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Abstract: Underwater fish monitoring is the one of the most challenging problems for efficiently 
feeding and harvesting fish, while still being environmentally friendly. The proposed 2D computer 
vision method is aimed at non-intrusively estimating the weight of Tilapia fish in turbid water en-
vironments. Additionally, the proposed method avoids the issue of using high-cost stereo cameras 
and instead uses only a low-cost video camera to observe the underwater life through a single chan-
nel recording. An in-house curated Tilapia-image dataset and Tilapia-file dataset with various ages 
of Tilapia are used. The proposed method consists of a Tilapia detection step and Tilapia weight-
estimation step. A Mask Recurrent-Convolutional Neural Network model is first trained for detect-
ing and extracting the image dimensions (i.e., in terms of image pixels) of the fish. Secondly, is the 
Tilapia weight-estimation step, wherein the proposed method estimates the depth of the fish in the 
tanks and then converts the Tilapia’s extracted image dimensions from pixels to centimeters. Sub-
sequently, the Tilapia’s weight is estimated by a trained model based on regression learning. Linear 
regression, random forest regression, and support vector regression have been developed to deter-
mine the best models for weight estimation. The achieved experimental results have demonstrated 
that the proposed method yields a Mean Absolute Error of 42.54 g, R2 of 0.70, and an average weight 
error of 30.30 (±23.09) grams in a turbid water environment, respectively, which show the practical-
ity of the proposed framework. 
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1. Introduction 
Thailand’s economy has been generally based on agriculture production, with the 

sector employing around one-third of the country’s labour force. Aquaculture production 
in Thailand has continuously increased since 1995 [1]. Fish are a healthy food that are an 
excellent source of protein, minerals, and essential nutrients. This leads to enormous de-
mand that exceeds the production capacity. Therefore, the development of fish farming 
with modern technology will improve fish monitoring operations to efficiently feed and 
harvest fish, while also being environmentally friendly. In addition, non-contact meas-
urements of fish body size and weight will reduce stress and injury to the fish. This re-
search is the first step of modern fish farming in Thailand to measure fish weight by non-
intrusive methods. Modern aquaculture has rapidly developed in recent years. Extensive 
expansion of traditional aquaculture has resulted in it being transformed into modern 5G 
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aquaculture by automatic and precise task-based machines. The machines perform classi-
fication, prediction, and estimation, and have many benefits, including reducing opera-
tional time. 

Fish weight estimation is one of the most challenging problems in aquacultural ap-
plications. Recent methods of fish weight estimation have been proposed, as in Ref. [2], 
which is comprised of three components: the simplified VGG module, the multi-dilated 
convolution module, and the squeeze-excitation module (SE). In Ref. [3], the fish biomass 
estimation has employed an Arduino board to measure live-fish weights for in-land facil-
ities or offshore cages. Fish size is a crucially essential parameter for estimating fish weight 
through different growth stages. Machine vision provides an automatic and effective ap-
proach for measuring size where special cameras are required for capturing free-swim-
ming fishes. For example, stereovision system [4] stereo cameras have been used for dis-
tance measurements and the capture of fish in a tank, which the CNNs method use for 
fish detection and a regression method predicts the fish’s weight. Stereo cameras were set 
for capturing images of fish. The Nile Tilapia weight prediction method performs fish 
detection via image processing techniques and depth calculation, which is given by stereo 
frames through disparity values. The length estimation was estimated from the contour 
of the fish, then it is converted into pixel length in metric units by using disparity infor-
mation. Polynomial regression was used for computing the weight of fish given by the 
estimated length of the fish. The strength of the regression principle is the simplicity of 
development and low computational complexity. Six cameras were set at a fixed dis-
tance—with three being near-infrared cameras and three being general cameras [5]—
where a deep convolutional neural network (DCNN) estimated fish weight from the 
length, weight, and girth of the fish. The residual neural network (ResNet) and LinkNet 
for segmenting fish images then estimate the weight from the area of the detected fish [6]. 
Machine learning approaches for predicting animal weight can be categorized into two 
groups, which are regression learning and deep learning. The regression approach has 
been broadly used to develop models for the prediction of body weight. Regression learn-
ing for weight prediction requires animal features that are significantly related to weight 
to be used for learning. Thus, animal feature identification is essential to a model for learn-
ing and accurately predicting the animal’s weight. For example, thirty attributes of sheep 
are used from images, i.e., shape, size, and angles with k-curvature, in Ref. [7]. Eight re-
gression models were used and extracted for the regression models. These are linear re-
gression (LR), support vector regression (SVR), K-neighbors regression (KNR), multi-
layer perceptron regression (MLPR), light Gradient boosting machine (GBM), extreme 
gradient boost regression (XGBR), Gradient boosting regression (GBR), and random forest 
regression (RFR). The research found that RFR yields the best result with an R2 at 0.687. 
In Ref. [8], the weight-prediction-method-based classification and regression tree for goats 
was proposed and given by seven morphometric traits, i.e., body length, heart grith, rump 
height, rump width, ear length, cannon circumference, and head width—and including 
age and sex. The results indicated that sex, heart girth, and age are highly correlated with 
variations in the body weight of goats. In Ref. [9], the state-of-the-art regression models 
from SciKit-Learn were employed to predict the body weight of Hereford cows and were 
given by 12 body size measurements (withers height, hip height, chest dept, chest width, 
width in maclocks, sciatic hill width, oblique length of the body, oblique rear length, chest 
girth, metacarpus girth, and backside half-girth) and age (full years). The paper found that 
RFR yields the best weight prediction of Hereford cows at a 0.644 regression score (R2). In 
Refs. [10,11], only three attributes of sheep—body length, body height, and chest girth—
were provided for predicting sheep. The weight-prediction methods were computed by a 
multiple linear regression analysis and generalized linear model. The accuracy perfor-
mance of the model has an R2 score of 0.62.  

A deep learning approach is currently the favored method for handling complex 
data, such as that in an underwater environment. Deep learning is a non-linear approach 
for unsupervised or supervised learning. A deep learning framework [12] is composed of 
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two sections where the first section is convolutional neural networks (CNNs) and the sec-
ond section is a full-connected multi-layer perceptron (MLP). The CNNs transform input 
data into multiple levels of representation to extract significant spatial information from 
the input data by performing convolution functions, pooling functions, and activation 
functions, respectively. The significant features of input data will automatically be discov-
ered by the CNNs section. A pooling function is used to reduce the number of parameters 
by using masking and mathematical operations, i.e., the maximum, the average, the 
weighted average, and the L2 norm, which is used to select the represented parameter 
from the masking. A sparsity vector will be obtained as the results of the CNNs then pass 
through the fully-connected MLP. The MLP process consists of two dense layers that es-
timate event activity probabilities for each frame. A softmax function is last and is used as 
an activation function to classify the sound into its corresponding class. The softmax func-
tion is considered the generalization of the logistic function, which aims to avoid overfit-
ting. An advantage of deep learning methods is that they do not require feature extraction 
for an input sound. Deep learning has been extensively employed in aquaculture for ex-
ample detection, classification, counting, monitoring behavior, or defect detection. Real-
time object detection methods such as YOLO (You Only Look Once) [13,14] and COCO 
(Common Objects in COntext) [15] were introduced to detect aquatics, for example, the 
DeepFish method in Ref. [16], which analyzed remote underwater fish habitats. The 
YOLO algorithm is formulated as a regression problem and provides the class probabili-
ties for image detection. The YOLO framework is based on convolutional neural networks 
(CNN), which requires only a single forward propagation through a neural network to 
detect objects. The YOLO algorithm works using the following three techniques: Residual 
blocks, Bounding box regression, and Intersection Over Union (IOU). YOLO yields supe-
rior performance over the other object-detection techniques. Deep learning has also been 
integrated with traditional methods into a myriad of applications that can be used for a 
variety of purposes. For example, DeepFish with a support vector machine (SVM) method 
in Ref. [17] is used for the recognition of fish from 23 fish species from a video captured 
by underwater cameras in the open sea. The deep learning architectures of DeepFish-SVM 
are constructed by two convolution layers, a non-linear layer, a feature pooling layer, a 
spatial pyramid pooling, and an SVM classifier. Image augmentation was used to enlarge 
the training set for the species whose image number is less than 300. The accuracy results 
of DeepFish-SVM are compared to DeepFish-Softmax and Deep-CNN. DeepFish-SVM 
yields slightly better results than the rest. In Ref. [18], the proposed method based on SVM 
and CNNs is applied for classifying regional areas of four crops (paddy rice, potatoes, 
cabbages, and peanuts), roads, and buildings from remote-sensing images. The SVM pro-
cess handles pixel-based classification while the CNN process performs block segmenta-
tion to enhance the classification results. The proposed method yields the high accuracy 
performance of regional area classification. In Ref. [19], the weighing of heifers is intro-
duced by using the Mask-RCNN segmentation algorithm with a proposed CNN-based 
mass prediction model. In addition, a pig contactless weight system is presented in Ref. 
[20] which uses the pig-detection-based CNNs and the weight regression model. Three-
dimensional (3D) cameras were used for capturing posture images. The weight of pigs is 
estimated from the back of pigs in top-view depth images. Other methods of weight-esti-
mation-based 2D and 3D reconstruction have recently been proposed. Furthermore, deep 
learning was used for predicting the weight of cattle in Ref. [21]. Deep learning extends to 
perform the regression task with automatic feature extraction given by 2-dimensional im-
ages. Individual cattle were captured through the water trough platform that provides a 
cattle’s ID, images, time, and weight. Three types of convolutional neural networks (CNN) 
with various regularization functions were established to determine the best methods, 
which are combination recurrent neural networks (RNN)/CNN with and without atten-
tion, recurrent attention model without CNN, RestNet 8, and EfficientNetB1. The Adam 
optimizer with a learning rate of 0.005 was set for training the models for 10 epochs and 
at a batch size of 32 to 256. The experimental results showed that the RNN/CNN model 
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achieved the highest performance among the rest models at a Mean Absolute Error (MAE) 
of 23.19 kg. The volume and weight estimation of an apple was proposed in Refs. [22,23] 
by simulating 3D images using a single multispectral camera and near-infrared linear-
array structured light. Height features were mapped via 2D and 3D reconstruction im-
ages. The PLS and LS-SVM were employed to estimate the volume and weight of apples. 
A 3D image can be directly obtained via special cameras, for example, binocular stereo 
cameras, a laser-based camera, or an RGB-depth camera that generates the spatial infor-
mation of the X-Y dimension with the height information of Z represented. 

Machine learning approaches for weight prediction can be categorized into two 
groups, where the first group is based on the regression approach and the second one 
relies on a deep learning approach. The regression approach takes advantage of the sim-
plicity and fast performance but requires the feature extraction process. The selected fea-
tures are vital and significantly affect the prediction performance. Generally, the regres-
sion approach needs more than five features. Therefore, feature acquisition is still a chal-
lenging issue, and is time- and cost-consuming. On the other hand, deep learning ap-
proaches deliver a compact algorithm given by input images and then return a result. 
However, deep learning approaches usually require special cameras with high computa-
tional complexity for weight estimation. A captured image by an underwater camera is 
influenced by complex non-linear factors due to luminosity change, turbidity, various 
backgrounds, and moving aquatic animals. Underwater monitoring is one of the most 
challenging problems due to uncertain environments caused by changes in illumination 
and shadow, turbidity, underwater–aquatic confusion, camera limitations, and moving 
aquatics. These result in the low quality of image capture. Therefore, the practicality of a 
fish weight-prediction method for turbid water that can be used in real fish-farming ap-
plications is still an open problem. 

The present paper proposes a novel low-cost practical single sensor imaging system 
with deep and regression learning algorithms for the non-intrusive estimation of Tilapia 
weight in turbid water environments. The proposed method brings new contributions. 
Firstly, only a low-cost single camera is required for observing the underwater fish (no 
other special equipment or sensor is used for monitoring fish). Thus, the fish are not in-
jured during the weighing process, which is beneficial to the health of the fish. Secondly, 
the proposed method can determine the fish’s weight in the turbid underwater environ-
ment. For turbid water, the proposed method can process the video frames with or with-
out an image-enhancement process. This flexibility favors practicality in real fish-farming 
applications. Only as little as three attributes are required for predicting the fish’s weight: 
(i) fish’s age, (ii) the length and width of the fish, and (iii) the depth between the fish and 
the camera. These attributes are automatically computed by the proposed algorithm in 
one-go. Finally, the proposed method is computationally simple and comprises two major 
steps, i.e., Tilapia detection-based deep transfer learning and Tilapia weight estimation-
based regression learning. This augments the proposed method with low computational 
time and thus results in faster execution. The proposed machine learning models are ame-
nable to interpretability by the users. For example, once the fish is detected, the estimated 
length and height of the fish, as well as the depth information from the camera, are made 
known to the user. By manually inputting the age of the fish by the user, the user will be 
able to determine the weight of the intended fish. 

This paper is organized as follows: Section 2 presents the machine vision algorithm 
to estimate the weight of Tilapia in an underwater environment. Next, Section 3 evaluates 
and elucidates the performance of the proposed Tilapia weight estimating algorithm. Fi-
nally, Section 4 summarizes the proposed estimation method and future research pro-
spects. 

2. Methodology 
The proposed method combines two steps: a Tilapia detection step and Tilapia 

weight-estimation step. The proposed method was started by training the models and 
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then using the trained models in an evaluation phase. The training phase performs data 
preparation for Tilapia Detection Training and then generates a Tilapia detection (TDet) 
model that is based on deep transfer learning. In the Tilapia weight-estimation step, three 
models are trained by using regression learning. These models are are Tilapia depth esti-
mation (TDepE), Tilapia pixel-to-centimeter estimation (TP2CME), and tilapia weight es-
timation (TWE). Therefore, the proposed algorithm is named Tilapia weight estimation—
i.e., the deep regression learning “TWE-DRL” algorithm. The algorithm of the proposed 
method is illustrated in Figure 1.  

 
Figure 1. Proposed TWE-DRL algorithm. 

The input parameters of the TDepE model consist of the age of the fish and the fish’s 
length and width in pixel units. In the process of data acquisition, the ages of the fish were 
recorded along with the fish-image capture every two weeks during the feeding process. 
The actual length and width of the fish were obtained by manually extracting this infor-
mation from the image-annotated labels of the fish. Therefore, the training dataset of the 
TDepE model contains the actual values of the fish’s age, length, and width. In practice, 
the age of the fish will be obtained from a fish farmer with prior knowledge. The input 
parameters of the TP2CME model use the same parameter set as TDepE and add the dis-
tance between the fish and the camera with regards for the depth parameter. The depth 
dataset contains three independent attributes, which are the age, the fish’s length and 
width in pixel units, and the depth. Firstly, depth information acquisition was manually 
determined by humans. There are stripes on the ground and indicated sides from the front 
of the camera to the end of the tank. Each strip is 10 cm apart from one another. Strips are 
used as a reference distance from the camera. Hence, the fish’s distances were estimated 
in response to the nearest band where the fish was located. The depth of the fish affects 
the size of the fish, i.e., when a fish is close to a camera then the depth is small, and the 
length and the width of the fish are larger when it is further away. The input parameters 
of the TWE model follow the same steps as the TP2CME model where the output of the 
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TP2CME model is an independent parameter of the TWE model plus all of the independ-
ent parameters from the TP2CME dataset. For the TWE training dataset, the actual length 
and width of fish was provided from Studio photography. The details of each individual 
step are elucidated in the following sections. 

The proposed TWE-DRL algorithm has two major processes, which are to detect and 
extract the size of an individual Tilapia in an image and to estimate the depth of the fish 
from the camcorder, then convert the size of the Tilapia from pixels to centimeters given 
the estimated depth. Finally, the weight of the Tilapia is predicted from the fish’s size with 
the inclusion of the fish’s age in weeks. In order to achieve these goals, four-training mod-
els are required and named TDet, TDepE, TP2CME, and TWE. The details of each indi-
vidual step are elucidated in the following sections. 

2.1. Tilapia Detection 
Tilapia-detection-based deep transfer learning is used to create a model for detecting 

Tilapia in digital images. Tilapia detection is established through deep learning networks 
as their backbone and the detection network is used to extract features from the input 
images and localization, respectively. An object detection approach can be categorized 
into two types, i.e., one-stage detectors and two-state detectors. One-stage detectors use a 
single network to predict object bounding boxes from images directly then classify the 
probability scores from the images—for example, YOLO, SSD, and RetinaNet. 

Two-stage detectors mark regions of the target instead of learning from the whole 
image. Next, the proposal regions will be passed into a classifier and regressor, respec-
tively. Region Proposal Networks (RPNs) are used for searching possible target regions 
as the first stage. The second stage extracts significant features by using a region-of-inter-
est (RoI) pooling operation from individual candidate regions for the following classifica-
tion and bounding-box regression. Examples of two-stage detectors are Faster R-CNN and 
Mask R-CNN. 

RetinaNet is a one-stage object detector with focal loss as a classification. RetinaNet 
utilizes ResNet as its backbone. RetinaNet inherits the fast speed of previous one-stage 
detectors by avoiding the use of RPNs. Faster R-CNN extracts features from region pro-
posals and then passes the region-of-interest (RoI) pooling layer to get the various size 
features as the input of the following classification and bounding-box regression fully-
connected layers. Mask R-CNN [16] is an extending work to Faster R-CNN by using 
RoIAlign to extract a small feature map from each RoI and adding a parallel mask branch. 
The feature pyramid network (FPN) is the backbone that extracts RoI features from dif-
ferent levels of the feature pyramid according to extract features that achieve excellent 
accuracy and processing speeds. Given that higher-resolution feature maps are important 
for detecting small objects while lower-resolution feature maps are rich in semantic infor-
mation, a feature pyramid network extracts significant features.  

Deep transfer learning comprises two steps: Firstly, the pre-training step and sec-
ondly, the post-training step. The pre-training step loads the learned weights from the 
pre-trained model as initial values for the deep learning network. For the post-training 
step, the deep learning network will learn and fine-tune the weight given by the Tilapia-
image dataset. Deep transfer learning has the advantage of reducing learning time and 
increasing the accuracy of the model. The COCO-pre-trained Mask region R-CNN model 
was employed to determine the initial value of the deep learning architecture. Mask R-
CNN is an object detection algorithm that performs target detection, target classification, 
and instance segmentation simultaneously in a neural network. Mask R-CNN returns two 
outputs that are a class and a bounding-box offset, as illustrated in Figure 2, where FC 
depicts fully-connected layers. A 𝑚 × 𝑚 mask representation encodes the spatial struc-
ture from an input image by the pixel-to-pixel method that corresponds to the convolu-
tions. The 𝑚 × 𝑚 mask is generated from a region of interest (RoI) by using a fully con-
volutional network (FCN) with a per-pixel sigmoid and a binary loss to semantic 
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segmentation. This naturally leads Mask R-CNN to maintain the 2-dimentinal spatial lay-
out rather than transform it into a vector representation.  

 
Figure 2. Mask R-CNN structure for Tilapia Detection. 

Mask R-CNN consists of two components. Firstly, the backbone network of the pro-
posed method is based on ResNet. ResNet consists of many stacks of residual units. Each 
unit can be expressed as in Equation (1), where 𝑥௟ and 𝑥௅indicate an input feature to the 
lth Residual Unit and an output of any deeper unit L [24]: 𝑥௅ = 𝑥௟ + ∑ 𝐹(𝑥௜, 𝑊௜)௅ିଵ௜ୀ௟   (1)

where 𝐹(∙)  is a residual function and ∑ 𝐹(∙)௅ିଵ௜ୀ௟  is a residual function. The 𝑊௜ =𝑊௜,௬|ଵஸ௬ஸ௅௔௬௘௥ term is a set of weights (and biases) associated with the lth Residual Unit. A 
3 × 3 convolution layer has been set for RPN. Secondly, RoIAlign performs per-pixel 
preservation of spatial features extraction by using a fully convolutional network and 
RoIPool for the feature map. Mask R-CNN applies a multi-loss function during the learn-
ing to evaluate the model and ensure its fitting to unseen data. This loss function is com-
puted as a weighted total sum of various losses during the training at every phase of the 
model on each proposal RoI, which is shown by Equation (2). This weighted loss is defined 
as [25]: 𝐿𝑜𝑠𝑠 = 𝐿௖௟௔௦௦ + 𝐿஻஻ + 𝐿௠௔௦௞  (2)

where 𝐿௖௟௔௦௦, 𝐿஻஻, and 𝐿௠௔௦௞ represent the classification loss, bounding-box loss, and the 
average binary cross-entropy loss, respectively. The 𝐿௖௟௔௦௦ shows the convergence of the 
predictions to the true class. 𝐿௖௟௔௦௦ combines the classification loss during the training of 
RPN and Mask R-CNN heads. 𝐿஻஻ shows how well the model localizes objects and it 
combines the bounding-box localization loss during the training of RPN and Mask R-
CNN heads. The 𝐿௖௟௔௦௦and 𝐿஻஻losses are computed by Equations (3) and (4): 𝐿௖௟௔௦௦(𝑝, 𝑢) = − 𝑙𝑜𝑔 𝑝௨  (3)

where 𝐿௖௟௔௦௦(𝑝, 𝑢) is the predicted probability of ground truth class u for each positive 
bounding box. 𝐿஻஻(𝑡௨, 𝑣) = ∑ [𝐿ଵ௦௠௢௢௧௛(𝑡௜௨ − 𝑣௜)]௜ఢሼ௫,௬,௪,௛ሽ   (4)

where 𝐿ଵ௦௠௢௢௧௛(𝑥) = ൜ 0.5𝑥ଶ 𝑖𝑓|𝑥| < 1|𝑥| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  and 𝐿ଵ௦௠௢௢௧௛(𝑡௜௨ − 𝑣௜)  are the predicted 

bounding-box for class u and ground truth bounding-box 𝑣 for each input 𝑖. 
The 𝐿௠௔௦௞ has 𝐾 × 𝑚 × 𝑚 dimensional output for each RoI where 𝐾 represents a 

number of a class and 𝑚 × 𝑚 is a matrix representation of the class. A per-pixel sigmoid 
is applied and the 𝐿௠௔௦௞ is computed using the average binary cross-entropy loss that 
the 𝐾 mask is associated with the Kth class, i.e., 𝐾 = 1 = 𝑇𝑖𝑙𝑎𝑝𝑖𝑎. The 𝐿௠௔௦௞ can be ex-
pressed in Equation (5) [26,27]: 𝐿௠௔௦௞ = ଵ௠మ ∑ ൫𝑙𝑜𝑔 𝑃௜,௝௄ ൯௠∗௠௜ୀଵ   (5)
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were 𝑃௜,௝௄  denotes the ith pixel of the jth generated mask. The backbone network has used 
a 101-layer ResNet and a 3 × 3 convolution layer has been set for RPN. Secondly, RoIAlign 
performs a per-pixel preservation of spatial features extraction by using a fully convolu-
tional network and RoIPool for the feature map. This network outputs a K × m × m mask 
representation that is upscaled and the channels are reduced to 256 using a m × m convo-
lution, where K is the number of classes, i.e., K = 1, and m = 28 for the ResNet_101 network 
as a backbone. All training parameters use the same values, where the batch size is 128 
images, the learning rate is 2.5 × 10−4, and the maximum iterations are 300. 

The TDet model delivers the bounding-box output as a set of coordinate points (x, y) 
of a detected fish. The coordinate points from the bounding box were extracted to com-
pute the length and width of the detected fish. However, these measurements are subject 
to perspective projection (pixel units). The fish size in perspective projection relies on the 
depth between the fish and the camera. This results in the fish body that is closer to the 
camera being wider and longer than those further away. Thus, the fish size due to per-
spective projection is essentially converted into real-measurement units of the fish’s actual 
size before estimating the weight of the Tilapia.  

2.2. Tilapia Weight Estimation 
The next step is to estimate the weight that comprises three sub-steps: First, estimat-

ing the depth of the fish; second, converting the fish’s width and length from pixel to 
centimetre; and finally, determining the fish’s weight by using all estimated data of the 
fish by training the TDepE, TP2CME, and TWE models, respectively. These three models 
specifically required the following independent data and delivered the dependent output 
as shown in Table 1. 

Table 1. Independent data and dependent output of TDepE, TP2CME, and TWE models. 

Models Independent Data Dependent Output 

TDepE 
age of fish (weeks) 

actual depth (cm) length of fish (pixel) 
width of fish (pixel) 

TP2CME 

age of fish (weeks)  

length of fish (pixel) length of fish (cm), 
width of fish (pixel) width of fish (cm) 

depth (cm)  

TWE 

age of fish (weeks) 

weight of fish (g) 

length of fish (pixel) 
width of fish (pixel) 

depth (cm) 
length of fish (cm) 
width of fish (cm) 

The three models are sequentially related to one another, where an output of the pre-
vious model is an input of the next model. The regression models of the TDepE (𝑦ොௗ௘௣௧௛), 
TP2CME (𝑦ො௟_௖௠, 𝑦ො௪_௖௠), and TWE (𝑦ො௪) models can mathematically be expressed in Equa-
tions (6)–(8), respectively, as: 𝑦ොௗ௘௣௧௛ = 𝑓൫𝑥௔௚௘, 𝑥௪_௣௜௫, 𝑥௛_௣௜௫, 𝑎௔௚௘, 𝑎௪_௣௜௫, 𝑎௛_௣௜௫൯ + 𝑒ௗ௘௣௧௛  (6)𝑦ො௟_௖௠, 𝑦ො௪_௖௠ = 𝑓൫𝑥௔௚௘, 𝑥௪_௣௜௫, 𝑥௛_௣௜௫, 𝑦ොௗ௘௣௧௛, 𝑎௔௚௘, 𝑎௪_௣௜௫, 𝑎௛_௣௜௫, 𝑎ௗ௘௣௧௛൯ + 𝑒௖௠ (7)
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𝑦ො௪ = 𝑓൫𝑥௔௚௘, 𝑥௪_௣௜௫, 𝑥௛_௣௜௫, 𝑦ොௗ௘௣௧௛, 𝑦ො௟_௖௠, 𝑦ො௪_௖௠, 𝑎௔௚௘, 𝑎௪_௣௜௫, 𝑎௛_௣௜௫, 𝑎ௗ௘௣௧௛, 𝑎௪_௖௠, 𝑎௛_௖௠൯+ 𝑒௪ 
(8)

where 𝑒ௗ௘௣௧௛, 𝑒௖௠, and 𝑒௪ denotes an additive error term. The closed form equation to 
link all the above equations together is to be determined by the machine learning model. 
To achieve the goal, the regression models, i.e., Tilapia depth estimation, Tilapia pixel-to-
centimetre estimation, and Tilapia weight estimation, were constructed by employing 
three well-known regression methods. The regression models are LR, RFR, and SVR. Lin-
ear regression is a linear model of relationship between independent variables and a de-
pendent variable. The linear model is expressed in Equation (9): 𝑦 = 𝑎଴ + ∑ 𝑎௝𝑥௝ ௃௝ୀଵ   (9)

where 𝑥௝ and 𝑦 denote the j-th independent variable and the dependent variable, respec-
tively. The terms ൛𝑎௝, 𝑗 = 0, 1, … , 𝐽ൟ are the coefficients of the model and 𝐽 is the total 
number of features used for the regression. Secondly, random forest is a decision-tree ex-
tension by constructing a multitude of trees in a training period. Random forest is deep 
learning for classification or regression tasks. In the multitude trees, individual trees ran-
domly select a subset of features. The optimal splitting point is determined by the pre-
dicted squared error as a criterion of a regression model. RFR output (𝑦ො) is based on a 
weighted sum of datapoints, as expressed in Equation (10): 𝑦ො = ∑ ൬ ଵ௠ ∑ 𝑊௝௠௝ୀଵ (𝑥௜, 𝑥ᇱ)൰ 𝑦௜௡௜ୀଵ   (10)

where 𝑥௜  and 𝑦௜  denote the dataset and 𝑤௜  is a weight of 𝑦௜ . The 𝑥ᇱ term represents 
the neighbour node that shares the same leaf in a tree j with the point 𝑥௜ [28]. The squared 
error is expressed in Equation (11): min ∑ (𝑦௜ − 𝑤௜𝑥௜)ଶ௡௜ୀଵ   (11)

Finally, the support vector regression is an extension of the support vector machine 
for solving regression problems. The objective function of SVR is to minimize the coeffi-
cients by using the 𝑙ଶ-norm of the coefficient vector [29,30] instead of the squared error, 
as expressed in Equation (12). The constraint called the maximum error (𝜖) is represented 
by the absolute error in Equation (13). The 𝜖 paremeter will be tuned by the regression 
function to gain the best fit line, where a hyperplane has a maximum number of points 
[31]. min ଵଶ ‖𝑤‖ଶ  (12)

s.t. |𝑦௜ − 𝑤௜𝑥௜| ≤ 𝜖  (13)

The 𝜖 value determines the distance of the support-vector line (so-called decision 
boundary) that deviates from the hyperplane line. 

A subsequent training phase delivers the TDet, TDepE, TP2CME, and TWE models. 
The evaluation phase, as shown in Figure 1, will use these models for estimating the 
weight of the Tilapia given by an observed video input. An overview of the proposed 
Tilapia weight-estimation evaluation phase is explained in Algorithm 1.  
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Algorithm 1 Overview of the Proposed Tilapia Weight-Estimation Evaluation Phase 

(1) Convert an observed video input to images: 𝑠[𝑛] =  𝑠(𝑛𝑇) 

(2) Enhance images in a case of turbid water: 

(2.1) Image sharpening by the convolution function 𝑔ଵ(𝑥, 𝑦): 

𝑔ଵ(𝑥, 𝑦) = ෍ ෍ 𝜔(𝑑𝑥, 𝑑𝑦)𝑠(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦)௕ௗ௬ୀି௕௔ௗ௫ୀିଵ  

where −𝑎 ≤ 𝑑𝑥 ≤ 𝑎 and −𝑏 ≤ 𝑑𝑦 ≤ 𝑏, 𝑠(∙) denotes the original image, and 𝜔(∙) is 
the filter kernel, i.e., sharpen, filter. 

(2.2) Color correction matrix (𝐶𝐶𝑀) [32]: 𝑆 =  [𝑆ோ 𝑆ீ 𝑆஻ 𝑆ௐ]் 

൥𝐶ோ𝐶ீ𝐶஻൩ = ⎝⎜
⎛𝐶𝐶𝑀. ⎣⎢⎢

⎢⎡𝑆ோ𝑆ீ𝑆஻𝑆ௐ − 𝑉௢௙௙௦௘௧ோ𝑉௢௙௙௦௘௧ீ𝑉௢௙௙௦௘௧஻𝑉௢௙௙௦௘௧ௐ ⎦⎥⎥
⎥⎤
⎠⎟
⎞ଵ/ఊ

 

where 𝑆ோ 𝑆ீ 𝑆஻ 𝑆ௐ denote the red, green, blue, and white spaces; C is the color-com-
ponent vector; and 𝑉௢௙௙௦௘௧ is the offset vector. 

(2.3) Exposure adjustment 𝑔ଶ(𝑥, 𝑦): 𝑔ଶ(𝑥, 𝑦) = 𝛼 ⋅ 𝑠(𝑥, 𝑦) + 𝛽 

where 𝛼 > 0 is the gain and 𝛽 represents the bias parameter. 

(3) Detect the length and width of Tilapia: 𝑥ො௪_௣௜௫, 𝑥ො௛_௣௜௫ = 𝑀𝑎𝑠𝑘 𝑅 − 𝐶𝑁𝑁஻஻(𝑔ଶ(𝑥, 𝑦)) 

(4) Estimate the depth of each detected Tilapia: 𝑦ොௗ௘௣௧௛ = 𝑓൫𝑥௔௚௘, 𝑥ො௪_௣௜௫, 𝑥ො௛_௣௜௫, 𝑎௔௚௘, 𝑎௪_௣௜௫, 𝑎௛_௣௜௫൯ + 𝑒ௗ௘௣௧௛ 

(5) Convert Tilapia size from pixel to centimeter: 𝑦ො௟_௖௠, 𝑦ො௪_௖௠ = 𝑓൫𝑥௔௚௘, 𝑥௪_௣௜௫, 𝑥௛_௣௜௫, 𝑦ොௗ௘௣௧௛, 𝑎௔௚௘, 𝑎௪_௣௜௫, 𝑎௛_௣௜௫, 𝑎ௗ௘௣௧௛൯ + 𝑒௖௠ 

(6) Estimate the weight of individual detected Tilapia. 𝑦ො௪ = 𝑓൫𝑥௔௚௘, 𝑥௪_௣௜௫, 𝑥௛_௣௜௫, 𝑦ොௗ௘௣௧௛, 𝑦ො௟_௖௠, 𝑦ො௪_௖௠, 𝑎௔௚௘, 𝑎௪_௣௜௫, 𝑎௛_௣௜௫, 𝑎ௗ௘௣௧௛, 𝑎௪_௖௠, 𝑎௛_௖௠൯+ 𝑒௪ 
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3. Experimental Results and Analysis 
3.1. Data Collection 

The Tilapia were raised in 3 tanks where each tank contained 30 fish. The tanks are 
round with a radius of 1.5 m and a depth of 1.8 m. A new fish cultivation method was 
used for the efficient feeding of fish, which is called the biofloc culture. The biofloc tank 
is a microorganism cultured fish, thus the biofloc microorganisms caused the water to 
turn turbid. Bacteria are put into an aquaculture system to convert nitrogen from the wa-
ter into protein. The protein will be the food of the fish. The wastewater that contains 
nitrates, nitrites, and ammonia will be treated and reused as supermolecule feed. Biofloc 
fish feeding is a technology that feeds aquaculture systems with macroaggregates that 
decrease the fish diet cost and improve the aquatic environment of a fish tank. 

Datasets developed in this research can be categorized into the (a) Tilapia-image da-
tasets and (b) Tilapia-file datasets. Firstly, the Tilapia-image datasets are in-house curated 
from two sources: studio-based photography of the off tanks and from video recordings 
of the tanks, as shown in Figure 3. 

 

 
(a) (b) 

Figure 3. Example of Tilapia images from (a) studio; (b) biofloc tank. 

The studio-based photography is set up by using a camera (Cannon EOS 200D II) 
mounted in a fixed position that is 0.5 m from the fish and parallel to the platform with a 
resolution of 1920 × 1080 pixels. The fish were weighed with an electronic scale before 
photographing. The video recording (GoPro Hero 8 and waterproof case) was carried out 
by sampling five fish from the tanks and putting them into the recording tanks. The videos 
were recorded at a resolution of 1920 × 1080 pixels, with a frame rate of 60 fps and 8-bit 
RGB. Data collection of each fish from the studio and video was performed, including age 
(weeks), width and length throughout the fish in centimeters (cm), and the weight of the 
fish in grams. Secondly, the Tilapia-file dataset was created for training the regression 
models. The Tilapia-file dataset includes three attributes, which are the fish’s age, the 
physical dimensions of the fish in pixel and centimetre units, and the depth between the 
fish and the camera. The two Tilapia datasets were employed for training the models to 
estimate the Tilapia’s weight.  

3.2. Data Preparation 
Data pre-processing of the videos refers to the proposed processes of converting 

video to images, an image enhancing process for the biofloc tanks, and an image annota-
tion process. All fish images have 24-bits of a red, green, and blue channel and each chan-
nel has 256 intensity levels. Both images from the studio and videos are required in the 
annotation process. In the case of videos, firstly, the video-to-image process is the dimi-
nution of a continuous-time signal 𝑠(𝑡) to a discrete-time signal. The original signal will 



Sensors 2022, 22, 5161 12 of 29 
 

 

be sampled at a 𝑇 period to obtain a series of discreate signals that instantaneously be-
come the original continuous signal. The sampling image process can be expressed in (14) 
as: 𝑠[𝑛] =  𝑠(𝑛𝑇)  (14)

where 𝑛 denotes the sequence index of the 𝑇 period. The biofloc tank is a microorganism 
cultured fish, thus biofloc microorganisms cause the water to turn turbid. Therefore, the 
sampled images of the biofloc tanks were pre-processed and enhanced in order to be able 
to identify fish by applying the image enhancement process. The image enhancement pro-
cess consists of four steps, i.e., image sharpen, color filter, color balance, and exposure 
adjustment, where the values of the individual channels of an image are modified to im-
prove the images’ quality. Starting with image sharpening, this involves increasing the 
contrast, edge detection, noise suppression, and Gaussian Blur algorithms [33,34]. Next, 
color filter and color balance aim to adjust the color temperature by using curve shifting 
[35]. Color balance is used to manipulate any unwanted color that dominates an image by 
estimating the illumination and applying correction to the image [36]. Finally, exposure 
adjustment is focused on controlling the light of on an image via two parameters: the ex-
posure time and the light sensitivity of the image [37]. Enhanced images are presented in 
Figure 4. 

 
Figure 4. Comparison between original images (left) and enhanced images (right). 

The image annotation is the process of describing the target objects in an image, as 
shown in Figure 5. The descriptive data allow the computer to interpret the image in a 
similar way as human understanding. A computer understands digital images by extract-
ing data from a real-world image into numerical information then interprets the infor-
mation via a deep learning algorithm. Visual images will be provided as description data 
of a target object in the image, which is known as image annotation. In a similar way to a 
human learning an object, image annotation is the procedure of labeling images to train a 
deep learning model. The deep learning algorithm then transforms the image by disen-
tangling symbolic information into numerical sparse information through the convolution 
process. Finally, an objective model is then learned by using the fully-connected MLP net-
works given by the information from the convolution phase. Three attributes were de-
fined for the explanation of a fish, which are age (weeks); distance between a fish and a 
camera, i.e., so-called depth (cm); and a coordinate-position set of a fish. The fish annota-
tion yields a JSON file as an output of the process. This process is performed via the Visual 
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Geometry Group Image Annotator website (https://www.robots.ox.ac.uk/~vgg/soft-
ware/via/via_demo.html accessed on 20 June 2022). 

 
Figure 5. A coordinate-position set of a fish via the image annotation process. 

The experimental scheme has been established for 3 months, where the start age of 
the Tilapia was 20 weeks. The assumptions made in the work are that the Tilapia weight 
can be estimated with a good level of accuracy. The input of the proposed TWE-DRL al-
gorithm, as illustrated in Figure 2, is made up of two types, where images (i.e., studio) 
and video signals are processed five times every two weeks. The studio-based photog-
raphy is set up by using a camera mounted in a fixed position that is 0.5 m from the fish 
and is parallel to the platform, with a resolution of 1920 × 1080 pixels. The Tilapias were 
recorded in a turbid water recording tank (i.e., in video) with a resolution of 1920 × 1080 
pixels, with a frame rate of 60 fps and 8-bit RGB. For the first actual weighting of 20-week-
old Tilapia, the average weight was 166.45 ± 26.38 g, while it was 482.24 ± 91.64 g at the 
last weighing for 28-week-old Tilapia. The Tilapia-image dataset contains 5037 images, 
where 750 images were from studio and 4287 images were from video, while Tilapia-file 
dataset contains 2777 files. The video recording will be converted to images by every sec-
ond and then the quality of the images will be improved by the image enhancement pro-
cess. Next, the enhanced images will be used as input data for the Tilapia detection step, 
which is based on deep transfer learning. All one-class training parameters use the same 
values, where the backbone is a RestNet learning network, the batch size is 128 images, 
the learning rate is 2.5 × 10−4, and the maximum iterations are 300. The output of the de-
tection step will be the input of the Tilapia weight-estimation step that is based on regres-
sion models. The regression models are LR, RFR with 2 level maximum depth, and SVR 
with radial basis function (RBF) methods. The inputs of individual TDepE, TP2CME, and 
TWE are expressed in Table 1 and Equations (6)–(8). Finally, the proposed methods will 
deliver the estimated weight of Tilapia in a data file.  

The experimental results have been conducted in two major sections: The first section 
rigorously determines the optimal models of Tilapia detection, i.e., TDet, and Tilapia 
weight estimation, i.e., TDepE, TP2CME, and TWE. The second section verifies the effec-
tiveness of the proposed Tilapia weight-estimation methods. The Tilapia-images dataset 
has 4287 images with various ages, which were split into 60% for training and the rest for 
testing. The Tilapia-file dataset contains 2777 files, which were partitioned into 70% for 
training and the rest for testing. The number of training and testing data corresponding 
to each model is presented in Table 2. 
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Table 2. The number of training and testing data. 

Models/Data 
Training Phase 

Testing Data 
Training Data Validating Data 

Tilapia Detection 2101 900 1286 
Depth Estimation 1555 389 833 

Pixel-to-CM estimation 1555 389 833 
Tilapia weight estimation 1555 389 833 

The proposed TWE algorithm is used to train the various regression models and its 
effectiveness is assessed using the following measurements in Equations (15) and (16): 

The mean absolute error (MAE): MAE(𝑦, 𝑦ො) = ଵ௡ೞೌ೘೛೗೐ೞ ∑ |𝑦௜ − 𝑦ො௜|௡ೞೌ೘೛೗೐ೞିଵ௜ୀ଴   (15)

The coefficient of determination, 𝑅ଶ: 𝑅ଶ(𝑦, 𝑦ො) = 1 − ∑ (௬೔ି௬ො೔)మ೙೔సభ∑ (௬೔ି௬ത)మ೙೔సభ   (16)

The experiments were conducted using the following hardware and software envi-
ronments: hardware environment employed the AMD Ryzen 9 4900H with Radeon 
Graphics 3.30 GHz, Nvidia GeForce GTX 1660 Ti, 16.00 GB DDR4. Software tools are Py-
thon 3.x and TensorFlow-GPU v2.3.0, Keras v2.4.3 in Windows 10 operating system. 

3.3. Determining the Optimal Tilapia Detection Models  
The state-of-the-art deep learning networks have been used to determine the optimal 

Tilapia detecting models of Mask R-CNN, Faster R-CNN, RetinaNet, and YOLO. YOLOv5 
has been used as Tilapia detection experiment, where the following parameters have been 
determined: scaled weight decay at 0.0005, training for 300 epochs, batch size at 128, and 
a learning rate of 0.01, as well, the optimizer that is relied on is a Gradient descent with 
momentum optimizer. All training parameters used the same values, where the batch size 
was 128 images, the learning rate was 2.5 × 10−4, and the maximum iterations are 300. 

The object-detecting performance of the three methods were averaged over multiple 
Intersection-over-Union (IoU) scores, called AP, which used 10 IoU with various thresh-
olds. The experimental results are shown in Table 3. 

Table 3. AP scores on Tilapia dataset of Faster R-CNN, Mask R-CNN, RetinaNet, and YOLO. 

Deep Learning Networks AP AP50 AP75 
Faster R-CNN 67.04 98.50 90.19 
Mask R-CNN 75.68 99.11 92.12 

RetinaNet 60.53 98.17 83.56 
YOLO 62.61 90.37 78.56 

AP is averaged over all categories where AP represents IoU = 0.50:0.05:0.95 (primary challenge met-
ric), AP50 denotes IoU = 0.50 (PASCAL VOC metric), and AP75 is IoU = 0.75 (strict metric). 

The detection results of the above detection networks are presented in three scenar-
ios, which are a single Tilapia, two Tilapia with more than 50% of a body size appearance, 
and multiple Tilapia overlapping. The samples of the observed images from the three sce-
narios are shown in Figure 6, and the detected results are then illustrated in Figures 7–9. 
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(a) (b) 

 
(c) 

Figure 6. Sample of observed Tilapia in turbid water where (a) a single Tilapia; (b) two Tilapia with 
more than 50% of a body size appearance; (c) multiple Tilapia overlapping. 

  
(a) (b) 

 
 

(c) (d) 
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(e) 

Figure 7. Sample of a single Tilapia. (a) Faster R-CNN: model detected a Tilapia with 0.87 probability 
score; (b) Mask R-CNN: model detected a Tilapia with 0.95 probability score; (c,d) RetinaNet: model 
drew 19 bounding boxes with the highest, average, and standard deviation of probability scores at 
0.73, 0.11, and 0.15, respectively; (e) YOLO: model detected a Tilapia with 0.31 probability score. 
YOLO can only detect a sample of a single Tilapia underwater in (a) but unsuccessful in scenarios 
(b,c). 

(a) (b) 

  
(c) (d) 

Figure 8. Sample of two Tilapia with more than 50% of a body size appearance. (a) Faster R-CNN: 
model detected a Tilapia with 0.88 probability score; (b) Mask R-CNN: model detected a Tilapia 
with 0.96 and 0.73 probability scores from left to right; (c,d) RetinaNet: model drew 28 bounding 
boxes with the highest, average, and standard deviation of probability scores at 0.79, 0.13, and 0.15, 
respectively. 
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(a) (b) 

  
(c) (d) 

Figure 9. Sample of multiple Tilapia overlapping. (a) Faster R-CNN: model detected a Tilapia with 
0.86 and 0.85 probability scores from left to right; (b) Mask R-CNN: model detected a Tilapia with 
0.97 and 0.92 probability scores from left to right; (c,d) RetinaNet: model drew 19 bounding boxes 
with the highest, average, and standard deviation of probability scores at 0.83, 0.17, and 0.25, re-
spectively. 

The results from Figures 7–9 have shown that Mask R-CNN yields the highest AP 
scores among the three thresholds. The reason is due to the RoIAlign operation of Mask 
R-CNN, which is able to extract features from small objects, i.e., Tilapia in blurred, low 
light, and noisy backgrounds. This leads to a higher accuracy than the Faster R-CNN and 
RetinaNet models. Therefore, TDet is built based on the Mask R-CNN model for deter-
mining the length and width of Tilapia from images. The TDet model obtained by the 
YOLOv5 framework is able to detect the case of a single Tilapia. In the cases with more 
complex scenarios where the fish appear to be blurry and small, as in Figure 6b, or chaotic, 
as in Figure 6c, the YOLOv5 model is unable to detect the fish. On the other hand, Mask 
R-CNN outperformed TDet-based YOLOv5 for the complex scenarios. YOLO network ar-
chitecture employs convolutional neural networks (CNN) for extracting the significant 
features of the fish. A regression problem is treated by a single forward propagation to 
provide the class probabilities of the detected Tilapia. Therefore, it is difficult for YOLOv5 
to extract key features from intricate images due to the spatial plane coordinate, as the 
grid location constrains the algorithm. Mask R-CNN takes advantage of RoI and RoIAlign 
processes for selecting the high-level features. This leads to a higher accuracy than all the 
other comparison methods. 

3.4. Determining the Regression Learning Methods for the TDepE, TP2CME, and TWE Models 
The Tilapia-file dataset was used for training the TDepE, TP2CME, and TWE models 

by splitting 80% of data is for training and the remaining data is for testing. The three sub-
steps of Tilapia weight estimation are sequentially performed. A grid search and valida-
tion dataset were used to find the optimal parameter of the TDepE, TP2CME, and TWE 
models by specifying every combination of the parameter settings. Grid search passes all 
combinations of the hyperparameters one-by-one into the model to determine the optimal 
values for a given model. Hyperparameters are the variables that are used to evaluate the 
optimal parameters of the model. The hyperparameters for RFR and SVR were 
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determined, which are the {maximum depth, maximum features, minimum samples leaf, 
minimum sample split, the number of estimators} and {regularization parameter, kernel 
coefficient, kernel types} sets, respectively. Finally, grid search delivers the set of hyperpa-
rameters that gives the best performance for the model. The validation dataset is used to 
determine the hyperparameters of each of the machine learning models in TDepE, 
TP2CME, and TWE. Next, TDepE model is firstly presented with the chosen regression 
method and then followed by the rest of the steps in succession. 

3.4.1. Tilapia Depth Estimation Performance 
The TDepE model was trained by learning data consisting of the age, the length, and 

the width of the fish (pixel), as well as the actual depth of the fish. In terms of the perfor-
mance, the obtained TDepE models based on LR, RFR with 2 level maximum depth, and 
SVR with radial basis function (RBF) methods [38,39] are illustrated in Table 2 and Figure 
10, respectively. The RBF kernel [40] is expressed in Equation (17) as: 𝐾(𝑋ଵ, 𝑋ଶ) = 𝑒𝑥𝑝 ቀ− ‖௑భି௑మ‖మଶఙమ ቁ  (17)

where 𝜎ଶ denotes the variance as the hyperparameter and ‖𝑋ଵ − 𝑋ଶ‖ represents the Eu-
clidean (L₂-norm) Distance between two points 𝑋ଵ and 𝑋ଶ. The distance between the fish 
and the camera is between 5 cm and 60 cm. Depth data of Tilapia-file dataset was collected 
by using a manual visual distance estimation method with reference to distance markers 
every 10 cm, which were installed in the fish recording cube. The depth estimating per-
formance of the LR, RFR, and SVR models are explicitly presented in Figure 10, and the 
actual depth values are widely spread from 5 cm to 50 cm with a 23.13 average depth and 
a 15.77 standard deviation (S.D.) score. The TDepE model-based SVR can estimate the 
depth close to the actual depth distribution. 

 
Figure 10. Box−plot comparison of Tilapia Depth Estimation error of LR, RFR, and SVR methods. 

The depth estimating performance is evaluated by measuring MAE along with the 
average errors and S.D. values in Table 3. The SVR model provides the best scores for 
MAE, 𝑅𝟐, and the MAE ratio over the LR and RFR models at 5.52 cm and 1.56 cm for the 
MAE values, 0.46 and 0.12 for the 𝑅𝟐 values, and 18.67 and 2.82 for the MAE ratio values, 
respectively. 

According to Table 4, the SVR method yields outstanding performance for estimating 
depth of the fish. Therefore, the TDepE-based SVR model is set for the depth estimation 
step. Next, the experiment aims to figure out the regression method for TP2CME and TWE 
by measuring weight-estimating accuracy. 
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Table 4. Performance of Tilapia Depth Estimation with LR, RFR, and SVR methods. 

Regression Models Average Error S.D. Error MAE 𝑹𝟐 MAE Ratio 

LR 0.90 11.65 9.56 0.41 23.32 
RFR −0.23 7.65 5.60 0.75 7.47 
SVR −0.23 21.02 4.04 0.87 4.64 

3.4.2. Tilapia Pixel-to-Centimeter Estimation and Tilapia Weight Performance 
The three investigational cases were set as presented in Table 4 for TP2CME and 

TWE. Each case starts from the TDet and TDepE steps. The TP2CME model learned from 
the fish attributes, including age, length and width of the fish in pixel units, and depth of 
the fish. The TWE model requires the length and the width of the fish in cm units. The 
experimental cases consist of two steps of TP2CME and TWE. The TP2CME for the indi-
vidual case used a different regression learning method. Hence, we have three main cases 
of SVR, RFR, and LR, where the depth estimation is based on SVR—as shown in Table 5. 
Finally, the TWE step of the three cases is then applied for all three regression methods to 
estimate the weight of the fish. 

Table 5. Three experimental cases for determining the regression method to TP2CME and TWE. 

Cases TP2CME TWE Abbreviations 
Case 1 SVR LR, RFR, SVR SSL, SSR, SSS 
Case 2 RFR LR, RFR, SVR SRL, SRR, SRS 
Case 3 LR LR, RFR, SVR SLL, SLR, SLS 

The box plots represent the weight-estimation errors of the three cases, as illustrated 
in Figure 11. The TP2CME- and TWE-based LR models yield the minimum errors and 
deviation that are obviously noticed by the smallest size of the weight-error box from SLL 
with the average error at 43.80 ± 47.69 g. 

 
Figure 11. Box-plot comparison of Tilapia-weight estimating errors of the nine candidates corre-
sponding to Case 1, Case 2, and Case 3 for determining the regression method to TP2CME and TWE. 

The MAE and 𝑅ଶ scores for all cases are presented in Table 6. The SLL method yields 
the best estimating performance among all cases with the MAE, R2, and MAE ratio values 
at 42.54 cm, 0.70, and 60.77, respectively. 
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Table 6. MAE and 𝑅ଶ scores of nine experimental cases for determining the regression method to 
TP2CME and TWE. 

Measurement SSL SSR SSS SRL SRR SRS SLL SLR SLS 

MAE 81.39 109.64 99.20 47.18 51.56 97.21 42.54 52.67 99.26 𝑅ଶ 0.11 −0.69 −0.25 0.71 0.61 −0.076 0.70 0.61 −0.21 

MAE ratio 739.91 −158.90 −396.80 66.45 84.52 −1279.08 60.77 86.34 −472.67 

According to Table 6, the weight-estimating procedure can be recapped by the re-
gression-learning solution of the TDepE, TP2CME, and TWE steps, which are the SVR 
model, the LR model, and the LR model, respectively. 

The relationship of the weight and size of Tilapia with linear regression by the 𝑅ଶ 
measurement is shown in Figure 12. The 𝑅ଶ value of LR is 0.95 for the weight–length 
relationship and 0.85 for the weight–width relationship, respectively. This result shows 
that the length and width of Tilapia is significantly correlated to the weight of Tilapia. 

 
(a) 

 
(b) 

Figure 12. 𝑅ଶ scores of LR regression on relationship of actual weight with (a) actual length; (b) 
actual width. 

According to Figure 12, the 𝑅ଶ values indicate the strength of the relationship be-
tween the proposed TWE-DRL model and the dependent length and width variable at 
95.17% and 85.19%, respectively. 
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3.5. Tilapia Weight Estimation Performance 
This section demonstrates the weight estimation performance of the proposed TWE-

DRL method against the benchmarks of seven fish weight estimation-based areas (A) of 
the fish’s size in [6]. The area-based weight estimation methods with various coefficients 
can be expressed through the following equations in Equations (18)–(24). 

Power based: W1 = 1.70A3/2  (18)

Power based: W2 = 0.124A1.55  (19)

Exponential: W3 = 75.505e0.008A  (20)

Linear: W4= 2.6609A − 141.14  (21)

Logarithmic: W5 = 448.84ln(A) − 1984.1  (22)

Polynomial: W6 = 0.0048A2 + 0.9309A + 7.8245  (23)

Power: W7 = 0.2501A1.3821 (24)

where an area (A) of the fish’s body in cm2 have been computed from multiplying the 
length and the width of that fish, which was obtained from the Tilapia detection phase 
with a coefficient, i.e., A = length × width × coefficient. The coefficients in Equations 
(20)–(24) were obtained by formulating lines corresponding to individual equations for 
representing the relationship between the actual fish’s area and its actual weight. The plots 
are illustrated in Figure 13. 

 
Figure 13. Cartesian coordinates of a point of the Euclidean plane for determining the coefficients 
of Equations (14)−(18). 

The evaluated Tilapia datasets were established for 3 months and recorded every 2 
weeks, with the Tilapia being 20-week-olds. All comparison methods were provided by 
the estimated length and width of the Tilapia that were obtained from the TDet and 
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TP2CME models of the proposed method. The estimated weight results are presented in 
Table 7. 

Table 7. Comparison Tilapia Weight Estimation of Proposed TWE-DRL method with seven area-
based weight estimations. 

Methods W1 W2 W3 W4 W5 W6 W7 Proposed Method 

MAE 65.65 52.81 56.48 55.88 54.61 53.74 54.21 42.54 

R2 0.52 0.65 0.42 0.44 0.43 0.48 0.45 0.70 

MAE ratio 126.25 81.25 134.48 127.00 127.00 111.96 120.47 60.77 

According to the results in Table 7, the proposed methods obtained the smallest MAE 
score and highest R2 scores, where an average error is 42.54 g from the actual weight of 
fish. The regression models of the proposed methods can predict that the weight of the 
Tilapia has a 70% fit to the actual weight. The proposed method estimates the fish weight 
from the length and width of the fish, while the other methods use the area of the fish. 
From Figure 9, the R2 values of length and width are 0.9517 and 0.8519, while the maxi-
mum R2 value from Equations (14)–(18) is 0.7507. Hence, the length and width of the fish 
is significantly accurate  for estimating the weight of the fish. Therefore, the proposed 
TWE-DRL method yields the highest accuracy over the area-based weight-estimation 
methods. 

The average estimated weight of the proposed method for each week is illustrated in 
Figure 14 against the average actual weight of the Tilapia. The results of Tilapia weight 
estimation from turbid water by the proposed TWE-DRL method vary by the fish’s age 
and are plotted compared to the actual weight. The proposed TWE-DRL method has esti-
mated the Tilapia weights consistently and is tallied with the actual Tilapia weight pat-
terns by using the TDet, TDepE, TP2CME, and TWE models. The obtained results show 
that across the eight weeks, the proposed method has only accrued an estimated weight 
error of 30.30 (±23.09) grams. The proposed approach can perform at high accuracies and 
is able to track the weight evolution of the fish in the tank from week to week. In addition, 
once the system has completed the estimation processes, all the estimated results will be 
saved to a Microsoft Excel file as an output of the system. 
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Figure 14. Proposed TWE-DRL performance presents average estimated weight of Tilapia with var-
ious age in turbid water. 

Examples of the fish body and size detection results are shown in Figure 15, where 
fish were recorded from underwater at various depths. The TDet model can detect multi-
ple fish in the image with their bodies aligned horizontally in the image. The proposed 
method can precisely detect the body size of each fish even when the fish overlap, as pre-
sented in Figure 15. 

  

  

Figure 15. Examples of Tilapia Weight-Estimation Results in turbid water for two cases that are near 
and far from camera: (1) the near camera: a single fish and two overlapping (top and down left) and 
(2) the far from camera: a single fish and two overlapping (top and down right). 

The proposed TWE-DRL method can detect fish in turbid water in a variety of dis-
tances, both near and far from the camera recorder. The proposed algorithm for the TDet 
results is set at 0.8 for the probability criterion so that images with a probability equal to 
or greater than 0.8 will be passed through for further processing. Subsequently, the size 
of the fish in pixels was converted to cm with the TP2CME model using the fish size data 
from the detecting process together with the depth information obtained from the TDepE 
model. Turbid water and the depth of the fish have a major influence on fish detection—
for example, two fish that overlap with one another at a further distance from the camera. 
The performance of the Tilapia size estimation from the proposed TWE-DRL method is 
shown by MAE, while the box plot values are shown in Figure 16. The estimated error 
accrued by the proposed method is 2.3 cm and 0.96 cm for length and width, respectively. 
The actual fish have a length and width that range from 20–30 cm and 7–12 cm, depending 
on the age of the fish. The estimated-length error of the fish, as shown in Figure 16, has a 
wider spread error than the estimated-width error. This is caused by a wider range of the 
fish’s actual length than that of the fish’s width. This leads to the consistency for estimat-
ing the performance of the proposed TWE method. In some cases, the proposed TWE 
method may detect the overlapping fish as a single fish. The Tilapia was raised in 3 biofloc 
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tanks for 3 months, and the Tilapia were 20 weeks old at the start. The Tilapia were rec-
orded underwater every two weeks. The estimated weight of the Tilapia from 20-weeks-
old to 28-weeks-old are plotted against their actual weight from the video, which is related 
to the actual length of the Tilapia, as illustrated in Figure 17. 

 
Figure 16. Tilapia Detection performance presented via box−plot estimated errors of length (right) 
and width (left) of Tilapia’s size. 

 
Figure 17. Comparison of the distribution of actual weight and estimated weight by proposed TWE-
DRL method. 

Note that, at 24 weeks of age, the second tank has no data due to all the fish dying 
and a new set of fish from a reserve tank was supplied instead. The proposed TWE-DRL 
method has estimated the Tilapia weight given by observed videos where the results show 
a close resemblance to the actual weight. This is to show the correctness of the proposed 
method. 

The next section will demonstrate the performance of the proposed TWE-DRL 
method, which is given by a dataset of estimates derived from the models. All attributes 
in the estimated-value dataset were obtained by the models proposed in this paper, i.e., 
TDepE, TP2CME, and TWE. This dataset was used to train the TDepE, TP2CME, and TWE 
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models by following the same steps in Sections 3.4.1 and 3.4.2. From the experiments, it 
was found that the SVR, RFR, and LR methods of the TDepE, TP2CME, and TWE models 
yield the best estimation results. The fish weights predicted from the estimated-value 
models were compared with the weight results obtained from the actual-value models. 
This is shown in Figure 18. The estimated weight using the trained models performs with 
a slightly higher error than the actual value trained model with 14.50 cm of MAE across 
the test dataset. 

 
Figure 18. Comparison of the estimated weight of the proposed TWE method between the actual 
−value trained models and the estimated-value trained models. 

The well-known weight estimation of fish can be categorized into two cases, in case 
of off-water and underwater scenarios. Firstly, in the case of off-water, fish weight-esti-
mation-based CNNs are proposed in Refs. [5,41] by using ResNet-34 and LinkNet-34 for 
segmenting fish images, then the weight of the fish is computed from the surface area of 
the fish. The datasets from this research contain 2445 images of fish with weights in the 
range of 15 g to 2500 g, where the distance between the fish and the camera is constant in 
all images. Thus, the depth of the fish will be provided as a priori information. The mass 
estimation performance of Ref. [42] yields the R2 value of 0.976. Another off-tank method 
is presented in Ref. [5], the dataset contains 694 images of fish from the 22 species of fish 
from 9 tributaries where images were captured. The fish’s weight is between 500 g and 
1200 g. Six cameras were set at a fixed distance, with three being near-infrared cameras 
and three being general cameras. The output of the DCNNs phase is passed into the re-
gression phase where the final output will be an averaged value of nine images. The per-
formance of the weight estimation from Ref. [5] gains an MAE of 634 g. Secondly, under-
water fish-weight estimation is presented in Ref. [7], where the fish weight-estimation 
methods are the weight prediction system for Nile Tilapia. This method uses stereo cam-
eras for distance measurements and captured 10 Tilapia in a tank of clear water for 3 
weeks. The fish’s weight is in a range of 24 g to 41 g. CNNs are used for fish detection. 
Regression equations are proposed for computing the depth of the fish, converting pixel-
to-cm, and weight prediction. The correlation of the weight and length based on linear 
regression has an R2 value of 0.87. The fish’s weight from the proposed TWE method is 
between 155 g to 561 g and the R2 value is 0.95. Moreover, underwater fish weight estima-
tion was exploited in Ref. [43]. A unidirectional tunnel controlled underwater studio was 
established by using a single camera. A fish is assumed to be positioned along the x-axis. 
A combination of 2D saliency detection and morphological operators are used for fish 
segmentation. The curve estimation for length measurement from segmented images is 
estimated by using a third-degree polynomial regression on the fish mid-point. Several 
regression algorithms were investigated to compute the weight of the fish. The perfor-
mance of the method from Ref. [43] obtained an R2 value of 0.97. Based on the current 
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state-of-the art fish weight-estimation methods, a special camera or controlled environ-
ment are commonly required for collecting fish images. A CNNs approach were used to 
identify fish in images. A regression learning approach is applied to estimate the weight 
of the fish and the significant fish features related to its weight. Those methods were used 
in different scenarios. For the proposed TWE method, a single camera is required without 
any other controlled environment. The general CNNs and regression learning models are 
formulated in a similar process as the other famous methods. However, the TWE-DRL 
algorithm requires only three features, i.e., the age, length, and width of the fish. 

The limitations of the underwater fish weight-estimation methods are mostly based 
on the requirement to have special cameras and/or a controlled environment for collecting 
fish images. A fish weight-estimation-based deep learning approach consumes high com-
putational complexity, while the regression learning approach is mostly applied for the 
case of off-water weight estimation. On the other hand, the limitation of our proposed 
method is that it requires a priori information of the fish’s age. In addition, the turbidity 
of the water has influences on fish detection to a certain degree. This is evident in the 
obtained results presented in the experiments across the different weeks due to the bio-
floc. For future work, a pseudo-stereo image will be introduced for extracting the depth 
of the fish directly from a single channel image recording and this will be used to produce 
the depth estimation [44,45]. 

The computational complexity of the proposed algorithm can be represented by a 
big-O notation. The proposed method has two major components: Firstly, the Tilapia de-
tection based on the deep learning method and secondly, the Tilapia weight estimation 
based on the regression methods. For a deep learning algorithm, the computational com-
plexity of the proposed method is dominated by the number of iterations and the number 
of network layers corresponding to the number of input data. The computational com-
plexity of a neural network [46,47] in FC is 𝑂(𝑛ସ),𝑂(𝑛), 𝑂(𝑛ଶ), 𝑂(𝑘 ∗ 𝑛 ∗ log(𝑛) ∗ 𝑚), 𝑘 
where 𝑛 denotes the number of neighbors, 𝑚 is the number of training data, and repre-
sents the number of features [48]. The complexity of the deep learning algorithm causes a 
large number of model parameters, which leads to a large memory. Mask R-CNN archi-
tecture is comprised of three major components, i.e., the Backbone, Head, and Mask 
Branch. 

Each RoI needs to be calculated separately, which is time-consuming. In addition, the 
number of feature channels after RoI pooling is large, which makes the two FC layers 
consume a lot of memory and potentially affects the computational speed. The number of 
ResNet-50 parameters varies based on the number of layers, which are presented in Table 
8. 

Table 8. Computation and parameters of ResNet-50. 

Layer Name Conv. 1 Conv. 2 Conv. 3 Conv. 4 Conv. 5 Total 
Computation 
(MFLOPs) 118.816 672.358 953.344 1389.273 732.720 3867 

Params (M) 0.0009664 0.218 1.226 7.118 14.987 23.550 

Therefore, in our proposed method, the fish detection using Mask R-CNN consumes 
the most computational time. However, Mask RCNN yields higher accuracy. Though, 
given the current GPU configuration, this computational complexity is relatively modest. 

4. Conclusions 
Fish monitoring in underwater environments remains a challenging task due to 

many factors, such as the dynamics of fish moving, lighting conditions, the quality of wa-
ter, and background noise. The focus of the paper lies in developing a low-cost practical 
single sensor imaging system with deep and regression learning algorithms for the non-
intrusive estimation of fish weight. The proposed method consists of a Tilapia detection 
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step and Tilapia weight-estimation step. The Tilapia datasets are curated and contain two 
types of datasets, one for the estimation of the fish’s depth from the camera and another 
for the estimation of the fish’s physical dimensions. A low-cost off-the-shelf camera is 
used for recording the fish. The Tilapia detection model has been trained by the image 
datasets using deep neural network, Mask R-CNN, with transfer learning. The Tilapia 
weight-estimating models are based on regression learning that require only three fea-
tures of the fish, the fish’s length and width, depth, and age. Three regression learning 
methods have been investigated for Tilapia weight estimation. The experimental results 
show that the proposed algorithm has remarkable efficiency in estimating Tilapia weight 
with a MAE of 40.78 g, R2 of 0.74, and an average weight error of only 30.30 (±23.09) grams 
in a turbid water environment, which shows the practicality of the proposed framework. 
The principal strength of the proposed method is the continuous extraction of only three 
fish’s features that results in less time-consuming training processes, and its ability to es-
timate the weight of Tilapia in turbid water using low-cost video recording. The proposed 
algorithm has been demonstrated to be highly amenable to real-world fish farms by using 
only low-cost video cameras without including other special sensors. 
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