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Application of an Artificia l Neural Network to the Prediction of Firedamp Emissions in Coal
Mines
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2Houillères du Bassin de Lorraine (HBL), France

ABSTRACT

Coal extraction at great depths and high Output faces lead to more and more elevated and
irregulär firedamp emissions. To respect safety conditions, coal production must be programmed
to limi t methane emissions in airways.

In this contcxt, the prediction of firedamp emissions is an interesting tool to optimize safety and
production.

Bul mathematical modelling of firedamp desorption and gas circulation physical processes
involvc non-linear physical laws and a high number of hardly accessible parameters.

So artificial neural networks have been developed to model firedamp emissions : artificial neural
networks äs universal approx'imators are able to learn from examples and generaiize in unknown
situations.

Artificia l neurat networks need a large amount of data sufficiently representative to learn the
physical processes. Data relative to mining Ventilation, such äs methane concentration and air
velocity in airways, are monitored and can be used to model firedamp emissions.

The model based on artificial neural networks has been calibrated and validated using data from
coal faces recently exploited in Lorraine Coalfield (East of France). The model reliability has
been appreciated on the results of a posteriori forecasts.

The model is used to forecast methane concentration values in airways äs a function of coal
production.

l . INTRODUCTION

Fi-ench colliery operations are now characterised by a considerable degree of mechanisation and
high Output faces. Also the increasing depths at which coal is extracted is bringing about a
change in the characteristics of firedamp emissions : their levels are relativeiy high, with wide
variations.



In this Situation, mining operations must be conünued with great care in order to optimise safety.
The presence of high levels of firedamp in the air may restrict or interfere with Output. The
operator must therefore adapt production in order to ensure that the regulatory limits are not
exceeded.

The ability to predict firedamp emissions can then be seen äs a particulariy attractive way of
satisfying the safety requirements, äs well äs productivity goals, by making it possible to select
production faces over time in the most appropriate way.

Mcthods for predicting firedamp emissions have already been developed in the past. However the
early modeis used could do no more than predict average releases [JEGER, 1980], did not
incorporate the effects of time and the rate of face advance, and could therefore not be used for
monitoring fluctuations in emissions.

Later developments were based upon the routine statistical techniques of simple or multiple
linear regression [POKRYSZKA Z., TAUZIEDE C., 1994 ; COUILLET J.-C, POKRYSZKA Z.,
1996]. Although these modeis do take into account the dynamics of firedamp emissions and the
local specific features of the working area äs regards firedamp, they can unfortunately provide
prcdictions only on a weekly basis.

In f'act for predictions over a shorter period - a day or a shift - the problem is more complex,
esscntially owing to the nonlinearity of firedamp desorption and transport. And of course it is
precisely this knowledge of the emission, at least on a daily basis, that would make it possible to
Programme the work more effectively.

In the same time, an higher performance modelling method has been identified äs a particulariy
novel technique, that of artificial neural networks. A study was then carried out with a view to
npply this technique to predict firedamp emissions at a longwall face.

This presentation of the research includes :

- a dcscription of the principles underlying the technique of artificial neural networks ;

- a presentation of the major developments to optimise the prediction method ;

- and a practical application to a particular case.

2. BACKGROUND AND MAJOR ISSUES

2.1. POTENTIAL OF THE TECHNIQUE

The artificial neural network technique is a modelling tool that has already proved its worth in a
numher of fields (banking, military applications, meteorology, and so on) in dealing with
prohicms äs diverse äs those concerning the prediction, classification or even the processing of
ihc signal.

The advantages of this technique are its ability to reflect nonlinear relationships, to learn from
examples, and also to describe the physical phenomenon to be modelled on the basis of a sample
of data. Accordingly physical knowledge of the problem - usually expressed in terms of
mathematical equations - is not essential for it to be modelled.



This also means that the technique shows considerable resistance to any perturbation of the basic
clala (Tor example, data that are partially erroneous or biased) and an ability to adapt to possible
change.s in the physical phenomenon.

On the other hand, the neural System must nonetheless satisfy certain requirements : among other
things, there must be an adequate quantity of data relating to the physical phenomenon.

2.2. NEURAL NETWORKS AND FIREDAMP EMISSIONS

The mechanisms that govern firedamp desorption and gas circulation in the strata are such that it
is complicated or even impossible to describe firedamp emissions in mines completely by means
of a physical equation.

On the other hand, measurements relating to the coal extraction process and to the composition
of the atmosphere are made frequently and regularly in existing mines. These measurements
constitute a valuable database äs to the history of the extraction zones and can be used to improve
undcrstanding of the phenomenon.

On (his basis the technique of artificial neural networks proves to be a suitable too! for modelling
f'ireclamp emissions. Some foreign research [DIXON et al., 1995] on this topic, and feasibility
studies on a number of French coalfaces have m fact confirmed this potential.

3. GENERAL FUNCTIONING OF ARTIFICIAL NEURAL NETWORKS

The first developments of artificial neural networks date from 1943 when a simplified
mathematical model of the biological neuron was worked out [McCULLOTH W.S., PITTS
W.A., 1943]. The first artificial networks were used in the 1960s, but then it was not until 1982
that the technique saw a resurgence of interest [HOPFIELD, 1982].

3.1. PROCESSING ELEMENT

The processing element reproduces the Operation of the biological neuron in a simplified manner.
Eacli neuron has a number of inputs, denoted e„  from which an Output denoted S is caiculated.

In concrcte terms, each input is weighted by a synapüc weighting factor denoted pi whereupon an

aclivation lunction then works out the weighted sum of these inputs :
i=l J

Finally, a nonlinear transfer function (p (a sigma function for example) caiculates the Output S äs

a lunction of the value of the activation function, or S = (p

3.2. NEURAL NETWORKS

To form a network, the neurons are connected to one another. In a conventionai structure, the
neurons are arranged in a series of layers in which there is respectively : an input layer, then one
or more hidden layers and then an Output layer. Al l the neurons in a given layer, except those in
(he last layer, are then connected to each neuron in the next layer (figure l).



The input variables of the model are fed to the neurons in the input layer and the neurons in the
output layer then provide certain values.

Input layer
Hidden layers Output layer

Figure l : neural network

3.3. LEARNING ABILIT Y

The modelling of the physical phenomenon by the neural network begins with a learning phase.
Input vcctors are presented a certain number of times to the network which then adjusts the
weighting of each neuron in such a way that the caiculated Outputs are äs dose äs possible to
those required.

If the network is to perform well in the learning phase, it must also respond correctiy when
vectors it lias never encountered before are presented. To check this fact, new vectors are
introduced to the network. A result of good quality wil l then validate satisfactory learning by the
network.

hi this way the neural network expresses its ability to generalise
population, it can deduce the ruie governing the entire population.

from a sample of the

4. MODELLIN G FIREDAMP EMISSIONS

4.1. METHODOLOGY

Dcvcloping an artificial neural network is based primarily on determining :

— the model ;

- a neural structurc adapted to the model defined and hence related to the architecture of the
network. What has to be defined is the arrangement of neurons, the connections between
Ihc processing elements, the transfer function and the initial weighting factors.

The mcchanism of firedamp emission involves a number of parameters such äs the geological
siructure around the seam being worked, the gas concentration in the coal seams and rock strata,
the CH4 adsorption isotherm of the coal seams, the extent of degassing of the strata, the nature of
the surrounding rocks, the permeability of the whole structure, and so on.



A great dcal of research has shown that in steady-state firedamp releases, the quantity of
firedamp released into a particular working area depends closely on the rate of coal extraction
IBRUYET, 1967 ; BOROWSKI, 1969 ; KAFFANKE, 1980].

Tbc approach using artificial neural networks also shows that it is preferable to inakc use of those
variables (hat characterise the physical phenomenon being studied in the mo.st basic form
possihle.

Aecordingly the model was developed so äs to relate the firedamp emissions to the face output,
on the basis of the following three variables :

-d i e CHU concentration in the air return [%] and the ah- flow in the face airway [mVs],
expressing the firedamp emission ;

- d i e distance travelled by the shearer during cutting at the face (m), refiecting the face
exiraction rate.

The ncural nclwork was thcrcfore construeted using the following inpul and output variables,
using :

- äs output variable :

• tlie mean methane concentration at a period located more or less far in the future

- ; i s input variables :

• the mean methane concentrations at periods in the past ;

• the mean air flows at the past points and the predicted values at the future periods ;

• die distances travelled by the shearer in the cutting phase at the passed periods and the
predicted values at the future periods.

The devclopments then involve characterising these variables with regard to the physical
phenomenon of firedamp emissions. For this purpose, several configurations were prepared and
lesled using data representative of the problem raised.

üllimately a synthesis of these experiments should result in the definition of the best possible
prcdiction model.

4.2. EXPERIMENTS

The experiments can be illustrated using the results obtained for the "Irma Nord" face 1140/1250
at thc Reumaux mine. This face is undercut and the goaf is caved. The panel length is 1680 m for
an averagc opening of 3.6 m. The Ventilation follows a U pattern with an airflow of between 38
and 50 mV.s. The face is worked on a 3 x 8-hour shift basis from Monday to Friday.

Tli e changes in the different characteristic variables (CH4 concentration, airflow and output)
during working of the face is shown on figure 2 using a time interva! of 8 hours.
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Figure 2: Changes in characteristic variables for the
Irma Nord face 1140/1250 at the Reumaux colliery

Scveral modeis were developed and applied using data from the face studied.

The calculations showed first of all how important it was to have representative calibration data.

The calibration database must be sufficiently extensive so äs faithfully to represent the Output at

(lie face. Similarly, the results were mostly much better when the model was calibrated over the

pcriod äs dose äs possible to the prediction period.

The expcriments also demonstrated the need to construct the network carefully : a badly

consiructed network wil l in fact never be able to provide usefui predictions, however relevant the

variables.

Ullimalely, an optimal configuration was devised, capable in pariicular of learning how to model

unslable liredamp emissions (changes to the volume of influence, in the Output rate, and so on).

The rcsulls given in figures 3 and 4 are from an optimal configuration of the neural network.

These arc a posteriori predictions, for which the values of CH4 concentrations caiculated by the

model arc compared with those actually measured at the face.
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Figure 3 : Prediction of firedamp emissions (learning set)
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Figure 4 : Prediction of ßredamp emissions (fest set)

Quile apart frorn the overall shape of the above curves, the performance of the prediction can be
cvaluatocl using the coefficient of con'elation between the predicted and measured values. For the
caiculations done for the Irma Nord face 1140/1250, this coefficient is sufficiently dose to l for
die rcsLilts (o be regarded äs satisfactory. Its value is 0,69 for the test äs a v/hole.



5. CONCLUSION

Appiication of the technique of artificial neural networks to predicting firedamp einissions at a
coalfacc has clearly demonstrated the potential of this approach.

The model was developed with the aim of predicting values of methane concentration in the air
rcliii'n. These predictions are based on the past values of the methane concentration and on the
p;isl and lulurc values of the othcr variables involved in the phcnomcnon considered (airfiow at
I he l'ace and face Output).

The experiments clearly demonstrated the importance of the configuration of the neural network
(o (he quality of the results. In fact the main difficulties arise in modelling unstable regimes of
firedamp cmissions (changes in the volume of influence, face Output, and so on).

However the selected configuration learns these difficulties better than others. For modelling to
he successfui, the learning data must be representative. The results also show that the
performance of the prediction is conditioned by an appropriate model of the neural network.

The model devised gives entirely satisfactory results and can be used to monitor ongoing faces in
sucli a way äs to pcrmit improved programming of future production.
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