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ABSTRACT

The data processing for in situ measunements by overcoring (or stress-relief in gênerai) is

classically performed by the least squares method. This appears well suited, because the relation

y = F (a) between stress tensor (o) and displacements or strain (Y) is linear. In this case, the unknowns

ait; stresses, and the known data of the problem are the measured displacements or strains and the elastic

properties of the rock, those are preferably measured in-situ (biaxial test).

However if we wish to détermine the elastic properties (E matrix in the gênerai case) from the

overcoring test itself, the previous relation becomes Y = F (o,E). This relation is non lineafrç to résolve

it numerous optimization techniques are available. The optimization methods without gradient

calculation seems well adapted for this problem.

INTRODUCTIO N

The knowledge of natural stress state in a

rock mass is often an essential datum to solve

most modelling problems in geomechanics.

Among the quantitative methods of in situ stress

measurements at great depth in a borehole,

overcoring is usually preferred (fig. 1). Two

différent types of measurements are obtained:

radial displacements with the "U.S.B.M cell",

and strains with the "CSIR triaxial strain cell" or

the "CSIRO hollow inclusion gauge" which was

developped in Australia (fig. 2).

The détermination of the stress tensor is

done by assuming the rock as perfectly elastic and

homogeneous. We obtain six components of the

stress tensor expressed in a fixed référence sytem

as follow :

(a) First of ail, détermine the elastic

constants of the rock by means of loading and

unloading tests on the core obtained from

overcoring or by uniaxial compression tests on

rock spécimens drilled out in the appropriate

directions.



(b) Then, find the équations for the

measurements (displacements or strains) in terms

of the elastic constants and six stress components.

(c) Invert the équations by using the least

squares method or similar methods.

After presenting the classical technique for

data analysis we wil l discuss new numerical

methods, that allow the détermination of elastic

properties and stresses from overcoring data.

TECHNIQUE S OF DATA ANALYSI S

FOR STRESS MEASUREMEN T

The détermination of the stresses with in

situ overcoring measurement leads to résolve a

linear System where the second member is the

measurement vector (Y) and the unknowns are

the six stress tensor components (a). The number

of linear équations is usually greater than six,

which involves that we can't inverse the matrix

(A). We use in that case the least squares method

wich consists of finding the solution which

minimizes the residual error :

AX = Y with X estimator of a

e = residual error = Y - AX

ele minimum o X = (A1 A)1 A1 Y

This method gives many parameters which

allows to estimate the quality of the linear

régression such as the probability law of X,

estimation of the stress tensor in a fixed référence

System. But no information is given on the

principal stresses because the relation between

thèse, the six directions and shear stress tensor

components is highly non-linear. In order to solve
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Fig. 1 : Steps of overcoring method

this problem, we used a statistical approach. The

probability law of the principal stresses and their

orientations is determined by using statistical

simulations of the law given by the least squares

method.

Other similar methods of data analysis for

stress measurements like the weighted least

squares or the residual values methods [4] could

be used but results are almost identical. The

probalistic approach developped by Tarantola [8]



and based on the maximum of likelihood gives

interesting informations but the results must be

carefully interpreted.
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in laboratory.

Classically, thèse parameters are taken as

data of the problem. The disadvantages of this

method are that significant variations of the

modulus values can occur from point to point in

the measurement area, and that the properties of

the rock can change between the moments when

the in situ measurements are done and the

détermination of the elastic constants (altération

of the rock, humidity,...).

The relation between the stress tensor (a)

and the observed measurements (Yobi) is linear.

We hâve :

= A.a where A is the compliance

matrix.

Kg. 2 : CSIRO cell

The coefficients of the matrix A dépend on

the properties of the rock and the orientation of

the hole. For spécial cases, isotropic bodies for

example [10], there are known explicitly. In

gênerai [ 1], there are determined from Computing.

Also, A is a function of the elastic constant vector

E.

NEW FORMULATIO N OF THE
PROBLEM

The theory presented hère is based on linear

elastic behaviour. We suppose that elastic

constants and stresses are separate variables this

means that the values of the elastic parameters are

not depending on the rock stress state. This

hypothesis is very important and, in gênerai,

implicitwhen the elastic constants are determined

The idea is to consider E as unknown and

détermine a and E so that Y ^ = A (E).a the

calculated displacements or s trains are équivalent

to Y^ . This problem can be solved by minimization

of the function f (E,o) = | | Y^ YJIp where ||

designate the norm of the vector Yob̂  Y^,.

Usually, three vectorial norms are used :



X II =

1/2

x = Max x.

The dimension of the vector E can be 2,5 or

9 if weconsider the rock as isotropic, transversaly

isotropic or orthotropic. Also the total number of

unknorwns could vary between 8 and 15.

ALGORITHM S OF OPTIMIZATIO N

USED

The classical techniques of optimization

using gradients and hessian matrix cannot be

uised in our case. In gênerai we hâve no information

on the deri vability of the f miction f , that is why we

used two algorithms for unconstrained

minimization of a function of several variables

that does not require the évaluation of partial

derivatives : POWELL's and MIFFLIN's

algorithm (see Appendix A and B for more détails

on the methods).

Like many methods of optimization, thèse

algorithms must be initialized. For any results,

we must verify that the minimum obtained is not

relative and that we hâve really f (E,a) = 0. In our

case, there is not only one solution in gênerai.

The results given by the two methods are the

nearest of the initial values.

The Powell's algorithm [7] is easy to

iinplement. It can be link with the family of

methods using conjugate directions. The basic

idea is to find the minimum of the function

successively in n conjugates directions (n is the

number of variables). This method requires at

each itération n one variable minimization. For

this we used a golden section method [3,6].

The Mifflin' s algorithm [5] is a second

order extension of the method of local variations

and it does not require any exact one variable

minimization. The method retains the local

variations property of accumulation points. This

extension makes the algorithm an approximate

Newton method and its convergence is in gênerai

super-linear.

The efficiency in the convergence of the

two methods is measured by the number of

évaluations of the function F. Miffli n needs in

gênerai fewer calculations than Powell. For the

same initial values, the results of the algorithms

are identical except when there are several

solutions in a limited space. In this case, Miffli n

gives the resuit which is the nearest to the initial

solution while Powell give a resuit which could

be différent.

APPLICATIO N

We présent hère an example of use of thèse

two methods. We consider the rock to be isotropic.

We used data from the CSIRO HI cell for which

the values of the elastic constants and the

components of the stress tensor were known. The

tensor corresponds to the stress state existing at a

deptli of 450 m. The minor principal stress o3 is

almost vertical and its value corresponds to

overburden weight (az =12,1 MPa).

The first test considered was with fixed



Young' s modulus and Poisson' s ratio. In this case

the results obtained with the two methods are

exactly identical (table 1) to the exact values,

even with a far initial solution. Thus, thèse methods

can be used like the classical least square method

v/hen the rock properties are well defined.

Table 2 shows an example where ail the

paramete r

Ox

O y

Oz

* x y

T y z

Tzx
nb évaluation s

of F

exact values

18,8

23,1

12.1

2,1

-0,4

-1.0

Initia l values

15

15

15

5

5

5

MIFFLIN

18,8

23.1

12,1

2,1

-0,4

-1,0

71

POWELL

18.8

23,1

12,1

2.1

-0,4

-1.0

1349

Table 1

parameters are unknown and the initial solution is

close to the exact values. In this case, the

algorithms converge to the exact values. However,

v/hen the initial solution is relatively far f rom the

exact values, the results are physically acceptable

but the solution is not good. It shows clearly, that

this algorithms must be used carefuly.

If we consider that the principal vertical

paramete r

E

V

Ox

Oy

Oz

*xv

*V
xzx

nb évaluation s
of F

exact values

7S000

0,3

18,8

23,1

12.1

2,1

-0,4

-1,0

Initia l values

72000

0,3

18

25

13

3

-0,5

-0,5

MIFFLIN

75734

0,30

18,9

23,3

12,2

2,1

-0,4

-1,0

778

POWELL

75309

0,30

19,0

23,4

12,1

2,1

-0,4

•0, 9

2189

paramete r

E

V

Ox

Oy

Oz

t * y

xvz

nb évaluation s
ofF

exact values

75000

0.3

18,8

23,1

12,1

2,1

-0.4

-1.0

initia l values

70000

0.25

15

15

15

3

1

1

MIFFUN

51183

0,26

12,3

15,3

7,3

1.3

0,0

0,4

904

POWELL

55402

0,28

13,0

15,3

8.3

1,6

0,2

0,0

2077

Table 3

s t ress i s k n o wn ( x . x . o k n o w n ), w i c h i s a
yz xz z

common assumption in many cases, the results

obtained for the unknown parameters are as

expected (table 4); the same if v is fixed andaz is

unknown (table 5).

paramete r

E

V

Ox

O y

* * y

nb évaluation s
ofF

exact values

75000

0,3

18,8

23,1

2,1

initia l values

60000

0,25

15

15

5

MIFFLIN

73865

0,30

18,6

22,8

2.1

387

POWELL

75001

0.30

18,8

23,1

2.1

1247

Table 4

paramete r

E

Ox

Oy

Oz

*xy

nb évaluation s
otF

exact values

75000

18,8

23,1

12,1

2,1

initia l values

60000

15

15

15

5

MIFFLIN

75003

18,8

23,1

12,1

2,1

162

POWELL

74999

18,8

23,1

12,1

2,1

653

Table 2 Table 5



CONCLUSION AND

FORTHCOMIN G RESEARCH

We tested thèse two algorithms with data

coming from différent types of overcoring

raeasurements. We didn't observe différences

between results when we changed the norm.

Nevertheless the évaluations number of F is less

when condidering the euclidean norm.

We are allowed to work with the principal

stresses and their orientations (expressed in term

of Euler angles) rather than with direction and

shear stresses.

The two methods reveal themselves to be

very complementary and highly performant when

the number of unknowns is less then or equal to

six. In the opposite case, the results dépend mainly

on the initial values, because of the high number

of solutions [2].

The différent uses of the Powell's and

Mifflin' s algorithms showed that they fit very

well with classic overcoring analysis methods

such as least squares method. We now try to

ameliorate thèse methods for future work. At

first, the introduction of constraints on the

unknowns (such as a variation interval) wil l allow

to better understand the influence of initial values

and to direct the parameters research towards

given directions. The présent approach didn't

give any informations about the précision of the

results. So we are thinking of a probabilistical

approach which wil l be based on the maximum

likelihood : it means that we wil l work on the

probability law of the unknow parameters rather

than on their values. Finally, because we want to

détermine ail the solutions of the équation

F (E, a)=0, we use a process which combines the

Powell's and Mifflin' s algorithms with a Monte-

Carlo method in order to see more precisely the

solutions domains.
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F(2xn - x°). Calculate

A = max[F(x.)-F(x,1)] .

Détermine the m index which gives the
maximum À.

Step3: Iff 2>f0 or 2(f0 - 2ft + f2)(f0 - ft - A)2

> A(f0 - î2f then do not change the directions dv

.., da , set x° = xn and go to step 5.

Step4:li f2<f0 and 2(f0 - 2ft + f2)(f0 - ft - A)2

< A(f0 - f2f then détermine the minimum of F in
the direction xn - x°. The obtained point wil l be
taken as new starting point x° at the next itération.
Replace the n indépendant directions in this order

Step 5 : If the stopping test is not verify go to
step 1.

APPENDIX A

We describe hère the différent steps of the
Powell's algorithm.

Step 0 : Initialisation : choose a starting point
x° and n linearly indépendant directions d15 d2,..,
dB, for example the canonic directions.

Step 1 : Détermine the séries of points x1,
x2,...,xn as :

F (x1) = min F(x' +X d) = F(xM +Xi d. ).

This could be done by one variable
minimization like a dichotomy or a golden section
method.

Step 2 : Define f0 = F(x°), f1= F(xn) and f2 =

APPENDIX B

The Miffli n algorithm require positive real
numbers oc,p\Y,8 and p with r<l and (2P2n2y)<p.
Given thèse parameters, the detailed algorithm is
as follows :

Step 0 : Choose a starting solution point x of
R- and a starting step-size s > 0. Set the séquence
index k = 1 and the séquence values x1 = x and
s,= s.

Stepi:Computeann-vectorof approximation
fïrst partial derivatives AF by :

AF. = (l/2s) [ F(x + se) - F(x - se.)] for i = 1 to n

and an approximate gradient norm : || AF j | =



Set the descent direction indicators o. for i=l
to n : a. = +1 if AF<0 and O. = -1 if AF>0.

Define a best axis point x by: F(xa) = minF(x

Step 2 : Compute an (n,n) matrix of
approximate second partial derivatives A2F by :

A2FU = ( 1/s2 ) [ F(x + se.) + F(x-se;) - 2F(x)
fori = 1,2,.. ,n

A2Fy = ( a.o/s2 ) [F(x + s^e. + sa.e.) + F(x) -

F(x + sae.) - F(x+ saep ] for l<i<j<n

Define a best corner point xc by : F(xc) = min

and a (possible) move pointxm by : F(xm)=min
[F(x a) ,F(xc) ] .

Step 3 : For 1 <j < i < n , if | A2F. | >y, replace
A;îF.. by "ysign(A2F..). Using a modified Cholesky
factorisation procédure ( see [9] )rwicn compute
the matrices L,D and E such that LDL'=A 2F + E.
Define index q by :

D -E =m in [D - E . ] .
qq qq L u u J

Step4: If as > H AF || and Dqq - Eqq > 0, go
to step 7 . If as < H AF ||, compute y1 satisfying
LDL'y1 =-AF and set p = 1 ; and if E*0 ,se ty2

= - [il y111/11 AF ||]AF and p = 2 and if Dqq - Eqq <
0 , compute z satisfying L"z = e and set y3 = -

sign(z'AF)[}| y11|/|| z ||]z and p = 3 , and define a
search direction vector d by :

d'AF + l/2d'A2Fd=min [ (y')lAF+
j ] w i t h l < i < p .

Step 5 : Compute, if possible, a search point
x + td, where t is a positive number satisfying

F(x + td) - F(x) < pt [ d'AF + l/2td'A2Fd ] .

Tlien redefme x by : F(x ) = min [ F(x + td)

Step 6 : If F(xm) - F(x) > - (ags)2, go to step
7. If F(xm) - F(x) < - p̂ ll AF H2, choose some reduced
stepsize r in the interval (0,s] and go to step 8.
Otherwise set r = s and go to step 9.

Step 7 : Set r = s / 2 and xm = x.

Step 8: If x * xk replace k by k+1. Set the
séquence values x*  = x and sk = s.

Step 9 : Replace x by xm and s by r and go to

Otherwise (as> i |AF || andDqq-Eq<0)
compute z as above and set d = - sign(z'AF)z.


