.0112353 
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Table 7 Expected false positive and false negative rates for DEHP and Indomethacin for different toxicological thresholds.   

 

  
In vivo 

 

 
In vitro 

   
WEC 

 ST 
DEHP 
[mg/kg/day] 

False 
positive 

False  
negative 

False 
positive 

False 
negative 

False 
positive 

False 
negative 

False 
positive 

False 
negative 

3-30 10-3 0 0 0 0.01 0 0.02 0 0.02 
0.6 0 0 0 0.02 0 0.05 0 0.05 
3 0.003 0.002 0.2 0.01 0.23 0.01 0.24 0.01 
30 0.06 0.04 0.24 0.07 0.27 0.07 0.27 0.07 
 
Indomethacin 
[mg/kg] 

 
False 
positive 

 
False  
negative 

 
False 
positive 

 
False 
negative 

 
False 
positive 

 
False 
negative 

 
False 
positive 

 
False 
negative 

0.5 0.04 0.02 0.21 0.03 0.24 0.03 0.25 0.03 
4 0.04 0.03 0.22 0.10 0.24 0.11 0.24 0.11 
40 0.04 0.06 0.09 0.24 0.09 0.26 0.09 0.26 
400 0 0.001 0 0.13 0 0.17 0 0.17 

 
 
 


