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Abstract: Al-Co alloys is an emerging category of metallic materials with promising properties and
potential application in various demanding environments. Over the years, different manufacturing
techniques have been employed to fabricate Al-Co alloys, spanning from conventional casting
to rapid solidification techniques, such as melt spinning, thus leading to a variety of different
microstructural features. The effect of the fabrication method on the microstructure is crucial,
affecting the morphology and volume of the precipitates, the formation of supersaturated solid
solutions and the development of amorphous phases. In addition, the alloy composition has an effect
on the type and volume fraction of intermetallic phases formed. As a result, alloy properties are
largely affected by the microstructural outcomes. This review focuses on highlighting the effect of
the fabrication techniques and composition on the microstructure and properties of Al-Co alloys.
Another goal is to highlight areas in the field that are not well understood. The advantages and
limitations of this less common category of Al alloys are being discussed with the scope of future
prospects and potential applications.

Keywords: Al-Co alloys; vacuum arc melting; stir casting; melt spinning; rapid solidification; AlgCoy;
Aly3Coy; Al5Coy; Al corrosion; Al wear

1. Introduction

Aluminium and its alloys are of interest due to their light weight, high specific strength
and high stiffness. Among them, those containing transition metals have attracted a lot of
attention over the last years including Al-Cr [1,2], Al-V [3-5], Al-Ti [6] and Al-Ni [7-10]
alloys due to their hardness and corrosion resistance. Moreover, combining transition metal
additions with non-equilibrium fabrication conditions enables to significantly enhance the
hardness and corrosion resistance, leading to improved properties compared to commercial
Al alloys [11].

Amongst all the transition metals, cobalt is a less common addition to Al alloys.
It has been reported that minor Co additions can increase the microstructural stability
of Al-Fe-5i intermetallics [12] and modify their geometry from long rod-like shape to
Chinese script [13]. Small Co additions can also be used to alter the microstructure of
Al-Ni alloys, promoting the refinement of Al3Ni fibers [14]. One of the first references
on binary Al-Co alloys was back in 1926 when Samuel Daniels manufactured various
compositions and assessed their microstructure and their mechanical and corrosion prop-
erties [15]. Renewed interest in Al-Co alloys surfaced in the last few decades mainly due
to the development of rapid solidification fabrication processes [16-18], the discovery of
quasicrystals/complex metallic alloys [19-22], and the observation of metadislocations
(metadislocations are highly complex structural defects involving hundreds of atoms) [23].
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Another field of high interest for Al-Co alloys that attracted a lot of attention is the surface,
catalytic and transport properties of Al-Co intermetallic compounds [24-33]. During the
last decade, the focus shifted on the fabrication of bulk Al-Co alloys, using non-equilibrium
techniques such as vacuum arc melting, and the assessment of their surface degradation
properties. The effect of the fabrication method and composition on the microstructure
and properties has been the focus of several works [34,35]. In another recent work, the use
of Al-Co intermetallics as ex situ reinforcement in Al-based composites has been studied,
highlighting the versatility of the material [36]. More recently, Al-Co alloys have been
successfully fabricated with modern fabrication techniques such as additive manufacturing,
exhibiting good mechanical properties [37].

To the best of the authors” knowledge, this is the first effort to compile and study
the literature on Al-Co alloys, which is an uncommon family of Al alloys. The focus of
this critical review is to discuss different aspects of Al-Co alloys produced using non-
equilibrium and conventional processing techniques. In addition, phase constitution,
manufacturing techniques, microstructures, mechanical, corrosion and wear behavior will
be discussed. The main goal of this work is to discuss the effect of the fabrication method
and composition on the microstructural outcome and final properties of Al-Co alloys.
In more detail, the focus is to compare different fabrication routes involving a variety
of solidification rates and study the effect of the cooling rate on the microstructure and
final properties of Al-Co alloys. Additionally, a wide range of Co compositions have been
studied, spanning from 0.5 wt % to 47.2 wt % Co, i.e., from microalloying to main alloying
element concentrations. To provide a systematic study, different Al-Co alloys have been
assessed, from low Co-containing alloys exhibiting high ductility to Al-Co alloys with a
higher Co content and therefore a large volume fraction of intermetallics. Furthermore,
it is attempted to highlight areas that have not been sufficiently studied and are not well
understood. A tentative outlook commenting the challenges, future prospects and potential
applications of Al-Co alloys is also presented.

2. Al-Co Phase Constitution

From the Al-Co equilibrium phase diagram, several equilibrium phases can be identi-
fied including Al solid solution, x-Co solid solution, cph e-Co solid solution, monoclinic
AlyCo;y, c-centered monoclinic Alj3Co4, Al3Co, hexagonal Al5Co, and AlCo with CsCl
structure. A eutectic reaction takes place at 1.1 wt % Co (1 — Al + AlyCoy) with an eutectic
temperature of 657 °C. The maximum solubility of Co in Al is negligible at room temper-
ature (Figure 1a) [38]. Other studies reported that the maximum solubility of Co in Al is
0.04 wt % Co [39]. While the stability and the structure of AlgCo, and AlsCo, are well estab-
lished, many different thermodynamically stable phases in between have been identified
(Table 1). These include the quasicrystalline approximant 72-Al13Coy4 [19], orthorhombic
0O-Al;3Co4, monoclinic M-Aly3Coy4, Y-phase and Z-phase [40,41]. The Z-phase corresponds
to the intermetallic Al3Co and has been associated with t2-Al;3Coy4 [40]. Other phases
that have been identified in the vicinity of Al;3Coy4 include a new approximant O’-Al;3Coy
crystallizing in the orthorhombic system [42] (O’-Al13Coy4 is considered a high tempera-
ture modification of O-Al13Coy4 [43]), a stable monoclinic Y1-Al13Co4 and the metastable
orthorhombic Y,-Alj3Coy4 [43]. Several recent efforts have been focused on revisiting the
Al-Co phase diagram (Figure 1b) [43—45].
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Figure 1. (a) Al-Co equilibrium phase diagram [46,47] (Reprinted with permission from [46]. Copy-
right 2022, Springer Nature), (b) Revisited Al-Co equilibrium phase diagram [43,45,48]).

Table 1. Crystallographic data for the intermetallic compounds present in the Al-Co system.

Phase Space Groups a(d) b (A) c(A) B (°)  References
AlgCoy P2,/C 6.21 6.28 8.55 94.77 [49,50]
Y;-Alj3Coy C2/m (12) 17.06 4.10 750  116.02 [43]
Y,-Alj3Coy Immm (71) 12.03 7.58 15.35 - [43]
0-Al;3Coy Pmn2; 8.15 1234 1445 - [41,51,52]
0’-Al;3Coy4 Pnma 28.89 8.13 12.34 - [42]
M-Al13Coy C2/m 15.17 8.10 12.34 107.84 [53,54]
Z-Al3Co P2/m 39.83 8.12 32.18 108.03 [55-60]
Al5Co P65 /mmc 7.67 - 7.60 - [61-63]
B2-AlCo Pm-3m 2.86 - - - [64,65]

3. Microstructural Analysis
3.1. The Effect of the Fabrication Route on the Microstructure

High cooling rates (i.e., rapid solidification) promote the microstructural refinement
and extension of the solid solution. For certain metallic alloys with high glass-forming
ability, they can be obtained in an amorphous state upon rapid cooling. For one Al-Co
composition, the microstructure can be easily tuned through control of the cooling rate,
as will be shown in this section.

Over the years, Al-Co alloys have been successfully fabricated using various non-
equilibrium techniques including wedge-shaped copper mold casting [66], melt spin-
ning [67], gun quenching [17], laser glazing [68], directional solidification casting [69],
vacuum arc melting [70] and additive manufacturing [37]. These fabrication methods in-
volve different cooling rates, for example 10°~107 K/s for melt spinning [17], 108-10° K/s
for gun quenching [17] and 10-100 K/s for vacuum arc melting [71]. Other works fo-
cused on the employment of near equilibrium conventional techniques and solid-state
diffusion-based techniques including stir casting and powder metallurgy [34,72].

Optimization of the composition, the cooling rate and their combined effect enables
achieving an endless spectrum of microstructures and therefore of mechanical perfor-
mances. For this reason, it is of great importance from the scientific point of view and
engineering application to select the best combination of composition and cooling rate.
Here, below, we provide insight about a few of these combinations reported in the liter-
ature. For example, the effect of the cooling rate on the microstructure has been studied
in detail in an Al-2.6 wt % Co alloy that has been solidified with different cooling rates.
A slow cooling rate (2 K/s) leads to the formation of a microstructure with primary AlgCoy
crystals and eutectic Al/AlgCo; lamellar phase of acicular morphology. However, when



Metals 2022, 12, 1092

40f17

the solidification rate is faster (10* K/s), a quasi-eutectic microstructure consisting of an Al
solid solution and AlgCo; is observed, and therefore, the preferential growth of primary
phases is suppressed [73]. This is consistent with what could be expected, since rapid solid-
ification promotes the formation of supersaturated solid solution. This means the elements
prefer to remain in solid solution rather than segregate toward grain boundaries or existing
phases and therefore can lead to more refined microstructures. Rapid solidification also
enables microstructures to depart from equilibrium eutectic. The microstructure can be
further refined, and the homogeneity improved with the employment of melt superheating
(heating the melt in temperature much higher than the melting point) and increased cooling
rates (10° K/s). The supersaturated Al solid solution is in an unstable state, and there-
fore, annealing results in closer to equilibrium microstructures. For example, annealing
at 350 °C leads to the decomposition and segregation of fine secondary AlyCo; phase of
10 nm average size [74].

As commented, the solubility of Co in Al is very low, and therefore, in order to retain
more Co in solid solution (i.e., supersaturation), one has to rapidly cool the alloy. This leads
to a supersaturated Al solid solution with an extended area of solid solution. For example,
several different values of maximum solubility of Co in Al have been reported including
1.1wt % Co [74],1.1-10.3 wt % Co [75], 1.1-2.2 wt % Co [68], 5 wt % Co [17], 3.6 wt % Co [18],
and 5.5 wt % Co [76], which are several orders of magnitude above the maximum solubility
of Co in Al under equilibrium conditions [38,39]. It is important to take into consideration
that in several techniques such as melt spinning or vacuum arc melting, the cooling rate is
not homogenous across the fabricated sample. For example, in melt spinning, the surface
of the ribbon in direct contact with the fast-cooling copper wheel results in a faster cooling
rate than the opposite surface of the ribbon in contact with the air. Likewise, in vacuum arc
melting, the surface of the sample in direct contact with the water-cooled copper hearth
solidifies faster than the center of the sample. In addition, smaller samples cool down faster
than larger samples, thus resulting in finer microstructures and higher concentrations of
Co dissolved in Al. Melt spun Al-Co alloys of different compositions (5.3-19.5 wt % Co)
may exhibit a variety of microstructural features including coarse primary AlgCo;, fine
AlyCo, or primary Al dendrites with Co segregated interdendrically. There is a strong
dependence of these features on the local cooling rate [16]. These findings were validated
by another work on a hypereutectic Al-Co alloy (Al-5 wt % Co), indicating that depending
on the cooling rate, a variety of microstructural outcomes can be observed including a
supersaturated solid solution or primary AlgCo, developed within the Al matrix [17].
Features including a supersaturated solid solution, fine dendrites, coarse dendrites and
a mixture of sightly supersaturated solid solution and massive AlgCo, particles have
been observed with a decreasing cooling rate in melt spun Al-Co alloys (5.1-42 wt % Co).
Another interesting observation is the formation of an amorphous phase at very high
cooling rates. The critical cooling rate for the formation of the amorphous phase in the
Al-Co system is >10® K/s [18]. Nonetheless, due to the rapid solidification employed
in melt spinning, the supersaturated Al solid solution may become unstable, leading
to decomposition with annealing. After annealing, the formation of monoclinic AlgCo,
precipitates in a Widmanstatten pattern, and a close orientation relation with the matrix
has been reported in an Al-5 wt % Co alloy [77].

Depending on the fabrication technique, different cooling rates are achieved, which ul-
timately has an effect on the microstructure of the alloys. For example, for an Al-7 wt % Co
alloy fabricated by stir casting, vacuum arc melting and powder metallurgy, a variety of
microstructures have been reported including coarse blades of primary AlgCo, randomly
dispersed in the Al matrix along with fine platelets of lamellar AlgCo, for the stir cast
alloy (Figure 2), and large elongated eutectic “colonies” consisting of strips of AlgCop
within Al for the vacuum arc melted alloy (Figure 2). On the other hand, Al-7 wt % Co
fabricated by powder metallurgy exhibited a microstructure with coarse rounded agglom-
erates of AlgCo, dispersed within the Al matrix (Figure 2). For all fabrication methods,
the microstructures consisted of AlgCo; precipitates uniformly distributed in the Al matrix.
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This can be attributed to the fact that the composition falls within the Al-AlyCo; area of
the equilibrium phase diagram. Nonetheless, the vacuum arc melted alloy exhibited the
highest hardness values due to the largest volume fraction of the hard AlyCo, intermetallic
phase, the high quantities of Co dissolved in the Al matrix and the greatest fraction of
Al-AlyCoy boundaries [34]. The question that arises is whether the processing route will
have exactly the same effect on the microstructure for the different compositions of the
Al-Co alloy system. To answer this question, microstructural differences for the Al-32 wt %
Co alloy fabricated by stir casting, vacuum arc melting and powder metallurgy have been
compared. Diverse phases in different volume fractions were reported in each case. The stir
cast and arc-melted alloy (Figure 2) had similar microstructures consisting of mostly a
primary Al;3Coy phase surrounded by AlgCop and a small volume fraction of aluminum at
the interphase. However, the volume fraction of AlgCo; in the vacuum arc melted alloy was
reduced compared to the stir cast counterpart, which was due to the rapid solidification
rate that prohibited the completion of the peritectic reaction that leads to the formation
of AlgCoy. The microstructure of the powder metallurgy processed Al-32 wt % Co alloy
consisted of a variety of intermetallic compounds, including AlyCo,, Al;3Co4, and AlsCop
within the Al matrix (Figure 2). The presence of multiple phases has been correlated with
the preparation method that is governed by solid-state diffusion mechanisms. As a result,
layers corresponding to different phases have been formed [72].

Stir casting Vacuum arc melting Powder metallurgy

20 4@ BES

Figure 2. SEM images (backscattered electron mode) for Al-7 wt % Co (7Co) and Al-32 wt % Co (32Co)
fabricated by stir casting, vacuum arc melting and powder metallurgy (Reprinted with permission
from [34,72]. Copyright 2022, Elsevier).

3.2. The Effect of the Composition on the Microstructure

The composition can have a great influence on the microstructure since, as shown in
Figure 1, the nature and volume fraction of the phases formed varies with the composition.
For certain processing routes, the nature and volume fraction of the precipitates formed
will vary with the concentration of cobalt. In this section, the different microstructures for
the Al-Co system will be discussed in terms of concentration of cobalt.

For example, for relatively small concentrations of cobalt, from 0 up to about 32wt %
Co, i.e., in the Al-AlyCo, part of the Al-Co phase diagram, a variety of microstructures have
been reported. This compositional area is the most important from the engineering point of
view since there is interest in developing alloys as light and as strong as possible, which
is a compromise that can only be achieved with small cobalt additions. For Al-Co alloys
fabricated by water-cooled mold casting, in Al-1.5 wt % Co, the eutectic microstructure
prevails and additionally, depending on the cooling rate, eutectic colonies with either
small fractions of Al or AlgyCo, phase are formed. For 0.7-1 wt % Co, a eutectic mixture
of aAl-AlgCo, coexists with the Al matrix. Microstructural differences result in different
mechanical properties such as in the hardness. For example, the hypereutectic composition
(Al-1.5 wt % Co) is approximately 41% harder than the eutectic (Al-1 wt % Co) and the
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hypoeutectic (Al-0.7 wt % Co) Al-Co alloys. This has been attributed to the increasing
volume fraction of the hard AlgCo, intermetallic phase with increasing Co content [69].
The hardness of Al-Co alloys increases with increasing Co content, which is attributed to
the increase in the volume fraction of AlgCo; and increasing Co dissolved within the Al
matrix [35,76]. Several works focused on Al-Co alloys with different cobalt additions, from
2 wt % Co up to 20 wt % Co, in the hypereutectic region using vacuum arc melting [76,78].
Despite the hypereutectic compositions, for Al-Co alloys containing up to 10 wt % Co,
eutectic morphology prevails (Figure 3). This has been attributed to the non-equilibrium
microstructures produced due to the fast-cooling rate. However, increasing Co content
leads to increasing primary morphological features. For example, Al-15 wt % Co shows
a mixed morphology with primary AlgCo; and eutectic AlgCo,-Al (Figure 3). Regarding
Al-20 wt % Co (Figure 3), the primary morphology dominates [76,78]. The main features
that have been reported in this vast range of Co contents (2-20 wt % Co) include eutectic
morphology for the lower compositions, directional growth, brick-like mode of growth and
side brunching. For 2-5 wt % Co, a dual fibrous eutectic microconstituent with a lamellar
eutectic microconstituent has been reported [35]. Similar microstructural outcomes have
been reported in vacuum arc melted Al-Co alloys (1.1-6.3 wt % Co). In an Al-1.1 wt %
Co alloy, pro-eutectic Al prevails. As the Co content increases, there is a transition from
eutectic microconstituents (2.2 wt % Co) to coarse dendrites of AlgCo, surrounded by Al
with pockets of eutectics in between (6.3 wt % Co) [70].

20KV <530 Senm

Figure 3. Microstructures (SEM, backscattered electron mode) for Al-Co alloys with different Co
compositions (wt % Co) fabricated by vacuum arc melting [72,78-80] (Reprinted with permission
from ref. [72,79,80]. Copyright 2022, Elsevier).
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Other works focused on studying Al-Co alloys with higher Co content (>32 wt % Co),
with concentrations from Al-40.8 wt % Co up to Al-47.2 wt % Co fabricated by vacuum
arc melting (Figure 3). According to the results, Al-40.8 wt % Co consists of Z-Al;Co,
Al13Co4, and AlgCoy. On the other hand, Al-42.1 wt % Co and Al-43.4 wt % Co comprise
Al5Coy, Z-Al3Co, Al13Coy4, Al-44.7 wt % Co phase constitution includes Al;Co,, Z-Al3Co,
while Al-45.9 wt % Co and Al-47 wt % Co consists of 3-AlCo, AlsCo, and Z-Al;Co [79,80].
The presence of multiple different phases in each composition indicates that the fast-
cooling rates inhibit the completion of the reactions that lead to the formation of the
equilibrium phases. This is consistent with the fact that after annealing Al-43.4 wt % Co
and Al-47.2 wt % Co alloys, the phase formation reactions are completed successfully,
leading to the formation of an equilibrium microstructure. For example, after annealing at
1050 °C for 330 h, Al-43.4 wt % Co consists of AlsCo,, Z-Al3Co while for Al-47.2 wt % Co,
the phases 3-AlCo and Al5Co; are present [81].

4. Mechanical Properties and Deformation Mechanisms

As commented previously, small additions of Co can have a dramatic effect on the
mechanical performance of Al, and therefore, it is of great scientific and technological
importance to comment on the scarce existing literature about the mechanical properties of
the Al-Co alloy system. Previous reports focused on the mechanical properties of a single in-
termetallic phase. For example, the mechanical properties and deformation mechanisms of
the intermetallic Al;3Co4 has been studied by several authors [82-84]. However, few works
have studied the mechanical properties of the binary Al-Co system. For example, Daniels
studied the mechanical properties of sand-cast Al-Co alloys (0.5-10 wt % Co). According
to the results, the ultimate strength increases for additions up to 1 wt % Co. However,
for Co additions beyond 2 wt %, the ultimate tensile strength decreases below that of the
monolithic Al. Likewise, a minor Co addition of 0.5 wt % Co appears to improve the
ductility, but further additions decrease the ductility [15]. In situ micropillar compres-
sion tests on Al-Co films deposited on Si by magnetron sputtering revealed that when
Al-11.9 wt % Co alloy is in a supersaturated solid solution state, it exhibits high flow
stresses with significant strain-hardening ability. This behavior was attributed to the pres-
ence of incoherent twin boundaries in Al-Co alloys, which may act as a strong barrier for
dislocation motion under uniaxial compression tests. A most interesting observation is
that ultra-strong Al-Co alloys may have strength comparable to high-strength steels [85].
In another recent work, the effect of modest Co additions in the mechanical properties of
additive manufactured Al was studied. According to the findings, 0.5 wt % Co may enhance
the tensile properties of the material (Figure 4). This was attributed to the cumulative effect
of solid solution strengthening and precipitation hardening. Another effect of Co addition
was the elimination of large pores, therefore leading to tensile properties similar to that of
medium-strength Al alloys. However, greater Co additions led to an increase in defects
and to embrittlement [37]. Taking the above into consideration, it is concluded that in order
to improve the understanding of the mechanical properties and deformation mechanisms
of Al-Co alloys, more research is needed. In more detail, it is important to understand
how different fabrication techniques affect the mechanical properties, especially comparing
fabrication techniques with different solidification rates. Another field of great interest
is to understand the effect of Co content on the mechanical properties of Al-Co alloys.
Correlation of the microstructural features such as the shape and the density of precipitates,
the formation of supersaturated solid solutions and the formation of other phases on the
mechanical properties of the system would improve the understanding of the deformation
behavior of the system.
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Figure 4. Tensile testing curves for Al, Al-0.5 wt % Co and Al-1.1 wt % Co fabricated by additive
manufacturing and associated images of the fractured surface of tensile bars under SEM (Reprinted
with permission from [37], Copyright 2022, Elsevier).

5. Corrosion Behavior
5.1. The Effect of the Fabrication Route on the Corrosion Behavior

The good corrosion resistance of Al-Co alloys makes them desirable for applications
in demanding environments. However, the corrosion performance not only depends on
the composition but also on the microstructure, which in turn varies with the processing
route. Two competing mechanisms will determine if the corrosion resistance increases or
decreases. A high cooling rate promotes the dissolution of an alloying element, therefore
preventing precipitation and the resultant formation of galvanic pairs. However, if the
concentration of alloying element is very high and the cooling rate is not enough to keep
them in solid solution, they will precipitate and promote the formation of galvanic pairs
and therefore promote corrosion. Taking this into consideration, the effect of the cooling
rate on the corrosion behavior will be explored in this section for relatively low and high
concentrations of cobalt, 7 wt % and 32 wt %.

For example, the corrosion behavior of Al-7 wt % Co alloy fabricated by stir cast-
ing, vacuum arc melting and powder metallurgy was assessed in 3.5% NaCl solution by
Lekatou et al. [34] (3.5% NaCl solution is a solution of artificial sea water [86]). The au-
thors observed that Al-7 wt % Co alloys exhibited high resistance to localized forms of
corrosion in 3.5% NaCl solution, regardless of the manufacturing method. The localized
corrosion was associated with the pitting of Al that evolved to crevicing. Nonetheless,
AlgCo, remained free of corrosion. Amongst the different configurations, the alloy that
was fabricated by vacuum arc melting exhibited the best corrosion performance due to
the lower porosity and the dissolution of Co in the Al matrix, thus leading to a less in-
tense galvanic effect between the matrix and the intermetallic compound. Another factor
that enhanced the corrosion performance of the vacuum arc melted Al-7 wt % Co alloy
was the dense and uniform intermetallic network that constitutes a more effective bar-
rier to the electrolyte penetration through the dissolved Al compared to the stir cast and
powder metallurgy processed counterparts [34]. The improved corrosion performance
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of the vacuum arc melted alloy over the other configurations was attributed to the more
refined microstructure due to the fast-cooling rate employed during the fabrication [34].
The effect of the fabrication method on the corrosion behavior of Al-Co alloys has been
highlighted in an Al-32 wt % Co alloy fabricated by stir casting, vacuum arc melting and
powder metallurgy. Regardless of the preparation method, the studied alloys exhibited
low susceptibility to localized forms of corrosion in 3.5% NaCl solution. The vacuum arc
melted alloy exhibited the best corrosion performance due to the highest volume fraction
of Al13Co4 and the low porosity. Localized corrosion for the vacuum arc melted and the
stir cast alloys has been associated with the pitting of the Al matrix. Nonetheless, AlgCo,
demonstrated very good corrosion performance, while Alj3Co4 remained free of corrosion,
which was possibly due to lack of electrical contact with the Al matrix and the absence
of a galvanic effect with AlyCo; [72]. It is worth mentioning that both Al-7 wt % Co and
Al-32 wt % Co, regardless of the manufacturing method, exhibited considerably improved
resistance to localized forms of corrosion in 3.5% NaCl compared to the monolithic Al
and Al alloys (A11050, Al6061) [34,72]. Al has very good corrosion resistance due to the
formation of a very thin surface oxide film (passive film) [87]. However, the integrity of the
passive film is compromised in the presence of aggressive anions such as halides in acidic
and alkaline pH conditions [88]. The corrosion resistance of Al may be further decreased
with the addition of alloying elements. The electrochemical characteristics of the secondary
phases may be very different compared to the Al matrix; therefore, a micro-galvanic cell is
formed, leading to localized corrosion [87-89].

5.2. The Effect of the Composition on the Corrosion Behavior

The alloy composition has a critical role in the microstructure (see Section 3.2) and
therefore on the corrosion behavior. It is well known that pure aluminum has high cor-
rosion resistance and that the addition of an alloying element in small concentrations
would promote the formation of galvanic pairs and thus result in a decrease in the
corrosion resistance.

For example, the effect of the Co content on the corrosion behavior of Al-Co alloys
(7-20 wt % Co) in 3.5% NaCl has been the focus of a recent work [76]. According to the
results, the Co concentration does not appear to have a significant effect on the corrosion
behavior of vacuum arc melted Al-Co alloys in the Al-AlgCo; system (7—20 wt % Co) in 3.5%
NaCl. It was thus concluded that all compositions exhibit good resistance to localized forms
of corrosion in 3.5% NaCl. On the other hand, Al-7 wt % Co had slightly higher corrosion
performance compared to the other compositions (10-20 wt % Co). This has been attributed
to the formation of a relatively uniform surface film [76]. In Al-Co alloys with higher Co
contents (40.8—-47.2 wt % Co), anodic dissolution has been identified as the main corrosion
mechanism in 3.5% NaCl solution [79,80]. For the lower Co containing compositions
(40.8-45.9 wt % Co), pitting corrosion due to chloride anions has been observed. It was
deducted that the relative concentration of the phases and the physical contact between
them are important for the corrosion behavior of the system [80]. This has been attributed
to the increased nobility of Al-Co intermetallics with increasing Co content [79,80].

The importance of the electrolyte type on the corrosion behavior of Al-Co alloys was
demonstrated in an Al-43.4 wt % Co alloy annealed at 1050 °C for 330 h. In both NaCl
(3.5% NaCl) and HCl (0.01 M) environments, pitting corrosion was observed, while in
NaOH (0.01 M), uniform corrosion occurred (Figure 5). Nonetheless, NaOH was the most
aggressive corrosion environment, while HCl was the least aggressive for this alloy [81].



Metals 2022, 12, 1092

10 of 17

log |i| (A/m”)

43.4Co

1 n 1 n 1 i 1 L 1 n 1 n 1 n " 1
-1400 -1200 -1000 -800 -600 -400 -200 0 200

E(mV) vs Ag/AgCI

Figure 5. Potentiodynamic polarization curves for Al-43.4 wt % Co in 3.5% NacCl, 0.0IM HCl, 0.01M
NaOH and corroded surfaces under SEM after polarization (Reprinted with permission from [81],
Copyright 2022, Springer Nature).

The importance of the electrolyte on the corrosion performance of Al-Co alloys was
further investigated in a recent work on vacuum arc melted Al-Co alloys (2-20 wt % Co)
in 1M H,SO4 [78]. It is worth mentioning that sulfuric acid is an important chemical used
in various industries such as mineral processing, oil refining and wastewater processing.
It is thus critical to assess the corrosion performance of a new alloy in this environment
with the scope of potential application in various demanding industries. Al-Co alloys
exhibited high resistance to localized forms of corrosion in 1M H;SOy, especially for the
higher compositions (>7 wt % Co). On the other hand, Co addition in Al did not decrease
the rate of uniform corrosion. Nonetheless, the studied Al-Co compositions had greater
passivation ability than monolithic Al, Al7075-T6, Al2024-T3. It is worth mentioning that
the passivation behavior of the lower Co containing Al-Co alloys (2-5 wt % Co) in 1M
H)S04 was correlated with the passivation of the Al matrix. On the other hand, for the
higher compositions (>7 wt % Co), the passivation behavior was governed initially by
the passivation of the Al matrix and at a second stage by the passivation of AlgCo, [80].
High-temperature oxidation of Al-Co alloys (40.8 and 47.2 wt % Co) in a flowing synthetic
air environment led to the selective oxidation and the formation of a protective alumina
scale on the alloy surfaces. Oxidation kinetics followed a parabolic law rate. The high
Al content in both compositions contributed to the good oxidation performance, as the
continuous Al,Oj3 scale that was formed acted as a barrier to Co diffusion, and it hindered
the nucleation and growth of Co oxides [48].
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6. Wear Performance
6.1. The Effect of the Fabrication Route on the Wear Performance

Aluminum, as with other lightweight metals, tends to exhibit poor wear resistance and
low hardness, which limits its application in industry. This can be overcome through control
of the composition (i.e., alloying) and the processing conditions to promote different wear
resistant microstructures. Since Co has very low solubility in aluminum, small additions
of cobalt are enough to promote the formation of hard wear-resistant intermetallic phases.
For example, Al-7 wt % Co alloy fabricated by stir casting and vacuum arc melting exhibited
considerably low wear rates under sliding wear (AISI 52100 steel counter body) compared
to monolithic Al [34]. This behavior has been attributed to the strengthening effect of hard
AlyCo; intermetallics in the soft matrix that may postpone/inhibit plastic deformation
phenomena by reducing the load transfer to the matrix and decreasing the direct contact
between area between the matrix and the counterbody [90-92]. Furthermore, AlyCop
provides thermal stability to the matrix, and it provides support to the oxide layer [90-92].
Another interesting finding is that Al-7 wt % Co fabricated by vacuum arc melting and stir
casting exhibited improved wear performance over A11050, Al6060, Al7075-T6, and A356.
The vacuum arc melted alloy had better wear behavior compared to the stir cast alloy due
to the higher volume fraction of AlgCo, and finer and denser network of intermetallic
compounds, highlighting the beneficial effect of the microstructural refinement due to
non-equilibrium processing in the wear behavior of Al-Co alloys [34].

6.2. The Effect of the Composition on the Wear Performance

The effect of AlgCo, in the sliding wear performance (AISI 52100 steel counter body)
of Al-Co alloys in a wide range of compositions (2—20 wt % Co) has been the focus of a
recent work (Figure 6) [35]. According to the results, the wear rate of Al-Co alloys decreases
with increasing Co content due to increasing volume fraction of AlgCo, intermetallics from
19 vol % (Al-2 wt %Co) to 63 vol % (Al-20 wt % Co). This can be clearly discerned from the
study of the wear tracks (Figure 6), indicating that as the Co content increases, the width of
the wear tracks decreases. The beneficial action of AlyCo, in strengthening the Al matrix
can be attributed to another factor: the matrix—particle bond. In this case, the AlyCop
intermetallic is formed in situ, and therefore, the Al-AlyCo, interface bond is strong, which
is beneficial to achieve high wear resistance [35]. Increasing additions of Co results in a
higher volume fraction of AlgCo, and therefore in a reduction in the Al matrix surface
area, thus leading to a reduction in possible paths for plastic deformation [90-92]. While
the reinforcing action of AlyCo; is well established, the formation of an Al supersaturated
solid solution due to the fast cooling rate achieved during fabrication with vacuum arc
melting is another potential strengthening factor, which can be attributed to the fact that the
dislocation movement is obstructed by the severely deformed supersaturated lattice [35].
It is worth noticing that even a modest addition of 2 wt % Co led to a lower wear rate than
several commercial Al alloys (Al1050, Al6060, A356, Al7075), while the compositions rich
in Co (>10 wt % Co) demonstrated improved wear resistance over age-treated Al-7Mg-55i,
which is much harder and wear resistant than the other studied commercial Al alloys
(Figure 6) [35]. From the point of view of engineering design, it is important to understand
the wear mechanisms responsible for the differences in the wear behavior with increasing
Co addition. When the concentration of cobalt is small (2-7 wt % Co), the wear processes
are dominated by plastic deformation of the Al matrix. However, as the concentration of
Co increases to 10 wt % Co, the volume fraction of Al matrix is reduced, and the dominant
wear mechanism is sliding abrasive action by plastic deformation. For 15-20 wt % Co,
the volume fraction of the Al matrix is further reduced, and as a result, abrasion is the main
wear mechanism [35]. However, not always adding more Co, and therefore promoting the
formation of AlgCo,, is beneficial to enhance the wear resistance. Since AlgCos is a brittle
phase, increasing the volume fraction of this intermetallic will decrease the ductility of
the Al alloy. While the reinforcing action of AlgCo; in Al-Co alloys during sliding wear is
well established, a drawback of the increasing volume fraction of AlgCo; is the decreasing
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ductility. This effect has been highlighted in hypereutectic Al-Co alloys (7-20 wt % Co) in
solid particle erosion tests with the use of angular Al,O3 particles as the erodent medium.
According to the results, the studied Al-Co alloys demonstrated lower wear resistance
than Al at 60° and 90° impact angles, which was attributed to the increasing brittleness
of the alloys with increasing Co content. The main degradation mechanisms for Al-Co
alloys during solid particle erosion were plastic flow constraint, crack propagation and
intersection, causing fracture and the removal of AlyCo;, [93].
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Figure 6. SEM images of Al-5 wt %Co, Al-10 wt %Co and Al-20 wt % Co (Red eclipse: side branching)
as fabricated by vacuum arc melting and after sliding wear (ball on disk, 1000 m sliding distance, AISI
52100 steel counter body). Wear rates for Al-Co alloys (2-20 wt % Co) under sliding wear compared
to various commercial Al alloys (Al1050, A16060, Al7075, A17075-T6, A356, AIMgSi) (Reprinted with
permission from [35], Copyright 2022, Elsevier).

7. Prospects and Potential Applications

Al-Co alloys is an emerging category of metallic materials of high interest that can be
fabricated with the employment of a variety of techniques to optimize their microstructures
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and therefore their performance. Al-Co alloys can be fabricated with low cost, versatile
techniques such as stir casting, well established techniques used in the industry such
as vacuum arc melting and laboratory scale techniques such as melt spinning. Modern
fabrication techniques such as additive manufacturing have been successfully used to
manufacture Al-Co alloys. Fabrication techniques that employ a fast solidification rate
are of high interest due to the microstructural outcomes that evolve with the formation of
fine precipitates and supersaturated solid solutions. Regardless of the fabrication method,
Al-Co alloys exhibit good corrosion and wear resistance. Non-equilibrium processed
Al-Co alloys have favorable surface degradation properties compared to conventionally
produced Al-Co alloys due to their refined microstructure. Increasing Co content leads
to an increasing volume fraction of intermetallics and the formation of different Co-rich
intermetallics. An obvious downside is the decrease in the volume fraction of ductile Al
and thus the increasing brittleness of the alloy. Furthermore, increasing Co content leads
to increasing density and increasing raw material costs. An interesting observation is
that the corrosion behavior of Al-Co alloys does not appear to be very sensitive to the Co
content (3.5% NaCl solution and 1M H,SO; solution) as far as the Al-AlyCo, part of the
Al-Co system is concerned. On the other hand, when multiple intermetallics are formed
(=32 wt % Co), the corrosion behavior is more complex due to the formation of multiple
galvanic cells. Intermetallic compounds with increasing Co content appear to be more
corrosion resistant. When it comes to wear resistance, the outcome is more ambiguous.
While the intermetallic AlgCo;, has a beneficial role in strengthening the Al matrix, leading
to improved resistance to sliding wear, the increasing volume fraction of intermetallic
compounds decreases ductility. While it is known that the precipitation of AlgCo; in Al-Co
alloys leads to increased hardness, it is not understood how the fabrication method and the
Co content affects the mechanical properties and the deformation mechanisms.

Taking into account the good surface degradation properties of low Co containing
Al-Co alloys in comparison with commercial Al alloys, the relatively high cost of Co and the
increasing density and brittleness of Al-Co alloys with increasing Co content, it is suggested
that Al-Co alloys with modest Co content could be a useful alternative to the widely used
Al alloys in aggressive environments. Al-Co alloys of low Co content are of interest in the
automotive and aerospace industries, especially in applications that require high sliding
wear resistance and good corrosion performance while maintaining relatively low density
and reasonable raw material costs. The use of high Co containing Al-Co alloys is limited
by the relatively low ductility. Nonetheless, taking into account the good corrosion, wear
and oxidation resistance, those compositions can find potential applications as coatings in
demanding environments.

8. Conclusions

In this work, the developments of the emerging field of Al-Co alloys have been
discussed, including phase constitution, fabrication routes, microstructure, mechanical and
surface degradation properties.

Over the years, Al-Co alloys have been successfully fabricated with a variety of differ-
ent techniques spanning from conventional stir casting to rapid solidification techniques
such as melt spinning. Modern techniques such as additive manufacturing have also been
successfully employed to fabricate Al-Co alloys. The interest in using these techniques
stems mostly from the fact that they enable achieving different cooling rates and therefore
achieving different microstructures (refined precipitates, supersaturated solid solutions)
with improved properties.

Al-Co alloys exhibit a lot of attractive properties such as good corrosion, wear and
oxidation properties, as compared to commercial Al alloys. Low Co-containing Al-Co
alloys are potential candidates for applications that require improved surface degradation
properties while maintaining reasonable density and production costs. On the other
hand, Al-Co alloys of high Co content may find application as coatings in demanding
environments due to their good corrosion, wear, and oxidation resistance.
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