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ABSTRACT 

 

This work presents a new approach to predict thermal stability of nitroaromatic 

compounds based on quantum chemical calculations and on Quantitative Structure-

Property Relationship (QSPR) methods. The data set consists of 22 nitroaromatic 

compounds of known decomposition enthalpy (taken as a macroscopic property related 

to explosibility) obtained from differential scanning calorimetry. Geometric, electronic 

and energetic descriptors have been selected and computed using Density Functional 

Theory (DFT) calculation to describe the 22 molecules. First approach consisted in 

looking at their linear correlations with the experimental decomposition enthalpy. 

Molecular weight, electrophilicity index, electron affinity and oxygen balance appeared 

as the most correlated descriptors (respectively R²= 0.76, 0.75, 0.71 and 0.64). Then 

multilinear regression was computed with these descriptors. The obtained model is a 

six-parameter equation containing descriptors all issued from quantum chemical 

calculations. The prediction is satisfactory with a correlation coefficient R2 of 0.91 and 

a predictivity coefficient R²cv of 0.84 using a cross validation method. 
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1. Introduction 

An important initial step for the management of industrial risks consists in identifying 

and determining as soon and as accurately as possible explosive abilities of molecules, 

whatever their final use. Moreover, the explosive intrinsic property of a substance ranks 

at top of physicochemical hazards that may be feared from the use of a given chemical 

[1]. This is a reason why, in addition to the complexity with which this hazardous 

property is triggered in real case, the experimental approach has remained the “golden” 

way to assess hazards. Keeping on this unique approach would however be a real 

burden for the industry with the requirements of the new regulatory framework 

REACH1 and its tool the GHS2 given the tremendous number of substances (up to 

30000) that might require a new assessment of hazardous properties. Another interest 

for predictive methods is to address needs of screening processes of substances that are 

applied to search for a targeted chemical activity (e.g. phytotoxicity, medical efficiency 

for a given illness, reactivity…) at the R&D level. 

A number of early works are worth being mentioned in the field of hazard prediction. At 

first, some methods of prediction based on thermodynamic concepts have been 

developed. Significant weaknesses in those methods lie in the chemical thermodynamic 

and energy release evaluation (CHETAH) [2] and the calculated adiabatic reaction 

temperature (CART) [3]. Grewer [4,5] proposed another way to predict the thermal 

stability by considering the influence of the chemical structure on the decomposition of 

nitro compounds. Keshavarz’s works have also to be noted as the elemental 

                                                 
1 REACH for “Registration, Evaluation and Authorization of Chemicals” is a new European regulation 
published by the European Commission in December 2006 and entered into force on 1st June 2007. All 
manufacturers, importers and suppliers of chemicals must identify and manage risks linked to the 
substances they manufacture and market. http://echa.europa.eu/ 
2 GHS for “Globally Harmonized System of classification and labeling of chemicals” is a United Nations 
system which aims to identify hazardous chemicals and to inform users about these hazards through 
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composition of substances is used to predict various properties of energetic materials 

such as the impact sensitivity [6]. Saraf et al. [7] outlined the pertinence (in terms of 

way of investigation) of screening tools based on the identification of relationships 

between chemical structure and thermal stability for nitroaromatic compounds and we 

have made up our mind to explore this route.  

An alternative tool for the prediction of chemical hazards is the Quantitative Structure 

Activity/Properties Relationship (QSAR/QSPR) methods. Nowadays, they are generally 

limited to the scope of toxic property screening (i.e. the nitrobenzene molecule [8]). 

Indeed, the first applications of these methods based on statistical analyses have mainly 

concerned biology [9,10], toxicology [11,12] or drug design [13-15]. However, their 

interest has been growing up in recent years for other physico-chemical activities [16-

18]. In such methodology, computational chemistry may help to describe the molecular 

electronic structure and the decomposition reaction at quantum chemical level.  

In this paper, we decided to explore the abilities of molecular modeling to predict the 

explosibility of nitroaromatic compounds (known as potentially explosive chemical 

substances and presenting complex decomposition channels [19]). A series of 

geometric, electronic and energetic descriptors were computed using quantum chemical 

calculations. Correlations between these data and macroscopic properties related to 

explosibility were determined. In particular, explosibility is related to detonation and 

deflagration performances and to sensitivity to mechanical (impact, shock or friction) 

and thermal stresses or to electric discharges. Here, we focused on the thermal stability 

property and more precisely on the experimental decomposition enthalpy (or heat of 

decomposition). Experimental characterization is well defined, particularly by 

calorimetric measurements [20] but, until now, only few approaches concern the 

                                                                                                                                               
standard symbols and phrases on the packaging labels and through safety data sheets (SDS). 
http://ecb.jrc.ec.europa.eu/classification-labelling/ 
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prediction of the thermal stability properties based on QSPR models [21-23]. In most of 

the cases, they are dedicated to specific (and small) classes of compounds (e.g. 

chromophores [24] or ionic liquids [25]). In the framework of chemical hazards 

management, Saraf and coworkers [7] proposed, to our knowledge, the only existing 

model concerning the heat of decomposition with an average absolute error of about 

6%: 

 275)/( NOnmolkcalH ×=∆−      (1) 

where nNO2 is the number of nitro groups in the molecule. 

Our work presents the first significantly correlated model for the prediction of this 

experimental property using an original approach combining QSPR methodology with 

quantum chemical calculations.  

 

2. QSPR methodology 

The quantitative structure-property relationship methodology (QSPR) consists in 

correlating quantitatively an experimental property with the molecular structures of the 

considered compounds. Thus, the relationship has the following general form between 

macroscopic and microscopic properties: 

 

Property = f (Descriptors)    (2) 

 

An experimental data set provides the property values. Then different descriptors can be 

calculated to characterize the molecular structure of the compounds of the data set. The 

method can be based on neural networks [26], genetic algorithms [27] or statistical 

analyses such as multilinear regressions. We chose the last approach in this study. 
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The model obtained with such a regression has the following form: 

 

nn XAXAXAAY ++++= ...22110   (3) 

 

where Y is the property to predict, Xi are the molecular descriptors and Ai the 

corresponding regression constants. The reliability of this model is estimated with the 

coefficient R², which characterize the fitting of the calculated values with the 

experimental ones. To ensure the validation of the models, the use of external data is 

recommended. Nevertheless, in this study, the set of available experimental data 

contained only 22 molecules making its division into training and validation sets 

impossible. For this reason, the coefficient R²cv, using a cross-validated method, has 

been considered to characterize the predictivity of the model. 

The cross-validation technique [28] is based on a leave-one-out procedure. For each 

molecule in the data set, a new multilinear regression is recalculated without changing 

the descriptors for all compounds in the data set, except this one. Then, the 

corresponding property value is predicted from this model equation. Finally, R²cv is 

calculated by correlating the obtained values for each compound with the experimental 

ones.  

Once a reliable equation is validated, this model can be used to predict the property, for 

other similar compounds to the selected ones, not yet measured and maybe not yet 

produced. The results can also help to understand the mechanisms leading to the studied 

property. 
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3. Data set selection 

The choice of the training set of experimental data is a critical point in a QSPR analysis. 

Experimental conditions may have a strong influence on the studied properties. 

Therefore, all experimental values used in the fitting procedure have to be obtained in 

the same conditions. Differential Scanning Calorimetry (DSC) is often used to 

characterize the thermal stability of explosive compounds [29]. The experimental 

property studied in this work is the decomposition enthalpy taken from literature [30]. 

Our data set is composed of 22 nitroaromatic compounds, known as potentially 

explosive chemicals [31]. The 22 molecules and their corresponding experimental 

decomposition enthalpy values are presented in Figure 1 and Table 1. 

 

4. Descriptors 

Different types of descriptors (geometric, electronic and energetic) have been selected 

to describe the 22 molecules. In Table 2 are presented the 14 descriptors calculated 

among the large number and diversity of those actually used in QSPR methodology 

[32]. 

 

4.1. Local descriptors 

In nitro compounds, the carbon-nitrogen bond dissociation is currently considered as a 

rate-determining step of decomposition [33]. For this reason, we decided to describe 

this carbon- nitrogen bond and its attached nitro group using geometric, electronic and 

energetic descriptors. 

First, the length of the carbon-nitrogen bond dCN and the charge on the NO2 functional 

group were calculated. 
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Secondly, the mid-point potential Vmid, also used as a descriptor [34,35] in the field of 

energetic materials, was evaluated. This descriptor is an approximation of the 

electrostatic potential at the midpoint of the carbon-nitrogen bond [36].  

 

CN

NC
mid d

QQ
V

5.0

+
=   (4) 

 

where QC and QN are respectively the atomic charges on carbon and nitrogen atoms.  

The C-NO2 dissociation bond energy (Ediss) has already been correlated to the impact 

sensitivity [37,38] and considered for the estimation of decomposition temperatures 

[39]. To calculate this energy, an homolytic dissociation of the R-NO2 molecule is 

considered: 

 

••→− 22 NO+RNOR   (5) 

 

Finally, the corresponding dissociation energy Ediss is calculated as the energy 

difference between products and reactants: 

 

)()()( 2RNOENOE+REE 2diss −= ••   (6) 

 

It is worth being noted that, for polynitroaromatic compounds, these descriptors were 

extracted for the weakest carbon-nitrogen bond in the molecules considering their 

dissociation energy.  

 

4.2. Global descriptors 
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If the previous local descriptors as above defined are specific for nitro compounds, 

global descriptors present the advantage to be more suitable for extended data sets with 

compounds without any nitro group. Among such descriptors, the molecular weight Mw 

was considered. It has also been used in the calculation of the oxygen balance as defined 

by Shanley et al. [40]. 

 

( )[ ]
wM

ZYX
OB

−+−= 221600
  (7) 

 

X, Y and Z are respectively the number of carbon, hydrogen and oxygen atoms in the 

molecule. This is a traditional empirical descriptor used in hazard prediction related to 

energetic materials [41].  

The atomization energy is the energy needed to break all bonds in the molecule. It can 

be calculated from the following equation: 

 

)()( moleculeEiatomEE
natom

i
inatomizatio −= ∑   (8) 

 

The electronic structure can be described by the dipole moment (DM) and the mean 

polarizability (α). Dipole moment and polarizability characterize the influence of an 

external field on the electronic density. The dipole moment is a scalar entity whereas the 

polarizability is a tensor. The mean polarizability is calculated from the polarizability 

matrix: 

 

( )zzyyxx3
1 αααα ++=   (9) 
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where αii are the diagonal components of the polarizability matrix. 

 

4.3. Conceptual density functional theory descriptors 

Global electronic descriptors can also be estimated from conceptual density functional 

theory [42,43]. This methodology allows to redefine classical chemical reactivity 

concepts, e.g. electronegativity, in the framework of the density functional theory [44].  

The ionisation potential (IP) and the electron affinity (EA) are calculated from the 

energies of the highest occupied and the lowest unoccupied molecular orbital εHOMO and 

εLUMO, according to the Koopmans theorem [45]. 

 

HOMOIP ε−=    (10) 

LUMOEA ε−=    (11) 

 

The electronegativity (χ) characterizing the electron donating property of the system 

was identified to be the negative of the chemical potential (µ) [46] and therefore: 

 

µεεχ −=
+

−=+=
2

)(

2

)( LUMOHOMOEAIP
   (12) 

 

The hardness (η) [47] has been defined similarly to express the resistance of the system 

to the change in the number of electrons. 

 

HOMOLUMOEAIP εεη −=−=    (13) 
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These quantities (eq. 12 and 13) are already used as descriptors for different physico-

chemical properties such as heats of formation or boiling points [48]. 

More recently, Parr et al. [49] constructed the electrophilicity index (ω) to measure the 

loss in energy for a maximal electron flow from donor to acceptor. This index is 

proportional to the square of the chemical potential divided by the hardness. 

 

η
µω
2

²=    (14) 

 

This descriptor has already been applied to the prediction of biological activity [50]. 

 

5. Computational details 

The molecular structures of 22 nitroaromatic compounds have been calculated. For each 

one, the structures of their phenyl radicals were also computed to access to the carbon-

nitrogen bond dissociation energy, the NO2 radical being of course also calculated. All 

calculations presented in this work were performed using the Gaussian03 package [51], 

employing the density functional theory (DFT) with the parameter-free PBE0 [52] 

hybrid functional. Geometry optimizations of stable species were performed with a 6-

31+G(d,p) basis set to describe correctly the geometric structure. Vibrational 

frequencies were obtained at the same level of theory. The nature of the stationary 

points was checked by showing no imaginary frequency for our stable structures. The 

electronic structure of these molecules has been investigated using the natural 

population analysis (NPA) [53]. 

The Codessa software [54] has been used to obtain correlation coefficients and the 

QSPR model (using the integrated Best Multi Linear Regression analysis) for the 
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prediction of the experimental decomposition enthalpy from the computed descriptors. 

The significance of each descriptor in the equations was validated by performing a 

Student t-test validation at a 95% confidence level.  

 

6. Results and Discussion 
 

6.1. Linear correlations 

The molecular descriptors, presented above, have been calculated for each molecule of 

the data set. These data, reported in Table 3, were analyzed to obtain a relationship 

between the molecular descriptors and the experimental explosibility.  

Simple linear fittings were computed between each descriptor and the experimental 

enthalpy change. Correlations were appreciated from the coefficient R² (in Table 3) as 

shown for the descriptors that provide the best and lowest correlations (see Figure 2), 

with R² of 0.76 for molecular weight and less than 0.01 for mean polarizability 

respectively. 

The local descriptors related to the C-NO2 bond (presented in paragraph 4.1) do not 

exhibit any significant correlation with the decomposition enthalpy (R²<0.5). Therefore, 

a simple and direct breaking of the carbon-nitrogen bond appears to be not sufficient for 

the description of the decomposition enthalpy. More complex processes might occur 

[19] and in particular other decomposition paths could exist as experimentally observed 

[55] and evidenced computationally [56]. Furthermore, major decomposition paths 

involving interactions between the nitro group and ortho-substituents have been 

calculated [57,58].  

More substantial correlations are exhibited for the molecular weight (R²=0.76), the 

electrophilicity index (0.75), the electron affinity (0.71) and the oxygen balance (0.64). 
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It can be noted that these descriptors are auto-correlated. Indeed, the molecular weight 

and the electron affinity are used in the calculation of the oxygen balance and the 

electrophilicity index respectively. 

Even if significant correlations appear, a single-descriptor approach is not sufficient for 

the prediction of the experimental property. For instance, considering the molecular 

weight or oxygen balance, the values of these descriptors do not vary with the position 

of the substituent. Indeed, ortho, meta and para nitrotoluenes present the same 

molecular weight (137 g/mol) whereas their decomposition enthalpies are different, i.e. 

329, 284 and 318 kJ/mol, respectively. The use of at least one more descriptor is needed 

to characterize the influence of the substituent position in this case. Therefore, in a next 

step, multivariable regressions are investigated.  

 

6.2. Multilinear model 

All the descriptors previously studied have been integrated in a multivariable analysis 

using a multilinear regression. The best QSPR model is estimated as the most predictive 

in term of R²cv.  

The obtained model is a six-parameter equation composed with the hardness, the 

electrophilicity index, the mean polarizability, the ionization potential, the dipole 

moment and the dissociation energy. 

 

84.0²,91.0²

2.9730.141.25337853.10304005033854

==
+−+−−+=∆−

cv

diss

RR

EDMIPH αωη
 (15) 

 

First we note that the six descriptors selected by this multilinear fitting procedure are 

different from the four global descriptors presenting the best linear correlations with the 

experimental decomposition enthalpy (see paragraph 6.1). The only exception is the 
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electrophilicity index. The other parameters (Eq.15) are less linearly correlated with the 

experimental property. 

Obviously, 22 molecules are not sufficient to obtain a robust predictive model. 

However, these results (with a R² of 0.91) are promising. For instance, when applied to 

the evaluation of the decomposition enthalpy of a molecule not included in the training 

set, as 2,4,6-trinitrotoluene (TNT), the predicted value is 920 kJ/mol which is close to 

its experimental value (998 kJ/mol [20]). Work is in progress in this direction, but here 

we stress, once again the difficulty to obtain homogenous experimental data. Moreover, 

the model gives interesting indications for the future exploration of larger data sets. 

Indeed, the presence of descriptors arising from the so-called conceptual density 

functional theory (i.e. η, ω, IP) has to be noticed, all being related to the molecular 

reactivity. Hence, the characterization of the C-NO2 bond, through Ediss in Eq 15, and 

the molecular reactivity properties are important parameters for the prediction of 

decomposition properties like thermal stability.  

Furthermore, contrary to classical constitutional descriptors (for instance, the oxygen 

balance OB), the selected descriptors in the model are able to distinguish between 

isomers. Hence, a model based only on the number of nitro groups (like Eq. 1) is not 

sufficient to completely characterize thermal stability of nitroaromatic compounds. 

Nevertheless this parameter is obviously fundamental. Indeed, the presence of chemical 

groups indicating explosive properties (e.g. nitro) in chemicals is a pre-evaluation 

element in chemical safety regulations for substances which may have explosive 

properties [59]. Besides, mono-, di- and tri-nitroaromatic compounds can be clearly 

distinguished on figure 3, which represents the calculated values versus the 

experimental ones. So our model is consistent with this empirical consideration.  
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7. Conclusion 

Nitroaromatic compounds have been modeled using the density functional theory. The 

aim was to observe correlation between the molecular structure of such compounds and 

an experimental property of explosibility, the decomposition enthalpy. The electronic 

and geometric structures were characterized with 14 molecular descriptors. The 

molecular weight, the oxygen balance, the electron affinity and the electrophilicity 

index are the descriptors the most correlated with the experimental values of a data set 

containing 22 nitroaromatic molecules whereas the description of the direct breaking of 

the carbon nitrogen bond does not seem to be sufficient to describe the energy released 

during the thermal decomposition of these nitroaromatic compounds. A multivariable 

model has been established. It consists in a six-parameter equation with promising 

correlation (R²=0.91) and predictivity (R²cv=0.84) coefficients. These first results on the 

use of descriptors calculated from quantum chemical calculation to develop QSPR 

models to predict decomposition enthalpy are very encouraging. In particular, 

parameters characterizing the C-NO2 bond and the molecular reactivity have 

demonstrated their pertinence in such a study. Keeping in mind that our data set 

contains only 22 molecules, a robust model for the prediction of decomposition 

enthalpy of nitroaromatic compounds can be expected using an extended data set and 

associating the selected descriptors of this study with other classes of descriptors, e.g. 

constitutional and topological descriptors. 
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List of figure legends: 

 

Fig. 1.   Sketchs of the considered nitroaromatic molecules (see table 1 for the 

exact nomenclature). 
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Fig. 2.   Plot of (a) molecular weight and (b) mean polarizability with the 

experimental decomposition enthalpy. 
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Fig. 3.   Calculated vs experimental decomposition enthalpies (kJ/mol). 



 25 

 

 

Table 1: Experimental decomposition enthalpies (-∆Hexp/kJ/mol) of the 22 substituted 

nitrobenzene molecules from [30]. 

 
  -∆Hexp 

1 nitrobenzene 339 

2 1,2-dinitrobenzene 518 

3 1,3-dinitrobenzene 586 

4 1,4-dinitrobenzene 622 

5 2-nitrotoluene 329 

6 3-nitrotoluene 284 

7 4-nitrotoluene 318 

8 2,6-dinitrotoluene 576 

9 3,4-dinitrotoluene 666 

10 2,4-dinitrotoluene 596 

11 2-nitroaniline 307 

12 3-nitroaniline 314 

13 4-nitroaniline 279 

14 2-nitrobenzoic acid 297 

15 3-nitrobenzoic acid 298 

16 4-nitrobenzoic acid 304 

17 2-nitrophenol 345 

18 3-nitrophenol 316 

19 4-nitrophenol 300 

20 1-chloro-4-nitrobenzene 360 

21 2,4-dinitrophenol 662 

22 2,4,6-trinitrophenol 1173 
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Table 2: Descriptors. 

 

 

dCN carbon nitrogen distance in Ǻ 

QNO2 charge on the nitro group 

Vmid mid-point potential in Ǻ-1 

Ediss carbon nitrogen dissociation energy in a.u. 

Mw molecular weight in g/mol 

OB oxygen balance in percents 

Eatom atomization energy in a.u. 

DM  dipole moment in D 

α mean polarizability in Ǻ3 

IP ionization potential in a.u. 

EA electron affinity in a.u. 

χ electronegativity in a.u. 

η hardness in a.u. 

ω electrophilicity index in a.u. 
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Table 3: Descriptors calculated for 22 nitro compounds under study. See table 1 for acronyms and figure 1 for molecules nomenclature. 

  dCN
a QNO2

b Vmid
a Ediss

a (‡) Mw OB Eatom
a (‡) DMa α

a IPa(#) EAa(#) χ
a(#) η

a(#) ω
a(#) 

1 1.467 -0.26 1.64 71.2 123 -163 1497.3 4.832 0.40 0.299 0.097 0.198 0.202 0.097 

2 1.467 -0.20 1.74 60.4 168 -95 1666.5 7.000 0.45 0.314 0.117 0.216 0.197 0.118 

3 1.470 -0.23 1.65 68.5 168 -95 1676.5 4.458 0.39 0.329 0.122 0.226 0.207 0.123 

4 1.472 -0.23 1.71 68.2 168 -95 1676.4 0.000 0.42 0.327 0.136 0.231 0.191 0.140 

5 1.446 -0.26 1.65 68.7 137 -181 1778.5 4.542 0.39 0.286 0.091 0.188 0.195 0.091 

6 1.467 -0.26 1.66 71.4 137 -181 1778.0 5.196 0.40 0.285 0.094 0.190 0.191 0.094 

7 1.462 -0.26 1.61 72.4 137 -181 1778.5 5.567 0.38 0.289 0.092 0.190 0.197 0.092 

8 1.468 -0.23 1.68 63.8 182 -114 1950.6 3.071 0.41 0.311 0.110 0.211 0.201 0.111 

9 1.468 -0.20 1.78 60.5 182 -114 1948.1 7.722 0.46 0.304 0.112 0.208 0.192 0.113 

10 1.469 -0.24 1.68 65.9 182 -114 1955.5 5.177 0.39 0.317 0.115 0.216 0.201 0.116 

11 1.441 -0.33 1.45 75.6 138 -151 1663.2 5.026 0.30 0.243 0.087 0.165 0.155 0.088 

12 1.468 -0.26 1.71 71.6 138 -151 1660.1 5.904 0.42 0.244 0.090 0.167 0.154 0.091 

13 1.448 -0.30 1.49 75.7 138 -151 1662.6 7.472 0.34 0.248 0.080 0.164 0.169 0.080 

14 1.466 -0.22 1.77 62.7 167 -120 1862.3 4.259 0.47 0.302 0.101 0.201 0.201 0.101 

15 1.468 -0.24 1.63 70.1 167 -120 1870.3 2.815 0.39 0.312 0.106 0.209 0.206 0.106 

16 1.470 -0.24 1.57 69.5 167 -120 1869.9 3.762 0.36 0.310 0.115 0.212 0.195 0.116 

17 1.460 -0.25 1.49 67.4 139 -132 1589.4 6.091 0.34 0.271 0.086 0.179 0.185 0.086 

18 1.469 -0.25 1.70 70.5 139 -132 1594.9 6.066 0.42 0.270 0.096 0.183 0.174 0.096 

19 1.455 -0.28 1.54 73.8 139 -132 1596.8 5.504 0.36 0.275 0.090 0.182 0.185 0.090 
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20 1.464 -0.25 1.62 71.1 157 -122 1480.4 3.299 0.39 0.295 0.104 0.200 0.191 0.104 

21 1.463 -0.22 1.53 64.6 184 -78 1769.9 6.289 0.34 0.302 0.110 0.206 0.192 0.111 

22 1.466 -0.19 1.56 62.3 229 -45 1951.0 1.757 0.35 0.323 0.149 0.236 0.174 0.160 

R² c 0.10 0.46 0.01 0.42 0.76 0.64 0.21 0.10 0.00 0.35 0.71 0.52 0.00 0.75 

Distances in Ǻ, dipole moments in D, oxygen balance in %, molecular weight in g/mol, polarizability in Ǻ3, Energies (‡) in kcal/mol or (#) in u.a.
 

aat PBE0/6-31+G(d,p) level 

bat PBE0/6-31+G(d,p) level from NPA  

ccorrelation coefficient for the linear regression with the experimental decomposition enthalpies in table 1 
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