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ABSTRACT

In case of low dose exposure to a substance, lisecration in cells is likely to be stochastic.
Assessing the consequences of this stochasticikyxinological risk assessment requires the
coupling of macroscopic dynamics models describihgle body kinetics with microscopic
tools designed to simulate stochasticity. In ttapgr, we propose an approach to approximate
stochastic cell concentration of butadiene in te#scof diverse organs. We adapted the
dynamics equations of a physiologically-based plaaokinetic (PBPK) model and used a
stochastic simulator for the system of equations deeved. We then coupled kinetics
simulations with a deterministic hockey stick modgktarcinogenicity. Stochasticity induced
substantial modifications relative to dose-response/e, compared to the deterministic
situation. In particular, there was non-linearity the response and stochastic apparent
threshold was lower than the deterministic one. approach we developed could easily be
extended to other biological studies to assess itfileence at macroscopic scale of

stochasticity for compounds dynamics at cell level.

KEY WORDS: PBPK, butadiene, systems biology, stochasticaycer



1. INTRODUCTION
The dynamics of chemical species at the level efdéll are rather discrete and stochastic
than continuous and deterministic, in so far ag #re determined by the action of only a few
molecules (Rao and Arkin, 2003). Stochastic resomam biology is a well known
phenomenon, able to enhance detection and impilwdransmission efficiency of weak
information in nonlinear systems (Hanggi, 2002)particular, it explains why deterministic
threshold can be exceeded, with a rate in relatothe intensity of the signal, even if the
mean value of this signal throughout time is beline threshold. The concepts apply to
toxicology: For low exposures to a chemical, staticdy is likely to play a role in the
occurrence of toxic effects at the cell level, evfetihe mean cellular concentration is below
some deterministic threshold, inferred for instantd&ough mechanistic considerations
(Lovell, 2000). Studying stochasticity in toxicacellular concentration is particularly
relevant for carcinogenesis which might be induaedery low doses of exposure. In this
paper, we present a modelling framework to simussdehastic concentrations at cell level
and to derive consequences for cancer risk assassBimulations are performed based on
actual exposure levels and a physiologically-basgitokinetic model for butadiene.
1,3-Butadiene is a highly volatile four-carbon cheshmostly made from the processing of
petroleum. It can be detected in urban air polhytioigarette smoke and gasoline vapors.
Butadiene is an established carcinogen, as a DIdatike chemical leading to production of
DNA adducts in rodents in liver, lung and tissueeffon, 2007). It is hypothesized that
butadiene carcinogenicity is a consequence of émetgxicity of its metabolites (Albertini et
al., 2003). It is not clear whether or not theraithreshold for effects in humans (Preston

2007).



Physiologically based toxicokinetic (PBPK) model®opgose a realistic even if simplified
description of the mechanisms of absorption, diation, metabolism and elimination of
chemicals in the body. In these models, the bodyulsdivided into various compartments
representing specific organs or homogeneous grotipssues linked and irrigated by blood
vessels. Compartments are characterized by a gedrameters of physiological relevance
(e.g., volume or blood perfusion rate) which plagracial role in explaining the behavior of
chemical substances in the body, and representriamés across substances. A three-
compartment physiologically based pharmacokingifBPK) model has been proposed to
describe the distribution of butadiene and the pctidn of its first metabolite following
oxidation, 1,2-epoxy-3-butene (Brochot and BoisQ®2)0 We use here an extension of this
model with 23 compartments. The model parametergaf volumes etc.) correspond to
those of an adult man.

These macroscopic models can describe the digtibof chemicals in the different organs
but are unable to capture the stochasticity atleedll. In contrast, a recent discipline, systems
biology, aims at studying the dynamics of the congrds of a cell, and tools to study the
influence of stochasticity at cell level have bedeyeloped. The main objective of this paper
is to develop a methodology for coupling microscopnd macroscopic dynamics models to
assess the consequences at organ level of stacbhstnical concentration and effects at cell
level. Coupling PBPK models and systems biologg istep forward to develop integrated
approaches able to relate information obtaine@lkhtevel, like for instance “omics” data, and

effects on health.



2. MATERIALSAND METHODS
2.1. PBPK modsel for butadiene
Our PBPK model contains 23 compartments (See FigyreCompartments are mainly
connected by blood circulation, by air exchangthatlung level, excretion to urine and feces,
and metabolism. Concentratio@sin pg/L, are obtained at any time by dividing theantity
of butadieneQ (in ug) by the compartment volume (supposed cahstatime). Volumes are
in L, time in min, flows and rates in L/miQ andC depend on time but we omit the time
argument when possible for simpler notation. A @& parameters and their values can be
found in Tables I-1V. We assume that butadienenily eliminated through metabolisation or
exhalation, and that intake only occurs througtalation.
For adipose tissue, adrenals, bone marrow, bragash heart, kidneys, muscles, other organs
and tissues, pancreas, skin, spleen, testes araidhthe differential equation giving the rate

of change for the quantity of BD is:
aQi Ci
—_Fix((: t__J (])

whereF; are blood flows (values given in Table 2), dAdare tissue over blood partition
coefficients. These partition coefficients were cadted by multiplying the partition
coefficients for fat (Table Ill) by fat content each organ (Table 1V). Indeed, for highly
lipohilic organic chemicalsP; values can be approximated by the ratio of liprdadipose

tissues and blood (Haddad et al., 2000).



For upper respiratory tract:

aQurt

_ CIung
ot - I:pul (Cair - Curt ) - I:alv Curt -5 (2)

lung _over _air
whereF,, designates the pulmonary ventilation rate (9 L/foman average human) afdy
the alveolar ventilation rate (6 L/min) (ICRP, 2002

For the lung:

_ F C _ Clung + F C _ Clung
ot — Valv urt P total ven P (3)

lung _over _air lung
whereFita designates the sum of tlkevalues for the following organs or tissues: adgos
tissue, adrenals, bone marrow, brain, breast, higdrieys, liver, muscles, other organs and
tissues, skin, testes and thyroid.
For the liver, blood comes from the arterial pagleen, pancreas, stomach and gut, and there

is metabolism occuring in the liver (see further):

. C C C
thver - Feport X Cart + Fsp|een x spleen + Fpancreas  __ Pancreas + Fgm x gut
at spleen pancreas gut
C C, (4)
+ Fstomach X stoech. — I:Iiver X et — Kmet ><Qliver
stomach liver
whereF iy, IS:
I:Iiver = I:eport + I:spleen + Fpancreas + Fgut + Fstomach (5)
For arterial blood:
6Q t Clung
T = Fga X -C
at total ( P|ung art (6)
For venous blood:
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ot - Z{Fi XFI} - I:total x Cven (7)



wherei designates the adipose tissue, adrenals, bonewndorain, breast, heart, kidneys,
liver, muscles, other organs and tissues, skitesemnd thyroid.

For epoxy metabolite (EB) in the liver:

0 C
— = met % QIiver - I:Iiver =

at I::I‘iver _EB (8)

For simplicity, the possibility of EB molecules tmme back to the liver through blood
circulation has been neglected, assuming susbtaetimination through secondary
metabolism and exhalation. To obtain more relevameorporating EB kinetics may be
proposed later, based on the PBPK model for butadéand major metabolites proposed by

Brochot et al. (2007).

2.2. Exposur e and epidemiological data

We used data from Higashino et al. (2007) on humgosures to 1,3-butadiene in Japan.
The average concentration in the general envirobri®e®.25 pg/m with a background
concentration 0.06 pgfhin unpolluted areas. Exposure concentrations aBo®qig/ni are
only found in vicinity of industrial activities. fetime excess cancer risk level is estimated at
10° for an exposure concentration of 1.7 ud(igashino et al., 2007). In Japan, 0.03% of
the total population (that is 36 000 persons) aqgosed to concentrations exceeding this
value. With a molar mass of 54.09 g/mol for butadiel.7 pg/m corresponds to 18.7 10

molecules/L.

2.3. Simulation Software used
We used the Systems Biology Workbench (SBW) (Satral., 2003), version 2.0.39. We

implemented our PBPK model in Jdesigner. The maaeal then converted to an SBML file



and input in the Dizzy 1.11.4 software (Ramsey let 2005), which is able to perform
stochastic simulations of chemical kinetics. We duske Gillespie stochastic algorithm
(Gillespie, 1977) for stochastic simulations. Itais algorithm for modeling the kinetics of a
set of coupled chemical reactions, taking into aotostochastic effects from low copy
numbers of the chemical species. With the sameerdiftial equation, the deterministic
approach regards the time evolution as continuathgreas the stochastic approach regards
the time evolution as a kind of random-walk procdss Gillespie's approach, chemical
reaction kinetics are modelled as a Markov progesghich reactions occur at specific times
separated by Poisson-distributed intervals. Thenmeterval is recomputed each reaction
time. At each reaction time, a specific chemicalct®n occurs, randomly selected from the

set of all possible reactions with a probabilityen by the individual reaction rates.

2.4. Stochastic ssimulations at steady state

Exact stochastic simulators track the actual nurobenolecules involved in a set of reaction
in a given portion of space. It is impossible foern to handle as many molecules as can be
found in an entire organ. We first computed thexdyestate concentration values in each
organ using the deterministic (ordinary differehguation) simulator of the SBW, with
continuous inhalation exposure concentrations 25 @nd 1.7 mg/fhof BD. Initial condition

for the number of molecules in a cell was set ®dbaterministic value from the PBPK model.
We consider that a human has typically abodt &6lls. In our PBPK model, the total volume

of aman is 75 L, which results in a mean dendit}.87 162 cells/L.

Except for liver, the uptake of butadiene is perfed from the arterial blood, in which

butadiene concentration was set at steady stagendieistic value from PBPK model. The
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kinetic equation for one cell is similar to thattbe organ to which it belongs except for the

flux value:
C:cel
—t F I{C . __|j
d I organ (9)

F

organ

Cel _density*V

organ

with Feal =

This equation cannot be computed directly in thénsokes we use because of rounding errors
due to the extremely small value Bfs (less than 16° for most organs). We reformulate

equation (9):

d(Ncell) — FOfgan U XCart _ Ncell
dt Vorgan \ Cell _density XM e Porgan (20)

where Uis the Avogadro’s numbeNMpyadiene iS the molar weight of butadiene ahigy the
number of molecules in the cell. This equation carstodied with Jdesigner and Dizzy with a

fixed C4¢ value. Equation (4) was reformulated in a similayw

We performed simulations with five organs: spleghich has the lowest partition coefficient
over blood (0.77), fat with the highest one (22grmaw, which has a low scaled flux value
(0.0786 mirt), kidney with a high scaled flux value (3.9838 Hjirand liver, for which we
studied the concentrations of both butadiene anfirét metabolite.

That choice of organs is also relevant relativeancer risk of butadiene. Mutagenicity has
been shown to occur for spleen and marrow of rad@Rteston, 2007). The same author

reported butadiene-induced lymphomas so as lundierdumours in mice.



We ran 100 simulations at steady state. For spladney and liver, we reported the number
of molecules at time 100 min, which is large conegato the time needed to reach
equilibrium in the deterministic model for thesgams. For marrow and fat, we reported this

number at 500 min and 10000 min respectively dweltmger time to reach equilibrium.

2.5. Coupling with cancer PD model

To assess how dose-response curves are affectstbddyasticity at the cellular level, we
coupled the stochastic PBPK model described abo\e linear model with a threshold for
effect, which belongs to the family of the “hocks&tick models” introduced into carcinogenic
risk assessment by Cornfield (1977). For a givdhatea given time, the probabilitiR of
carcinogenesis is supposed to be proportionatatN(t)-No , 0) whereN(t) is the number of
molecules of BD metabolites per cell at titnBly the threshold number of molecules to get an
effect. We chose 1 as the threshold number of mtdscper cell able to initiate liver
carcinogenesis with a non-zero probability. Thighe minimum reasonable number and it
corresponds to approximately twice the generalrenment exposure in Japan (Higashino et
al., 2007). This is just a choice for simulatiotiss not based on particular knowledge about
butadiene mechanisms of carcinogenicity. It is alewth noting that a purely linear dose-
response would not be affected by stochasticity. &depted the proportionality factor
betweenR and excess number of molecules so that the lieetaxcess cancer risk level
estimated for a continuous exposure to 1.7 i@M is 10°, as in the study by Higashino et
al. (2007).

We performed simulations for exposure concentratfoom 0 to 1.7 pg/fawith a step of 0.1
Hg/nt. For each concentration, we simulated, at stetate,sthe number of BD metabolites

molecules in 100 cells exposed during 100 minutes.
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2.6. Stochastic simulationsin time-varying conditions

To study the system in a non steady-state situggog. for a time-varying change in the
exposure level) the exposure scenario simulatedu®sha day to a BD concentration of 1.7
ng/nt, followed by 15 hours a day to a BD concentraidér0.25 pg/m. This is typically
what a factory worker would be exposed to in Jajpigashino et al., 2007). For simplicity,
holidays and week-ends were not accounted for.

We added a component (accounting for a liver aelparallel to the liver in the PBPK model.
It was not possible to implement time-varying det@istic concentrations in Jdesigner and
Dizzy and use the same methods as in section Betefore, we had to simulate with Dizzy
simultaneously the dynamics in all organs and aela However, we could not track all the
molecules in the body even for an environmentabsxpe level of BD. Therefore, we had to
adapt the PBPK model equations implemented in ddesiand Dizzy, so that simulated
organ concentrations were approximately the detestic ones and so that Gillespie
algorithm was unchanged for the cell.

Equation (10) is formally equivalent, relative tgndmics at the cell level, to the following

equation:
d(NceII ) = 001x Forgan 100x[] x Cart _ Ncell
dt Vorgan \ Cell _density XM e 001X P, o) (13)

Consequently, if, in the PBPK model equations, weltiply the concentrations in all

100xUJ
compartments but the liver cell I(Cell _ density x Mbutadimej, fix at 0.01 the volume of the

liver cell (both operations largely minimise stostieity at organ level so as the contribution

11



of the liver cell to the whole system) and dividggn by 100, we have approximately the
same kinetics at the organs level, without affertihe kinetics forQ _cell. The Gillespie
algorithm is unchanged, because the reaction pilitlgatbensity function is unchanged. We
indeed checked with Jdesigner and Dizzy that, dheemodel was adapted, the stochastic
values of all organ concentrations differed by lgsmn 5 % from their deterministic values
during the simulations we performed. Using 10 aridifstead of 100 and 0.01 in equation
(13) would have led a large difference betweenrdetestic values and stochastic ones. In
contrast, using 1000 and 0.001 would have led geloalculation times for Dizzy.

We focused here only on EB in the liver. We perfednsimulations for 20 cells during the 15
hours in the general environment and reportedcogitentration. The concentrations at time O
(time at which the subject is just leaving indwtwricinity) are extracted from simulations
with Jdesigner over 50 days. For the last 10 déngsyalues at time 0 only differed by 0.1 %,
i.e. dynamics steady state was reached. Cancekvaskcomputed at each time step (every

minute).

3. RESULTS
3.1. Stochastic ssimulations at steady state
The mean number of molecules in a cell, the stahdawiation and coefficient of variation
per organ for exposure concentration 1.7 |fgame presented in Table V. Stochastic mean
values equal deterministic ones.
The stochastic variability is mainly influenced the partition coefficient (which determines
the mean number of molecules at steady state). fattethat marrow and kidney have
comparable standard deviations but very differeeamnumber of molecules suggests that

low blood flow to the cell also tends to decreaagability relative to the mean value. The

12



results obtained for metabolites in the liver arespnted in Figure 2. There is a large
variability of the number of metabolites in a liveell (mean 2.91, standard deviation 1.71
resulting in coefficient of variation of 0.588).nulations for exposure concentration 0.25
pg/nt led to the same conclusions relative to organaztteristics and coefficient of variation

(data not shown).

3.2. Coupling with cancer model

Figure 3 shows that accounting for stochasticityemwkoupling the PBPK model and cancer
model increased the excess of risk even below éhermiinistic threshold of 0.6 uginirhe
dose-response curve appears to have two distigches: a “quadratic” looking region and a

“linear” looking one, closed to the deterministasponse.

3.3. Stochastic simulationsin time-varying conditions

Figure 4 shows the results at dynamics steady &tatmetabolites in one liver cell for 15
hours at exposure concentration 0.25 [Egifter 9 hours at exposure concentration 1.7 fig/m
The metabolite mean concentration quickly reaclo@s levels (half of the initial value is
reached after 13 minutes), at which stochastisityigh and kinetics is slow.

The cancer model was used to assess the instantaarcess risk of liver cancer during this
period. There was no increased risk for times @z&minutes, according to the deterministic
approach. The sum over time of instantaneous excdsyalues during this period outside
the industrial vicinity corresponded to 12 minutais steady state exposure at the high
concentration, which is low compared to the 9 haxgosure. In contrast, when accounting

for stochasticity, the mean sum of excess riskesponded to 85 minutes of high exposure.
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4. DISCUSSION

The simple algorithms outlined in the works by Eslpie (Gillespie, 1977) permit the
modeling of microscopic stochastic phenomena (Haselhnd Rawlings, 2002). Gillespie’s
algorithms can be so expensive computationally #iedrnatives have been proposed to
approximate exact simulations (Haseltine and Raslir2002 ; Rathinam et al., 2003). For
the present work, we chose to use the exact atgoyitor simulations could be performed in a
reasonable amount of time with modern calculatitatians, thanks to the progress that
computer technology has still made in the pastyfears.

Coupling our PBPK model to a model of excess riskamcer affected dose response curve. It
looks curvilinear, with a breakpoint dose lowerrthttie theoretical one. Mutagenesis data
from Elhajou;ji et al. (1997) showed experimentalymparable profile, with a slight increase
in mutagenicity, then a highly significant steegragase for compounds likely to have a
threshold for effects. We do not pretend to fulbgess cancer risk associated to exposure to
butadiene. Our study is a simulation study aimih@ssessing whether or not stochasticity
should be considered when assessing risk. Theredbiteast in the case of exposure to low
doses of compounds having a threshold for carcmodyg, stochasticity in kinetics should
not be neglected.

In a paper on dose-response and threshold-medmemihanisms in mutagenesis, Lovell
(2000) points that “absolute” threshold are difficto estimate from toxicity data due to
background noise as a consequence of stochasfitigy.concept of absolute threshold may
therefore make no physical sense at all. Lovelinistavour of “pragmatic” thresholds,
constructed through dose-response models (in phaticbiology-based dose-response

(BBDR) models) coupled with knowledge about whateleof response is biologically
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important, and what level is not. We believe thasetresponse models construction should
seriously consider stochasticity to get the bestiaate representation of reality at low doses.
BBDR models would permit to derive a determinis@pproximate threshold, then
stochasticity studies would permit to derive aisti@ one based on stochastic simulations
with BBDR models coupled with PBPK models.

To our knowledge, this study is the first time ttie# dynamics of compounds at the cell level
is studied in parallel to the dynamics at the bddyel. Coupling microscopic and
macroscopic dynamics is a real challenge, becaluge very large scale difference between
numbers of molecules in cell and in organ. Here aal@eved the coupling of PBPK models
with tools developed in the framework of systemddgy through two different approaches.
In case of steady state for organs, concentratitoR8PK compartments were fixed and exact
dynamic equations for butadiene in the cell wasivddr In case of time varying
concentrations in the organs, we adapted the ensatio get an approximate simulation of the
dynamics at the cell level. We were then able sess the influence of stochasticity relative
to dose-response in toxicant risk assessment, wathstant or time-varying exposure
concentration. This coupling is not limited to toodiogy. It can be immediately generalized to
the study of stochastic concentration of many camgps in the cell, like for instance
pharmaceuticals and hormones which may be effedivextremely low concentrations

(Gurevich et al., 2003).
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Table I. Values of the organ or tissue volumesL{inThese constants were calculated for a
standard man of 1.76 m and 73 kg, using the orgaighis given by the ICRP 2002 Pub 89
(p-18(T 2.8) p.19(T 2.9)). Density for the orgamsupposed equal to 1 excepted for adipose

tissues (density 0.9) and bones (density 2)

Tissue / organ Symbol Value
Adipose Vadip 18.8
Adrenals Vadrenal 0.014
Arterial blood Vart 1.40
Venous blood Vyen 4.20
Bone Voone 2.75
Brain Vorain 1.45
Breast Vireast 0.025
Gut Vaut 1.02
Gut lumen Vaut umen 0.65
Heart Vheart 0.33
Kidney Vkidney 0.31
Liver Viiver 1.80
Lung Viung 0.50
Upper respiratory tract Vi 0.15
Bone marrow Virarrow 3.65
Muscles Viuscle 29.0
Others Vother 7.06
Pancreas Vpancreas 0.14
Skin Vdn 3.30
Spleen Vgpleen 0.15
Stomach Vstomach 0.15
Stomach lumen Vatom lumen 0.25
Testes Vieges 0.056
Therid Vthyroid 0.019
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Table II. Blood flows for the various organs orsties (Unit L/min). These have been
computed using cardiac output, percent blood flpesstissue mass and organ weights given
in ICRP 2002 Pub 89 [14] (Table 2.8 p18-19, Tahk9 p28, Table 2.40 p29) or provided

by William & Leggett [15].

Tissue or organ Symbol Value
Adipose Fadip 0.564
Adrenals Fadrenal 0.02
Brain Forain 0.78
Breast Foreast 0.00
Gut Fout 0.98
Heart Fheart 0.35
Kidney Fkidney 1.23
Liver Feport 0.45
Lung Fiotal 6.72
Bone marrow  Frarrow 0.29
Muscles Fruscle 1.11
Others Fother 0.19
Pancreas Fpancreas 0.065
Skin Fain 0.33
Spleen Fspleen 0.19
Stomach F stomach 0.065
Testes Freses 0.004
Therid Fthyroid 0.094
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Table 1ll. BD and EB-specific parameters. Theseehlagen taken from Brochot et al. (2005)

for BD parameters and Brochot et al. (2007) forgaBameter.

Parameter Symbol Value Unit
BD fat over blood partition coefficient 22 -
BD lung over air partition coefficient Plung over_air 0.653 -
EB liver over blood partition coefficient Pliver £B 0.59 -
Metabolisation rate for BD into EB Kimet 0.3 L/min

Table IV. Fat content for the various organs asues. These have been taken from Fiserova-
Bergerova (1983) and Van der Molen (1996). Defaaltie is 0.049, which corresponds to

“remaining organs” in Van der Molen (1996).

Tissue or organ Value
Adipose 0.859
Adrenals default
Brain 0.11
Breast default
Gut 0.065
Heart 0.083
Kidney 0.052
Liver 0.049
Lung 0.017
Bone marrow 0.186
Muscles 0.064
Others default
Pancreas 0.105
Skin 0.15
Spleen 0.03
Stomach default
Gonads default
Thyroid default
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Table V. Mean number of molecules in a cell, stath@keviation and coefficient of variation
per organ at steady state at time 100 (5000 for5@® for marrow) for 100 simulations

performed with Dizzy. Exposure concentration is [1g/nt.

Organ Mean number of molecules in a cell Standaxdation Coefficient of variation

Fat 379.3 10.0 0.026
Marrow 82.3 4.49 0.0545
Kidney 22.9 4,52 0.197
Liver 15.2 3.2 0.211
Spleen 13.6 3.86 0.284
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Figurelegends

Figure 1. PBPK model for butadiene, as implememeltiesigner.

Figure 2. Distribution of BD metabolites number pell in a liver cell at steady state at time
100 for 100 simulations performed with Dizzy. Expasconcentration is 1.7 pgim

Figure 3. Excess liver cancer risk in relation pa@sure concentration. The deterministic
probability is represented by the plain line. Thaings are the mean values obtained by
stochastic simulations for 100 cells.

Figure 4. Kinetics of butadiene metabolites in dner cell for a man leaving industrial
vicinity to general environment. Plain line is theterministic model and points are stochastic

predictions for different time points (the timesie one minute).
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Figure 1.
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