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émanant des établissements d’enseignement et de
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ABSTRACT

A methodfor optimizing the prediction ofimpact sensitivity ofexplosive molecules
hv neural networks is presented.

The database we used consisted 0/272 molecules containing C,H,N,0 ofknown
sensitivity and belonging to several chemicalfamilies.

Pertinent molecular desriptors were selected by a preliminary multilinear treatment.
The effects of the network's topology, the extent of the training, the choice of

descriptors were examined and optimized.
The predictions are satisfactory with a correlation coefficient of 0.94 obtained

through cross-validation. Moreover 95% of compounds are correctiy classißed in a 3-
sensitivity scale and the remaining 5% are classißed äs ambiguous which is very
encouragingfor a real worid implementation.

The neural networks approach proves more accurate and more general than previous
methods.

1-INTRODUCTION:
The purpose of this work was the building of an efficient tool for the impact

sensitivity prediction in order to minimize the risks during the handling of explosive
compounds.

In previous works the field concemed separate families of compounds and
revealed the influence of various molecular parameters such äs the oxygen balance
(Ref. l) , the electronegativity (Ref. 2), the bond lengths (Ref. 3), the Charge
dissymmetry (Ref. 4), the presence of specific groups (Ref. 5),... Moreover, for
most of these studies, the influence of these parameters was considered to be linear
and taken into account separately which certainly induces a loss ofprecision for the
predictions.

In order to overcome these difficulties, we decided to build an experimental
data base äs large äs possible and we used data processing methods able to take into
account simultaneously several non-linear correlations: the neural networks.

n-THE DATA BASE:
The initial data base was built from the literature. It consisted of 204 molecules

CxHyNzOt the sensitivity of which was measured by the same method developed by
the Explosive Research Laboratory (USA) (Ref. 6). These molecules belong to nine
families: nitroaromatics, nitroaliphatics, nitramines, nitric esters, nitrotriazoles,
nitropyridines, nitroimidazoles, nitrofürazanes, others. The others 68 compounds
were disgarded because the sensitivity was measured with a different protocol or
because they were clearly non explosive (musks).

The geometry of each of these molecules has been optimized using the semi-
empirical program MOPAC (Ref. 7).
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Some molecular parameters have been taken out from these quantum
mechanics caiculations and added to the list of the parameters which are the most
frequently used in the literature.

Molecular Parameters
l: oxygen balance
2: molecular electronegativity
3: number ofC02 groups
4: number ofN02-Csp2 bonds
5: number ofN02-Csp3 bonds
6: number of N02-N bonds
7: number of N02-0 bonds
8: number of rings
9: number of -NH2 groups
10: number of -OH groups
11: number of -C(N02)3 groups

12: -CH in a of a nitroaromatic

13: indicator of symmetry
14: number of -C=0 groups
15: number of Y-O-X groups
16: number of -C=C bonds
17: number of -C=C bonds
18: number of -C=N bonds
37: formation energy
39: ionization potential

19: number of N=N bonds
20: number of N=N bonds
21: number of C=N bonds
22: number of C atoms
23: number ofH atoms
24: number of N atoms
25: number of 0 atoms
26: 100/molecular weight
27: indicator of aromaticity (0 or l)
28: sum ofthe nitro's charges
29: average of the nitro's charges

disymmetry
30: nitro's charges disymmetry

per molecular weight
31: length of the longest X-N02 bond
32: length of the shortest X-N02 bond
33: highest potential for a X-N02 bond
34: smaUest potential for a X-N02 bond
35: average potential for a X-N02 bond
36: average length of the X-N02 bonds
38: dipole

Parameters l to 27 are obtained from the topology of the molecule whereas
parameters 28 to 39 are caiculated with MOPAC package.

m-DATA PREPROCESSING:
The determination of the pertinent parameters was carried out by a classical

multivariate linear regression. After the elimination of the non-significs10'
parameters, the predictions were tested by cross validation. In that procedure, t"6

linear regression is perfönned on all the molecules except one, then the prediction o
the sensitivity is made for the disgarded molecule. This Operation is repeated fora"
the data base.

In order to obtain a predicting method accessible to users who do not P05^
any quantum chemical Software, two different processings were perfönned. l
first one concerns only the parameters l to 27: i.e. no quantum mechai"̂
caiculations are involved; it is a purely topological coding. The second onetaj-
into account all of the 39 parameters; it is a quanto-topological coding.

A- Topological coding , ̂
After the multilinear regression analysis, 16 parameters were disgarde

having partial F<2.
The following table presents the remaining parameters :



Correlation factor = 0,916 n = 204
Standard-deviation s=0.18
Equation
y = 1,065

-0,140;cl
-0,146x4
- 0,205 ;c5
-0,351 x6
- 0,241 x7
- 0,146 ;cl2
- 0,441 x2ö
+  0,039 x23
+ 0,049 x24
+ 0,064 x25
+ 0,082 x26

Stand, dev.

0,015
0,026
0,028
0,033
0,059
0,054
0,052
0,009
0,001
0,011
0,019

Partial-F

87,321
31,611
54,974

113,078
16,649

7,288
72,001
20,188
25,235
36,230
18,662

Figure l presents the quality of the prediction tested by cross validation. A'
perfect value corresponds to a point located on the diagonal.

Figure l: MLR Cross validation for the topological coding. (R=0.89, s=0.18, n=204)

An average correlation factor ofO.89 is obtained by cross validation.

B-Quanto-topological coding
The same procedure has been carried out with all the molecular parameters

including those caiculated from MOPAC.
In this case only 13 parameters remain.
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Table 2: Multilinear regression results for the quanto-topological coding
Con-elationfactor=0,918 n=204
Standard deviation =0,18
Equation

y= 2,411
-0,133x1
-0,129x4
-0,181x5
-0,267x6
- 0,200 x7
-0,230x12
- 0,390 x20
+ 0,035 x23
+ 0,075 x25
+ 0,075 x26
-0,219x33
+ 0,001 x37
- 0,086 x39

Stand, dev.

0,015
0,040
0,041
0,054
0,071
0.052
0,052
0,010
0,017
0,019
0,082
0,001
0,020

Partial-F

75,469
10,300
18,845
24,442
7,849

19,267
55,402
12,353
18,240
15,740
7,132
2,206

17,401

The cross validation procedure gives a correlation coefficient ofO.89 whic|ä
equivalent to what was obtained by the purely topological coding. äfti

Figure 2: MLR Cross validation for the quanto-topological coding
(R=0.89, s=0.18, n=204)

IV-NEURAL PROCESSING |
A branch of artificial intelligence is now growing fast: the connexionism.

concems the study of the behavior of assemblies of fönnal neurons which ;iU||
inspired by a very crude model of the brain. Recent progresses in this field gaven^̂
to proinising results in pattem recognition, diagnosis, data processing....
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A-Theformal neuron:
A formal neuron is an automaton which is characterized by a state of activity

rated between 0 and l. This state is defined by the excitations received from other
neurons through the synaptic connections which are the bonds between the neurons
of a network.

INPUT

Figure 3: Scheme of a formal neuron

The excitations reaching a neuron are weighted by coefficients depending on
the synaptic connections (the synaptic weights) then they are added.

The activity of the neuron is then fixed to a value between 0 and l by using a
sigmoi'dal fünction of the sum of the weighted excitations and is transmitted to the
other neurons through synaptic connections.

B-Layered Networks:
Various types of neural networks may be considered depending on the

interaction schemes between the neurons: layered networks, fully or partially
connected networks, recurrent networks....(Ref. 8)

Each of these types have advantages and disadvantages and its own domain of
applicaüon.

Our purpose (prediction of a property) led us to choose the layered networks
since their structure is very well fitted to this problem.

These networks are made of neurons arranged in layers. The neurons of a
layer are not connected together. They receive excitation only from the neurons of
the former layer and they transmit their activity only to the neurons of the next layer
(Figure 4).

Usually a bias neuron whose activity state is always l is added in the input and
hidden layers.

Two layers play a special role: the layer which do not receive any excitation
which is called the input layer and the layer which do not transmit any excitation and
which is called the Output layer.

It is important to notice that the state of activity of the neurons of the output
layer only depends on the state of activity of the neurons located in the input layer
and ofthe synaptic weights ofthe network.

Therefore such a network may be considered äs a "black box" which answers
with the excitaüons of its output neurons to the excitations of its input neurons. The
choice of the synaptic weights govems these answers.

-5



synaptic connection with a
Cij synaptic weight

Figure 4: Scheme of a layered neural network

C-Training and Generaliwtion:
Thie prediction of a property of an object is the association of a dala5

describing the property to another data set describing the object. The datal
describing the object are called the descriptors. 1̂8

For example the value of the impact sensitivity may be associated wjtll
oxygen balance, the presence of some groups, etc.... ^lfey,»g'

The prediction of course has to be supported by experimental data:i0?
prototypes for which the association description-prediction is already knol̂ Sit̂
Thereföre, in our case, we had to possess a set ofmolecules för which the sensifiŷ
was known. • '• ^IH

Beföre any prediction, the synaptic weights have to be modified in süCh^Sl
that, för each prototype, the difference between the prediction and the knownl®
is äs small äs possible. This step is the "training" of the network. It is perfbrmIlB
an iterating procedure called "Gradient Backpropagation" (Ref. 8). After this Ä
the synaptic weights contain the data extracted from the prototypes. • 'iSBl

It is then possible to make predictions. In that case, the descriptolsl̂ ;,,
molecule which does not belong to the training set are the inputs ofthe networic.'ESi
införmation is propagated through the network towards the Output layer whe%l|(|̂
prediction is collected. '̂ laSiS*

D- Precautions for using networks:
The generalization aptitude, in other words, the level of prediction accuracy

that can be obtained, is of course the essential quality of a network. This aptitafe
depends on many factors: the quality of the experimental data (number, repartitioa),
the adequacy of the network structure to the complexity of the problem, tte
pertinence of the descriptors... ,^stt

A rigorous optimization of these factors has not yet been prposed.
Nevertheless, a certain number of constraints on the structure of the netw|B̂

has to be taken into account. ^%
The number of neurons in the input layer is determined by the number ||

Parameters used to describe the prototype (here a molecule) and the numbe|V*
neurons in the Output layer depends on the descriptors associated with the pseässS^

Furthermore, the number of neurons in the hidden layer must be chose|
such a way that the number of synaptic weights to be determined during the leäca
phase does not exceed the number of the prototypes (no more unknownsfi|
equations). — — ^
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Generally speaking, for a given problem, the optimal network architecture will
be that which mininüzes the number of connections, while allowtng the use of
descriptors that are rieh enough to enable the discrimination ofthe prototypes.

Indeed, we can verify that, for a given problem, the generalization aptitude of
this type of network first increases with the number of its connections until the
network is flexible enough to fülly take into account the complexity of the problem
and enables proper leaming conditions.

When this aptitude is reached, any increase in the number of connections will
induce an excess in the network flexibility  and thus reduce the generalization
performance.

These remarks are comparable to those made for a polynomial interpolation.
Generally speaking, a statistical preprocessing of the prototypes submitted to a

network is very useful. By lowering the number of descriptors, it allows the
minimizing of the number of neurons in the input layer, and therefore the number of
connections in the network.

E- Results:
After the optimizaüon of the structure of the network with 204 molecules, the

following results were obtained:

a-Topological coding:
The descriptors were those previously chosen by a statistical treatment. The

optimal network was a 11-4-1 (11 neurons in the input layer, 4 neurons in the
hidden layer and l neuron in the output layer.

0.5 ! 1.5 2 2.5 3

Figure 5: NN Cross validation for the topological coding(R=0.94, s=0.13, n=204).

A cross validation gave a correlation coefficient of 0.94 which is the best
value we have obtained.

The figure 5 presents these results. One can notice that the correlation
coefficient is clearly better (0.94) man in the multivariate analysis (0.89) and that
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there are no more badly predicted compounds which is very pronüsing för a realR
of this method. A

b- Quanto-topological coding:
A similar treatment had been perfoimed on these data.

The best network has the 13-3-1 structure. A correlation factor ofO.92 has been
obtained which is slightly inferior to the purely topological coding.

Figure 6: NN Cross validation for the quanto-topological coding
(R=0.92, s=0.17, n=204).

Therefore the results obtained by a neural treatment are clearly betterf
those obtained by a classical multilinear treatment. They reveal that this new
processing method is very promising by allowing non linear corrclations.

This method has also been tested on a separate prediction set composed of^ng
molecules that were either non explosive (musiks) or whose sensitivity was measuielt?
with other protocols. The results are quite satisfactory and the quanto-topological
treatment seems to give better results in these cases which promote the use ofsucha
coding even if it needs the use of a semi-empirical quantum chemistry program. S

F- Improvement ofthe results:
The main purpose of this work was the buüding of a prediction tool dedicated

to a real use. Therefore it was of primary importance to estimate the robustness of
the prediction.

Therefore, rather than caiculating a value of the sensitivity, we chose (Bis
classify a molecule in 3 classes:

class l: High sensitivity (5cm<H<87cm) Jg
class 2: Medium sensitivity (88cm<H<160cm) ^
class 3: Low sensitivity (160cm<H<320cm) ^S

The output layer of the network contains 3 neurons; one for each class. During,
the training step, the activities of these neurons are set to values that are t|||
probabilities of belonging to a class. They depend on the value of the sensitivi Ĵ
compared to the extreme values of a class. För example, a sensitivity H==160cm ca |̂
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he classified in class 2 and class 3 with the same probability. On the other hand, a
sensitivity H=123cm which is the center of class 2 has a maximum probability of
being classified in class 2.

During the prediction, the analysis of the activities of the 3 neurons of the
output layer give informaüons on the quality of the prediction.

For example, in the case of the prediction of the sensitivity of a class 3
compound, the perfect prediction should be C1=C2=0 and C3=l (Cl: activity of
neuron l, C2: activity ofneuron 2, C3: activity ofneuron 3 with C1+C2+C3=1). In
reality diese values are never reached.

Several configuraüons may be obtained:
1- If Cl=C2==e and C3=l-2e, with e<0.15 then the network considers that

the sensitivity belongs to class 3 and that the prediction is of good quality.
2- If Cl=0 and C2=C3 the prediction is considered to be relativiely

ambiguous.
3- If C1=C2=C3 the prediction is considered to be completely ambiguous.
4- Cl>l-2e and C2 =C3=e or C2>l-2e and Cl=C3=e

The first case is the most favorable: the network provides a good classification
without ambiguity.

Cases 2 and 3 are also acceptable since the network teils the user to be carefül
with the prediction.

Case 4 is unacceptable: the network provides a wrong prediction without
ambiguity.

This method has been tested for both coding schemes. The structures of the
networks were 11-2-3 and 13-3-3.

The results were satisfactory: 95% of the molecules were correctiy classified
and the remaining 5% were ambiguous answers. Case 4 was never observed which
is encouraging for a real use of this method.

V-CONCLUSION:
The methodology we describe here seems to be promising: it concems a large

variety of molecules and the most significant parameters are simultaneously taken
into account. Moreover, non linear correlations are directiy considered which is
certainly favorable for a complicated phenomenon such äs the impact sensitivity.

However, the quality of the prediction should certainly be much higher if the
experimental data base were improved by using a more accurate way for measuring
the impact sensitivity, especially for the low sensitivity compounds.

Nevertheless, this new methodology could easily be used with this improved
data base which make us think that neural networks will certainly have a brilliant
future in the field of explosives and pyrotechnics.
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