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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

The interaction of particulate and gaseous pollutants in their effects on the severity of allergic inflammation and airway
responsiveness are not well understood. We assessed the effect of exposure to NO2 in the presence or absence of repetitive
treatment with carbon nanoparticle (CNP) during allergen sensitization and challenges in Borwn-Norway (BN) rat, in order to
assess their interactions on lung function and airway responses (AR) to allergen and methacholine (MCH), end-expiratory
lung volume (EELV), bronchoalveolar lavage fluid (BALF) cellular content, serum and BALF cytokine levels and histological
changes. Animals were divided into the following groups (n = 6): Control; CNP (Degussa-FW2): 13 nm, 0.5 mg/kg instilled
intratracheally63 at 7-day intervals; OVA: ovalbumin-sensitised; OVA+CNP: both sensitized and exposed to CNP. Rats were
divided into equal groups exposed either to air or to NO2, 10 ppm, 6 h/d, 5d/wk for 4 weeks. Exposure to NO2, significantly
enhanced lung inflammation and airway reactivity, with a significantly larger effect in animals sensitized to allergen, which
was related to a higher expression of TH1 and TH2-type cytokines. Conversely, exposure to NO2 in animals undergoing
repeated tracheal instillation of CNP alone, increased BALF neutrophilia and enhanced the expression of TH1 cytokines: TNF-
a and IFN-c, but did not show an additive effect on airway reactivity in comparison to NO2 alone. The exposure to NO2

combined with CNP treatment and allergen sensitization however, unexpectedly resulted in a significant decrease in both
airway reactivity to allergen and to methacholine, and a reduction in TH2-type cytokines compared to allergen sensitization
alone. EELV was significantly reduced with sensitization, CNP treatment or both. These data suggest an immunomodulatory
effect of repeated tracheal instillation of CNP on the proinflammatory effects of NO2 exposure in sensitized BN rat.
Furthermore, our findings suggest that NO2, CNP and OVA sensitization may significantly slow overall lung growth in
parenchymally mature animals.
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Introduction

Asthma is a major public health problem, affecting 300 million

people worldwide, and has increased considerably in prevalence

over the past three decades, particularly in many developed

countries [1]. Although the causes for this increase are not well

known, a considerable amount of epidemiological evidence

suggests that certain components of air pollution such as ozone,

nitrogen dioxide (NO2), and particulate matter (PM), as well as a

variety of allergens may play important roles [2,3]. Particulate

matter and NO2 are important ambient air pollutants, their health

effects have been extensively reviewed, air quality standards and

guidelines have been proposed to protect public health.

NO2 is present in the outdoor environment, resulting from

emissions from automobile exhausts, where its level can reach

4 ppm during heavy traffic [4,5]. In the indoor environment, the

concentration of NO2 produced by sources such as kerosene

heaters and gas cookers often exceeds outdoor concentrations and

reach peak values above 4 ppm [4,6]. This pollutant has been

associated with an increased morbidity rate for respiratory disease

[7]. In fact, exposure to low levels of NO2 may alter respiratory

function in several animal species and increase airway responsive-

ness to contractile agents. Also structural damages are induced by

acute and chronic exposure resulting in lung inflammation and

pulmonary fibrosis. The biochemical alterations which occur in

the respiratory system following exposure to the oxidant gas

include changes in lung lipids, antioxidant metabolism and

enzyme activity [8].

The exposure to PM can lead to lung function impairment and

exacerbation of pre-existing diseases, particularly allergic asthma

[9]. Exposure to PM promotes lung inflammation through

oxidative stress and lipid peroxidation [10]. Diesel exhaust

particles (DEP) are the main component of PM. Previous studies

have demonstrated that DEP can worsen both lipopolysaccharide-

induced lung inflammation, representing an innate immunity [11],

and allergic lung inflammation [12,13]. Evidence in the literature

suggests that the effect of particles on allergic inflammation may be

modified by the properties of the particle surface, such as adsorbed
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organic chemicals and metals and possibly other factors such as

surface charge, structure and size [14]. In this respect, carbon

black nanoparticles (CNP) have previously been used as a

surrogate of the physical core of nanoparticular combustion-

derived PM. Smaller (13 nm) sized CNP have been shown to

produce a stronger aggravation of allergic inflammation than

larger (56 nm) particles in mouse [15].

T helper 2 (TH2) cells have a central role in the inflammatory

response in allergic asthma, by releasing interleukin-4 (IL-4) and

IL-13, both of which stimulate B cells to synthesize IgE, and IL-5

which are necessary for eosinophilic inflammation [16], while

suppressing the production of TH1 cell cytokines, e.g.: IFN-c and

IL-2 [17,18]. On the other hand, bronchial and alveolar epithelial

cells and macrophages are the initial cells to interact with ambient

particles. Epithelial cells produce cytokines such as IL-1, IL-6, IL-

8, and TNF-a, whereas macrophages release cytokines such as

TNF-a and IL-8 [14,19]. How exactly the interaction of

particulate and gaseous pollutants may orient the immune system

towards a TH1- or TH2-like response and ultimately affect the

severity of allergic lung inflammation and airway reactivity is a

matter of speculation. Few reports in the literature have focused on

the effects of combined exposure to nanoparticles and gaseous air

pollutants, and to our knowledge, there are no data on the effect of

combined NO2 and CNP exposure in experimental animal models

of allergic asthma.

The aim of this study was therefore to assess the effect of

exposure to NO2 in the presence or absence of repetitive treatment

with CNP during allergen sensitization and challenges in BN rat,

in order to examine the effects of these exposures and their

interactions on lung function and airway responses to both specific

(i.e. allergen) and non-specific, (i.e. methacholine) airway reactiv-

ity, end-expiratory lung volume (EELV), bronchoalveolar lavage

fluid (BALF) cellular content, serum and BALF cytokine levels and

histological changes.

Materials and Methods

Study Protocol
Animal care and experimental procedures were in accordance

with the Guidelines for the Care and Use of Animals published by

the American Physiologic Society and approved by the local

institutional ethics authorities (Comité d’Éthique Restreint de

l’Institut National de l’Environnement Industriel Et des Risques).

All efforts were made to minimize suffering during the various

procedures. Male Brown Norway (BN) rats, aged 7 weeks,

weighing 140–160 g (Charles River Laboratories, l’Arbresle,

France) were housed in a clean air room with restricted access.

The animals had free access to food and water, and were allowed

to acclimate for 1 week before the experiments.

The study protocol is illustrated in Figure 1. The animals were

divided into 4 groups (n = 16 per group): Control, carbon

nanoparticle treatment (CNP), ovalbumin-sensitization (OVA),

and combined sensitization and exposure to nanoparticles

(OVA+CNP). Rats were divided into equal groups (n = 8) exposed

to either air or to NO2, 10 ppm, 6 h/d, 5d/wk for 4 weeks. 24

hours after the end of the exposure period, animals were

anesthetized and mechanically ventilated, EELV was measured

using whole-body plethysmography. Airway and lung tissue

mechanical parameters were measured using forced oscillation

technique (FOT) at baseline and after intravenous infusion of

methacholine (MCH) at 5, 10 and 15 mg/kg/min (c), after

recovery, and following allergen inhalation. Terminal bronchoal-

veolar lavage fluid (BALF) and serum samples were obtained. Two

rats per group were used for lung histological analysis.

Allergen Sensitization and Challenge
The sensitization and challenge protocols were similar to

previously published models [20,21], with some modifications as

described below. On days 0, 7, and 14; rats were actively sensitized

by intraperitoneal injection of 1 mg Ovalbumin (OVA) (Grade V,

Sigma-aldrich, St Quentin, France) and 100 mg aluminum

hydroxide, (Sigma-aldrich, St Quentin, France) in 1 ml of normal

saline. Rats were challenged using aerosolized 1% OVA in

endotoxin-free saline for 30 min on days 21 to 25 using an

ultrasonic nebulizer (Systam LS 290, Villeneuve sur Lot, France)

with an output of 0.2 ml/min. Control rats were sham-sensitized

and challenged with identical amounts of saline solution.

NO2 Exposure
We used a custom-made stainless steel and glass exposure

exposure system, developed in the pulmonary toxicology labora-

tory of the Institut National de l’Environnement Industriel et des

Risques. Unrestrained and conscious rats were placed in four 20 L

cylindrical exposure chambers, and exposed to 1060.1 ppm NO2

(Air Liquide, Loos, France) or filtered air, with a flow rate of 5l/

min, during the sensitization and CNP treatment period, 6 h/d,

5d/week, for 4 weeks. The flow of NO2 or air in each chamber

was monitored by a mass flow-meter during the period of

exposure. The pressure of the glass exposure chamber was

controlled by a manometer.

Carbon Nanoparticle Treatment
On days 0, 7, and 14; rats were lightly anesthetized using

intramuscular ketamine hydrochloride (0.5 mg/kg, Imalgène,

Lyon, France), atropine (0.1 mg/kg, Lavoisier, Paris, France)

and xylazine (1 mg/kg, Bayer Animal Health, Leverkusen,

Germany) and instilled intratracheally with 0.5 mg/kg of carbon

nanoparticle (Degussa-FW2:13 nm, Evonik Industries, Essen,

Germany) or vehicle in 150 ml of vehicle. The dosage of CNP

was based on Li et al. [22]. CNP were suspended in saline. The

suspensions were sonicated 10 min at 40 W with an ultrasonic

probe (sonicator ultrasonic processor XL 2020, Misonix incorpo-

rated). Using this dispersion method, more than 50% of total

agglomerates have a size smaller than 10 mm that corresponds to

breathable agglomerates, as measured by laser scattering (Mas-

tersizer X, Malvern instruments, Malvern, UK).

Airway and Tissue Mechanics
Twenty four hours after the end of the exposure period, the

rats were anesthetized by intraperitoneal injection of chloral

hydrate (400 mg/kg). The trachea was intubated with a

polyethylene cannula (14-gauge, Braun, Boulogne Billancourt,

France) and the rats were mechanically ventilated with a tidal

volume (VT) of 10 ml/kg body weight, a respiratory rate of 70–

80/min. The end-expiratory pressure was set to zero. Anesthesia

was maintained with hourly supplemental doses of intraperito-

neal chloral hydrate (150 mg/kg). The carotid artery was

cannulated with a 22G catheter (Abbocath, Hospira, Meudon-

La-Foret, France) and attached to a pressure transducer

(ADInstruments, Oxford, United Kingdom) for continuous blood

pressure monitoring. The right jugular vein was cannulated with

a 26G catheter (Apotechnia, Aubagne, France) connected to an

infusion pump (Injectoma Agila, Fresenius Kabi, Sèvres, France)

for continuous infusion incremental doses of 5, 10 and 15 mg/

kg/mn (c) of methacholine.

To characterize the airway and tissue mechanics, the input

impedance of the respiratory system (Zrs) was measured using the

forced oscillatory technique, as described in detail previously

NO2, Nanoparticle Exposure and Sensitization
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[23,24]. Briefly, the tracheal cannula was connected to a

loudspeaker-in-box system at end-expiration. The loudspeaker

generated a small-amplitude pseudorandom signal with frequen-

cy components between 0.5 and 21 Hz through a polyethylene

wave-tube (L= 100 cm, ID= 2 mm). Two identical pressure

transducers (model 33NA002D, ICSensors, Milpitas, CA) were

used for measurement of the lateral pressures at the loudspeaker

and at the tracheal end of the wave-tube. Zrs was calculated as

the load impedance of the wave-tube [25]. In order to separate

the airway and tissue parameters, a model was fitted to the Zrs

spectra by minimizing the relative differences between the

measured and modeled impedance values. The model contained

a frequency-independent airway resistance (Raw) and inertance

(Iaw) in series with a constant-phase tissue compartment

characterized by the coefficients of tissue damping (G) and

elastance (H) [26]. The impedance of the tracheal cannula and

the connecting tubing was also determined, and Raw and Iaw

were corrected by subtracting the instrumental resistance and

inertance values from them. The respiratory, hemodynamic

parameters and rectal temperature were continuously monitored

and recorded using a data collection and acquisition system

(PowerLab ADinstrument, Oxford, UK).

Measurement of EELV
EELV measurements were performed with a body plethysmo-

graph, as detailed previously [27]. Briefly, the trachea was

occluded at end expiration until 3–4 spontaneous inspiratory

efforts were generated by the animal in the closed box. Changes in

tracheal pressure (Ptr) and plethysmograph box pressure (Pb) were

recorded during these maneuvers, and EELV was calculated by

applying Boyle’s law to the relationship between Ptr and Pb after

correction for the box impedance [27]. The EELV was assessed

before any exposure or treatment in 7 week-old naı̈ve rats (n = 32)

and following NO2 and sham exposures at age 11 weeks, in all

animals.

BAL
Bronchoalveolar lavage (BAL) was performed after the

measurements of EELV, respiratory mechanics and airway

responsiveness. Briefly, through the tracheal cannula, the lungs

were washed 3 times with 9 ml of sterile Phosphate buffered saline.

The BAL fluid (BALF) was centrifuged (5 min, 150 g at 4uC), and

the cell-free BAL was concentrated by further centrifugation

(2000 g, 4uC) in Amicon Ultra tubes (Millipore, Molsheim,

France) to a final volume of 1 ml. Protein concentration was

assessed using the Bradford method [28]. The BAL cell pellets

were resuspended in 1 ml RPMI 1640 medium (Gibco, Villebon

sur Yvette, France). The total cell numbers were counted

automatically (Coulter Counter ZM, Coultrinics, Margency,

France). Cells were then applied to slides by Cytospin centrifu-

gation (Shandon Cytospin 2, Pittsburgh, PA) at 300 rpm for

5 min. Afterwards, May-Grünwald Giemsa staining was per-

formed, and a total of 300–500 cells were counted for each sample

by light microscopy.

Figure 1. Study protocol. OVA: ovalbumin; CNP: Degussa-FW2 (13 nm) carbon nanoparticles; MCH: methacholine; FOT: forced oscillation
respiratory mechanics measurements; EELV: end-expiratory lung volume measurements. Brown-Norway rats underwent 4 treatments; OVA-
sensitization, CNP tracheal instillation, Both OVA-sensitization and CNP treatment, and sham sensitization and tracheal instillation of vehicle. Equal
treatment groups were exposed to either air or NO2.
doi:10.1371/journal.pone.0045687.g001

NO2, Nanoparticle Exposure and Sensitization
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Cytokine and IgE Analysis
TH1 and TH2 cytokine analysis was performed using a multi-

array immunoassay, on the concentrated BALF and serum

samples (MULTI-SPOT Rat Demonstration 7-Plex Assay Ultra-

Sensitive Kit; Meso Scale Discovery, Gaithersburg, MD, USA) as

described previously [29]. The following cytokines were measured:

IL-1b, KC/GRO (keratinocyte chemotractant/growth-related

oncogene), TNF-a, IFN-c, IL-4, IL-5 and IL-13. The concentra-

tions of cytokines were quantified using an 8-point calibration

curve constructed from a plot of the signal intensity for a series of

known concentrations of the multiplex standard provided by the

kit manufacturer. The data were analyzed using MSD Workbench

software. An MSD Sector Imager (Sector Imager 6000; Gaithers-

burg, MD, USA) was utilized to read the plates. Cytokines in

BALF and plasma sample were quantified in duplicate according

to the manufacturer’s protocol. The IL-17A levels were quantified

in BALF by ELISA (Rat IL-17A Platinum Elisa, eBioscience,

Bender Medsystems GMBH, Vienna, Austria). Serum total IgE

levels were measured using an ELISA immunoperoxidase assay

(GenWay Biotech, San Diego, CA).

Lung Histology
In order to study lung inflammation and airway remodeling,

lung histopathology was assessed in 2 rats per group, 24 h after the

challenges. The lungs were fixed in 10% formalin at 25 cmH2O

and paraffin-embedded. Histological slides were prepared from

5 mm mid transversal para-hilar and lower sections to sample

large, medium and small airways. The tissue sections were stained

with hematoxylin, eosin and saffron (HES) for general morphology

and dispersion of carbon nanoparticles. To assess goblet cell

hyperplasia, sections were stained with Periodic-Acid-Schiff (PAS,

Sigma Chemicals, St Louis, MO). Lung sections were also

examined with Masson’s trichrome stain (Sigma-Aldrich, Saint-

Quentin Fallavier, France) to assess deposition of peribronchial

and perivascular collagen.

Statistical Analysis
Data are presented as means 6 SE. The statistical analysis was

performed using SigmaPlot version 10 Software, (SigmaPlot,

Systat Software, San Jose, CA, USA). Airway and tissue mechanics

parameters, MCH dose-responses for Raw, G, H, the changes in

EELV, the changes in BALF cytology and BAL fluid and serum

cytokines were assessed by repeated-measures ANOVA followed

by a Student-Newman-Keuls multiple comparisons procedure in

the four treatments groups (Saline, CNP, OVA, and OVA+CNP)

and two conditions (Air or NO2 exposure). A p-value of,0.05 was

considered as significant.

Results

Changes in Airway and Tissue Mechanics and Response
to MCH and Allergen Provocation
Figure 2 shows the respiratory mechanical parameters at

baseline and during MCH challenge in air and NO2-exposed

animals. In the air-exposed animals, tissue elastance; H was

significantly increased in the OVA sensitized group at baseline

(p = 0.013), while Raw and G did not significantly change. No

significant differences in the respiratory mechanical parameters

were observed in the CNP-treated vs. control animals. Four weeks

of exposure to NO2 did not produce significant changes in Raw, G

and H, at baseline; i.e.: prior to MCH provocation.

Infusion of MCH significantly increased both airway (Raw) and

tissue (H and G) mechanical parameters in the air-exposed

animals, without significant differences in responsiveness in

between groups. Responsiveness to MCH however, was signifi-

cantly increased following NO2 exposure, with significant differ-

ences among the subgroups. Airway responsiveness was substan-

tially larger in the NO2+OVA group. The increases in Raw, G

and H with both 10 and 15 mg/kg/min of MCH, were

significantly higher than the Air+OVA group and than the other

NO2-exposed groups. Animals treated with CNP during sensiti-

zation and exposure to NO2 (NO2+OVA+CNP) had significantly

lower MCH responses than the non-treated counterparts

(Figure 2A).

Maximal airway and tissue responses to OVA provocation,

relative to the recovery level from MCH, are summarized in

Figure 3. Significant changes in Raw, G and H, were observed in

the sensitized groups. The responses in Raw were significantly

larger in the NO2-exposed animals. In the group concomitantly

treated with CNP during sensitization (NO2+OVA+CNP), the

maximal Raw change in response to OVA provocation was

smaller compared to the NO2-OVA group (p,0.05). The

parameters that reflect the lung peripheral mechanics; G and H

increased significantly only in the sensitized NO2-exposed animals.

EELV
Figure 4 summarizes the EELV data. EELV was significantly

reduced with sensitization, CNP treatment or both, independent

of exposure to NO2. EELV was also significantly decreased in the

NO2-Saline vs. Air-Saline animals. Comparison of EELV at 11

weeks vs. non-exposed controls at 7 weeks (n = 32) revealed that

EELV significantly increased over the 4-week exposure period in

all groups with the exception of NO2+OVA and NO2+O-

VA+CNP. After normalization to body weight, in order to

account for variations in this parameter with time and in-between

groups, a significant increase in EELV (p= 0.006) was observed

only in the Air+Saline group.

BAL Inflammatory Cells
The results of cell counts in BAL are summarized in Table 1.

Exposure to NO2 did not change significantly the profile of BAL

cytology. OVA-sensitizaion significantly increased eosinophil

counts (p,0.05) without a significant difference following NO2

exposure. However, NO2-exposed animals that received CNP

treatment during sensitization (OVA+CNP) had higher eosinophil

and lymphocyte counts than their Air-exposed counterparts

(p = 0.014). The number of lymphocytes was significantly

increased in the NO2+OVA group, unlike the Air+OVA animals,

where the lymphocyte counts did not increase significantly. CNP

exposure by itself increased the number of neutrophils, without a

significant difference between Air and NO2-exposed animals. The

latter cells were significantly less abundant in the BAL fluids of the

sensitized and CNP-treated animals (OVA+CNP). The percentage

of alveolar macrophages was significantly increased in OVA-

sensitized animals compared to Saline-treated controls, including

in those receiving CNP treatment.

Protein Expression of TH1, TH2 and TH17 Inflammatory
Cytokines and IgE Levels
We investigated the effects of NO2 and CNP on the expression

of TH1 and TH2 cytokines in both serum and BALF 24 h after

the last challenge. In serum, the TH2 cytokines IL-4, IL-5 and IL-

13, were significantly increased in the NO2+OVA group, but not

in the NO2+OVA+CNP group, in which the level of theses

cytokines were significantly lower than the NO2+OVA animals

(Table 2).

NO2, Nanoparticle Exposure and Sensitization
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As concerns the TH1 cytokines, exposure to NO2 significantly

increased serum TNF-a expression, in all of the exposed groups.

This expression was remarkably higher in both of the OVA-

sensitized groups; NO2+OVA and NO2+OVA+CNP vs. the

NO2+Saline (p = 0.005 and 0.008 respectively) and the NO2+CNP

groups (p,0.001 and ,0.001 respectively). In the former

NO2+OVA and NO2+OVA+CNP groups, the levels of IL1-b

were also significantly increased compared to their air-exposed

Figure 2. Changes in airway (Raw) and tissue (G and H) mechanical parameters in response to increasing doses of intravenously
infused methacholine (MCH). Data are means 6 SE (n = 6 per group); *: p,0.05 vs. Baseline within condition; #: p,0.05 vs. Air+OVA; &:
p,0.05 vs. Saline within condition; £: p,0.05 vs. NO2+OVA+CNP, by repeated-measures ANOVA. Responsiveness to MCH significantly increased
following NO2 exposure, with significant differences among the subgroups: responsiveness was substantially larger in the NO2+OVA group. Animals
treated with CNP during sensitization and exposure to NO2 (NO2+OVA+CNP) had significantly lower MCH responses than the non CNP-treated
counterparts.
doi:10.1371/journal.pone.0045687.g002

NO2, Nanoparticle Exposure and Sensitization
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counterparts (p = 0.004 and 0.002 respectively). The combination

of NO2 exposure and CNP treatment significantly increased the

IFN-c levels; however, the level of this cytokine was again

significantly lower in the NO2+OVA+CNP group. Finally, KC/

GRO levels were increased following NO2 exposure, with

substantial elevations compared to the Air+Saline group, in the

NO2+OVA (p,0.001) and NO2+OVA+CNP (p,0.001) groups,

with notable within-group variability.

In BALF, all groups taken together, in rats exposed to NO2,

both KC/GRO (p=0.005) and IL-5 (p = 0.009) cytokines were

significantly increased compared air-exposed animals (Table 3).

Individual increases in KC/GRO reached statistical significance

vs. Air-Saline, only in the Air+CNP (p= 0.022), NO2+Saline

(p = 0.018) and NO2+OVA (p= 0.013) groups.

The levels of IL-17A in BALF are summarized in Figure 5. This

cytokine was significantly increased in the NO2+OVA+CNP

group, compared to Air+OVA+CNP (p,0.001), NO2+CNP

(p= 0.008), NO2+OVA (p= 0.011) and NO2+Saline (p = 0.019)

groups. Total serum IgE levels were significantly increased in all

OVA-sensitized groups (Figure 6). And were significantly higher in

the NO2+OVA compared to the NO2+OVA+CNP group

(p = 0.025).

Lung Histology
In saline-treated air-exposed control (Air+Saline) animals, the

bronchi, alveoli and airway epithelia were structurally intact

without any signs of inflammation (Figure 7). Exposure to NO2,

both in the Air+Saline and in the OVA-sensitized and challenged

animals resulted in inflammatory changes, including inflammatory

infiltration in the bronchial submucosa, perivascular areas and the

surrounding alveolar septa. The cellular infiltrates mainly consist-

ed of mononuclear cells and eosinophils. The inflammatory

changes associated with NO2 exposure appeared more prominent

in the OVA-sensitized groups. Furthermore, we found mild to

moderate goblet cell hyperplasia on PAS stains, and the presence

of mucus secretions inside the bronchial lumen, following NO2

exposure in the OVA-sensitized groups (Figure 7; middle

columns). Masson’s trichrome staining (Figure 7; right columns)

showed an increased collagen deposition in bronchial wall

associated with exposure to NO2 in all groups. Increased collagen

deposition and remodeling were more prominent in the OVA-

sensitized animals. In the CNP-treated animals, histological

examination showed the presence of clustered particles in the

alveolar lumen, along with minimal histological changes.

Discussion

The goal of this study was to assess the interaction of NO2, a

gaseous air pollutant, and an elemental carbon nanoparticle, on

inflammation, respiratory system mechanics and airway reactivity

in a rat model of allergic airway inflammation. Although NO2 has

previously been shown to enhance allergic lung inflammation and

response to airway provocation [30,31], the interactions of this

known irritant with a carbon nanoparticle has not been previously

assessed. The main findings of the present study were that: 1) 4

weeks of exposure to NO2 significantly enhanced allergic lung

inflammation with increased BAL cell counts and both TH1 and

TH2 serum cytokine expressions and airway reactivity to specific

and non specific challenges in OVA-sensitized animals; 2)

Exposure to CNP once per week during the NO2 exposure was

characterized by increased neutrophils and alveolar macrophages

in BALF along with increased TNF-a and IFN-c expression in

serum; 3) concomitant exposure to CNP during OVA-sensitization

attenuated the airway reactivity to both methacholine and antigen,

Figure 3. Maximal airway and tissue responses to OVA
provocation, relative to the recovery level from MCH. Data
are means ± SE (n=6 per group); *: p,0.05 vs. Air+Saline
within condition; #: p,0.05 vs. Air+OVA; £: vs. Air+OVA+CNP,
by ANOVA. The responses in Raw were significantly larger in the NO2-
exposed and sensitized animals. In the group concomitantly treated
with CNP during sensitization (NO2+OVA+CNP), the maximal Raw
change in response to OVA provocation was smaller compared to
NO2+OVA.
doi:10.1371/journal.pone.0045687.g003
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and lowered serum TH2 cytokines compared to NO2 exposure in

OVA-sensitized animals alone; 4) allergen sensitization, but also

exposure to CNP or NO2 reduced the rate of increase in EELV

from 7 to 11 weeks, compared to saline-treated air-exposed

controls, suggesting slowed lung growth.

In this study, we found that 6 hour daily, 5 days per week NO2

exposure at 10 ppm for 4 weeks during OVA sensitization and

challenges significantly enhanced bronchial reactivity both to

methacholine and antigen provocation. In the United States, the

national Ambient Air Quality Standard for NO2 is 0.053 ppm

(annual arithmetic mean concentration) [32]. Mean ambient

indoor NO2 concentrations of approximately 0.032 ppm have

been reported in Europe [33] and up to 0.54 ppm in developing

countries [34]. Although the animals in this study were exposed to

NO2 concentrations that were higher than the mean ambient

indoor values reported in the literature, peak NO2 concentrations

can be substantially higher in the vicinity of an indoor source, and

can exceed 4 ppm [35]. Moreover, these higher concentrations are

balanced by limited exposure duration in this study, which may

underestimate long-term or life-long exposures to NO2 [8,36]. We

were not able to demonstrate increased responsiveness to

methacholine in the OVA-sensitized and air-exposed group vs.

the air-exposed saline group. The BN rat strain shows several

features of allergic asthma in humans such as increased serum IgE

levels, BALF eosinophils, and airway constriction in response to

antigen inhalation, which were all present in the OVA-sensitized

group in this study. However, increased airway responsiveness to

methacholine is not systematically demonstrated in the literature

[37]. Actually, this rat strain shows less airway responsiveness to

cholinergic challenge than other rat species [38]. Also, lower doses

of methacholine were used in our study, compared to other studies

where increased airway responsiveness is usually observed with

OVA-sensitization [39]. Finally, the repeated allergen challenges

may have decreased airway hyperresponsiveness despite increased

serum IgE and eosinophil counts in the BALF, as previously

described in this model [40]. The finding that NO2 exposure

increases bronchial responsiveness to methacholine is in agree-

ment with previous studies in the literature. Poynter et al. found an

increased airway reactivity to methacholine following a 6 hour

daily, 3-day exposure to 25 ppm NO2, starting after immunization

and challenge to OVA in mouse [31]. In the present study, NO2

exposure increased the serum levels of TNF-a, suggesting tissue

macrophage activation. However, we did not find a concomitant

increase in TNF-a levels in BALF. These results are different than

in the study by Garn et al. where 20 days of continuous exposure

to 10 ppm NO2 significantly decreased TNF-a protein levels in

BALF and the ability of stimulated alveolar macrophages to

release TNF-a, in Fischer rat [41]. No systemic measurements of

TNF-a levels were reported in that study. Unlike the present

study, in the study by Garn et al. the rats were exposed

continuously to NO2. One hypothesis to explain the differences

between systemic and BALF levels of TNF-a, is that the activation
state may be different in alveolar macrophages compared to

macrophages in other tissues. Macrophages can produce both pro-

and anti-inflammatory mediators depending on the type of

activation; a classical activation promotes the release of pro-

inflammatory cytokines such as IL1-b and TNF-a, whereas an

alternative activation leads to the release of inhibitory cytokines

Figure 4. Changes in end-expiratory lung volume (EELV). Data are means 6 SE (n = 6 per group); *: p,0.05 vs. 7 week old Control; #:
p,0.05 vs. 11-week old Air+Saline by ANOVA. The EELV was significantly lower in the NO2+Saline vs. Air+Saline animals. Also, EELV was significantly
reduced by sensitization to allergen, CNP treatment or both, independent of exposure to NO2. Comparison of EELV at 11 weeks vs. non-exposed
controls at 7 weeks (n = 32) revealed that EELV significantly increased over the 4-week exposure period in all groups with the exception of NO2+OVA
and NO2+OVA+CNP.
doi:10.1371/journal.pone.0045687.g004
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[41,42]. Alveolar macrophages have been shown to be less potent

in the production of inflammatory mediators [43]. Furthermore,

chronic exposure to NO2 may act predominantly on alveolar

macrophages in the lung to downregulate the production of pro-

inflammatory cytokines [41].

The growth-related oncogene (GRO)-chemokine and its murine

counterpart KC, belongs to a subset of CXC chemokines secreted

by somatic cells, which includes human IL-8 [44]. The expression

of this chemokine is induced in response to tissue injury and

numerous inflammatory stimuli [45]. In vivo transgenic expression

of this chemokine has been shown to mediate the attraction of

neutrophils [46]. In this study, NO2 exposure increased the

expression of this chemokine both in serum and BAL, the highest

increases of which were observed in the OVA-sensitized group.

However, a concomitant neutrophilia was not observed in the

BALF in this particular group. The lack of neutrophilia in BALF

after 4 weeks of exposure to NO2 may have been due to the

kinetics of neutrophilic inflammation. It has been previously

observed that although NO2 inhalation leads to neutrophilia for

up to 3 days, the number of BALF neutrophils is significantly

reduced after longer periods of exposure [41,47]. This decrease

may be due to the emergence of regulatory mechanisms such as

inhibitory cytochine expression by alternative macrophage acti-

vation [48].

Nitrogen dioxide exposure increased lymphocyte counts in the

BALF of OVA-sensitized animals in this study; however, it did not

significantly increase the OVA-induced hypereosinophilia. In a

previous study, Proust et al. found that, an acute 3-hour exposure

to 20 ppm NO2 in BALB/c mice following allergen challenge, also

induced significant airway hyperresponsiveness to methacholine,

but was not accompanied by an increase in BALF hypereosino-

philia produced by OVA-sensitization [49]. In another study,

exposure to 2 ppm NO2 24 hours before antigen challenge

induced airway neutrophilia but did not alter airway reactivity

[36]. In this study, the level of TH2 cytokines IL-4, IL-5 and IL-13

were significantly increased in OVA-sensitized animals exposed to

NO2. These cytokines are known to contribute to allergic

inflammatory processes, goblet cell hyperplasia, airway wall

remodeling, and airway hyperresponsiveness [16]. These features

were present on histological examination of lung samples of OVA-

sensitized animals exposed to NO2 in this study (Figure 7). The

discrepancy among the various studies in the literature is likely to

be due to differences in concentration and duration of NO2

exposure, the timing relative to antigen immunization and

challenge and the studied animal species and strain.

The levels of TH2 cytokines were not significantly increased in

the Air+OVA group. The reason for the lack of more prominent

elevations of TH2 cytokines in the Air-OVA group is not obvious

but may have been due to the repetition of inhaled challenges that

may have induced tolerance and attenuated the cytokine response

[30]. Taken together, our data suggest that exposure to NO2 in

OVA-sensitized animals, increased bronchial reactivity both to

allergen and to non-specific airway challenge by methacholine,

through a combined TH1 and TH2-type inflammatory cytokine

Table 1. BALF Cytology.

4-Week Air Exposure

Total cells AM Neutrophils Lymphocytes Eosinophils

Saline 2.1860.68 2.0360.69 0.0360.01 0.0460.01 0.0860.03

% 89.463.5 1.860.6 3.361.2 5.562.6

CNP 2.2560.13 1.4360.14 0.7360.08a 0.0860.01 0.0160.00

% 63.464.1a 32.663.7a 3.460.3 0.660.2

OVA 2.6060.67 1.2160.28 0.1660.08b 0.0860.02 1.1660.37a,b

% 47.061.7a,b 6.462.2b 3.060.5 43.562.9a,b

OVA+CNP 2.1860.30 1.1760.21 0.1560.05b 0.2260.04a,b,c 0.8460.11

% 48.364.1a,b 6.161.7 b 9.462.1a,b,c 36.264.2a,b,c

4-Week NO2 Exposure

Total cells AM Neutrophils Lymphocytes Eosinophils

Saline 0.7560.11 0.6360.1 0.0560.01 0.0360.01 0.0560.01

% 82.962.0 6.160.6 4.460.8 6.661.6

CNP 2.8261.57 2.0861.16a 0.6360.36a 0.0860.03 0.0360.01

% 72.761.9 22.561.9a,d 3.360.4 1.560.5

OVA 3.9460.56 1.7960.23 0.1160.04b 0.1760.04a,b,d 1.8660.41a,b

% 46.864.1a,b 3.261.0b 4.861.1 45.365.0a,b

OVA+CNP 3.4760.71 1.3860.33 0.0860.02b 0.1460.01a,d 1.8760.46a,b,d

% 40.264.3a,b 3.561.5 b 4.860.9d 51.665,4a,b,d

Values are means 6 SE (n = 6 per group);
ap,0.05 vs. Saline within condition;
bp,0.05 vs. CNP within condition;
cp,0.05 vs. OVA within condition;
dp,0.05 vs. Air within treatment, by two way ANOVA; AM: alveolar macrophages. Exposure to NO2 alone did not change the profile of BAL cytology. OVA-sensitization
significantly increased BAL eosinophil counts. CNP exposure by itself increased the number of neutrophils, without a significant difference between Air and NO2-
exposed animals. Exposure to NO2 in OVA-sensitized animals significantly increased lymphocyte counts and tended to elevate BALF eosinophilia.
doi:10.1371/journal.pone.0045687.t001
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expression. The fact that both serum TH2 cytokines and airway

responsiveness were augmented in the NO2-exposed OVA-

sensitized animals suggests a synergistic effect between sensitiza-

tion and NO2 exposure. Although the intimate mechanism of this

particular cytokine expression profile in response to NO2 exposure

during antigen sensitization is not known, one hypothesis is that

NO2-induced damage to the airway epithelium and increased

permeability promotes the translocation of inhaled particulate

antigen, thus increasing its bioavailability [50–52].

Ambient air can contain a complex mixture of gaseous and

particulate pollutants produced by combustion. The interactions

of these components both in modulating the allergic inflammatory

response to allergen, and ultimately on airway responsiveness have

rarely been assessed. Carbonaceous particles such as CNP

Table 2. Serum Protein Levels of TH1 and TH2 Cytokines.

TH1 Cytokines (pg/ml) TH2 Cytokines (pg/ml)

4-Week Air Exposure

Total Protein (mg/ml) IFN-c IL-1b TNF-a KC/GRO IL-4 IL-5 IL-13

Saline 38.162.3 19.863.2 85.7617.3 53.0616.8 336.66131.9 1.260.3 50.167.5 0.060.0$

CNP 43.764.8 24.664.9 97.5627.0 35.064.4 190.3641.8 1.360.3 75.9620.6 0.060.0$

OVA 27.261.6 24.9612.4 147.7664.2 58.6612.4 731.16309.4 1.761.2 81.2646.2 1.261.2

OVA+CNP 28.563.8 9.264.3 66.8613.0 63.8616.8 603.4682.1 0.560.1 53.769.1 0.160.1

4-Week NO2 Exposure

Total Protein (mg/ml) IFN-c IL-1b TNF-a KC/GRO IL-4 IL-5 IL-13

Saline 33.268.7 22.966.0 160.7615.9 493.2684.4d 1832.96585.4 1.460.4 118.5630.2 0.060.0$

CNP 48.365.4 159.3663.7ad 142.2625.2c 206.5689.8a 1361.06339.8 1.860.3 116.3617.6 0.060.0$

OVA 39.364.1 44.169.4b 292.1647.1ad 889.66123.2abd 8329.961589.7abd 4.561.3abd 215.7628.7abd 4.561.3abd

OVA+CNP 44.363.7d 32.865.2b 214.6623.3d 822.06127.1abd 5152.56950.2abcd 3.060.6d 175.2610.5d 1.061.0c

Values are means 6 SE (n = 6);
ap,0.05 vs. Saline within condition;
bp,0.05 vs. CNP within condition;
cp,0.05 vs. OVA within condition;
dp,0.05 vs. Air within treatment, by ANOVA;
$Below detection limit. In serum, the TH2 cytokines IL-4, IL-5 and IL-13, were significantly increased in the NO2+OVA group, but not in the NO2+OVA+CNP group.
Exposure to NO2 significantly increased serum TNF-a expression, in all of the exposed groups, which was remarkably higher in both of the OVA-sensitized groups;
NO2+OVA and NO2+OVA+CNP vs. NO2+Saline and NO2+CNP. In the NO2+OVA and NO2+OVA+CNP groups, the levels of IL1-b were significantly increased compared to
their air-exposed counterparts. The combination of NO2 exposure and CNP treatment significantly increased the IFN-g levels; however, the level of this cytokine was
again significantly lower in the NO 2+OVA+CNP group. The KC/GRO levels were increased following NO2 exposure, with substantial elevations in NO2+OVA and
NO2+OVA+CNP groups compared to Air+Saline, with notable within-group variability.
doi:10.1371/journal.pone.0045687.t002

Table 3. BALF Protein Levels of TH1 and TH2 Cytokines.

TH1 Cytokines (pg/ml) TH2 Cytokines (pg/ml)

4-Week Air Exposure

Total Protein (mg/ml) IFN-c IL-1b TNF-a KC/GRO IL-4 IL-5 IL-13

Saline 1.760.5 1.961.0 92.1610.8 37.9614.6 1225.96531.7 2.060.6 70.1613.9 0.260.2

CNP 2.360.3 1.960.9 164.3626.4 196.5616.5 4612.56801.5ac 2.260.5 98.5618.9 0.160.1

OVA 3.160.3 1.460.9 171.4656.8 217.4680.2 1654.86727.2 1.761.0 78.9616.3 1.061.0

OVA+CNP 3.760.3a 2.561.2 219.3658.9 144.5663.2 2454.66936.4 1.960.5 93.0631.2 0.660.6

4-Week NO2 Exposure

Total Protein (mg/ml) IFN-c IL-1b TNF-a KC/GRO IL-4 IL-5 IL-13

Saline 3.161.1 2.661.1 144.9620.2 162.6640.7 3998.56768.2d 2.760.6 148.1630.1e 0.660.3

CNP 2.260.4 4.261.3 199.8636.2 190.8634.8 4814.96764.7 3.461.0 127.8624.4e 0.560.5

OVA 3.560.2 2.460.9 180.6621.6 185.5626.0 4576.86830.8d 2.660.5 141.4625.2e 0.360.2

OVA+CNP 4.160.4 2.661.1 200.6647.1 173.1663.4 3258.46901.3 1.660.8 159.0649.1e 2.661.8

Values are means 6 SE (n = 6 per group);
ap,0.05 vs. Saline within condition;
bp,0.05 vs. CNP within condition;
cp,0.05 vs. OVA within condition;
dp,0.05 vs. Air within treatment, by ANOVA. NO2 exposure significantly increased both KC/GRO and IL-5 compared to air-exposed animals. Individual increases in KC/
GRO were significantly higher vs. Air-Saline, in the Air-CNP, NO2+Saline and NO2+OVA groups.
doi:10.1371/journal.pone.0045687.t003
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represent one of the components of ambient particulates, with the

advantage that they do not include adsorbed chemical substances,

therefore allowing the study of the physical core of the particle

itself [14]. We found that repeated CNP treatment in non-

sensitized rats induced elevated neutrophil counts and increased

the expression of KC/GRO in BALF. However, minimal changes

Figure 5. IL-17A levels in BAL fluid. Data are means6 SE; *: p,0.05 vs. Saline control within condition;#: p,0.05 vs. CNP within condition; £: vs.
OVA within condition, &: vs. OVA within treatment, by ANOVA.
doi:10.1371/journal.pone.0045687.g005

Figure 6. Total serum IgE levels. Data are means 6 SE; *: p,0.05 vs. Saline control within condition; #: p,0.05 vs. CNP within condition; £: vs.
OVA+CNP within condition, by ANOVA.
doi:10.1371/journal.pone.0045687.g006
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in lung histology, and no difference in airway reactivity were

observed. The lack of effect of CNP on airway reactivity in normal

animals is in agreement with previous data in mouse [53]. A 7

hour inhalation of ultrafine (114 nm) carbon black particles has

been shown to induce neutrophil recruitment in BALF 16 hours

post-exposure, in wistar rat [54]. Li et al. also observed a

neutrophilic recruitment in BALF with tracheal instillation of

14 nm but not with 260 nm carbon black particles at a similar

dose than in the present study [22]. The combined exposure to

NO2 and CNP increased the neutrophil and macrophage counts

in BAL, and increased IFN-c expression in serum. We are not

aware of similar studies in the literature assessing the effect of

combined NO2 and CNP.

In this study, the combination of repeated tracheal instillation of

CNP during OVA sensitization and challenges did not signifi-

cantly increase BALF hypereosinophilia, cytokine responses in

BALF or serum, nor did it increase the airway responses to

methacholine or antigen provocation, despite a slight but

significant increase in lung tissue elastance in comparison to air-

exposed OVA-sensitized animals. On the other hand, OVA-

sensitized and challenged animals exposed concomitantly to NO2

and CNP showed reduced TH2 cytokine (IL-4, IL-5, IL-13) serum

levels and airway responses to both non-specific and allergen

provocation. This was a surprising result since other studies in

mouse have shown an adjuvant effect of CNP on specific IgE

production, when particles and antigen are co-administered

[15,55,56]. Alessandrini et al. found that CNP inhalation prior

to allergen challenge in Balb/c mice increases BAL cell infiltrate,

TH2 cytokine production as well as airway responsiveness [53].

Conversely, Dong et al. found that although diesel exhaust

particles (DEP) had adjuvant IgE activity in BN rats, DEP

inhalation for 4 h per day on 5 consecutive days prior to allergen

sensitization significantly attenuated the allergen-induced lung

inflammatory responses [37]. However, in another study by the

same group, 4 hours per day for 2 days of whole-body exposure to

DEP 24 hours prior to allergen challenge showed increased airway

reactivity to methacholine in BN rats [37]. On the other hand,

DEP and carbon black particles may have distinct immunomod-

ulatory effects in allergy. Van Zijverden et al. found that in Balb/c

mice, DEP elicited a predominantly TH2 type response, whereas

carbon black caused a combined TH1/TH2 response with

increases in both IL-4 and IFN-c [57]. In the present study,

exposure to NO2 in CNP-treated animals produced a TH1-

oriented cytokine response with elevations in IFN-c and TNF-a.

The reduction of TH2 cytokines in the same NO2 exposure in

both CNP treated and OVA-sensitized animals may involve an

Figure 7. Representative histological images of HES (left columns), PAS (middle columns) and Masson’s trichrome stain (right
columns). Original magnification: 6100. Exposure to NO2, resulted in inflammatory changes, including infiltration in the bronchial submucosa,
perivascular areas and the surrounding alveolar septa (left columns: arrow). Mild to moderate goblet cell hyperplasia (middle columns: arrow), and
the presence of mucus secretions inside the bronchial lumen (middle columns: star), following NO2 exposure in the OVA-sensitized groups. Increased
collagen deposition in the bronchial wall associated with exposure to NO2 was found on Masson’s trichrome (middle columns: arrow).
doi:10.1371/journal.pone.0045687.g007
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immunomodulatory effect of CNP on allergic inflammation, in the

BN rat model. The differences in the results of the present study

and previous studies in the literature regarding the adjuvant role of

CNP in allergic inflammation may be due to the chemical

composition of the particle, but also dose, route of exposure (i.e.:

inhaled vs. instilled) and timing of administration with respect to

sensitization. Ultrafine CNP particles aggregate in solution and

this may have significantly reduced their inflammatory potency

[58]. Furthermore, repeated instillation of CNP may have induced

adaptive mechanisms, thereby reducing the response to further

inflammatory stimuli [59]. One possibility is that the tolerance

seen in the NO2+OVA+CNP group compared to NO2+OVA is

due to increases in regulatory T cells (Tregs) in the lungs. It has

been shown that naı̈ve T cells in the periphery can acquire

immunosuppressive properties and become induced Tregs, which

can inhibit hypersensitivity through the production of inhibitory

cytokines and cellular interactions [60]. Yamashita et al. have

shown that intravenous exposure to 165 nm crystalline C60

Carbon nanoparticles both inhibits delayed-type hypersensitivity

and increases the ratio of Treg to total T (CD4+) cells in methyl-

bovine serum albumin-sensitized mouse [61]. Furthermore, the

significant elevation observed in IL-17A levels in BALF of the

NO2+OVA+CNP group (Figure 5), can be involved in the

modulation of the TH2 response to allergic sensitization [62].

Schnyder-Candrian et al. have previously demonstrated a dual

role of this cytokine: although essential during antigen sensitization

to establish allergic bronchial hyper responsiveness, IL-17 also

attenuates the local production of the TH2 cytokines IL-4, IL-13,

and IL-5 in the lung of OVA-sensitized mice [63]. Also, exogenous

IL-17 reduced pulmonary eosinophil recruitment and bronchial

hyperreactivity [63]. Moreover, the role of Tregs in the tolerance

seen in the NO2+OVA+CNP group compared to NO2+OVA is

further supported by the finding that under proinflammatory

conditions, Tregs can promote the development of TH17 cells and

production of IL-17 [64].

Comparison of EELV at 7 weeks of age, prior to any treatment

or exposure, showed a significant increase at 11 weeks. In rat,

beyond the initial period of rapid alveolarization that ends within 3

weeks of birth, the lungs show significant overall growth. Several

studies have suggested that in this species, the number of alveoli

still increases after the lung parenchyma reaches maturity [65].

This observation is in line with the data of Bolle et al. who found a

2-fold increase in EELV from age 5 to 13 weeks in Wistar Kyoto

rats, although this rate of growth may be different in other rat

strains [66]. In the present study, the rate of increase in EELV was

significantly slowed down by NO2 exposure, but also by

sensitization to allergen, CNP treatment or both (Figure 5). There

were no significant differences in body weight between the air and

NO2-exposed groups, suggesting that both allergic inflammation

and exposure to pro-inflammatory gaseous (NO2) or particulate

(CNP) pollutants may significantly reduce the rate of overall lung

growth beyond the ‘‘bulk alveolarization’’ stage in BN rat.

Alternatively, reduced EELV could be due to alterations in gas

exchange increasing ventilatory demand. Nevertheless, this

outcome is interesting in light of existing data demonstrating that

both pre and post-natal exposure to air pollution decrease lung

growth in children. [67,68].

In conclusion, in this study we assessed the effect of NO2

exposure and its interaction with CNP in allergen-sensitized BN

rat, a model of allergic asthma. Our findings demonstrate that

exposure to NO2, a gaseous air pollutant, significantly enhances

lung inflammation and airway reactivity, with a significantly larger

effect in animals sensitized to allergen and challenged during

exposure to NO2, which was associated a higher expression of

both TH1 and TH2-type cytokines. Conversely, exposure to NO2

in animals undergoing repeated tracheal instillation of CNP alone,

increased BALF neutrophilia and enhanced the expression of TH1

cytokines: TNF-a and IFN-c, but did not show an additive effect

on airway reactivity in comparison to NO2 alone. The exposure to

NO2 combined with CNP treatment and allergen sensitization

however, resulted in a significant decrease in both airway reactivity

to allergen and to methacholine, and a reduction in TH2-type

cytokines compared to allergen sensitization alone, suggesting an

immunomodulatory effect of repeated tracheal instillation of CNP

on the proinflammatory effects of NO2 exposure in sensitized BN

rat. Furthermore, our findings suggest that NO2, CNP and OVA

sensitization may significantly slow lung growth in proportion to

body size, in parenchymally mature animals, and may provide a

model for the study of the adverse effects of environmental

pollutants on lung development in asthma.

Acknowledgments

The authors thank Christelle Gamez, Kelly Blazy, and Anthony Lecomte

for their technical assistance.

Author Contributions

Conceived and designed the experiments: SL F. Rogérieux GL SB.

Performed the experiments: SL F. Rogérieux F. Robidel SB. Analyzed the

data: SL SB. Contributed reagents/materials/analysis tools: GL SB. Wrote

the paper: SB. Critically revised article: GL.

References

1. Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma:

phenotype shaped by innate and adaptive immunity. Nat Immunol 11: 577–584.

2. Graham LM (2004) All I need is the air that I breath: outdoor air quality and

asthma. Paediatr Respir Rev 5 Suppl A: S59–64.

3. Weinmayr G, Romeo E, De Sario M, Weiland SK, Forastiere F (2010) Short-

term effects of PM10 and NO2 on respiratory health among children with

asthma or asthma-like symptoms: a systematic review and meta-analysis.

Environ Health Perspect 118: 449–457.

4. Persinger RL, Poynter ME, Ckless K, Janssen-Heininger YM (2002) Molecular

mechanisms of nitrogen dioxide induced epithelial injury in the lung. Mol Cell

Biochem 234–235: 71–80.

5. Chauhan AJ, Krishna MT, Frew AJ, Holgate ST (1998) Exposure to nitrogen

dioxide (NO2) and respiratory disease risk. Rev Environ Health 13: 73–90.

6. Pathmanathan S, Krishna MT, Blomberg A, Helleday R, Kelly FJ, et al. (2003)

Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression

of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy

human airways. Occup Environ Med 60: 892–896.

7. Pierson WE, Koenig JQ (1992) Respiratory effects of air pollution on allergic

disease. J Allergy Clin Immunol 90: 557–566.

8. Chitano P, Hosselet JJ, Mapp CE, Fabbri LM (1995) Effect of oxidant air

pollutants on the respiratory system: insights from experimental animal research.

Eur Respir J 8: 1357–1371.

9. Ling SH, van Eeden SF (2009) Particulate matter air pollution exposure: role in

the development and exacerbation of chronic obstructive pulmonary disease.

Int J Chron Obstruct Pulmon Dis 4: 233–243.

10. Pereira CE, Heck TG, Saldiva PH, Rhoden CR (2007) Ambient particulate air

pollution from vehicles promotes lipid peroxidation and inflammatory responses

in rat lung. Braz J Med Biol Res 40: 1353–1359.

11. Yanagisawa R, Takano H, Inoue K, Ichinose T, Sadakane K, et al. (2003)

Enhancement of acute lung injury related to bacterial endotoxin by components

of diesel exhaust particles. Thorax 58: 605–612.

12. Takano H, Yoshikawa T, Ichinose T, Miyabara Y, Imaoka K, et al. (1997)

Diesel exhaust particles enhance antigen-induced airway inflammation and local

cytokine expression in mice. Am J Respir Crit Care Med 156: 36–42.

13. Samuelsen M, Nygaard UC, Lovik M (2008) Allergy adjuvant effect of particles

from wood smoke and road traffic. Toxicology 246: 124–131.

14. Granum B, Lovik M (2002) The effect of particles on allergic immune responses.

Toxicol Sci 65: 7–17.

NO2, Nanoparticle Exposure and Sensitization

PLOS ONE | www.plosone.org 12 September 2012 | Volume 7 | Issue 9 | e45687



15. Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, et al. (2005) Effects
of nano particles on antigen-related airway inflammation in mice. Respir Res 6:
106.

16. Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking
innate and adaptive immunity in asthma. Nat Rev Immunol 8: 193–204.

17. Karol MH (1994) Animal models of occupational asthma. Eur Respir J 7: 555–
568.

18. Park HJ, Lee CM, Jung ID, Lee JS, Jeong YI, et al. (2009) Quercetin regulates
Th1/Th2 balance in a murine model of asthma. Int Immunopharmacol 9: 261–
267.

19. Boland S, Bonvallot V, Fournier T, Baeza-Squiban A, Aubier M, et al. (2000)
Mechanisms of GM-CSF increase by diesel exhaust particles in human airway
epithelial cells. Am J Physiol Lung Cell Mol Physiol 278: L25–32.

20. Vanacker NJ, Palmans E, Kips JC, Pauwels RA (2001) Fluticasone inhibits but
does not reverse allergen-induced structural airway changes. Am J Respir Crit
Care Med 163: 674–679.

21. Siddiqui S, Jo T, Tamaoka M, Shalaby KH, Ghezzo H, et al. (2010) Sites of
allergic airway smooth muscle remodeling and hyperresponsiveness are not
associated in the rat. J Appl Physiol 109: 1170–1178.

22. Li XY, Brown D, Smith S, MacNee W, Donaldson K (1999) Short-term
inflammatory responses following intratracheal instillation of fine and ultrafine
carbon black in rats. Inhal Toxicol 11: 709–731.

23. Habre W, Petak F, Sly PD, Hantos Z, Morel DR (2001) Protective effects of
volatile agents against methacholine-induced bronchoconstriction in rats.
Anesthesiology 94: 348–353.

24. Petak F, Hantos Z, Adamicza A, Asztalos T, Sly PD (1997) Methacholine-
induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery.
J Appl Physiol 82: 1479–1487.

25. Van de Woestijne KP, Franken H, Cauberghs M, Landser FJ, Clement J (1981)
A modification of the forced oscillation technique. In: Hutas I, Debreczeni LA,
editors. Advances in Physiological Sciences Respiration, Proceedings of the 28th
International Congress of Physiological Sciences. Oxford: Pergamon. 655–660.

26. Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ (1992) Input impedance and
peripheral inhomogeneity of dog lungs. J Appl Physiol 72: 168–178.

27. Janosi TZ, Adamicza A, Zosky GR, Asztalos T, Sly PD, et al. (2006)
Plethysmographic estimation of thoracic gas volume in apneic mice. J Appl
Physiol 101: 454–459.

28. Bradford MM (1976) A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem 72: 248–254.

29. Saric J, Li JV, Swann JR, Utzinger J, Calvert G, et al. (2010) Integrated cytokine
and metabolic analysis of pathological responses to parasite exposure in rodents.
J Proteome Res 9: 2255–2264.

30. Holt PG, Britten D, Sedgwick JD (1987) Suppression of IgE responses by antigen
inhalation: studies on the role of genetic and environmental factors. Immunology
60: 97–102.

31. Poynter ME, Persinger RL, Irvin CG, Butnor KJ, van Hirtum H, et al. (2006)
Nitrogen dioxide enhances allergic airway inflammation and hyperresponsive-
ness in the mouse. Am J Physiol Lung Cell Mol Physiol 290: L144–152.

32. (2012) US-Environmental-Protection-Agency website. Available: http://www.
epa.gov/air/criteria.html. Accessed: 2012 July 23.

33. Mosqueron L, Momas I, Le Moullec Y (2002) Personal exposure of Paris office
workers to nitrogen dioxide and fine particles. Occup Environ Med 59: 550–
555.

34. Chow WK, Chan MY (2003) Field measurement on transient carbon monoxide
levels in vehicular tunnels. Building and Environment 38: 227–236.

35. Hedberg K, Hedberg CW, Iber C, White KE, Osterholm MT, et al. (1989) An
outbreak of nitrogen dioxide-induced respiratory illness among ice hockey
players. JAMA 262: 3014–3017.

36. Hussain I, Jain VV, O’Shaughnessy P, Businga TR, Kline J (2004) Effect of
nitrogen dioxide exposure on allergic asthma in a murine model. Chest 126:
198–204.

37. Dong CC, Yin XJ, Ma JY, Millecchia L, Wu ZX, et al. (2005) Effect of diesel
exhaust particles on allergic reactions and airway responsiveness in ovalbumin-
sensitized brown Norway rats. Toxicol Sci 88: 202–212.

38. Badier M, Soler M, Mallea M, Delpierre S, Orehek J (1988) Cholinergic
responsiveness of respiratory and vascular tissues in two different rat strains.
J Appl Physiol 64: 323–328.

39. Han B, Guo J, Abrahaley T, Qin L, Wang L, et al. (2011) Adverse effect of
nano-silicon dioxide on lung function of rats with or without ovalbumin
immunization. PLoS One 6: e17236.

40. Kips JC, Cuvelier CA, Pauwels RA (1992) Effect of acute and chronic antigen
inhalation on airway morphology and responsiveness in actively sensitized rats.
Am Rev Respir Dis 145: 1306–1310.

41. Garn H, Siese A, Stumpf S, Barth PJ, Muller B, et al. (2003) Shift toward an
alternatively activated macrophage response in lungs of NO2-exposed rats.
Am J Respir Cell Mol Biol 28: 386–396.

42. Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, et al. (1999)
Alternative versus classical activation of macrophages. Pathobiology 67: 222–
226.

43. Lohmann-Matthes ML, Steinmuller C, Franke-Ullmann G (1994) Pulmonary
macrophages. Eur Respir J 7: 1678–1689.

44. Mehrad B, Wiekowski M, Morrison BE, Chen SC, Coronel EC, et al. (2002)
Transient lung-specific expression of the chemokine KC improves outcome in
invasive aspergillosis. Am J Respir Crit Care Med 166: 1263–1268.

45. Sears BW, Volkmer D, Yong S, Himes RD, Lauing K, et al. (2010) Correlation
of measurable serum markers of inflammation with lung levels following bilateral
femur fracture in a rat model. J Inflamm Res 2010: 105–114.

46. Lira SA, Zalamea P, Heinrich JN, Fuentes ME, Carrasco D, et al. (1994)
Expression of the chemokine N51/KC in the thymus and epidermis of
transgenic mice results in marked infiltration of a single class of inflammatory
cells. J Exp Med 180: 2039–2048.

47. Alberg T, Nilsen A, Hansen JS, Nygaard UC, Lovik M (2011) Nitrogen dioxide:
no influence on allergic sensitization in an intranasal mouse model with
ovalbumin and diesel exhaust particles. Inhal Toxicol 23: 268–276.

48. Garn H, Siese A, Stumpf S, Wensing A, Renz H, et al. (2006) Phenotypical and
functional characterization of alveolar macrophage subpopulations in the lungs
of NO2-exposed rats. Respir Res 7: 4.

49. Proust B, Lacroix G, Robidel F, Marliere M, Lecomte A, et al. (2002)
Interference of a short-term exposure to nitrogen dioxide with allergic airways
responses to allergenic challenges in BALB/c mice. Mediators Inflamm 11: 251–
260.

50. Folkesson HG, Westrom BR, Pierzynowski SG, Karlsson BW (1991) Lung to
blood passage of different-sized molecules during lung inflammation in the rat.
J Appl Physiol 71: 1106–1111.

51. Gilmour MI, Park P, Selgrade MJ (1996) Increased immune and inflammatory
responses to dust mite antigen in rats exposed to 5 ppm NO2. Fundam Appl
Toxicol 31: 65–70.

52. Matsumura Y (1970) The effects of ozone, nitrogen dioxide, and sulfur dioxide
on the experimentally induced allergic respiratory disorder in guinea pigs. I. The
effect on sensitization with albumin through the airway. Am Rev Respir Dis 102:
430–437.

53. Alessandrini F, Schulz H, Takenaka S, Lentner B, Karg E, et al. (2006) Effects of
ultrafine carbon particle inhalation on allergic inflammation of the lung. J Allergy
Clin Immunol 117: 824–830.

54. Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, et al. (2004)
Pulmonary and systemic effects of short-term inhalation exposure to ultrafine
carbon black particles. Toxicol Appl Pharmacol 195: 35–44.

55. de Haar C, Hassing I, Bol M, Bleumink R, Pieters R (2006) Ultrafine but not
fine particulate matter causes airway inflammation and allergic airway
sensitization to co-administered antigen in mice. Clin Exp Allergy 36: 1469–
1479.

56. Al-Humadi NH, Siegel PD, Lewis DM, Barger MW, Ma JY, et al. (2002) The
effect of diesel exhaust particles (DEP) and carbon black (CB) on thiol changes in
pulmonary ovalbumin allergic sensitized Brown Norway rats. Exp Lung Res 28:
333–349.

57. van Zijverden M, van der Pijl A, Bol M, van Pinxteren FA, de Haar C, et al.
(2000) Diesel exhaust, carbon black, and silica particles display distinct Th1/Th2
modulating activity. Toxicol Appl Pharmacol 168: 131–139.

58. Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch
Occup Environ Health 74: 1–8.

59. Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, et al. (2000) Acute
pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst:
5–74; disc 75–86.

60. O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and
plasticity of helper CD4+ T cells. Science 327: 1098–1102.

61. Yamashita K, Sakai M, Takemoto N, Tsukimoto M, Uchida K, et al. (2009)
Attenuation of delayed-type hypersensitivity by fullerene treatment. Toxicology
261: 19–24.

62. Moreira AP, Cavassani KA, Ismailoglu UB, Hullinger R, Dunleavy MP, et al.
(2011) The protective role of TLR6 in a mouse model of asthma is mediated by
IL-23 and IL-17A. J Clin Invest 121: 4420–4432.

63. Schnyder-Candrian S, Togbe D, Couillin I, Mercier I, Brombacher F, et al.
(2006) Interleukin-17 is a negative regulator of established allergic asthma. J Exp
Med 203: 2715–2725.

64. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006)
TGFbeta in the context of an inflammatory cytokine milieu supports de novo
differentiation of IL-17-producing T cells. Immunity 24: 179–189.

65. Schittny JC, Mund SI, Stampanoni M (2008) Evidence and structural
mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol
294: L246–254.

66. Bolle I, Eder G, Takenaka S, Ganguly K, Karrasch S, et al. (2008) Postnatal
lung function in the developing rat. J Appl Physiol 104: 1167–1176.

67. Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, et al. (2004) The effect
of air pollution on lung development from 10 to 18 years of age. N Engl J Med
351: 1057–1067.

68. Latzin P, Roosli M, Huss A, Kuehni CE, Frey U (2009) Air pollution during
pregnancy and lung function in newborns: a birth cohort study. Eur Respir J 33:
594–603.

NO2, Nanoparticle Exposure and Sensitization

PLOS ONE | www.plosone.org 13 September 2012 | Volume 7 | Issue 9 | e45687


