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In this study, we focus on a novel multi-scale modeling approach for spatiotemporal pre-
diction of the distribution of substances and resulting hepatotoxicity by combining cellular
models, a 2D liver model, and whole body model. As a case study, we focused on predict-
ing human hepatotoxicity upon treatment with acetaminophen based on in vitro toxicity
data and potential inter-individual variability in gene expression and enzyme activities. By
aggregating mechanistic, genome-based in silico cells to a novel 2D liver model and even-
tually to a whole body model, we predicted pharmacokinetic properties, metabolism, and
the onset of hepatotoxicity in an in silico patient. Depending on the concentration of aceta-
minophen in the liver and the accumulation of toxic metabolites, cell integrity in the liver as
a function of space and time as well as changes in the elimination rate of substances were
estimated. We show that the variations in elimination rates also influence the distribution
of acetaminophen and its metabolites in the whole body. Our results are in agreement
with experimental results. What is more, the integrated model also predicted variations in
drug toxicity depending on alterations of metabolic enzyme activities. Variations in enzyme
activity, in turn, reflect genetic characteristics or diseases of individuals. In conclusion, this
framework presents an important basis for efficiently integrating inter-individual variability
data into models, paving the way for personalized or stratified predictions of drug toxicity
and efficacy.

Keywords: acetaminophen, toxicity testing, pharmacokinetics, drug metabolism, hepatotoxicity

INTRODUCTION
The need to develop a virtual physiological human for clinical and
pharmacological applications has stimulated the development of
several physiological models that capture the interplay between
different structures in tissues, organs, and the whole body (Fen-
ner et al., 2008). The liver is an important organ in this workflow
because it is required for many metabolic functions. This fact has
boosted the development of virtual liver models within the frame-
work of large-scale research programs. Prominent examples are the
virtual liver project (Wambaugh and Shah, 2010) and the virtual
liver network (Holzhütter et al., 2012). In a number of liver mod-
eling efforts, relatively simple cells were coupled to models of liver
tissue to perform qualitative predictions of substance distributions
and cell responses, particularly toxicity. In some pharmacokinetic
models, data obtained from in vitro experiments are translated
into different transporter and enzyme activities, which are there-
after distributed in the liver (Pang et al., 2007). Other approaches
defined complete in silico livers where the organ is coupled with a
simple model of cell metabolism. For instance, Hunt and Ropella
(2008) and Wambaugh and Shah (2010) not only made a com-
prehensive model for simple cells with a simple metabolism but
also developed a model that allows an estimation of the substance

distribution in the lobule assuming that its structure resembles
a network where each hepatocyte is located in each node of the
network. Based on this description, the spatial distribution of the
substance can be reproduced from the portal to the central vein.
The advantage of such approaches is the possibility of predicting
substance extraction and distribution also depending on the het-
erogeneity of the liver micro structures (Ropella and Hunt, 2010).
In several organ models, relatively simple individual cells are cou-
pled to a complex description of the liver (Kuepfer et al., 2012).
For the prediction of function and structure of the liver, such
coarse grained approaches provide essential information on the
physics (behavior of a granular media), the way the liver responds
to damages, and on the detoxification and drug elimination of
this organ (Chelminiak et al., 2006). Examples are models where
cell populations are described as multi-agent systems ordered in
complex networks of the parenchymal tissue (Chelminiak et al.,
2006; Hoehme et al., 2010). However, a detailed description of the
metabolic and regulatory networks is necessary for understanding
the liver function, in particular for the prediction of the effects of
drugs (and other substances) in pharmaceutical research (Kuepfer
et al., 2012). In this field, only a few models have recently taken
steps toward the integration of detailed cell mechanisms (Ohno
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et al., 2008). For instance, there are changes in the distribution
of oxygen and metabolites inside the liver introducing a zonation
that affects the function (Allen et al., 2005) as well as cell death in
response to toxic doses (Malhi et al., 2010). An additional advan-
tage of the incorporation of detailed dynamic cellular models is
the possibility to include inter-subject variability in predictions of
drug effects (Bucher et al., 2011; Niklas et al., 2012).

In this work, we further developed multidimensional models
for the liver which were coupled to in silico cells performing a
metabolic function. The primary goals of this study were (i) to
set-up and verify a whole body model coupled with an in silico
liver, (ii), to predict the distribution of substances for an in sil-
ico patient treated with acetaminophen, and (iii) to extrapolate
critical doses from in vitro data. One of the main goals of this
approach is to simulate cell mortality when acute toxicity takes
place. To this end, we reconstructed a network for acetaminophen
metabolism, integrated this into an in silico liver model, simulated
uptake and distribution of drug and metabolites in the liver and
the whole body of an in silico patient, and performed simulations
upon administration of different single doses.

MATERIALS AND METHODS
MODELING OF ACETAMINOPHEN METABOLISM AND TOXICITY
The metabolic network model for metabolism and toxicity of
Acetaminophen (APAP) was set-up based on literature data.
In brief, acetaminophen is metabolized by cytochrome P450
monooxygenases (CYPs; Patten et al., 1993; Thummel et al., 1993;
Chen et al., 1998), UDP-glucuronosyltransferases (UGTs; Court
et al., 2001; Mutlib et al., 2006; Riches et al., 2009), and sulfo-
transferases (SULTs; Sweeny and Reinke, 1988; Adjei et al., 2008;
Riches et al., 2009). Glutathione (GSH)-transferases (GSTs; Coles
et al., 1988) contribute additionally to Phase II conjugation. APAP
is degraded mainly to the corresponding glucuronide (APAPG)
and sulfate (APAPS) metabolites and by CYP-mediated oxida-
tion to N -acetyl-p-benzoquinone imine (NAPQI; Chen et al.,
2008). Amongst CYPs, several isoenzymes contribute to NAPQI
formation in liver, with probable major contributions by CYP3A4,
CYP2E1, CYP2A6, and CYP1A2 (Patten et al., 1993; Thummel
et al., 1993; Chen et al., 1998) and minor contribution by CYP2D6
(Dong et al., 2000). The toxic metabolite NAPQI is detoxified
through conjugation with GSH by GSTs to APAPGS (Coles et al.,
1988). Additionally, NAPQI can be reduced back to APAP by
NADPH quinonereductase (NQO1; Moffit et al., 2007). Further-
more, intracellular unspecific binding of APAP and metabolites
to proteins and lipids was considered, particularly for APAPS and
NAPQI due to their comparably low fraction unbound. Bind-
ing constants were calculated using logP-correlations (Zaldivar
Comenges et al., 2011).

APAP is taken up into the cell via active transport and by pas-
sive diffusion (McPhail et al., 1993). Since NAPQI is similar to
APAP and comparably lipophilic with respect to the logP (Pub-
Chem), passive diffusion is also assumed for NAPQI. Permeabil-
ity coefficients were estimated using logP-correlations (Zaldivar
Comenges et al., 2011). APAP-Glucuronide and APAP-Sulfate are
excreted through the transporter multidrug resistance related pro-
tein (MRP)2 and translocated at the basolateral side via MRP3/4
(Xiong et al., 2000, 2002; Chen et al., 2003; Zamek-Gliszczynski

et al., 2006). APAPGS is also exported via MRP2 and MRP3/4
(Chen et al., 2003; Zamek-Gliszczynski et al., 2006).

At low APAP dose, intracellular NAPQI concentration is very
low since it is immediately conjugated with GSH. GSH is replen-
ished by glutathione synthase (GSS; Reed et al.,2008) and degraded
via gamma-glutamyltransferase (GGT; Shaw and Newman, 1979).
At over dose conditions, NAPQI accumulates and initiates severe
hepatoxicity (Rumack and Matthew, 1975). The cellular toxicity
pathway of APAP includes increased NAPQI-binding to mito-
chondrial membrane proteins (James et al., 2003) triggering per-
turbation of the respiration machinery and inducing increased
formation of reactive oxygen (ROS) and nitrogen (RNS) species
(Jaeschke et al., 2003).

ROS are detoxified in mitochondria by superoxide dismu-
tase and glutathione peroxidase (GPX; Murphy, 2009). There-
fore, the cellular GSH level is further reduced through increased
H2O2 synthesis resulting in increased formation of oxidized glu-
tathione disulfide (GSSG). GSSG is reduced back to GSH by
glutathione reductase (GSR). ROS and RNS cause lipid peroxi-
dation and protein nitration (Jaeschke et al., 2003; James et al.,
2003), respectively. Both mechanisms finally destroy mitochondr-
ial integrity.

Accordingly, a cellular kinetic metabolic model of APAP-
metabolism, GSH turnover, ROS synthesis, and cell death was
set-up (Figure 1). The mathematical model is described in a
supplementary material.

The probability of cell death (necrosis) is defined to be a func-
tion of the concentration of substances in the cell triggering the
deterioration of the hepatocyte, which is similar to the approach
suggested by Wambaugh and Shah (2010). The production of
H2O2 after ROS synthesis and the consumption of GSH are both
used as criteria for cell death in our liver model. If the H2O2

concentration surpasses a critical value and GSH is consumed, the
probability of necrosis for the hepatocytes increases. Furthermore,
since the cells in the centrilobular region have a low oxygen intake
(Allen et al., 2005), we assume that the cells in the respective region
are more sensitive to toxic effects compared with cells near the por-
tal veins. This means that the probability of cell death via necrosis
is inversely proportional to the distance to the central vein (Gujral,
2002).

LIVER AND MULTI-SCALE MODEL: STRUCTURE OF SINUSOIDS AND
LOBULES
The liver is a complex organ with several interconnected structures
across several scales (Figure 2). A central part of our modeling
approach is integration of (i) metabolism of single hepatocytes,
(ii) transport of substances across the lobules, and (iii) the whole
body. After the blood enters the liver, it is distributed by portal veins
into functional subunits, called lobules, which carry out diverse
functions including the detoxification of xenobiotics at cell level
(Figure 1). An adult liver contains around one million lobules, dis-
tributed more or less homogeneously across the liver (Arias et al.,
2009). In the periphery of each lobule, several blood vessels deliver
the blood flow into the lobule through additional substructures
called sinusoids. We simplify this structure by assuming a paral-
lel tube model. With this assumption, the lobule is represented as
a hexagonal structure with six portal triads, each connected to a
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FIGURE 1 | Cellular metabolic network model for acetaminophen
metabolism and toxicity. Abbreviations: APAP, acetaminophen; APAPG,
acetaminophen glucoronide; APAPGS, acetaminophen-glutathione-conjugate;
APAPS, acetaminophen sulfate; CYP, cytochrome P450 monooxygenase; GGT,
γ-glutamyltransferase; GPX, glutathione peroxidase; GSH, glutathione; GSR,
glutathione reductase; GSS, glutathione synthase; GSSG, glutathione

disulfide; GST, glutathione S-transferase; MRP (2/3/4), multidrug resistance
related protein; NAPQI, N -acetyl-p-benzoquinone imine; NOS, nitric oxide
synthase; NQO1, NADPH quinonereductase; SOD, superoxide dismutase;
SULT, sulfotransferase; UGT, UDP-glucuronosyltransferase. Index “B,”
non-specifically bound (protein/lipid); index “P,” non-specifically bound to
protein.

simple tube draining the blood from portal to central vein (Pang
and Rowland, 1977; Figure 3).

The sinusoid is essentially modeled as a collection of hepa-
tocytes aligned along a blood vessel with geometry similar to a
cylindrical tube (Ohno et al., 2008). Since the central goal of this
study was to model drug metabolism in the liver taking place
in the hepatocytes, we define the sinusoids as simple capillary
structures with a wall composed only by hepatocytes. We assume
that four hepatocytes are arranged in each section of the tube.
For each section, there is a concentration of compounds cm(t,
x) where m is an index for the corresponding compound, x is
the position of the cell on the sinusoid (L is the total length of
the sinusoid), and t is the time. Substance concentrations as a
function of time t and hepatocyte position along the sinosoid
x is obtained by solving the corresponding coupled differential
equation.

∂c(x , t )

∂t
= N · v

(
c(x , t ), p

)
, (1)

where c(x, t ) is a m dimensional vector of intracellular and extra-
cellular concentrations [i.e., c(x, t )= c1 (x, t ), c2(x, t ),. . ., cm(x, t )],
N is the m× r stochiometric matrix, v is the r dimensional vector
of reaction rates that depends on the substrate concentrations c
and a set of parameters p.

FIGURE 2 | Multi-scale system from single hepatocytes to organ level.
Single hepatocytes are coupled to liver capillaries (sinusoids) which are
coupled to micro-organelles called lobules. These lobules are considered to
be the smallest functional micro-structure in the liver. The corresponding
parameters for the lobule module are shown inTable 1.

We approximate the geometry of the sinusoid to a tube
with an average radius of 5 µm where the substance is dis-
persed on the x axis. Further assuming that the blood is a good
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FIGURE 3 | Representation of one lobule with six sinusoids. Each
sinusoid transports blood form a portal triad (PT) to the central vein (CV).
We also included lobule zonation.

Table 1 | Physical parameters of lobule and sinusoids.

Parameter Symbol Value Reference

Blood velocity Ux 0.1 mm/s Vollmar and Menger

(2009)

Hepatocyte size lh 23 µm Hoehme et al. (2010)

Sinusoid diameter ds 10 µm Arias et al. (2009)

Number of sinusoids

per lobule

ns 6 Wambaugh and Shah

(2010)

Number of hepatocytes

along the sinusoid

nh 16 Hoehme et al. (2010)

Diameter lobule dL 1 mm Arias et al. (2009)

Fraction unbound

(APAP)

f u 0.75 Ishii et al. (2002)

solvent, the distribution of the substance can be described as an
advection-diffusion process, which is described by the following
equation.

∂csinus

∂t
+ Ux

∂csinus

∂x
= D

∂2csinus

∂x2
; (2)

Here, Ux is the velocity of the suspension along the tube and D
the diffusion coefficient. We assume that the average blood veloc-
ity in the sinusoid is about 0.1 mm/s (Vollmar and Menger, 2009).
Additionally, we take the Fahraeus effect into account, i.e., the ten-
dency of red cells to migrate away from the tube wall so that the
mean velocity of the cells is larger than the mean velocity of the
suspension near the cell wall. Sugihara-Seki and Fu (2005) found

that the mean velocity of the suspension Ux is about 0.05 mm/s.
Additionally, we assume that the blood in the sinusoid is a liquid
with a low Reynolds number (<0.0001)so that the Einstein (1905)
relation can be employed, i.e.,

D =
KBT

f πηRg
, (3)

where D is the diffusion constant, K B is the Boltzman constant,
T is the temperature and f is a number characterizing the bound-
ary conditions of the particle. In this case, it is valid to assume
sticky boundary conditions, i.e., that the fluid has a zero velocity
relative to the surface of the molecule, assuming that this mole-
cule can be approached by a sphere such that f= 6 (Cappelezzo
et al., 2007). Additionally, η is the viscosity of the blood (which is
about 3× 10−3Pa× s, see, e.g., Késmárky et al., 2008, and Rg is the
radius of gyration. Using the radius of gyration for acetaminophen
(2.99 Å), the diffusion coefficient is about 2.22× 10−10 m2/s (Falk,
et al,. 2004).

The solution of Eq. 2 is

csinus(t , x) =
Q

πr2
√

4Dπt
e−

(x−Ux t )2

4Dt , (4)

with Q being the quantity of the substance (i.e., Q= c ×V, V, is
the volume), and r the radius of the sinusoid. The initial con-
dition in this propagation is the concentration entering from
the portal vein multiplied by the fraction unbound, fu (in this
case fu= 0.75; Péry et al., 2012). We also assume that the liquid,
distributed according to c sinus(t, x), propagates in discrete steps
of time (similar to Wambaugh and Shah, 2010). With such an
approach, the complex dynamics of the dispersion of the sub-
stance is significantly reduced without losing information on the
hepatic elimination/metabolism of the substance. Simultaneously,
each hepatocyte can transport, eliminate, and transform the sub-
stance in the bulk so that each chemical species has its own spatial
distribution. The constants used for the modeling of the lobule are
resumed in Table 1. The corresponding constants for individual
cells as well as for the transport cell/bulk are assigned in the model
for cell metabolism described above (see also the Supplementary
material).

The oxygen gradient along the sinusoid (see Modeling of Aceta-
minophen Metabolism and Toxicity) introduces a zonation in the
liver, which, in turn, induces a heterogeneous distribution of CYP
expression factors radially aligned to the lobule (Allen et al., 2005;
Figure 3). This zonation is not only relevant in the physiology of
the liver but also in the construction of in silico livers (Ropella and
Hunt, 2010). Based on different evidence from the literature (Bha-
tia et al., 1999; Allen et al., 2004, 2005) we assume three regions
with different CYP activity. Zone 2 is close to the periportal region
whereas zone 3 is close to the pericentral region. We assume that
the CYP3A4 activity is similar in zones 1 and 2; in zone 3 this value
is about 1.3 times larger than in zone 1 (Oinonen and Lindros,
1998).

WHOLE BODY MODEL
The estimation of a realistic microdosimetry requires the com-
putation of the substance distribution in the whole body. For
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FIGURE 4 | Scheme of the whole body model. The model is divided into
liver, adipose tissue, blood, other well-perfused tissues (WPT), and other
poorly perfused tissues (PPT). Blood transporting acetaminophen flows
through the in silico liver, consisting of lobules coupled to in silico
hepatocytes (containing the metabolic network represented in Figure 1).
Acetaminophen is orally administrated and transported from gut to liver. The
degradation and metabolization of the substance takes place in the
hepatocytes adjacent to and alongside the sinusoids.

such a mathematical representation of the whole body, individual
organs not reconstructed by an internal structure are represented
as compartments neglecting concentration gradients of substances
within the organ (Figure 4). The modular structure of the set-
up allows for replacing the compartments by detailed structured
organs, as required. In our model, we assume that metabolism of
APAP is primarily performed by the liver. Consequently, there is
no detailed representation for lung, kidney, or other organs. In
this study, the whole body model consists of well-perfused tissues
(WPT), poorly perfused tissues (PPT), adipose tissue, blood, and a
structured 2D liver model. Finally, following the anatomical struc-
ture of the body, these compartments are interconnected through
the blood circulation.

Our model is calibrated for an adult weighing 73 kg (Table 2).
The tissue volumes were scaled from body weight and the blood
flows scaled from cardiac output with the values used by Mielke
and Gundert-Remy (2009). WPT as well as PPT can be represented
as a perfusion rate-limited, one compartment model as follows [in
the following, Ci(t ) are concentrations in the whole body, and
cm(t ) concentrations at the cell level].

Vi
dCi(t )

dt
= Fi

(
Cb(t )−

Ci(t )

PCi

)
, (5)

Where i is an index enumerating the organs (1 to 6 according
to Table 2) with volume Vi. Fi is the blood flow in the correspond-
ing organ, Ci(t ) is the concentration of the substances (APAP) in
the organ, Cb(t )=C5(t ) is the concentration of the substance in
blood and PCi is the corresponding partition coefficient of the
organ. We assume that the substance distributes into major tissue

Table 2 | Parameters in the PBPK model depicted in Figure 4 according

to Price et al. (2003).

Organ Blood flow

(l/min)

Volume (l) Partition

coefficients (PCi)

1 Adipose tissue 0.56 28.0 0.25

2 Liver 1.3 1.82 0.774

3 WPT 3.5 5.68 0.774

4 PPT 1.63 35 0.66

5 Blood 6.4 5.7 0.774

6 Plasma 6.4 3.4 0.774

The partition coefficients were defined according to Rodgers and Rowland (2006).

WPT, other well-perfused tissues; PPT, other poorly perfused tissues.

constituents (water, bound to proteins, neutral lipids, phospho-
lipids) and that there is a total unbound concentration in plasma
of 0.75.

In our model, the absorption rate of APAP from stomach to gut
is given by the following equation.

dQgut(t )

dt
= Fring · Qadm(t )− kgut · Qgut(t ). (6)

In this equation, Qadm(t )=Weight·Dose (t ; weight given in kg,
dose in mg/kg) is the amount of substance that is administrated
and Qgut(t )=CgutVgut is the amount of acetaminophen in the gut.
The fraction of ingested APAP entering the liver, Fring, is fixed to
0.9 (Brown et al., 1979) and kgut, the rate of adsorption from gut
to stomach, is fixed to 0.025 min−1(Péry et al., 2012).

We constructed organelles in the liver, coupled these to the cell
metabolism, and made an estimation of the liver clearance, which
is the capacity of the liver to eliminate and transform compounds
from the blood. We simulate the sinusoid coupled to the hepato-
cyte dynamics and estimate the amount of APAP that the sinu-
soid/liver is able to eliminate, i.e., Ek(t ) = [ΣL

x=1cAPAP−cyt (t , x)−

cAPAP−B(t , L)], where Ek(t ) is the acetaminophen eliminated by
the sinusoid k (k between 1 to ns, the total number of sinu-
soids), cAPAP− cyt is the concentration of acetaminophen in the cell,
cAPAP−B is the concentration of acetaminophen in the sinusoidal
bulk, and L is the length of the sinusoid [see a similar definition
of clearance by Wambaugh and Shah (2010)]. The liver clearance

is therefore given by
Σ

ns
k=1Ek (t )

ns
. The equation for the liver coupled

to the whole body model (which is equivalent to the construction
of a sub-compartment for the liver) is

Vliv
dCliv(t )

dt
= Fliv

(
Ca(t )−

Cliv

PC2

)
+ kgut ·Cgut−ξ

∑ns
k=1 Ek(t )

ns
.

(7)

where ξ is a constant that couples the estimated clearance with
the liver compartment, which is related to the parenchymal vol-
ume. Given that the parenchymal tissue is smaller than the total
liver volume (about 80%; Arias et al., 2009), we set ξ= 0.75 in
order to adjust the clearance of the lobule to the total volume of
the liver; PC2 corresponds to the partition coefficient of the liver
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(see Table 2). Note that the rate of assimilation is an average value
obtained from the integration in the lobule and that our liver is
equivalent to a mean lobule.

Finally, the urinary excretion rate of acetaminophen was based
on the estimate for rats through biometric scaling and was fixed
to 0.016 l/min (Péry et al., 2012).

MODEL VERIFICATION
Before starting simulations, we verified the whole body model
using experimental results for the concentration of acetaminophen
in blood plasma after a single dose. We compared our predictions
with results from literature for three different doses. For doses of
1000 mg (Rawlins et al., 1977), 2000 mg (Rawlins et al., 1977; Brun-
ner et al., 2002), and 5475 mg (Douglas et al., 1996; Ly et al., 2004),
the χ2 values were 0.71, 0.91, and 0.2, respectively, which indi-
cates a relatively good fit of our model with experimental data. We
also compared the result obtained with our whole body coupled
to the in silico liver with a PBPK model coupled to a well-stirred
liver for the uptake of acetaminophen in humans (Péry et al.,
2012). A good agreement between the time courses (χ2

= 4.22)
was observed (Figure 5). The deviations between our model and
literature may originate from differences between the parameteri-
zation of the model (physiological parameters, enzyme activities)
and the physiology of the individuals.

MODELING AND SIMULATION PLATFORM
The metabolic network was generated by the software Insilico
Discovery™(Insilico Biotechnology AG, Stuttgart, Germany) and
represented in FORTRAN. Once the individual cells are coupled
to the sinusoid, the six sinusoids are simulated in parallel together
with the whole body model. Numerical integration was performed

FIGURE 5 | Comparison of model simulations with experimental data.
Left panel: simulated acetaminophen concentration in plasma (solid lines)
compared within vivo pharmacokinetics: (1) single dose of 1000 mg
(Rawlins et al., 1977), (2) single dose of 2000 mg (Rawlins et al., 1977), (3)
single dose of 2000 mg (Brunner et al., 2002), (4) single dose of 5475 mg
(Douglas et al., 1996), and (5) single dose of 5475 mg (Ly et al., 2004). Right
panel: comparison of model simulation (solid line) with estimated
concentration of acetaminophen in the liver using a PBPK model (Péry
et al., 2012) after administration of a single dose of 500 mg/kg.

using the LIMEX integrator for differential-algebraic equations
(Nowak et al., 1996).

Specific enzyme activities were calculated from activi-
ties measured on recombinant enzymes (which are given in
nmolDrug/nmolEnzyme/min) applying the following physiological
parameters: Microsomal CYP content (Shimada et al., 1994), total
cell protein (30 g/Lcell, Lcell= 1 l of cells; Bucher et al., 2011), and
ratio of microsomal to total cell protein (0.22; Bucher et al.,
2011). Because we use cellular systems for kinetic modeling,
we have to calculate concentrations (µmol/Lcell) and activities
(µmol/Lcell/min) per cell volume.

RESULTS
SPATIOTEMPORAL PREDICTION OF DRUG AND METABOLITE
CONCENTRATIONS
One advantage of our approach is the possibility to follow distrib-
utions of substances along liver lobules, which allows a detailed
analysis of the accumulation of toxic substances in the organ.
According to our model, APAP is distributed from the portal to the
central vein showing a rapid transport of acetaminophen in the
periportal region. Accordingly, toxic substances should accumu-
late in the pericentral region. This case can be verified by analyzing
the accumulation of NAPQI (Figure 6), which can be used as a
marker for APAP toxicity. We observed that NAPQI concentration
(Figures 6B,C) were highest in the pericentral region indicating
that the cells in this region should be more prone to APAP toxicity.

PREDICTION OF IN VIVO TOXICITY BY COMBINING IN VITRO DATA AND
THE MULTI-SCALE MODEL
A central aim of this study is to estimate cell viability and not
just concentrations in the organ. To this end, we used experi-
mental results of cell viability obtained from in vitro experiments
(Zaldivar Comenges et al., 2011; Péry et al., 2012). In these exper-
iments, a LC50(concentration at which 50% of the cell population
are viable) of ∼4000 µM was observed. We performed simula-
tions for in silico cells and defined that the critical concentration
of H2O2 inducing cell death is the one obtained at the LC50 of
APAP in the in vitro setting. We observed that intracellular H2O2

concentrations above 4000 µM can be used as an indicator for cell
toxicity and assume that this threshold value is the criterion trig-
gering cell death, i.e., if the concentration of H2O2 in the cell is
higher than this critical value, necrosis takes place, meaning that
intracellular functions stop or, in other words, that dc(x, t )/dt = 0.
In some studies, it was shown that the necrosis process upon expo-
sure to high H2O2 concentrations is relatively fast (McKeague et al.,
2003). For this reason, we adopted a stochastic time delay between
0 and 1 min for the beginning of necrosis in the sinusoid so that
the necrosis process is non-deterministic.

This definition of necrosis together with our definition of clear-
ance implies a continuous feedback between local cell behavior,
clearance of the organ, and distribution of substances in the whole
body. In order to find a region of critical APAP concentrations of
interest, we performed several runs for different doses. We found
that critical behavior is observed for doses above ∼300 mg/kg. In
this region, we performed detailed simulations while assuming
that the viability of the cells in the lobule remains constant below
this dose. First, we performed simulations using an individual with
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FIGURE 6 | Spatial distribution of acetaminophen (APAP) and NAPQI.
(A) Spatial distribution of APAP in the sinusoid after 10 min for a single dose
of 393 mg/kg. The distribution of NAPQI is schematically given as a function
of the distance (sinusoidal length normalized as x /L) and time. (B)
Distribution of cellular APAP and NAPQI in the lobule at 4 h after a single
APAP dose (393 mg/kg). (C) Mean distribution of NAPQI and cellular APAP
in the lobule as a function of the sinusoidal length.

a CYP3A4 activity of0.95 µmol/Lcell/min and CYP2E1 activity of
1.0 µmol/Lcell/min and increased the dose from 310 to 470 mg/kg
(Figure 7). For 310 mg/kg, no cell mortality was predicted. The
selection of both CYP3A4 activities is in order to represent dif-
ferences in the metabolism between women and men. The organ
was able to perform detoxification and the toxic substance was
completely eliminated after about 800 min. However, if the con-
centration is higher, cell mortality continues implying a gradual
diminution of the capacity of the organ to eliminate APAP. Simul-
taneously, this leads to an increase in the APAP concentration in the
liver (Figure 7). The slow elimination contributes to an increase
in the intracellular level of H2O2 and to decreased cell viability in
the organ. This is also relevant for repeated dose toxicity. In this
example, a new dose larger than ∼300 mg/kg before ∼8 h after the
initial dose could be lethal for this patient.

An advantage of kinetic models representing the dynamics
at a cellular scale is the possibility to include inter-individual

FIGURE 7 | Substance concentrations and mean viability in the lobule
(see Figure 8) estimated using the multi-scale model. Time courses are
shown for the concentration of APAP in plasma, concentration of H2O2 in
the cell (measured at the central vein, according to Figure 3), and total cell
viability in the lobule for a dose of 310, 450, and 470 mg/kg, respectively. For
viability estimation, it was assumed that an increase in H2O2 concentration
above a critical threshold results in necrotic death of the respective cell.

differences in gene expression or enzyme activities into the esti-
mation of drug effects and toxicological risk. In the following,
we will evaluate this exemplarily by considering selected varia-
tions in CYP enzyme activities (CYP3A4 activities of 0.95 and
1.9 µM/min and CYP2E1 activities of 1.0 and 5.0 µM/min (Bolt
et al., 2003); the selection of the CYP2E1 is made in order
to represent alcoholism and non-alcoholism) and by analyzing
the distribution of substances as well as cell viability in the
organ. The spatiotemporal estimation of cell viability in the
liver lobule depending on the activity of CYP3A4 can be found
in Figure 8. Given that the definition of the necrosis process
is essentially non-deterministic, the degradation of the cells in
the lobule is non-symmetric. We also observe that an increase
in CYP3A4 activity strongly increases the risk of APAP-induced
hepatotoxicity.

Based on this analysis, it is also possible to estimate critical doses
for in silico patients from viability curves. Dose response curves
at 2000 min after APAP exposure are given in Figure 9. Again, we
observed a dose dependent and CYP3A4 expression dependent
decrease in cell viability. Critical doses leading to a decrease in cell
viability are in the range of values reported in literature (Schiødt
et al., 1997; Larson et al., 2005). Acetaminophen induced hepa-
totoxicity has a large inter-individual variability and critical daily
doses for individuals range between 10 and 1000 mg/kg [Larson
et al., 2005; according to Dart et al., 2006 the acute grade of toxicity
(or grade D) for patients of 6 years or older lies around 200 mg/Kg
for acetaminophen].

Finally, we analyzed the time-dependent response upon APAP
treatment influenced by variations in the activities of CYP2E1 and
CYP3A4 (Figure 10). For both enzymes, a significant increase in
APAP concentration in serum and H2O2 concentration in the liver
was observed with increased enzyme activity leading to lower cell
viability.
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FIGURE 8 | Cell viability in the lobule at different time points for two
different CYP3A4 activities after a single oral APAP dose of 393 mg/kg.
Viable cells are schematically illustrated n orange, dead cells in black. The
spatial distribution corresponds to the detailed scheme and coordinates
given in Figure 3. CYP activities in µM/min, time in min.

FIGURE 9 | Viability as a function of the oral APAP dose (left) and as a
function of the APAP concentration in blood plasma at 33 h after APAP
dose (right). Range of possible toxic daily APAP concentrations as reported
in literature is given by the black dotted lines (see, e.g., the guideline
suggested by Dart et al., 2006).

DISCUSSION
Russell and Burch (1959) recognized in their book “The principles
of human experimental technique” the need to replace animal
tests with other kinds of tests. Nowadays, numerous research ini-
tiatives are focusing on developing and improving methods and
approaches suitable for reducing, refining, or even replacing tests
on animals. Amongst different strategies, combinations of tar-
geted in vitro experiments and in silico tools represent promising
strategies for improved toxicity testing in the future (Basketter
et al., 2012). In this study, we address this issue by focusing on
a multi-scale modeling framework which integrates data derived
from in silico as well as in vitro experiments. It is obvious that
the strategy presented here has to be validated in other substances
but it does bring research a further step forward toward predict-
ing toxic effects in vivo. The development of novel computational

FIGURE 10 | Response upon oral APAP dose of 393 mg/kg depending
on variations in the activity of CYP3A4 and CYP2E1. Simulated
concentrations of APAP in serum and of H2O2 in cells at the central vein in
the lobule are shown. The viability is the mean value of the whole lobule.
The left group of panels corresponds to a CYP2E1 activity of
1 µmol/Lcell/min, the right group of panels to a CYP2E1 activity of
5 µmol/Lcell/min. Additionally, a comparison between two CYP3A4 activities,
0.95 and 1.9 µmol/Lcell/min, is given in each figure.

technologies and their application to the modeling of human and
animal physiology signify that in silico tests can, in fact, reduce
and, in specific cases, even replace experimental tests on animals
(Goldberg and Hartung, 2006).

A basic assumption underlying this study is that the primary
toxic effect is mainly induced by cellular mechanisms. For this
reason, we set-up and applied a model alternative with a reduced
complexity of the liver, suitable for coupling hepatocytes and
whole body. The integration of detailed cellular models into organs
and a whole body model are basic differences compared with simi-
lar models (Wambaugh and Shah, 2010). Consequently, our model
allows the analysis of local and systemic effects of parameters at
different levels (cells, organ, and whole body).

As regards definition of the liver model, we were confronted
with several alternatives and grades of complexity ranging, e.g.,
from detailed, structured liver sub-organelles (Wambaugh and
Shah, 2010) over parallel tube (Ito and Houston, 2004) to well-
stirred models (Kuepfer et al., 2012). Parallel tube models, which
are a relatively simple approach, are best suited for intrinsic in vitro
clearance, but not appropriate for in vivo analysis (Ito and Hous-
ton, 2004). In reality, there is a heterogeneous population of
hepatocytes in the liver that has strong influence on the distri-
bution and toxic effect of the compound on the cells, showing that
a well-stirred model is clearly not appropriate for deriving robust
in vivo predictions (Ito and Houston, 2004). In effect, we devel-
oped a model that combines a parallel tube model with dispersion,
making it well-suited for the coupling of detailed cell mechanisms
enabling (i) the implementation of individualized or stratified data
on, e.g., gene expression and enzyme activities as well as (ii) the
consideration of zonation. We believe that this approach is nec-
essary for a better extrapolation of toxic effects from in vitro to
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in vivo. The possibility to define spatial distributions of substances
and effects is a clear advantage over well-stirred or parallel tube
representations (Kuepfer et al., 2012).

In this case study, we were able to predict the distribution of
APAP and its metabolites in a whole body model and correlated
concentrations of toxic metabolites with the onset of toxicity. Para-
meterization of the whole body model was performed using litera-
ture values and QSAR methods. Since we integrated a mechanistic,
kinetic cellular model, we were able to analyze how individual
properties – such as specific gene expression – affect pharmaco-
kinetics and toxic outcomes. This is a clear difference compared
with common PBPK approaches (Bois et al., 2010).

Concerning physiological parameters, such as body weight or
associated volumes of specific internal organs, which are com-
monly considered in pharmacokinetic modeling (Price et al.,
2003; Kuepfer et al., 2012), no variability was included in
this study. Differences in these physiological parameters can
be additionally introduced strongly increasing the complexity.
Since our central aim was to show the effect of intracellu-
lar properties on drug metabolism, distribution of substances,
and, eventually, organ-specific toxicity, we did not consider this
aspect.

IVIVE-PBPK approaches were proposed for the extrapola-
tion of toxic effects observed under in vitro–in vivo conditions
(Rostami-Hodjegan, 2012). This approach can be useful not only
for environmental risk assessment but also in drug development.
Other new extrapolation techniques are based on a “middle out”
approach which starts at the organ level and goes down to the
cellular level in order to analyze, e.g., drug-induced liver injury
(Howell et al., 2012).

The main difference between these methods and our multi-
scale approach is that the method presented in this study allows
the inclusion of physical parameters (such as blood flow, lobule
size, diffusion, and dependence on temperature etc.) and impor-
tant physiological properties, e.g., zonation of metabolic functions
of organs and tissues. This means that the effects of organ struc-
ture and physiology on cellular function can be taken into account,
aspects which can hardly be analyzed with a fore mentioned
techniques.

An additional advantage is the possibility to analyze inter-
individual variations in the toxicity of a compound, which is a
major issue in pharmaceutical industry (Schiødt et al., 1997; Lar-
son et al., 2005). Kinetic models of the mechanism of action of
compounds are ideal for facing this issue as they can be used
to predict inter-subject variability by including data, e.g., from

well-characterized liver banks (Bucher et al., 2011; Riedmaier et al.,
2011; Klein et al., 2012).

The modeling approach presented is based on a fairly complex
network model of the mechanism of action for the compound
of interest. This means that significant resources are required
for reconstructing the network of each substance. Hence, this
approach is suitable for a detailed characterization of substances.
In this work, we performed a case study for one compound. Future
work should focus on developing generic networks which can
easily be transferred to new substances.

The presented liver model is essentially an average lobule
assuming that the organ is of uniform tissue with a uniform blood
flow and a rapid distribution of substances. In reality, the distri-
bution of substances is non-homogeneous and time-dependent
(Weiss et al., 2012), a fact that is exacerbated by drug toxicity or
diseases such as cancer and cirrhosis. This aspect shows that a
3D representation of the organ would be a further step toward
improving the predictivity of the liver model. In addition, the
fact that drug metabolism is not only carried out in the liver
requires the extension of this kind of mechanistic modeling to
other organs.

In summary, we present a first multi-scale modeling approach
integrating cellular and organ models in a whole body environ-
ment suitable for predicting spatiotemporal variations in drug
response and toxicity. The presented work is an important basis for
efficiently analyzing inter-individual differences upon drug treat-
ment in silico and hence a significant step forward on the road to
the development of in silico patients.
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