

VOCs and formaldehyde emissions from cleaning products and air fresheners

Cécilia Solal, Christophe Rousselle, Corinne Mandin, Jacques Manel, François

Maupetit

▶ To cite this version:

Cécilia Solal, Christophe Rousselle, Corinne Mandin, Jacques Manel, François Maupetit. VOCs and formaldehyde emissions from cleaning products and air fresheners. 11. International Conference on Indoor Air Quality and Climate (Indoor Air 2008), Aug 2008, Copenhague, Denmark. Paper ID : 183, 2008. <ineris-00973310>

HAL Id: ineris-00973310 https://hal-ineris.ccsd.cnrs.fr/ineris-00973310

Submitted on 4 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

VOCs and formaldehyde emissions from cleaning products and air fresheners

Cécilia Solal^{1,*}, Christophe Rousselle¹, Corinne Mandin², Jacques Manel³ and François Maupetit⁴

¹French Agency for Environmental and Occupational Health Safety (Afsset), Maisons-Alfort, France

²National Institute for Industrial Environment and Risks (Ineris), Verneuil-en-Halatte, France. ³Poison Control Centre (CAPTV), Nancy, France

⁴Building Technical and Scientific Centre (CSTB), Marne-la-Vallée, France

**Corresponding email: cecilia.solal@afsset.fr*

SUMMARY

Human indoor exposure to Volatile Organic Compounds (VOCs) may be associated with the use of household products. However little is known about their emissions and to what extent they contribute to indoor air pollution. The French Agency for Environmental and Occupational Health Safety (Afsset) conducted tests in order to characterize VOCs emissions from 32 consumer products: air fresheners, glass cleaners, furniture polishes, toilet products, carpet and floor cleaning products. All experiments were conducted by the Scientific and Technical Centre for Building (CSTB) in realistic conditions of use (in emission test chamber or in an experimental house). Results show that the use of consumer products can lead to high indoor VOCs concentrations. Some of them are toxic airborne contaminants. The link between formaldehyde emissions and product compositions is discussed. Finally, formaldehyde concentrations are compared to the indoor air quality guideline value proposed by Afsset.

KEYWORDS

Formaldehyde, Volatile organic compounds, Household products, Exposure

INTRODUCTION

Most indoor air pollutants come from the use of cleaning products, air fresheners, pesticides or materials related to furniture and construction. Some of them may trigger adverse health effects such as nasal irritation, respiratory disorders and even asthma (Zock et al., 2007). Respiratory conditions including asthma in children have also been correlated to formaldehyde concentrations indoors (Mendell, 2007).

Little is known about chemical emissions resulting from the use of cleaning products and air fresheners and until now, few regulatory frameworks is in place to define the safety of these products.

In June 2004, the French government set up a National Environmental Health Action Plan (NEHAP) which intends to improve indoor air quality (French Ministries, 2004-2008). In this framework, the French Agency for Environmental and Occupational Health Safety (Afsset) was mandated by the Ministries of Health, Environment and Labour to assess health risks associated with formaldehyde and other Volatile Organic Compounds (VOCs) indoors. In this request, Afsset has to identify everyday life products emitting or containing formaldehyde and analyse and quantify associated human exposure by direct and indirect sources.

In this paper, we report on experimental results of emission tests and measurements of indoor formaldehyde and VOCs concentrations associated with the use of various cleaning products and air fresheners. In order to assess the exposure level of consumers to formaldehyde and VOCs, these tests were conducted in realistic conditions of use and ventilation. The composition of some products is also presented and gives the opportunity to make assumptions about a possible relationship between formaldehyde emissions and formaldehyde or releasing-formaldehyde composition (direct or indirect sources).

METHODS

Product selection

32 consumer products from 16 categories were chosen by Afsset among a list of multiple products compositions registered in the national consumer products library (*Base Nationale des Produits et Compositions - BNPC*) managed by the French Poison Control Centre in Nancy. The selected categories are expected to contain VOCs or formaldehyde. Once the categories were defined, the more and the less expensive product in each category were bought in supermarkets and department stores. Categories of tested products are briefly presented in Table 1.

Formaldehyde and VOCs emissions

Application protocols

The tests presented in this paper were carried out by the CSTB (Building Technical and Scientific Centre) in realistic conditions of use and ventilation. Laboratory measurements were conducted in emission test chambers or in the CSTB experimental house MARIA (Mechanised house for Advanced Research on Indoor Air), depending on the category of products. Experimental protocols were carried out in the test room in MARIA for air fresheners, furniture polishes, glass cleaners and glass wipes, in the toilets in MARIA for toilet blocks and gels and in emission test chambers for carpet cleaners, stain removers for carpets, floor cleaners and wipes. These scenarios are described in Table 1.

Product c	ategory	Conditions of use	Scenario: number of samples (S) and duration between samples
$A1/A2^{(1)}$	incense	Burning duration: 60 min* /	S1 : 60 min /25 min; post-
		25 min	combustion S2-S3-S4 : 60 min
B1/B2	electric diffuser	Use during 120 min	S1-S2 : 60 min; post-use S3-S4-S5 : 60 min
C1/C2	liquid air freshener with a wick	Use during 120 min	S1-S2 : 60 min; post-use S3-S4-S5 : 60 min
D1/D2	scented candle	Use during 180 min	S1-S2-S3 : 60 min; post-use S4-S5 : 60 min
E1/E2	spray	Continuous spray during 10 sec**	Post-use S1-S2-S3-S4 : 30 min
F1/F2	air freshener for vacuum	Use in a vacuum cleaner in	S1 : 5 min, post-use S2-S3-S4: 30
	cleaners	function during 5 min	min
G1/G2	glass cleaner	9 trigger pulls on the test room glass, no wipe step	nPost-use S1-S2-S3-S4 : 30 min
H1/H2	glass wipes	Use of 4 wipes for the test room window	Post-use S1-S2-S3-S4 : 30 min
I1/I2	furniture polish	Sprays on a laminated table dried up	Post-use S1-S2-S3-S4 : 30 min

Table 1. Categories of the 32 tested products.

Product category		Conditions of use	Scenario: number of samples (S) and duration between samples	
J1/J2	toilet block	Blocks installed the day	Post-use S1-S2-S3-S4 : 30 min	
		min	,	
K1/K2	toilet gel	Application during 15	Post-use S1 : 15min, S2-S3-S4 :	
		minutes, 3 flushes every 30	30 min	
		min		
L1/L2	carpet cleaner	Application on 100% of a carpet tile ^{(2)} area	Post-use S1-S2-S3-S4 : 30 min	
M1/M2	stain remover for carpet	Application on 10% of a carpet tile area	Post-use S1-S2-S3-S4 : 30 min	
N1/N2	floor cleaner***	Application on a glass sheet, no drying	Post-use S1-S2-S3-S4 : 30 min	
O1/O2	floor cleaner containing savon de Marseille***	Application on a glass sheet, no drying	Post-use S1-S2-S3-S4 : 30 min	
P1/P2	wipes for floor cleaning	2 applications of 1 wipe, no drying	Post-use S1-S2-S3-S4 : 30 min	

* min: minute; ** sec: second; *** following the recommendations of use, floor cleaners were either tested diluted or pure

 $^{(1)}$ A1/A2, B1/B2...: the less expensive / the more expensive product per category

⁽²⁾ the carpet tile corresponds to the carpet tile B, tested in Rousselle *et al.* (2008)

Experimental house MARIA

The CSTB experimental house MARIA is dedicated to study pollutants transfers, test ventilation systems, settle field investigations methods and validate computational models. It is composed with five main rooms equipped with various ventilation systems (natural draught ducts, extract ventilation and combined extract and input ventilation) and heating systems (convectors, water heated floors) (Ribéron and O'Kelly, 2002).

The tests were conducted in the bedroom and the toilets, without any piece of furniture except for the emission test for the furniture polishes (laminated table in the centre of the room). VOCs and formaldehyde were sampled directly from the air extraction system. Measured concentrations are therefore globally representative of the pollutant level in the test room, even if in some cases, the distribution of indoor concentrations can be heterogeneous (e.g. in case of combustion processes, use of sprays etc.).

Parameters such as relative humidity, temperature and air exchange rate were registered during the whole period of the tests. Ventilation conditions were controlled by mechanical extraction during the experiment. The characteristics of the test room and the toilets in MARIA are summarized in Table 2.

Item	Test room (bedroom)	Toilets	
Volume (m ³)	32.3	4.7	
Window area (m ²)	1.5	-	
Temperature (°C)	20 ± 2	-	
Air exchange rate (h ⁻¹)	0.6	3.7	

Table 2. MARIA test rooms characteristics.

Emission test chambers

The emission test chamber method is described in EN ISO 16000-9 (Determination of the emission of volatile organic compounds from building products and furnishing – Emission test chamber method). The characteristics are summarized in Table 3.

Item	Contents
Volume (m ³)	0.0509
Temperature	23 +/- 2
Relative humidity (%)	50 +/- 5
Specific ventilation rate qc $(m^3/h/m^2)$	1.25

Table 3. Summary of emission test chamber characteristics.

Sampling and analytical methods

VOCs were sampled on Tenax-TA and analysed using TD/GC/MSD/FID according to ISO 16000-6. The TVOC was calculated as toluene equivalents from the total integrated FID signal between hexane and hexadecane. The detection limit is in the range of 1 to 10 μ g.m⁻³ depending on the compounds. Formaldehyde has been sampled on DNPH cartridges and analysed using HPLC according to ISO 16000-3. Formaldehyde detection limit is 0.3 μ g.m⁻³.

RESULTS

The results presented herein do not represent the diversity of marketed cleaning products and air fresheners in France.

VOCs emissions

TVOC and VOCs concentrations are presented in Table 4 (corresponding to the maximal concentrations measured during the whole period of tests). Only some tested products are herein presented with the TVOC and VOCs of concern concentrations (carcinogenic compounds such as benzene, terpenes, high concentrations...).

TVOC*	VOCs of concern	Formaldehyde
$(\mu g.m^{-3})$	$(\mu g.m^{-3})$	$(\mu g.m^{-3})$
216	Octanal: 22	< 0.3 (limit of
		quantification)
1737	Limonene: 39	< 0.3
	Eucalyptol: 275	
	Linalool: 98	
	Alpha-pinene: 143	
	Beta-pinene: 40	
	Camphene: 99	
2662	Trichloroethylene: 14	4
	1-butoxy-2-propanol: 1478	
	1,1-diethoxyethane: 1121	
17487	Benzene: 1	11
	Nonane: 1488	
	Decane: 2350	
	Undecane: 757	
17531	Nonane: 2741	5
	Decane: 1077	
523712	1-methoxy-2-propanol: 108924	10
	p-cymene: 1127	
	TVOC* (μg.m ⁻³) 216 1737 2662 17487 17531 523712	TVOC* VOCs of concern $(\mu g.m^{-3})$ $(\mu g.m^{-3})$ 216 Octanal: 22 1737 Limonene: 39 Eucalyptol: 275 Linalool: 98 Alpha-pinene: 143 Beta-pinene: 40 Camphene: 99 2662 Trichloroethylene: 14 1-butoxy-2-propanol: 1478 1,1-diethoxyethane: 1121 17487 Benzene: 1 Nonane: 1488 Decane: 2350 Undecane: 757 17531 Nonane: 2741 Decane: 1077 523712 1-methoxy-2-propanol: 108924 p-cymene: 1127

Table 4. TVOC and specific VOCs concentrations for a selection of tested products.

Tested product	TVOC*	VOCs of concern	Formaldehyde
	$(\mu g.m^{-3})$	$(\mu g.m^{-3})$	$(\mu g.m^{-3})$
		Isoparaffine C10-C11: 397215	
Carpet stain remover L2	348853	Trichloroethylene: 31	7
		1-propoxy-2-propanol: 348574	
Floor wipes P1	103	Benzene : 1	1249
_		Trichloroethylene: 55	
Floor wipes P2	49790	Trichloroethylene:30	6
-		1-(1-methylethoxy)-2-propanol:	
		45927	
		Terpineol: 14	

• The TVOC was calculated as toluene equivalents

VOCs levels cover a large range of concentrations and vary widely between different types of products or even between two products from the same category.

For a majority of products, high concentrations of very volatile organic compounds (VVOCs) were measured but the analytical methods used in this study are not suitable for VVOCs quantification.

Over the 32 TVOC concentrations, 37% were below 100 μ g.m⁻³, 19% were between 100 and 500 and 44% were above 500, with maximum levels above 500000 μ g.m⁻³ (carpet cleaner M2). Sorption of gas-phase analytes including terpene alcohols to chamber surfaces may also contribute to the persistence of elevated concentrations (Singer et al., 2006).

Formaldehyde emissions

For all tested air fresheners, formaldehyde concentrations are generally lower than 10 μ g.m⁻³ after use and then decrease progressively, reflecting pollutant removal by the ventilation system. Concerning burning devices i.e. incense sticks and scented candles, formaldehyde emission is rather related to combustion than to the composition.

For glass cleaners and furniture polishes, the formaldehyde emission profile is presented in Figure 1. While formaldehyde concentrations remain below $10 \ \mu g.m^{-3}$ just after use, emission profiles then increase although the overall product volatilization rate is declining. This may result from varying volatilization, chemical reactions between airborne pollutants or sorption behaviour among the constituents.

Figure 1. Formaldehyde concentrations for glass cleaners and furniture polishes.

For both categories of toilet products, formaldehyde concentrations are increasing with successive flushes, leading to a formaldehyde concentration above 10 μ g.m⁻³ for the toilet block J1. For both carpet cleaners and carpet stain removers, formaldehyde concentrations remain steady after use below 10 μ g.m⁻³. Except for the pure use of floor cleaners N1 and N2, formaldehyde concentrations for all floor cleaners are around or below 10 μ g.m⁻³ as showed on Figure 2. This trend remains steady after use. The presence of *Savon de Marseille* does not influence formaldehyde emissions, whether these floor cleaners are diluted or pure. On the contrary, the dilution of the other floor cleaners decreases the formaldehyde concentrations. In this product category, the formaldehyde concentrations for floor wipe P1 are the highest among all the tested products: from 1249 μ g.m⁻³ (0-30 min) to 128 μ g.m⁻³ (not illustrated on Figure 2). This may be explained by the presence of formaldehyde or formaldehyde releasers within the product ("anti-bacterial" wipes).

Figure 2. Formaldehyde concentrations for floor cleaners except floor wipe P1.

* SM : Savon de Marseille

DISCUSSION

This work shows that the use of some consumer cleaning products and air fresheners may lead to the emission of high levels of VOCs and formaldehyde.

Human exposure to VOCs occurs through inhalation or skin contact. Consumer products (household products, cosmetics, paints...) represent individually minor sources of VOCs emissions but considered together, they all make a significant contribution to the total load of VOCs indoors.

Information regarding the 32 tested products composition was transmitted *via* the consultation of the *BNPC*, to try to explain emission profiles. This confidential database registers industrial compositions of various types of products that could be implied in human intoxications. They are declared to the *BNPC* on a voluntary basis by manufacturers. By using the specific reference of the 32 tested products, the *BNPC* analysis was performed to investigate the presence of formaldehyde, formaldehyde releasers or other VOCs (terpenes, aldehydes, alcanes) in the tested products. Formaldehyde releasers such as imidazolidinyl urea, diazolidinyl urea, sodium hydroxymethyl glycinate and benzylhemiformal may be used in consumer products as preservatives instead of formaldehyde. The products containing these

compounds may release the formaldehyde they contain when dissolved in aqueous or polar solvents. There is little information on the stability of these formaldehyde releasers in consumer products, as well as their safety profile. None of the 32 tested products were declared to contain formaldehyde. For 7 products, a formaldehyde releaser was declared in the composition but for 5 of them, the highest measured concentrations of formaldehyde are below 10 μ g.m⁻³. One floor cleaning product (N1) and one floor wipe (P1) were declared to contain a formaldehyde releaser and the associated maximal concentrations of formaldehyde emitted are quite high: 48 μ g.m⁻³ for N1 and 1249 μ g.m⁻³ for P1. The possible relationship between formaldehyde emission and the presence of formaldehyde releasers in the composition is not confirmed. Other formaldehyde releasers may not be identified yet such as methylisothiazolinone compounds

Chemical reactivity can occur by photochemistry under the influence of sun rays and heat, converting VOCs into so-called "secondary" pollutants such as aldehydes, ketones, organic acids... (BEUC, 2005). Some studies show that reactive chemistry between terpenes and ozone produces formaldehyde (Destaillats et al., 2006; Fan et al., 2003; Singer et al., 2006). Moreover, specific VOCs are reacting with ozone at a higher rate than others (Destaillats et al., 2006). The effects of these secondary pollutants are still discussed (Nöjgaard et al., 2005) in particular in what extent they contribute to indoor pollution.

For 12 of the 32 tested products, the TVOC concentrations exceeded 1000 μ g.m⁻³, the maximum limit value in indoor air proposed in the Afsset protocol for qualification of solid building materials (Afsset, 2006; Rousselle et al., 2008). However adverse health effects cannot be assessed specifically on the basis of these values since human exposure and associated risks can only be quantified for each individual compound. Therefore TVOCs concentrations may only be considered as an indicator of significant emissions.

Formaldehyde is identified as a major issue, classified by the International Agency for Research on Cancer (IARC) as a human carcinogenic compound since June 2004, on the basis of observed nasopharyngeal carcinoma in workers (IARC, 2006). In this framework, in 2007, a working group in Afsset proposed formaldehyde Indoor Air Quality guideline values to protect from ocular and nasal irritation. These values will also protect against the occurrence of local carcinogenic effects (nasopharyngeal carcinoma) as nasal irritation is a key-event occurring at lower doses than cytotoxicity (Afsset, 2007; Mandin et al., 2008). The indoor air quality guideline value for short term exposure is 50 μ g.m⁻³ over 2 hours. In this study, some measured formaldehyde concentrations exceed this guideline value which may lead to irritative symptoms in the consumers. However the cancer risk of formaldehyde at these non-cytotoxic concentrations is likely to be negligible.

CONCLUSIONS

The use of cleaning products and air fresheners can lead to emissions of primary or secondary pollutants indoors. Starting from analytical methods designed for building products and air fresheners, realistic experimental protocols were defined in order to characterise formaldehyde and VOCs emissions of various types of products in order to assess consumers' exposure.

Emissions vary widely depending on the type of products. For some of them, formaldehyde concentrations remained steady or increased after use. This trend may be explained by chemical reactivity between terpenes and ozone but these reaction pathways are still not well

characterized. A majority of products released high concentrations of VVOCs that could not be quantified with the analytical methods used in this study.

Even if this study is not representative of emissions from all the consumer products on the French market, it shows that such emissions can really influence indoor air quality and that further studies are necessary to better understand the contribution of these emissions to human exposure to chemicals.

REFERENCES

- Afsset. 2006. Risques sanitaires liés aux composés organiques volatils dans l'air intérieur. Risques sanitaires liés aux émissions de composés organiques volatils par les produits de construction et d'aménagement intérieur. Octobre 2006.
- Afsset. 2007. Valeurs guides de qualité d'air intérieur. Le formaldéhyde. Juillet 2007.
- BEUC (Bureau Européen des Unions de Consommateurs), ICRT (International Consumer Research and Testing). 2005. Emission of chemicals by air fresheners. Test on 74 consumer products sold in Europe. January 2005.
- Destaillats H., Lunden M.M., Singer B.C., Coleman B.K., Hodgson A.T., Weschler C.J. and Nazaroff W.W. 2006. Indoor secondary pollutants from household product emissions in the presence of ozone: a bench-scale chamber study. *Environ Sci Technol* 40:4421-4428.
- Fan Z., Lioy P., Weschler C., Fiedler, N., Kipen H. and Zhang J. 2003. Ozone- initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. *Environ Sci Technol.* 37:1811-1821.
- IARC. 2006. International Agency for Research on Cancer. Volume 88, Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, 478 pages, Lyon, France, ISBN 92 832 1288 6
- Mandin C., Bonvallot N., Kirchner S., Alary R., Cabanes P.A., Doornaert B., Dor F., Gourier-Fréry C., Le Moullec Y., Mullot J.U., Peel A.E., Rousselle C. and Solal C. 2008. Development of French indoor air quality guidelines: method and example for formaldehyde. *Indoor Air*, 2008. Submitted.
- Mendell M.J. 2007. Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review. *Indoor Air* 17:259-277.
- Ministère de la Santé et de la Protection Sociale, Ministère de l'Ecologie et du Développement Durable, Ministère de l'Emploi, du Travail et de la Cohésion Sociale, Ministère délégué à la Recherche. National Environmental Health Action Plan. Abstract.
- Nöjgaard J.K., Christensen K.B., Wolkoff P. 2005. The effect on human eye blink frequency of exposure to limonen oxydation products and methacroleine. *Toxicol Lett.* 156:241-251.
- Ribéron J., O'Kelly P. 2002. MARIA: an experimental tool at the service of indoor air quality in housing sector. In: *Proceedings of Indoor Air 2002*.
- Rousselle C, Lecoq P., Bastard M., Dally S., Morin J.P., Hoellinger H., Courtois B., Yrieix C., Kirchner S. and Maupetit F. 2008. Emissions and toxicological evaluation of VOC and formaldehyde released from solid building materials: a contribution to the French NEHAP. *Indoor Air*, 2008. Submitted.
- Singer B.C., Destaillats H., Hodgson A.T., Nazaroff W.W. 2006. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. *Indoor Air* 16:179-191.
- Zock J.P., Plana E., Jarvis D., Antó J.M., Kromhout H., Kennedy S.M., Künzli N., Villani S., Olivieri M., Torén K., Radon K., Sunyer J., Dahlman-Hoglund A., Norbäck D. and Kogevinas M. 2007. The use of household cleaning sprays and adult asthma. *Am J Respir Crit Care Med* 176:735-741.