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IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Robust Synchronised Data Acquisition for
Biometric Authentication

Yan Zong, Member, IEEE, Shuxin Liu, Xiaoxu Liu, Member, IEEE, Shang Gao, Member, IEEE,
Xuewu Dai, Member, IEEE, and Zhiwei Gao, Senior Member, IEEE

Abstract—Owing to its unique, concealment and easy
customisation by combining different wrist and hand ges-
tures, High-Density surface electromyogram (HD-sEMG) is
recognised as a potential solution to the next generation
biometric authentication, which usually adopts a wireless
Body Sensor Network (BSN) to acquire the multi-channel
HD-sEMG biosignals from distributed electrode arrays. For
more accurate and reliable classification, biometric authen-
tication requires the distributed biosignals to be sampled
simultaneously and be well-aligned, which means that the
sampling jitters among the arrays need to be tiny. To
synchronise data sampling clocks of a cluster of BSN
nodes for biometric authentication, this paper modifies the
Packet-Coupled Oscillators protocol by using a Dynamic
controller (D-PkCOs). This protocol only involves one-way
single packet exchange, which reduces the communication
overhead significantly. For the purpose of maintaining pre-
cise sampling of these BSN nodes subject to drifting clock
frequency and varying delays, the dynamic controller is
designed via the H∞ robust method, and it is proved that
all the BSN nodes’ sampling jitters are bounded. The exper-
imental results demonstrate that the D-PkCOs protocol can
keep the sampling jitters less than a microsecond in a 10-
node IEEE 802.15.4 network. The application of D-PkCOs to
the BSN shows that the HD-sEMG signal with a high signal-
to-noise ratio is obtained, which leads to better gesture
classification performance.

Index Terms—Clock synchronisation, packet-coupled
oscillators (PkCOs), H∞ control.
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Fig. 1. Synchronous HD-sEMG sampling for biometric authentication.

THANKS to the unique and difficult-to-manipulate at-
tributes of biometric traits [1], they are widely used in

many applications (e.g. border control [1], biometric cash
machine [2], and smart healthcare [3]) for reliable authenti-
cation or identification. Over the last decade, due to the rapid
advancements of sensor technology and Artificial Intelligence
(AI), traditional biometric authentication, such as fingerprint
verification or facial recognition, has become vulnerable. For
instance, fingerprints can be acquired through any touched sur-
face or be forged with plastic molds, and facial characteristics
are able to be captured via high-resolution photography or be
synthesised by AI [4].

Fortunately, utilising electrical biosignals as biometric traits
can overcome the drawbacks above, and both electrocardio-
gram (ECG) and electroencephalogram (EEG) signals have
been popular solutions. However, the ECG signal is sensitive
to heart rate variations caused by physiological and emotional
factors. EEG’s low signal-to-noise ratio (SNR) and complex
signal sampling process also limit its application [5]. By
contrast, the surface electromyogram (sEMG) biosignal has
been well applied in the human-machine interface (e.g. Myo
[6], pre-fall detection system [7]), owing to its higher SNR
[8] and convenient sEMG data acquisition procedure. Also,
the sEMG signal customised by combining different wrist and
hand gestures provides a better level of protection. Several
recent works (e.g. [1], [5]) demonstrate that the High-Density
sEMG (HD-sEMG) signal can be used as a biometric trait,
and enhance the reliability of a biometric system.

Typically, multiple (e.g. 4 in [9]) electrode arrays are used to
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obtain the HD-sEMG signals for authentication. However, the
existence of cable connections among these electrode arrays
poses challenges for signal recording in dynamic environ-
ments. Hence, [10] develops a wireless HD-sEMG detection
system, and all the arrays, which constitute a Body Sensor
Network (BSN), are communicated wirelessly. To ensure that
the distributed HD-sEMG signals are well-aligned for accurate
gesture classification, it is essential to let the data sampling
progress be synchronous among electrode arrays [10], [11].

In Fig. 1, if no synchronisation technique is utilised, data
sampling clocks, which provide the timing signal to the
sample/hold function of Analog-to-Digital Converters (ADC)
components, will be poorly synchronised. Variations in the
sampling time (referred to as the sampling jitters) among
the electrode arrays let the sampling instants vary from each
other. This transfers the sampling jitters from the clocks to
the sampled HD-sEMG signals. The sampling errors caused
by the jitters let the (distribued and sampled) biosignals be
poor-aligned, which reduces the gesture classification accuracy
and authentication system performance. The key enabling
technology of synchronisation can achieve such a goal (i.e.
synchronising data acquiring clocks in a BSN) [12], and
this work modifies the Packet-Coupled Oscillators protocol
by using a Dynamic controller (D-PkCOs). We also use the
H∞ control solution to guide the parameter selection of the
dynamic controller, thereby allowing the sampling jitters of all
the data acquiring clocks are bounded. This also represents that
the sampling errors are limited. Hence, the wireless electrode
arrays can obtain the HD-sEMG biosignals simultaneously,
and the high gesture classification accuracy is also guaranteed.

A. Related Work

Due to the characteristics (e.g. reliability, low energy con-
sumption) of single-hop single-cluster topology, it has been
a popular solution for a body sensor network. Instead of
adopting an external hardware synchronisation unit (e.g. [10]),
we utilise a synchronisation protocol for synchronising data
acquiring clocks in the BSN. The D-PkCOs algorithm is on the
Medium Access Control (MAC) layer; no additional hardware
design is required.

Until now, several communities have extensively studied the
topic of synchronisation, owing to its significance. In the early
works of clock synchronisation, the main focus is on how a
wireless network can realise higher synchronisation precision
via the packet exchange strategy. One solution is the one
(or two)-way sender to receiver algorithm [e.g. Timing-sync
Protocol for Sensor Networks (TPSN) [13]]. The other is the
receiver to receiver synchronisation protocol, and a famous
example is Reference Broadcast Synchronisation (RBS) [14].
However, these protocols transmit numerous packets (e.g. 100
in [15]) during each synchronisation cycle T . The frequent
Radio Frequency (RF) communication puts a strain on the
battery-powered BSN node. The D-PkCOs algorithm only
needs to send one packet (i.e. Sync) in T , this solution reduces
the communication overhead.

Even though the standard deviation of MAC-level times-
tamp accuracy is around 1 µs [16], within the progress of

sending and receiving a packet, the use of two timestamps for
calculating clock offset1 still lets the one-way synchronisation
protocol [on the high-frequency (e.g. 32.768 MHz) embedded
clock] suffer from the timestamp accuracy. In this work, the
adopted D-PkCOs algorithm only requires one timestamp,
which is generated on the receiver’s reception of the Sync
packet. Sync itself contains the timing information (i.e. clock’s
resetting). Therefore, compared to the one-way sender to
receiver algorithm, D-PkCOs decreases the impacts from the
timestamp uncertainty.

The synchronisation performance not only can be enhanced
via the packet exchange strategy, but also be improved by
using advanced processing technologies. It is well known
that the clock frequency needs to be adjusted to maintain
the longer synchronised state; otherwise, the existence of
clock skew2 leads to more frequent packet exchange and
clock correction action [17], [18]. Thus, recent works adopt
multiple solutions (e.g. maximum likelihood estimation [15],
[19], linear least squares regression [20]) to estimate a more
accurate clock skew for correction. However, these two meth-
ods need considerable computational overhead [21], [22],
and the required time for calculating the skew estimate (i.e.
processing delay) also varies in different (i.e. single-precision,
or double-precision) floating-point formats [22]. Moreover, the
use of a limited number (e.g. 5 in [15]) of timestamps reduces
computing accuracy [20]. Thus, the calculation of linear least
squares regression moves to the cluster head with adequate
computing resources [20], or is implemented via FPGA [21].

The use of the constant adjustment amount also is an
alternative solution for clock frequency correction, while such
a strategy (i.e. no varying and low-resolution correction value)
limits synchronisation performance [12], [23]. Hence, a Pro-
portional (P) controller [16] is utilised to solve the above issue.
In [21], the moving average solution is adopted for clock skew
estimation, and a Proportional-Integral (PI) controller is used
in [12] for eliminating the impacts of drifting clock skew.
Furthermore, the results of [24] and [25] show that applying
the PI controller on clock offset adjustment can automatically
remove the effects of varying processing delay, however, no
skew correction input is employed to the local clock in these
two works. Hence, we use a dynamic controller (which is an
advanced version of the PI controller and moving average
methods) to adjust both the clock offset and skew, thereby
extending previous works (i.e. [16], [24], [25]). This recursive
controlling strategy possesses the features of compensating for
the impacts of drifting clock frequency, and naturally removing
the effects of varying processing delay.

In addition, although the works mentioned above consider
the consequences of drifting clock frequency, only the theo-
retical analysis of synchronisation protocols is presented (e.g.
[21], [24], [25], [26]). This means that parameters (e.g. of the
PI controller and moving average solutions) are determined
empirically [12], [21]. In [16], the H∞ method is used to
design the P controller parameters in a pairwise network.
Nevertheless, this work utilises the H∞ solution for networked

1The offset is referred to as the time difference between two clocks.
2The skew is defined as the normalised difference between two

drifting clock frequencies, see (4) of Section 2.
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dynamic controller parameters’ selection. From the viewpoint
of a body sensor network (i.e. a single-hop single-cluster
topology), the ratio between the modulus of the sampling
jitters (which indeed are the synchronisation precision) and
the magnitude of the noises (consisting of the drifting clock,
varying processing delay and timestamp noises) is always less
than a given value. Thus, the sampling jitters of all the wireless
nodes are bounded, and the sampling errors of sampled HD-
sEMG signals are also limited.

Inspired by the success of various types of Neural Networks
(NNs) in tackling handwritten digits recognition and im-
age classification problems, recently, NN-based hand gesture
classification has attracted growing attention. For example,
the Convolutional Neural Network (CNN) has been widely
used for hand gesture classification, where the image [27],
radar data [28], and HD-sEMG signal [29] are used as input
features for training, validation and test. So far, There exists
no consensus on the optimal NN architecture [9]. Thus, in this
work, we use another technique, namely, Linear Discriminant
Analysis (LDA), for studying the application of D-PkCOs in
hand gesture classification.

B. Contribution and Paper Organisation

This work uses a D-PkCOs protocol to synchronise data
sampling clocks in a body sensor network, thereby realising
simultaneous signal recording among distributed electrode
arrays. Instead of adopting an external hardware unit to achieve
such a goal, the adopted synchronisation algorithm is on the
MAC layer, and no additional hardware design is needed. The
D-PkCOs protocol only requires one Sync packet during each
cycle T , which reduces the communication overhead.

To realise precise sampling of all BSN nodes subject to
the drifting clock frequency and varying processing delay, we
adopt a dynamic controller to correct both the clock offset
and skew for reducing the sampling jitters. This solution
possesses the benefits of automatically removing the effects
of varying processing delay, and estimating a more accurate
clock skew for adjustment. In addition, we also use the H∞
control method to design parameters of the D-PkCOs syn-
chronisation protocol. Hence, the ratio between the modulus
of the sampling jitters and the magnitude of the noises is
always less than a given value. This means that, in the BSN,
the drifting clock and varying processing delay possess a tiny
impact on the sampling jitters. Thus, the sampling errors of
the HD-sEMG biosignals are also limited. The experimental
results demonstrate that our D-PkCOs protocol can keep the
sampling jitters less than a microsecond in a 10-node IEEE
802.15.4 network. The application of D-PkCOs to the BSN
shows that the HD-sEMG signal with a high SNR value is
obtained, which leads to a small gesture classification error
rate.

The rest of this paper is organised as follows: Section 2
presents the problem formulation and drifting clock model.
Then, Section 3 shows the dynamic packet-coupled synchro-
nisation scheme; and the H∞ design for the dynamic controller
of D-PkCOs is presented in Section 4. Section 5 demonstrates
the simulation and experimental evaluation of the D-PkCOs

protocol. The application of the adopted synchronisation algo-
rithm to a HD-sEMG-based authentication system is included
in Section 6. Eventually, Section 7 concludes this work.

II. PROBLEM FORMULATION AND CLOCK MODEL

This section first relates the synchronised HD-sEMG biosig-
nal acquisition problem to the issue of synchronisation on
the sampling clocks, in order to define the task of this work.
Next, we derive a drifting clock model for applying a dynamic
controller and the H∞ control to reduce the sampling jitters
in the later section.

A. Problem Description
In the body sensor network, if no (or poor) synchronisation

is applied to the data sampling clocks, all the ADC switches
will be opened at different sampling time (see Fig. 1), which
means that all the sensor nodes cannot simultaneously acquire
the biosignals. Thus, the sampling jitters on the clocks lead to
sampling errors (i.e. error voltages), and these error voltages
are proportional to the magnitude of the jitters and the signal
slew rate, as shown in Fig. 1. Furthermore, the maximum SNR
value of the sampled biosignals is determined by the amount
of the jitters [30], following

SNR = −20log(2πfino) (1)

where fin is the input HD-sEMG signal frequency, and o is
the jitter in root mean square (RMS) seconds. From (1), it can
be seen that the smaller jitter o results in a better sampled
signal with higher SNR. The high-quality sampled HD-sEMG
signals can let us obtain the trained classifier with a better
gesture identification classification rate.

Thus, this work aims to use the D-PkCOs protocol to
synchronise all the local data sampling clocks, and reduce
the jitters which are subject to drifting clock frequency and
varying delays. Once the sampling jitters is kept as small as
possible, according to (1), the BSN can obtain the good-quality
HD-sEMG signal with a high SNR value. In the following, we
derive an analytical model to describe the jitter o in (1), since
it provides a simpler approach when the H∞ control solution
is employed to design the dynamic controller parameters, and
to make the sampling jitters tiny.

B. Drifting Clock Model
Given a directed single-hop single-cluster BSN described by

the digraph G = (V, E ,A), where V = {0, 1, ..., N} denotes
a set of nodes, and a set of edges E induced by the adjacency
matrix A = [aij ] ∈ R(N+1)×(N+1). The wireless network is
composed of a root node (i.e. i = 0) and a set of leaf nodes
represented by N = {i : i ∈ V, and i ≥ 1} (see Fig. 1).
The root node is unique, and also is equipped with a Global
Positioning System (GPS) clock to provide the reference time
to all the leaf nodes. If the i-th leaf node can receive the Sync
packet from the root node, the weight ai0 is one (i.e. ai0 = 1,
and ai0 ̸= a0i); otherwise, it equals zero. In addition, the
digraph G has no self-loop (i.e. aii = 0 for all i ∈ V), owing
to the inherent feature of RF communication. The in-degree of
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node i is defined as degi =
∑N

j=0 aij . The Laplacian matrix
L = [lij ] ∈ R(N+1)×(N+1) of G is represented by L = D−A,
where D = diag(deg0, deg1, ..., degN ) is the diagonal matrix.

Typically, the clock module of a sensor node consists of
(i) a hardware oscillator ticking at the nominal frequency
f0 = 1/τ0, where τ0 is the nominal clock period, (ii) and
a counter register, counting the number of ticks generated by
the hardware oscillator. Each time the counter register matches
the threshold value φ0, it is reset to 0, and re-starts counting
from zero. The time variable P0[n] is introduced to model the
dynamics of such an ideal hardware oscillator-based embedded
clock, following

P0[n] = t[n]−
k∑

h=1

φ0, (2)

where t[n] = nτ0 is referred to as the reference time at the n-th
clock event. In this work, φ0 equals time synchronisation cycle
T . Since φ0 ≫ τ0, we assume that the clock updates m0 times
during a single cycle (i.e. T = m0τ0). k is calculated from
the floor function of n/m0. That is k = ⌊n/m0⌋. The ideal
clock resets every m0 update cycles, let n represent the clock
is reset at n-th cycle, where n = {m0, 2m0, 3m0, ..., km0}.

In practice, as a result of the manufacturing tolerance and
operating temperatures, Pi[n] of the i-th regular node cannot
be equal to P0[n]. Based on [16], Pi[n] is given by

Pi[n] = t[n] +

∑n−1
h=0 χi[h]τ0

f0
+

ϕi[n]

2πf0
−

k∑
h=1

φ0, (3)

where χi[n] = fi[n] − f0 is the deviation of fi[n] from f0,
whose accumulated impacts over time are phase fluctuations
(
∑n−1

h=0 χi[h]τ0)/f0. ϕi[n] represents all the instant phase fluc-
tuations from t[0] to t[n] [31]. Likewise, mi denotes the num-
ber of times for clock updating during T . For the i-th clock,
it is reset at n-th cycle, where n = {mi, 2mi, 3mi, ..., kmi}.

Let the clock offset θi[n] denote the difference between
Pi[n] and P0[n] (i.e. θi[n] ≜ Pi[n]− P0[n]). The clock skew
γi[n] ≜ χi[n]/f0 is the normalised difference between fi[n]
and f0. For theoretical study, we need to modify the one-
step update model (2) to a mi-step update model. Through
expanding dimension [25] and assuming the auxiliary variable
mi = m0, the drifting clock (2) at the k-th synchronisation
cycle is re-written as{

θi[k + 1] = θi[k] + γi[k]T + ωθi [k]

γi[k + 1] = γi[k] + ωγi [k]
, (4)

where ωθi [k] and ωγi [k] are the Gaussian random noise
processes, and the corresponding standard deviations are σθi

and σγi
[31]. By letting xi[k] = [θi[k], γi[k]]

T and ωi[k] =
[ωθi [k], ωγi

[k]]T , the matrix-vector form of (4) is obtained:

xi[k + 1] = Axi[k] + ωi[k], (5)

where the matrix A is equal to A =

[
1 T
0 1

]
. Based on (5), at

the k-th synchronisation cycle, the jitter of the i-th clock [in
(1)] is expressed as

oi[k] = C1xi[k] (6)

where oi[k] = θi[k] also is known as the controlled output
[see (16)]. C1 =

[
1 0

]
.

Through defining X [k] = [xT
0 [k], x

T
1 [k], ..., x

T
N [k]]T and

O[k] = [o0[k], o1[k], ..., oN [k]]T , we extend (6) to the fol-
lowing equation

O[k] = (I ⊗ C1)X [k] (7)

where ⊗ is the Kronecker product. I is the (N + 1)× (N +
1) identity matrix. In order to obtain good-quality sampled
HD-sEMG signals with high SNR, according to (1), we need
to keep O[k] as small as possible. The H∞ control can be
adopted to reduce the jitters O[k] subjected to drifting clock
frequency and varying delays. Hence, in Section 4, we use (5)
and (7) to construct a closed-loop BSN synchronisation system
for H∞ design, thereby guaranteeing that the sampling jitters
are bounded, and also letting the sampling errors be limited.

III. DYNAMIC PACKET-COUPLED SYNCHRONISATION
METHOD

In contrast with the existing works, during each synchro-
nisation cycle T , the D-PkCOs protocol transmits a single
Sync packet at the allocated time slot [25]. Also, only one
timestamp is generated, upon the reception of a Sync packet
at the receiver3. This Sync packet itself contains the timing
information; and it implies that counter of the transmitter
matches the threshold value. For example, once P0[k] of the
root node reaches φ0 at tk, a Sync packet is immediately
sent to the wireless channel. After the packet exchange delay
κ[k], the i-th node produces a timestamp P̂i[k] by reading the
counter register, when it receives Sync. Due to the existence
of processing delay ηi[k], the correction input (calculated
at the time tk + κ[k]) is employed to the local clock at
tk+κ[k]+ηi[k]. We also assume that both the packet exchange
and processing delays follow the Gaussian distribution.

Once the timestamp P̂i[k] is obtained, node i computes the
offset estimate θ̂i[k], in respect of the root node, following

θ̂i[k] =

{
P̂i[k]− κ̄ if P̂i[k]− κ̄ < φi[k]

2

P̂i[k]− κ̄− φi if P̂i[k]− κ̄ ≥ φi[k]
2

, (8)

where κ̄ is the average value of κ[k]. The D-PkCOs protocol
uses the one-way packet exchange strategy for measuring the
clock offset. The local timestamp generated on the sensor
node contains the packet exchange delay. In the body sensor
network, a time slot is allocated to the root node for sending
the Sync packet, and there is no need to check whether a
wireless channel is busy before the Sync transmission. This
means that the Sync packet is directly sent to the channel,
and the packet exchange delay κ[k] is almost deterministic
with little variance [24]. Thus, we can subtract κ̄ from the
timestamp to obtain a more accurate offset estimate.

The clock skew estimate should be calculated from γ̂i[k] =
(θ̂i[k]− θ̂i[k−1]+)/T , where θ̂i[k−1]+ is the offset estimate
after it is corrected at the (k − 1)-th synchronisation cycle.
In practice, the value of θ̂i[k− 1]+ is unknown; however, the

3Here, we assume that all the Sync packets from the root node can
be successfully received by sensor nodes.
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offset is close to zero at steady synchronised state. Then, it is
reasonable to assume that the clock offset is perfectly adjusted,
and θ̂i[k − 1]+ is zero [16]. Hence, the skew estimate γ̂i[k]
can be calculated from the following expression

γ̂i[k] =
θ̂i[k]

T
. (9)

Due to the difficulty of real-time counter register access
and real-time computation, there always exists a varying
processing delay between the reception of a Sync packet
and the employment of clock correction input [24]. The
use of a feedforward compensation strategy (e.g. [16], [32])
cannot fully compensate for the effects of this varying delay.
Thus, this work utilises a dynamic controller for clock offset
correction, yielding{

wθi [k + 1] = Kθ
1wθi [k] +Kθ

2

∑N
j=0 lij(−θ̂j [k])

ũθi [k] = Kθ
3wθi [k] +Kθ

4

∑N
j=0 lij(−θ̂j [k])

, (10)

where ũθi [k] is the clock offset correction input. wθi [k] is
the offset correction integral controller. Kθ

1 , Kθ
2 , Kθ

3 and
Kθ

4 are parameters of the dynamic controller for clock offset
correction. Also, it can be seen that the proportional-integral
controller [24] is a particular case of the dynamic controller
when setting Kθ

1 = 1 and Kθ
3 = 1.

In order to further improve synchronisation performance
(i.e. reducing the sampling jitters), we also adopt the other
dynamic controller for estimating a more accurate skew cor-
rection input ũγi [k]:{

wγi [k + 1] = Kγ
1 wγi [k] +Kγ

2

∑N
j=0 lij(−γ̂j [k])

ũγi [k] = Kγ
3 wγi [k] +Kγ

4

∑N
j=0 lij(−γ̂j [k])

, (11)

where wγi [k] is the integral controller for skew adjustment.
Kγ

1 , Kγ
2 , Kγ

3 and Kγ
4 are parameters of the dynamic controller

for clock skew correction. The moving average method in
[21] also is a simplified version of the dynamic controller by
letting Kγ

4 = 0. Since wθi [k] and wγi
[k] contain the historic

(clock offset and skew) information, there is no need to store
a number of timestamps. Thus, the dynamic controller reduces
computational and memory overheads, compared to maximum
likelihood estimation [19] and least squares regression [20].

In consequence of the existence of ηi[k], the offset cor-
rection input ũθi [k] is applied the local sampling clock at
tk + κ[k] + ηi[k], and this progress can be described as{

θi[k]
+ = θi[k]

− + (ũθi [k]− (ηi[k] + δηi
[k]))

γi[k]
+ = γi[k]

− + ũγi
[k]

, (12)

where θi[k]
+/θi[k]

− is the clock offset after/before it is
corrected at the k-th synchronisation cycle. γi[k]+/γi[k]− is
the clock skew after/before the drifting clock is adjusted. The
value δηi

[k] is jointly dependent on the skew γi[k] and the
length of the processing delay ηi[k] [24]. Note that, instead
of only using a PI controller for clock offset correction [24]
(or adopting moving average for skew adjustment [21]), this
work utilises the dynamic controller for correcting both the
clock offset and skew.

IV. DYNAMIC CONTROLLER OPTIMISATION

To guarantee that the sampling jitters are bounded, we
use the H∞ control design to choose eight parameters [see
(10) and (11)]. This section starts by constructing a dynamic
closed-loop synchronisation system. Then, the H∞ control
method is adopted to select a set of parameters in D-PkCOs,
thereby guaranteeing that the ratio between the modulus of
the sampling jitters and the magnitude of the noises is always
less than a given value. This ensures us that we can sample
the HD-sEMG signal with a high SNR value.

A. Feedback Control Synchronisation System
By defining the measured output yi[k] = [θ̂i[k], γ̂i[k]]

T , the
measurement equations (8) and (9) are modified to

yi[k] = C2xi[k] + νi[k], (13)

where νi[k] = [νθi [k], νγi [k]]
T is the estimate noise. νθi [k] =

κ[k] + δκ[k] − κ̄ is the offset estimate noise, and νγi
[k] =

(κ[k] + δκ[k]− κ̄)/T is the skew estimate noise. δκ[k] is the
extra offset value, which is the joint impacts of skew and the
length of corresponding delays [24]. C2 is the 2 × 2 identity
matrix.

Likewise, let wi[k] = [wθi [k],wγi
[k]]T and ui[k] =

[ũθi [k], ũγi [k]]
T , (10) and (11) can be re-written as the fol-

lowing form{
wi[k + 1] = K1wi[k] +K2

∑N
j=0 lij(−yj [k])

ui[k] = K3wi[k] +K4

∑N
j=0 lij(−yj [k])

, (14)

where the matrices K1, K2, K3 and K4, respectively, equal

K1 =

[
Kθ

1 0
0 Kγ

1

]
, K2 =

[
Kθ

2 0
0 Kγ

2

]
,

K3 =

[
Kθ

3 0
0 Kγ

3

]
, K4 =

[
Kθ

4 0
0 Kγ

4

]
.

Through applying the dynamic correction input ui[k] to the
drifting clock, (5) is modified to

xi[k + 1] = Axi[k] +Bui[k] + ωi[k], (15)

where B is a 2× 2 identity matrix.
Eventually, by including (6), the dynamic output feedback

control synchronisation system is
xi[k + 1] = Axi[k] +Bui[k] + Edi[k]

oi[k] = C1xi[k] + Fdi[k]

yi[k] = C2xi[k] +Hdi[k]

(16)

with the controller (14), where oi[k] = θi[k] is the controlled
output [also the sampling jitter, as shown in (6)]. di[k] =
[ωT

i [k], ν
T
i [k], ηi[k]+δηi

[k]]T is the disturbance. The matrices
E, F and H are, respectively, equal to

E =

[
1 0 0 0 −1
0 1 0 0 0

]
,

F =
[
0 0 0 0 0

]
, H =

[
0 0 1 0 0
0 0 0 1 0

]
.

Similar to (7), let U [k] = [uT
0 [k], u

T
1 [k], ..., u

T
N [k]]T , D[k] =

[dT0 [k], d
T
1 [k], ..., d

T
N [k]]T , Y[k] = [yT0 [k], y

T
1 [k], ..., y

T
N [k]]T ,
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W[k] = [wT
0 [k],wT

1 [k], ...,wT
N [k]]T , a networked closed-loop

synchronisation system is obtained:

X [k + 1] = (I ⊗A)X [k] + (I ⊗B)U [k] + (I ⊗ E)D[k]

O[k] = (I ⊗ C1)X [k] + (I ⊗ F )D[k]

Y[k] = (I ⊗ C2)X [k] + (I ⊗H)D[k]

W[k + 1] = (I ⊗K1)W[k] + (I ⊗K2)L (−Y[k])

U [k] = (I ⊗K3)W[k] + (I ⊗K4)L (−Y[k])

,

(17)
where O[k] represents the sampling jitters, as shown in (7).
Note that we can easily verify the pairwise system (16) is
controllable. The body sensor network used in this work
is a single-hop single-cluster topology. This means that all
the pairwise systems are parallel and uncoupled. Hence, the
networked system (17) also is controllable.

For simplifying analysis of the system (17), by letting
x̄i[k] = xi[k] − x0[k], ūi[k] = ui[k] − u0[k], d̄i[k] =
di[k] − d0[k], ōi[k] = oi[k] − o0[k], ȳi[k] = yi[k] − y0[k],
w̄i[k] = wi[k] − w0[k] [25], a reduced networked system is
given:

X̄ [k + 1] = (Ī ⊗A)X̄ [k] + (Ī ⊗B)Ū [k] + (Ī ⊗ E)D̄[k]

Ō[k] = (Ī ⊗ C1)X̄ [k] + (Ī ⊗ F )D̄[k]

Ȳ[k] = (Ī ⊗ C2)X̄ [k] + (Ī ⊗H)D̄[k]

W̄[k + 1] = (Ī ⊗K1)W̄[k] + (Ī ⊗K2)L̄
(
−Ȳ[k]

)
Ū [k] = (Ī ⊗K3)W̄[k] + (Ī ⊗K4)L̄

(
−Ȳ[k]

)
,

(18)
where X̄ [k] = [x̄T

1 [k], x̄
T
2 [k], ..., x̄

T
N [k]]T , Ū [k] =

[ūT
1 [k], ū

T
2 [k], ..., ū

T
N [k]]T , D̄ = [d̄T1 [k], d̄

T
2 [k], ..., d̄

T
N [k]]T ,

Ō[k] = [ō1[k], ō2[k], ..., ōN [k]]T , Ȳ[k] =
[ȳT1 [k], ȳ

T
2 [k], ..., ȳ

T
N [k]]T , W̄[k] = [w̄T

0 [k], w̄T
1 [k], ..., w̄T

N [k]]T ,
Ī is the N ×N identity matrix, and L̄ is equal to

l11 − l01 l12 − l02 . . . l1N − l0N
l21 − l01 l22 − l02 . . . l2N − l0N

...
...

. . .
...

lN1 − l01 lN2 − l02 . . . lNN − l0N

 .

The objective of the H∞ control is to guarantee that the
drifting clock and varying processing delay possess a tiny
impact on the sampling jitters. This means that, through
selecting eight parameters of the dynamic controller, the H∞
design is to keep ∥Ō∥2/∥D̄∥2 as small as possible. In the
following, a design condition is proposed to guarantee that
the system (18) is robust in the presence of the perturbations
D̄[k].

B. Controller Design

Here, we first define the H∞ performance. The transfer
function G[z] of (18) relating D̄[k] to Ō[k] is G[z] = (Ī ⊗
C1)(zI−(Ī ⊗A))−1(Ī ⊗E)+(Ī ⊗F ). The performance H∞
of (18) is guaranteed, if the infinity norm ∥G[z]∥∞, which is
the two-norm ratio between Ō[k] and D̄[k], is less than ρ. That
is

∥G[z]∥∞ =

∥∥Ō∥∥
2∥∥D̄∥∥
2

< ρ. (19)

For theoretical study, and the reduced networked system
(18) is modified to the following expressionX̄ [k + 1]

W̄[k + 1]
Ō[k]

 = (A+BKC)

X̄ [k]
W̄[k]
D̄[k]

 , (20)

where the matrices A, B, K and C are, respectively, equal to

A =

 Ī ⊗A 0 Ī ⊗ E
0 0 0

Ī ⊗ C1 0 Ī ⊗ F

 , B =

0 Ī ⊗B
I 0
0 0

 ,

K =

[
Ī ⊗K1 −(L̄ ⊗K2)
Ī ⊗K3 −(L̄ ⊗K4)

]
, C =

[
0 I 0

Ī ⊗ C2 0 Ī ⊗H

]
.

Lemma 1 ([16], [33]). Given the square matrices X and S, and
the matrices T = TT , A, P, L with the appropriate dimensions,
the following two inequalities are equivalent:[

T+ (LA) + (LA)T ∗
XPT − XLT + SA −SXT − XST

]
< 0 (21)

T+ (PA) + (PA)T < 0. (22)

Theorem 1. Consider a directed single-hop single-cluster
body sensor network represented by G, consisting of an ideal
root node’s clock and N leaf node clocks with the drifting
frequencies fi[k] ∈ {fi[k] : fi[k] ̸= f0 and i ∈ N}, and
a scalar ρ > 0. For the known parameters ζ and ξ ̸= 0, if
there exist the matrices Q > 0 ∈ R4N×4N , G ∈ R5N×5N ,
V ∈ R4N×4N and U ∈ R4N×4N such thatΓ ∗ ∗

Λ Ω ∗
Φ Ψ Υ

 < 0 (23)

where Γ = −diag(Q, ρ2I) + (ζHBVC) + (ζHBVC)T ,
Λ = GA + BVC, Ω = −G − GT + diag(Q, I), Φ =
(BTBVC) − (ζHBU)T , Ψ = (ξGB − BU)T , Υ =
−(BTBU) − (BTBU)T , H = I ∈ R5N×5N , and the gain
matrix is obtained from K = ξU−1V , then the performance
H∞ of G is guaranteed.

Proof. Suppose that (23) holds, Υ < 0 indicates that U is
a non-singular matrix. Let U = ξU, and compare (21) with
(23), we have

T =

[
−diag(Q, ρ2I) ∗

Λ Ω

]
,

P =
[
0 Ψ

]T
, S = BTBU, X = ξI,

L =
[
(ζHBU)T 0

]T
, A = U−1V

[
C 0

]
.

In Lemma 1, as a result of the equivalence relation between
(21) and (22), the following inequality is given:[

−diag(Q, ρ2I) ∗
Λ Ω

]
+

([
0 I

]T
(GB−BU)U−1V

[
C 0

])
+

([
0 I

]T
(GB−BU)U−1V

[
C 0

])T

=

[
−diag(Q, ρ2I) ∗

Λ + (GB−BU)U−1VC Ω

]
< 0.

(24)
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TABLE I
PARAMETER SETTINGS OF PISYNC, DCBTS AND TPSN4

PISync DCBTS TPSN

Kθ
1 0 0 0

Kθ
2 0 0 0

Kθ
3 0 0 0

Kθ
4 1 0.5 1

Kγ
1 0 0.5 0

Kγ
2 0 0.5 0

Kγ
3 0 0.5 0

Kγ
4 3.05× 10−8 0 1

Let K = U−1V , (24) is modified to[
−diag(Q, ρ2I) ∗
GA+GBKC −G−GT + diag(Q, I)

]
< 0. (25)

Based on [34], (25) is the bounded real lemma with the
auxiliary variable matrix G. Once the matrix inequality (23)
is established, the H∞ performance ρ of the reduced system
(20) is guaranteed.

Theorem 1 implies that, under the design condition of
the linear matrix inequality (23), the body sensor network
G possesses the H∞ performance. This means that the two-
norm ratio between Ō[k] and D̄[k] is less than ρ. In the
directed single-hop single-cluster BSN, the perturbations D[k]
(from the drifting clock and delays) have a tiny impact on
the sampling jitters, and all the BSN nodes’ sampling errors
are bounded. Also, based on (1), the body sensor network can
sample the HD-sEMG signal with a high SNR value.

V. EVALUATION OF DYNAMIC PACKET-COUPLED
OSCILLATORS

In this section, we start with a performance investigation
of the D-PkCOs protocol via numerical simulations. Then,
D-PkCOs is implemented on a hardware testbed, and is
also studied in a 10-node body sensor network. Moreover,
several synchronisation protocols (e.g. PISync) are selected
for comparison.

A. Simulation Results

We conduct simulations in a directed 10-node BSN. The
initial offset θi[0] and γi[0] are randomly configured following
the uniform distribution in the corresponding intervals (400
ms, 0.8 ms) and (0 ppm, 50 ppm). Meanwhile, the clock offset
and skew are, respectively, subject to random perturbations
with the standard deviations σθi = 1 µs and σγi

= 1 ppm.
The packet exchange delay’s standard deviation is 4 µs [24].
The synchronisation cycle is one second. From Theorem 1, the
H∞ performance ρ = 5.24, and four matrices K1, K2, K3 and
K4 of the dynamic controller are obtained under ζ = 0.254,
ξ = 0.385:

4In PISync, Kγ
4 = 3.05 × 10−8 is the maximum value, it varies

according to the adaptive parameter tuning method in [26].
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Fig. 2. Evolution of the clock offset θi[k] and skew γi[k] under the D-
PkCOs and PISync synchronisation protocols.
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Fig. 3. Evolution of 𭟋[k] =
√∑k

h=0 OT [h]O[h]/
∑k

h=0 DT [h]D[h] via
the D-PkCOs and PISync protocols.

K1 =

[
0.0519 0

0 0.0519

]
,

K2 =

[
−0.000000000000245 0

0 0.0000000000000149

]
,

K3 =

[
0.0000227 0

0 0.00000591

]
,K4 =

[
0.804 0
0 0.761

]
.

Fig. 2 shows the evolution of offset and skew in the
simulations. Both D-PkCOs and PISync let the offset and
skew approach to zero, and thus the network realises steady
synchronised state. The PISync protocol utilises the full offset
estimate to adjust the drifting clock (i.e. Kθ

1 = Kθ
2 = Kθ

3 = 0,
Kθ

4 = 1, see Table 1), its convergence speed is faster than that
of D-PkCOs (where Kθ

4 ≈ 0.804).
In PISync, a proportional controller also is used for clock

skew correction (where Kγ
1 = Kγ

2 = Kγ
3 = 0, as shown

in Table 1). Even though the adaptive tuning solution is
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TABLE II
SYNCHRONISATION PERFORMANCE OF FOUR ALGORITHMS

D-PkCOs PISync DCBTS TPSN

Mean (µs) 0.117 11.783 100.322 8.161
Std dev (µs) 0.277 0.333 4.299 104.883

adopted, the little value of Kγ
4 (in the P controller) still cannot

overcome the impacts of the drifting clock frequency (see
Fig. 2). The proportional controller is a simplified version
of the dynamic controller; by using the dynamic controller’s
parameters obtained from Theorem 1, the adjusted skew under
D-PkCOs is much smaller at steady state. Moreover, our
protocol also adopts the dynamic controller to correct clock
offset, while only the P controller is used in PISync for offset
adjustment. Thus, with the aid of the proposed Theorem 1, the
D-PkCOs algorithm can achieve better performance, compared
to the PISync method (see Fig. 2).

From Fig. 3, the behaviour of the steady-state offset is also
reflected in the evolution of 𭟋[k]5. Even though both D-PkCOs
and PISync guarantee that 𭟋[k] of the BSN is less than ρ =
5.24, 𭟋[k] in D-PkCOs is only around one third of 𭟋[k] in
PISync at steady synchronised state.

B. Experimental Evaluation

In addition to the simulations, we also study the perfor-
mance of the D-PkCOs synchronisation protocol in the same
10-node BSN. For the implementation, Pi[n] is represented
by a 32-bit counter register of the clock module on the Atmel
SAM R21 board [35], which adopts an external 32.768 MHz
crystal oscillator as the clock source. The threshold register is
32767999 to let the clock reset each second. Once the counter
value matches threshold, the processor triggers a hardware
interrupt, where counter is reset to zero, meanwhile, a Sync
packet is transmitted for synchronisation purposes. On the

5𭟋[k] represents the value of
∥∥Ō∥∥

2
/
∥∥D̄∥∥

2
at the k-th synchronisa-

tion cycle [see (19)].
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DCBTS synchronisation protocols.
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Fig. 6. SNR and maximum classification error rate under four protocols.

reception of the Sync packet, the other hardware (address
match) interrupt is issued to generate a local timestamp,
which is utilised for offset estimation and clock correction.
Note that, due to the difficulty of adjusting clock frequency
in an embedded system, the threshold correction method is
considered as a substitute solution [16].

During the experiments, the GPS disciplined clock [36] is
connected to the root node (i = 0), for providing the reference
time to the wireless network. The synchronisation cycle T is
one second. The mean value of the packet exchange delay
is about 514.25 µs, its standard deviation is of 0.3 µs. The
dynamic controller gain is set to the same parameters used
in the simulations. The logic analyser [37] is used to evaluate
performance, and the precision is defined as the time difference
between the i-th leaf node clock and root node’s clock. We
select three protocols (i.e. PISync, DCBTS and TPSN) for
comparison, and their configurations are presented in Table 1.

Both PISync and TPSN adopt the proportional controller
structure for offset and skew correction, the use of the adaptive
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Kγ
4 tuning solution in PISync can let the network achieve

better synchronisation precision (i.e. the sampling jitters) of
around 13 µs (see Fig. 4). Even though DCBTS utilises the
moving average method (with the same parameter settings
in [21]) for clock skew correction, only the performance of
about 110 µs is obtained in the network, which is worse than
the reported performance in [21]. This may be due to the
inappropriate parameter selection, and more careful parameter
configuration is needed for different hardware platforms. From
Fig. 4, by using the control gain obtained from Theorem 1, the
D-PkCOs protocol can realise clock synchronisation with the
precision of around 1 µs in the body sensor network, which is
better than the performance of PISync (around 13 µs), DCBTS
(about 110 µs) and TPSN (approximately 210 µs). In addition,
the average values and standard deviations of synchronisation
precision (which also is the sampling jitter) in the 10-node
BSN are summarised in Table 2. In addition, we find that
the processing delay is not a perfect Gaussian noise. Thus,
more investigations are needed in the future to have a better
understanding of how the performance is affected by the non-
Gaussian noise.

VI. APPLICATION OF D-PKCOS IN THE HD-SEMG
AUTHENTICATION SYSTEM

In this section, we use the Hyser dataset [9] to study the
effectiveness of D-PkCOs in the HD-sEMG-based authenti-
cation system (through the hand gesture classification). Four
electrode arrays are connected via cables, and are also placed
on the forearm’s extensor and flexor muscles for collecting the
Hyser data, where twenty volunteers (i.e. subjects) participate
and perform 34 commonly used hand gestures. This dataset
is acquired at the sampling rate of 2048 Hz. The single-hop
single-cluster topology is widely used in the BSN; then, we
assume that these four electrode arrays construct a wireless
network by using this topology (i.e. a single-cluster BSN
consisting of one root node and four leaf nodes, see Fig.
1). During the simulations, we resample the Hyser data at
10240 Hz; in the meantime, the sampling jitters, which are
randomly generated according to the mean values and standard
deviations of four protocols (see Table 2), are introduced.

Fig. 5 presents the original sEMG signal (from Subject 5)
in the one-second sampling duration. The biosignal voltage
is between around −300 µV and +300 µV. The evolution
of the sampling error in different protocols is also shown
in Fig. 5. Clearly, the synchronisation performance has a
significant effect on the sampled signal quality. The D-PkCOs
algorithm guarantees that the sampling error is less than
0.5 µV. However, by using the DCBTS synchronisation pro-
tocol, the sampling error is about 30 µV. Thus, our D-PkCOs
synchronisation protocol can let the body sensor network
acquire a high-quality signal (with a small sampling error).
This also is reflected in the sampled HD-sEMG signal’s SNR
values (see Fig. 6). For example, the signal’s SNR value is
around 60 dB under the D-PkCOs protocol; however, through
utilising TPSN, the HD-sEMG biosignal with SNR of about
10 dB is acquired.

We use the LDA-based method to classify and recognise
34 hand gestures, and the maximum classification error rate

is shown in Fig. 6. Overall, the classification performance
under D-PkCOs is slightly better than that of using the other
three protocols. However, when it comes to Subject 5, our
D-PkCOs protocol can let the authentication system obtain a
smaller maximum classification error of 8.205%, compared to
11.282% via DCBTS.

VII. CONCLUSION

In this work, we adopt a D-PkCOs protocol to synchronise
data sampling clocks in a body sensor network, thereby
realising simultaneous biosignal acquiring among distributed
electrode arrays for biometric authentication. The D-PkCOs
protocol only requires one Sync packet during each synchro-
nisation cycle, which reduces the communication overhead. To
realise precise sampling of all BSN nodes subject to drifting
clock frequency and varying processing delay, we adopt a
dynamic controller to adjust both the clock offset and skew
for reducing the sampling jitters. This solution possesses the
benefits of automatically removing the effects of varying pro-
cessing delay, and estimating a more accurate clock skew for
adjustment. In addition, we also use the H∞ control method to
design parameters of the D-PkCOs synchronisation protocol.
Thus, in the BSN, the drifting clock and varying processing
delay possess a tiny impact on the sampling jitters, and all the
nodes’ sampling errors are bounded. The experimental results
demonstrate that our D-PkCOs protocol can keep the sampling
jitters less than 1 µs in a 10-node IEEE 802.15.4 network. The
application of D-PkCOs to the BSN shows that the HD-sEMG
signal with a high SNR value is obtained, which leads to better
gesture classification performance.
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