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Stochasticity in physiologically-based kinetics models: Implications for cancer risk 

assessment  
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ABSTRACT 

In case of low dose exposure to a substance, its concentration in cells is likely to be stochastic. 

Assessing the consequences of this stochasticity in toxicological risk assessment requires the 

coupling of macroscopic dynamics models describing whole body kinetics with microscopic 

tools designed to simulate stochasticity. In this paper, we propose an approach to approximate 

stochastic cell concentration of butadiene in the cells of diverse organs. We adapted the 

dynamics equations of a physiologically-based pharmacokinetic (PBPK) model and used a 

stochastic simulator for the system of equations we derived. We then coupled kinetics 

simulations with a deterministic hockey stick model of carcinogenicity. Stochasticity induced 

substantial modifications relative to dose-response curve, compared to the deterministic 

situation. In particular, there was non-linearity in the response and stochastic apparent 

threshold was lower than the deterministic one. The approach we developed could easily be 

extended to other biological studies to assess the influence at macroscopic scale of 

stochasticity for compounds dynamics at cell level.  

 

KEY WORDS: PBPK, butadiene, systems biology, stochasticity, cancer 
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1. INTRODUCTION 

The dynamics of chemical species at the level of the cell are rather discrete and stochastic 

than continuous and deterministic, in so far as they are determined by the action of only a few 

molecules (Rao and Arkin, 2003). Stochastic resonance in biology is a well known 

phenomenon, able to enhance detection and improve the transmission efficiency of weak 

information in nonlinear systems (Hänggi, 2002). In particular, it explains why deterministic 

threshold can be exceeded, with a rate in relation to the intensity of the signal, even if the 

mean value of this signal throughout time is below the threshold. The concepts apply to 

toxicology: For low exposures to a chemical, stochasticity is likely to play a role in the 

occurrence of toxic effects at the cell level, even if the mean cellular concentration is below 

some deterministic threshold, inferred for instance, through mechanistic considerations 

(Lovell, 2000). Studying stochasticity in toxicant cellular concentration is particularly 

relevant for carcinogenesis which might be induced at very low doses of exposure.  In this 

paper, we present a modelling framework to simulate stochastic concentrations at cell level 

and to derive consequences for cancer risk assessment. Simulations are performed based on 

actual exposure levels and a physiologically-based toxicokinetic model for butadiene. 

1,3-Butadiene is a highly volatile four-carbon chemical mostly made from the processing of 

petroleum. It can be detected in urban air pollution, cigarette smoke and gasoline vapors. 

Butadiene is an established carcinogen, as a DNA-reactive chemical leading to production of 

DNA adducts in rodents in liver, lung and tissue (Preston, 2007). It is hypothesized that 

butadiene carcinogenicity is a consequence of the genotoxicity of its metabolites (Albertini et 

al., 2003). It is not clear whether or not there is a threshold for effects in humans (Preston 

2007). 
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Physiologically based toxicokinetic (PBPK) models propose a realistic even if simplified 

description of the mechanisms of absorption, distribution, metabolism and elimination of 

chemicals in the body. In these models, the body is subdivided into various compartments 

representing specific organs or homogeneous groups of tissues linked and irrigated by blood 

vessels. Compartments are characterized by a set of parameters of physiological relevance 

(e.g., volume or blood perfusion rate) which play a crucial role in explaining the behavior of 

chemical substances in the body, and represent invariants across substances. A three-

compartment physiologically based pharmacokinetics (PBPK) model has been proposed to 

describe the distribution of butadiene and the production of its first metabolite following 

oxidation, 1,2-epoxy-3-butene (Brochot and Bois, 2005). We use here an extension of this 

model with 23 compartments.  The model parameters (organ volumes etc.) correspond to 

those of an adult man.  

These macroscopic models can describe the distribution of chemicals in the different organs 

but are unable to capture the stochasticity at cell level. In contrast, a recent discipline, systems 

biology, aims at studying the dynamics of the components of a cell, and tools to study the 

influence of stochasticity at cell level have being developed. The main objective of this paper 

is to develop a methodology for coupling microscopic and macroscopic dynamics models to 

assess the consequences at organ level of stochastic chemical concentration and effects at cell 

level. Coupling PBPK models and systems biology is a step forward to develop integrated 

approaches able to relate information obtained at cell level, like for instance “omics” data, and 

effects on health.  
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2. MATERIALS AND METHODS 

2.1. PBPK model for butadiene 

Our PBPK model contains 23 compartments (See Figure 1). Compartments are mainly 

connected by blood circulation, by air exchange at the lung level, excretion to urine and feces, 

and metabolism. Concentrations C, in µg/L, are obtained at any time by dividing the quantity 

of butadiene, Q (in µg) by the compartment volume (supposed constant in time). Volumes are 

in L, time in min, flows and rates in L/min. Q and C depend on time but we omit the time 

argument when possible for simpler notation.  A list of parameters and their values can be 

found in Tables I-IV. We assume that butadiene is only eliminated through metabolisation or 

exhalation, and that intake only occurs through inhalation. 

For adipose tissue, adrenals, bone marrow, brain, breast, heart, kidneys, muscles, other organs 

and tissues, pancreas, skin, spleen, testes and thyroid, the differential equation giving the rate 

of change for the quantity of BD is: 

 
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where Fi are blood flows (values given in Table 2), and Pi are tissue over blood partition 

coefficients. These partition coefficients were calculated by multiplying the partition 

coefficients for fat (Table III) by fat content of each organ  (Table IV). Indeed, for highly 

lipohilic organic chemicals, Pi values can be approximated by the ratio of lipids in adipose 

tissues and blood (Haddad et al., 2000).  
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For upper respiratory tract:  
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where Fpul designates the pulmonary ventilation rate (9 L/min for an average human) and Falv 

the alveolar ventilation rate (6 L/min) (ICRP, 2002). 

For the lung: 

 












−+














−=

∂
∂

lung

lung
ventotal

airoverlung

lung
urtalv

lung

P

C
CF

P

C
CF

t

Q

__
 (3) 

where Ftotal designates the sum of the F values for the following organs or tissues: adipose 

tissue, adrenals, bone marrow, brain, breast, heart, kidneys, liver, muscles, other organs and 

tissues, skin, testes and thyroid. 

For the liver, blood comes from the arterial pool, spleen, pancreas, stomach and gut, and there 

is metabolism occuring in the liver (see further): 
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where Fliver, is: 

 stomachgutpancreasspleeneportliver FFFFFF ++++=  (5) 

 For arterial blood: 
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For venous blood: 
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where i designates the adipose tissue, adrenals, bone marrow, brain, breast, heart, kidneys, 

liver, muscles, other organs and tissues, skin, testes and thyroid. 

For epoxy metabolite (EB) in the liver: 
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For simplicity, the possibility of EB molecules to come back to the liver through blood 

circulation has been neglected, assuming susbtantial elimination through secondary 

metabolism and exhalation. To obtain more relevance, incorporating EB kinetics may be 

proposed later, based on the PBPK model for butadiene and major metabolites proposed by 

Brochot et al. (2007).  

 

2.2. Exposure and epidemiological data 

We used data from Higashino et al. (2007) on human exposures to 1,3-butadiene in Japan. 

The average concentration in the general environment is 0.25 µg/m3, with a background 

concentration 0.06 µg/m3 in unpolluted areas. Exposure concentrations above 0.8 µg/m3 are 

only found in vicinity of industrial activities. Lifetime excess cancer risk level is estimated at 

10-5 for an exposure concentration of 1.7 µg/m3 (Higashino et al., 2007). In Japan, 0.03% of 

the total population (that is 36 000 persons) are exposed to concentrations exceeding this 

value. With a molar mass of 54.09 g/mol for butadiene, 1.7 µg/m3 corresponds to 18.7 1012 

molecules/L.  

 

2.3. Simulation Software used  

We used the Systems Biology Workbench (SBW) (Sauro et al., 2003), version 2.0.39. We 

implemented our PBPK model in Jdesigner. The model was then converted to an SBML file 
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and input in the Dizzy 1.11.4 software (Ramsey et al., 2005), which is able to perform 

stochastic simulations of chemical kinetics. We used the Gillespie stochastic algorithm 

(Gillespie, 1977) for stochastic simulations. It is an algorithm for modeling the kinetics of a 

set of coupled chemical reactions, taking into account stochastic effects from low copy 

numbers of the chemical species. With the same differential equation, the deterministic 

approach regards the time evolution as continuous, whereas the stochastic approach regards 

the time evolution as a kind of random-walk process. In Gillespie's approach, chemical 

reaction kinetics are modelled as a Markov process in which reactions occur at specific times 

separated by Poisson-distributed intervals. The mean interval is recomputed each reaction 

time. At each reaction time, a specific chemical reaction occurs, randomly selected from the 

set of all possible reactions with a probability given by the individual reaction rates. 

 

2.4. Stochastic simulations at steady state 

Exact stochastic simulators track the actual number of molecules involved in a set of reaction 

in a given portion of space. It is impossible for them to handle as many molecules as can be 

found in an entire organ. We first computed the steady state concentration values in each 

organ using the deterministic (ordinary differential equation) simulator of the SBW, with 

continuous inhalation exposure concentrations of 0.25 and 1.7 mg/m3 of BD. Initial condition 

for the number of molecules in a cell was set to the deterministic value from the PBPK model. 

We consider that a human has typically about 1014 cells. In our PBPK model, the total volume 

of a man is 75 L, which results in a mean density of 1.37 1012 cells/L. 

 

Except for liver, the uptake of butadiene is performed from the arterial blood, in which 

butadiene concentration was set at steady state deterministic value from PBPK model. The 
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kinetic equation for one cell is similar to that of the organ to which it belongs except for the 

flux value: 
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This equation cannot be computed directly in the softwares we use because of rounding errors 

due to the extremely small value of Fcell  (less than 10-13 for most organs). We reformulate 

equation (9): 
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where ℵ is the Avogadro’s number, Mbutadiene is the molar weight of butadiene and Ncell the 

number of molecules in the cell. This equation can be studied with Jdesigner and Dizzy with a 

fixed Cart  value. Equation (4) was reformulated in a similar way.  

 

We performed simulations with five organs: spleen, which has the lowest partition coefficient 

over blood (0.77), fat with the highest one (22), marrow, which has a low scaled flux value 

(0.0786 min-1), kidney with a high scaled flux value (3.9838 min-1) and liver, for which we 

studied the concentrations of both butadiene and its first metabolite.  

That choice of organs is also relevant relative to cancer risk of butadiene. Mutagenicity has 

been shown to occur for spleen and marrow of rodents (Preston, 2007). The same author 

reported butadiene-induced lymphomas so as lung and liver tumours in mice. 
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We ran 100 simulations at steady state. For spleen, kidney and liver, we reported the number 

of molecules at time 100 min, which is large compared to the time needed to reach 

equilibrium in the deterministic model for these organs. For marrow and fat, we reported this 

number at 500 min and 10000 min respectively due to a longer time to reach equilibrium. 

 

2.5. Coupling with cancer PD model 

To assess how dose-response curves are affected by stochasticity at the cellular level, we 

coupled the stochastic PBPK model described above to a linear model with a threshold for 

effect, which belongs to the family of the “hockey stick models” introduced into carcinogenic 

risk assessment by Cornfield (1977). For a given cell at a given time, the probability R of 

carcinogenesis is supposed to be proportional to max(N(t)-N0 , 0) where N(t) is the number of 

molecules of BD metabolites per cell at time t, N0 the threshold number of molecules to get an 

effect. We chose 1 as the threshold number of molecules per cell able to initiate liver 

carcinogenesis with a non-zero probability. This is the minimum reasonable number and it 

corresponds to approximately twice the general environment exposure in Japan (Higashino et 

al., 2007). This is just a choice for simulations. It is not based on particular knowledge about 

butadiene mechanisms of carcinogenicity. It is also worth noting that a purely linear dose-

response would not be affected by stochasticity. We adapted the proportionality factor 

between R and excess number of molecules so that the lifetime excess cancer risk level 

estimated for a continuous exposure to 1.7 µg/m3 BD is 10-5, as in the study by Higashino et 

al. (2007). 

We performed simulations for exposure concentrations from 0 to 1.7 µg/m3, with a step of 0.1 

µg/m3. For each concentration, we simulated, at steady state, the number of BD metabolites 

molecules in 100 cells exposed during 100 minutes.  



11 

 

 

2.6. Stochastic simulations in time-varying conditions 

To study the system in a non steady-state situation (e. g. for a time-varying change in the 

exposure level) the exposure scenario simulated 9 hours a day to a BD concentration of 1.7 

µg/m3, followed by 15 hours a day to a BD concentration of 0.25 µg/m3. This is typically 

what a factory worker would be exposed to in Japan (Higashino et al., 2007).  For simplicity, 

holidays and week-ends were not accounted for.  

We added a component (accounting for a liver cell) in parallel to the liver in the PBPK model. 

It was not possible to implement time-varying deterministic concentrations in Jdesigner and 

Dizzy and use the same methods as in section 2.4. Therefore, we had to simulate with Dizzy 

simultaneously the dynamics in all organs and in a cell. However, we could not track all the 

molecules in the body even for an environmental exposure level of BD. Therefore, we had to 

adapt the PBPK model equations implemented in Jdesigner and Dizzy, so that simulated 

organ concentrations were approximately the deterministic ones and so that Gillespie 

algorithm was unchanged for the cell.  

Equation (10) is formally equivalent, relative to dynamics at the cell level, to the following 

equation: 
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Consequently, if, in the PBPK model equations, we multiply the concentrations in all 

compartments but the liver cell by 








×
ℵ×

butadieneMdensityCell _

100
, fix at 0.01 the volume of the 

liver cell (both operations largely minimise stochasticity at organ level so as the contribution 
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of the liver cell to the whole system) and divide Forgan by 100, we have approximately the 

same kinetics at the organs level, without affecting the kinetics for Q_cell. The Gillespie 

algorithm is unchanged, because the reaction probability density function is unchanged. We 

indeed checked with Jdesigner and Dizzy that, once the model was adapted, the stochastic 

values of all organ concentrations differed by less than 5 % from their deterministic values 

during the simulations we performed. Using 10 and 0.1 instead of 100 and 0.01 in equation 

(13) would have led a large difference between deterministic values and stochastic ones. In 

contrast, using 1000 and 0.001 would have led to huge calculation times for Dizzy.  

We focused here only on EB in the liver. We performed simulations for 20 cells during the 15 

hours in the general environment and reported cell concentration. The concentrations at time 0 

(time at which the subject is just leaving industrial vicinity) are extracted from simulations 

with Jdesigner over 50 days. For the last 10 days, the values at time 0 only differed by 0.1 %, 

i.e. dynamics steady state was reached. Cancer risk was computed at each time step (every 

minute). 

 

3. RESULTS 

3.1. Stochastic simulations at steady state 

The mean number of molecules in a cell, the standard deviation and coefficient of variation 

per organ for exposure concentration 1.7 µg/m3 are presented in Table V. Stochastic mean 

values equal deterministic ones. 

The stochastic variability is mainly influenced by the partition coefficient (which determines 

the mean number of molecules at steady state). The fact that marrow and kidney have 

comparable standard deviations but very different mean number of molecules suggests that 

low blood flow to the cell also tends to decrease variability relative to the mean value. The 
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results obtained for metabolites in the liver are presented in Figure 2. There is a large 

variability of the number of metabolites in a liver cell (mean 2.91, standard deviation 1.71 

resulting in coefficient of variation of 0.588). Simulations for exposure concentration 0.25 

µg/m3 led to the same conclusions relative to organ characteristics and coefficient of variation 

(data not shown).  

 

3.2. Coupling with cancer model 

Figure 3 shows that accounting for stochasticity when coupling the PBPK model and cancer 

model increased the excess of risk even below the deterministic threshold of 0.6 µg/m3. The 

dose-response curve appears to have two distinct regimes: a “quadratic” looking region and a 

“linear” looking one, closed to the deterministic response. 

 

3.3. Stochastic simulations in time-varying conditions 

Figure 4 shows the results at dynamics steady state for metabolites in one liver cell for 15 

hours at exposure concentration 0.25 µg/m3 after 9 hours at exposure concentration 1.7 µg/m3. 

The metabolite mean concentration quickly reaches low levels (half of the initial value is 

reached after 13 minutes), at which stochasticity is high and kinetics is slow.  

The cancer model was used to assess the instantaneous excess risk of liver cancer during this 

period. There was no increased risk for times over 65 minutes, according to the deterministic 

approach. The sum over time of instantaneous excess risk values during this period outside 

the industrial vicinity corresponded to 12 minutes at steady state exposure at the high 

concentration, which is low compared to the 9 hours exposure. In contrast, when accounting 

for stochasticity, the mean sum of excess risk corresponded to 85 minutes of high exposure.  
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4. DISCUSSION 

 

The simple algorithms outlined in the works by Gillespie (Gillespie, 1977) permit the 

modeling of microscopic stochastic phenomena (Haseltine and Rawlings, 2002). Gillespie’s 

algorithms can be so expensive computationally that alternatives have been proposed to 

approximate exact simulations (Haseltine and Rawlings, 2002 ; Rathinam et al., 2003). For 

the present work, we chose to use the exact algorithm, for simulations could be performed in a 

reasonable amount of time with modern calculation stations, thanks to the progress that 

computer technology has still made in the past few years. 

Coupling our PBPK model to a model of excess risk of cancer affected dose response curve. It 

looks curvilinear, with a breakpoint dose lower than the theoretical one. Mutagenesis data 

from Elhajouji et al. (1997) showed experimentally comparable profile, with a slight increase 

in mutagenicity, then a highly significant steep increase for compounds likely to have a 

threshold for effects. We do not pretend to fully assess cancer risk associated to exposure to 

butadiene. Our study is a simulation study aiming at assessing whether or not stochasticity 

should be considered when assessing risk. Therefore, at least in the case of exposure to low 

doses of compounds having a threshold for carcinogenicity, stochasticity in kinetics should 

not be neglected.  

In a paper on dose-response and threshold-mediated mechanisms in mutagenesis, Lovell 

(2000) points that “absolute” threshold are difficult to estimate from toxicity data due to 

background noise as a consequence of stochasticity. The concept of absolute threshold may 

therefore make no physical sense at all. Lovell is in favour of “pragmatic” thresholds, 

constructed through dose–response models (in particular biology-based dose-response 

(BBDR) models) coupled with knowledge about what level of response is biologically 
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important, and what level is not. We believe that dose-response models construction should 

seriously consider stochasticity to get the best accurate representation of reality at low doses. 

BBDR models would permit to derive a deterministic approximate threshold, then 

stochasticity studies would permit to derive a realistic one based on stochastic simulations 

with BBDR models coupled with PBPK models. 

To our knowledge, this study is the first time that the dynamics of compounds at the cell level 

is studied in parallel to the dynamics at the body level. Coupling microscopic and 

macroscopic dynamics is a real challenge, because of the very large scale difference between 

numbers of molecules in cell and in organ. Here, we achieved the coupling of PBPK models 

with tools developed in the framework of systems biology through two different approaches. 

In case of steady state for organs, concentrations in PBPK compartments were fixed and exact 

dynamic equations for butadiene in the cell was derived. In case of time varying 

concentrations in the organs, we adapted the equations to get an approximate simulation of the 

dynamics at the cell level. We were then able to assess the influence of stochasticity relative 

to dose-response in toxicant risk assessment, with constant or time-varying exposure 

concentration. This coupling is not limited to toxicology. It can be immediately generalized to 

the study of stochastic concentration of many compounds in the cell, like for instance 

pharmaceuticals and hormones which may be effective at extremely low concentrations 

(Gurevich et al., 2003).  
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Table I. Values of the organ or tissue volumes (in L). These constants were calculated for a 

standard man of 1.76 m and 73 kg, using the organ weights given by the ICRP 2002 Pub 89 

(p.18(T 2.8)  p.19(T 2.9)). Density for the organs is supposed equal to 1 excepted for adipose 

tissues (density 0.9) and bones (density 2) 

Tissue / organ Symbol Value 
Adipose Vadip  18.8 
Adrenals Vadrenal  0.014 
Arterial blood Vart 1.40 
Venous blood  Vven  4.20 
Bone  Vbone  2.75 
Brain  Vbrain  1.45 
Breast  Vbreast  0.025 
Gut  Vgut  1.02 
Gut lumen Vgut_lumen 0.65 
Heart  Vheart  0.33 
Kidney  Vkidney  0.31 
Liver  Vliver  1.80 
Lung  Vlung  0.50 
Upper respiratory tract  Vurt  0.15 
Bone marrow  Vmarrow 3.65 
Muscles Vmuscle  29.0 
Others Vother  7.06 
Pancreas  Vpancreas  0.14 
Skin  Vskin  3.30 
Spleen  Vspleen  0.15 
Stomach  Vstomach  0.15 
Stomach lumen Vstom_lumen 0.25  
Testes Vtestes 0.056 
Thyroid Vthyroid 0.019 
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Table II. Blood flows for the various organs or tissues (Unit L/min). These have been 

computed using cardiac output, percent blood flows per tissue mass and organ weights given 

in ICRP 2002 Pub 89 [14] (Table 2.8  p18-19, Table 2.39 p28, Table 2.40  p29) or provided 

by William & Leggett [15]. 

Tissue or organ Symbol Value 
Adipose Fadip 0.564 
Adrenals Fadrenal 0.02 
Brain  Fbrain  0.78 
Breast  Fbreast  0.00 
Gut  Fgut 0.98 
Heart  Fheart  0.35 
Kidney  Fkidney  1.23 
Liver  Feport 0.45 
Lung  Ftotal 6.72 
Bone marrow  Fmarrow  0.29 
Muscles Fmuscle  1.11 
Others Fother 0.19 
Pancreas  Fpancreas 0.065 
Skin  Fskin 0.33 
Spleen  Fspleen  0.19 
Stomach  Fstomach 0.065 
Testes Ftestes 0.004 
Thyroid Fthyroid 0.094 
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Table III. BD and EB-specific parameters. These have been taken from Brochot et al. (2005) 

for BD parameters and Brochot et al. (2007) for EB parameter. 

Parameter Symbol Value Unit 
BD fat over blood partition coefficient  22 – 
BD lung over air partition coefficient Plung_over_air 0.653 – 
EB liver over blood partition coefficient Pliver_EB 0.59 – 
Metabolisation rate for BD into EB Kmet  0.3 L/min 
 

Table IV. Fat content for the various organs or tissues. These have been taken from Fiserova-

Bergerova (1983) and Van der Molen (1996). Default value is 0.049, which corresponds to 

“remaining organs” in Van der Molen (1996). 

Tissue or organ Value 
Adipose 0.859 
Adrenals        default 
Brain  0.11 
Breast         default 
Gut  0.065 
Heart  0.083 
Kidney  0.052 
Liver  0.049 
Lung  0.017 
Bone marrow  0.186 
Muscles 0.064 
Others        default 
Pancreas  0.105 
Skin  0.15 
Spleen  0.03 
Stomach         default 
Gonads        default 
Thyroid        default 
 



22 

 

Table V. Mean number of molecules in a cell, standard deviation and coefficient of variation 

per organ at steady state at time 100 (5000 for fat, 500 for marrow) for 100 simulations 

performed with Dizzy. Exposure concentration is 1.7 µg/m3.  

Organ Mean number of molecules in a cell Standard deviation Coefficient of variation 
Fat 379.3 10.0 0.026 
Marrow 82.3 4.49 0.0545 
Kidney 22.9 4.52 0.197 
Liver 15.2 3.2 0.211 
Spleen 13.6 3.86 0.284 
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Figure legends 

 

Figure 1. PBPK model for butadiene, as implemented in Jdesigner. 

Figure 2. Distribution of BD metabolites number per cell in a liver cell at steady state at time 

100 for 100 simulations performed with Dizzy. Exposure concentration is 1.7 µg/m3. 

Figure 3. Excess liver cancer risk in relation to exposure concentration. The deterministic 

probability is represented by the plain line. The points are the mean values obtained by 

stochastic simulations for 100 cells. 

Figure 4. Kinetics of butadiene metabolites in one liver cell for a man leaving industrial 

vicinity to general environment. Plain line is the deterministic model and points are stochastic 

predictions for different time points (the time step is one minute).  
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Figure 1. 
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Figure 3.  
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Figure 4.  
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