
This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry: h t t p s://o rc a .c a r diff.ac.uk/id/e p rin t/15 1 3 9 4/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Li, Zhe n, Wang, Xiting, Yang, Weikai, Wu, Jing ORCID: h t t p s://o rcid.o r g/00 0 0-

0 0 0 1-5 1 2 3-9 8 6 1, Zh a n g, Zh e n gya n, Liu, Zhiyua n, S u n, M aoson g, Zh a n g, H ui

a n d Liu, S hixia 2 0 2 2. A u nified u n d e r s t a n din g of d e e p NLP m o d els for t ex t

cl as sifica tion. IEEE Tra ns a c tions on Visu aliza tion a n d Co m p u t e r Gr a p hics 2 8

(12) , p p. 4 9 8 0-4 9 9 4. 1 0.1 1 0 9/TVCG.202 2.31 8 4 1 8 6 file

P u blish e r s p a g e: h t t p://dx.doi.or g/10.11 0 9/TVCG.202 2.31 8 4 1 8 6

< h t t p://dx.doi.o rg/10.11 0 9/TVCG.202 2.31 8 4 1 8 6 >

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting,

for m a t ting a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e

d efini tive ve r sion of t his p u blica tion, ple a s e r ef e r to t h e p u blish e d sou rc e. You

a r e a dvise d to cons ul t t h e p u blish e r’s ve r sion if you wish to ci t e t his p a p er.

This ve r sion is b ein g m a d e av ailable in a cco r d a n c e wit h p u blish e r policie s.

S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s

for p u blica tions m a d e available in ORCA a r e r e t ain e d by t h e copyrig h t

hold e r s .

1

A Unified Understanding of Deep NLP Models for
Text Classification

Zhen Li, Xiting Wang, Weikai Yang, Jing Wu, Zhengyan Zhang,

Zhiyuan Liu, Maosong Sun, Hui Zhang, Shixia Liu

0.00

0.06

0.13

0.19

0.25

0.31

0.38

0.44

0.50

0.56

0.63

0.69

0.75

0.81

0.88

0.94

1.00
Prediction Score

reuters investor
halliburtonstocks

housing campaign

hurricane
iraq

philippines

retailer tuesday

apax
aug

olympics

intelsat yukos

rejected

oil

refocuses year short kmartvenezuela prices week

googlehp
huygens

apple
microsoft

realnetworksnasa

jeopardizing

iseries

shoppers

sarkdigitalpersona

cnn

wi

driftedsan
mediaone

affect
playboy

you

of by

uil

said the
forests

is

to

at

if

in but

inspired

google
company

draws

microsoft

securities

investors

lows

begin inc

jobs

tech

shares

pool

the of

york

goog

can

toldstill
intorate

rescuegot

says

year

offers

willand

now

from public
expectsstock itsthat

all

selling
reutersweb buytime

startsearch makerlast
industry

bill

off mondayhe
boom

submit near

but

inspired

parceled
paperwork

seeks

googleinc

time
thought

outpalmsource

sprint

web

its

selling microsoft
company

start india

the

call

saidmore

cool

bid

investors

running
submit

tivo

lastbegin

auction
of

maker

searchpublic

can

industry

stores
reutersexpectsthat

onbuy
newoffers off

shareswillyork

fromhelliptheir
initial was

hisdraws

inspired

but

google
reuters

spending
growth

outletspcs

york

outlook

buy

rockyseeks

debut

dell

offers

highly

goog

inc

said

bidnear
timerunning
market

ok

last
web

company

auction
can

stockthat
its

the of

out newfor

gateway shares
from expects

industryselling

searchbegin will fridayand
start

withtheirpublic two hp up

but

inspired

mckinsey

auction

google

warner

inc
fridaystock

reuters

draws

said
time

tech

offers

microsoftcompany

nortel

stores
growth web

investors
start

pcs

publicoff

oct
ok

hellip
outshares

the

monday
search spending

canlast selling

up

yorkbuy

beginwill asrocky he
where

of
approvalfrom and for

their year near that
dellhighly

but

inspired

reuters

google

corp

end

nortel

dell

unique

hellipscrooge
hp

planner

gateway

lash

stock

gloom

gates

chairman
will

stores palmsource
boomoffers auction seeks

investors friday expects

ok

company
the growth york

search
begin

oil

inc
off

its

start
initial sellingbuy upnear

out
microsoft for

to
on two

said
and highly alsono year

worry

butinspired
hp

antitrust

google

bill
size

bulletrose

accessories

searchreuters

microsoft

gates go
gavehellip
goog

securities

post
an nortel

its

new tuesday
boom initialdell

the growth
chairmanout

spending
forstockweb time

up

he can

publicbegin off

company
start

offers
willauction maker

investors

their

expects

this askingyearand
approval has

1 2 3 4 5 6 7 8 9 10 11 12 Layer
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Word Contribution Percentile

Input 1 2 3 4 5 6 7 8 9 10 11

CLS
google

ipo
faces

playboy
slip - up

the
bidding

gets underway
for

google ' s
public

offering
,

despite
last - minute

worries
over

an
interview with

its bosses
in

playboy
magazine

.

CLS

googleipo

ipo
faces faces

faces
playboy playboy

playboy
the the

bidding bidding bidding
for for

public
public public

offering

despite despite

worries
over

overan
an

playboy

magazine

the

public

,
despite

over

interview with
its bossesin

magazine

.

CLS

ipo

google ' s
bidding

google

faces

playboy

slip - up

offering

last - minute

worries

an

Business Sci/Tech(d) (e)Business Sci/Tech Irrelevant

0.0 0.2 0.4 0.6 0.8

Percentage

Predicted Class

G
ro

u
n
d
 T

ru
th

0.954 0.025 0.012 0.008World

0.005 0.995 0.000 0.000Sports

0.009 0.000 0.901 0.089Business

0.000 0.005 0.002 0.993Sci/Tech

World Sports Business Sci/Tech

(c)

(a)

(b)

A

B

C

Fig. 1: DeepNLPVis for analyzing the BERT model on news classification: (a) class view for showing the overall model

performance; (b) distribution view for identifying samples and words of interest; (c) word contribution of selected samples;

(d) sample list; (e) information flow for analyzing a sample by its intra- and inter-word information;

Abstract—The rapid development of deep natural language processing (NLP) models for text classification has led to an urgent need

for a unified understanding of these models proposed individually. Existing methods cannot meet the need for understanding different

models in one framework due to the lack of a unified measure for explaining both low-level (e.g., words) and high-level (e.g., phrases)

features. We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.

The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains

the information of input words in a sample. We model the intra- and inter-word information at each layer measuring the importance of

a word to the final prediction as well as the relationships between words, such as the formation of phrases. A multi-level visualization,

which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to

individual samples. Two case studies on classification tasks and comparison between models demonstrate that DeepNLPVis can help

users effectively identify potential problems caused by samples and model architectures and then make informed improvements.

Index Terms—Explainable AI, visual debugging, visual analytics, deep NLP model, information-based interpretation

✦

1 INTRODUCTION

Text classification is a fundamental task in natural language

processing (NLP) and has been under rapid development to

assist our everyday communication [1]. In recent years, different

deep NLP models from CNN-based [2], LSTM-based [3], and

Transformer/attention-based [4] have been consecutively proposed

to improve the performance of text classification tasks. However,

along with the improved performance is the increasing complexity

of the model architecture, which poses difficulties for model

developers not only in training the model, but also in debugging

when the performance is not as expected.

For example, the recent BERT model [5] contains hundreds of

millions of parameters. Training such a model from scratch requires

massive data and computing resources that are unaffordable to

most NLP developers. A training schema with pre-training and fine-

2

tuning is thus getting popular. Starting from a pre-trained model

(e.g., a pre-trained BERT), model developers fine-tune the model to

the end classification task with specific input-output designs. They

usually follow two approaches to improve the model performance.

One is to augment the training data and improve the data quality

with the model architecture unchanged. In machine learning, it

has been proposed that “80% data + 20% model = better machine

learning” [6], which demonstrates the importance of data quality.

Label errors, missing samples, and sample bias are all factors that

affect classification performance [7]. The other approach is to make

slight changes to the model architecture. For example, inserting

“adapter layers” between specific layers of the model has been

shown effective in improving model performance [8].

Effective improvement from either of the above approaches

will require the model developers to understand the model’s

working mechanism, and in turn to identify the deficiencies for

informed augmentation of the data and/or adaptation of the model

architecture. Several visualization tools have been developed to

facilitate the understanding of a specific deep NLP model, such

as RNNVis [9] and Attention Flows [10] for RNN-based and

attention-based NLP models, respectively. Our work follows this

direction to assist in understanding deep NLP models for text

classification. However, we argue that a tool for a specific model

may restrict the model developer’s choice of the most suitable

model for a specific task. Currently, there is a trend to revisit deep

learning models [11], and it has been found some simple models

can actually achieve competing performance as more complex

models. Given the high computing demand of pre-trained models,

it would be interesting to know whether simpler models, such as

LSTM or CNN-based models, are potential alternatives at least for

some scenarios in classification tasks. For example, improving the

accuracy of these simpler models will make them deployable on

portable devices with limited computing resources, such as mobile

phones. It thus naturally arouses the interest to revisit different

classification models in NLP. However, due to the diverse model

architectures, this is non-trivial. A fundamental requirement is to

unify the understanding of these models’ working mechanisms.

With this in mind, although our work follows the direction of

developing visualization tools for deep NLP models, it has a unique

focus on a unified understanding across different classification

models. It aims to help model developers better understand the

strengths and weaknesses of different NLP models and make

informed improvements.

We thus develop DeepNLPVis, an interactive visual analysis

tool to help model developers gain a unified understanding of

different NLP models for text classification, quickly identify

problems, and make informed improvements. We propose to

improve the mutual information-based measure in [12] to explain

the information learned by intermediate layers, including both

intra-word information (e.g., word contribution to classes) and

inter-word information (e.g., relationships between words). With

this measure, DeepNLPVis adopts a coordinated multiple-level

visualization connecting the analysis from the overall training

corpus to individual samples and words (Fig. 1). At the corpus-

level, a class view shows the overall model performance on all

classes, from which the user can select two classes to explore the

corpus against predictions on the two classes in the distribution

view. The sample-level visualization supports analyzing a sample

in terms of both intra-word and inter-word information. And the

word-level visualization supports examining words in terms of

word contribution and word meaning. The interactive analysis

enabled by the coordinated visualization helps users explore model

deficiencies and identify the root cause of low performance. The

demo is available at https://bit.ly/2QUF4Pb.

In summary, the main contributions of this work are:

• A mutual-information-based visual analysis tool for efficient

identification and diagnosis of problems in deep NLP models

for text classification.

• An information-based sample interpretation method for si-

multaneously understanding the intra-word and inter-word

information in a unified way.

• A three-level visualization consisting of a corpus-level visual-

ization for quickly identifying samples and words of interest,

and a sample-level and a word-level visualization to disclose

the intra-word and inter-word information and their changes

across layers.

2 RELATED WORK

2.1 Machine Learning for Understanding NLP Models

Existing machine learning methods for understanding deep NLP

models can be categorized into three classes: built-in interpretability

methods, post-hoc model-specific methods, and post-hoc model-

agnostic methods [13], [14]. The first category attempts to design

self-explanatory models. The second category analyzes some

specific architectures in the model, such as the hidden states

or attention heads. The third category interprets the model by

considering model inputs, intermediate layers, and outputs. These

methods are model-agnostic as they do not make assumptions about

the specific model architecture. Our work is relevant to the third

category. Here we briefly review the works along this line.

Many post-hoc model-agnostic methods utilize an easy-to-

interpret model, such as decision trees, to approximate the original

model and explain its behavior [15]. Local Interpretable Model-

agnostic Explanations [16] is a representative work, which trains

a sparse linear model and uses it to explain the black-box model

locally. Recently, Guan et al. [12] proposed a measure to quantify

the information stored in each word. This measure provides

quantitative explanations on the contribution of a word to the

final prediction layer by layer. Compared with existing methods,

the explanations provided by this method are consistent across

different NLP models. Our method extends this unified measure

to help understand which class the word contributes to and the

relationships between words (e.g., phrases). We also leverage

interactive visualization to visually explain the aforementioned

word-related information across layers. This helps users quickly

identify unusual words/phrases that lead to low performance.

2.2 Visualization for Understanding NLP Models

Existing visualization methods for visually understanding machine

learning models can be categorized into two classes: domain

irrelevant [17], [18] and domain specific [19], [20], [21], [22],

[23], [24]. Our work is in the second category with a focus in

the NLP domain, which enables an in-depth understanding of the

working mechanism of the model training process. Thus, we briefly

review the works along this line.

Earlier efforts focus on utilizing simple and static diagrams,

such as heatmaps [25], [26], to demonstrate which input words

play important roles in model prediction. Later efforts employ

interactive visualization to analyze the intermediate layers of the

models, such as hidden states and attention mechanisms [7], [27].

3

0% 20% 40% 60% 80% 100%

F7. Model-Specific

F6. Layer

F5. Word-U

F4. Word-I

F3. Sample-U

F2. Sample-I

F1. Overall

Very Important Important Moderately Important

Slighty Important Unimportant

Fig. 2: Importance of different functions. Sample-I (or Word-I)

refers to the identification of samples (or words) of interest, and

Sample-U (or Word-U) denotes understanding a sample (or a word).

Ming et al. [9] introduced a visual analysis method for interpreting

hidden states of RNNs based on their expected response to the input.

Strobelt et al. [3] developed LSTMVis to explain the hidden state

changes and identify similar examples. RNNbow [28] visualizes

the gradient flow in the training process of RNNs to investigate the

learning behavior of a model. Seq2Seq-Vis [29] visually analyzes

the five black-box stages of the machine translation process. The

attention mechanism is widely used in visual model explanation due

to its high interpretability. Accordingly, RetainVis [30] leverages

the attention mechanism to explain how predictions are made and

supports the modification of the input or the model to conduct what-

if analysis. Tenney et al. [31] developed a language interpretability

tool, which utilizes the attention mechanism and salience maps to

provide a comprehensive understanding of model behavior. More

recently, Derose et al. [10] developed Attention Flows to trace and

compare the attention heads in a BERT model. The system supports

both single model analysis and comparison between pre-trained

and fine-tuned models.

The aforementioned works have achieved considerable success

in understanding deep NLP models. However, they mainly focus

on a specific type of NLP models (e.g., RNNs or attention-

based models). In comparison, we have developed a unified

method for understanding different types of NLP models for text

classification. Our method enables a deeper understanding of the

capabilities of different classification models by revealing the word

contribution and word relationships at different layers. A multi-

level visualization is also carefully designed to help users quickly

identify the samples and words of interest in the context of the

overall data distribution and model prediction.

3 REQUIREMENT ANALYSIS

3.1 Survey on Practices of Building Deep NLP Models

We conducted a questionnaire to better understand the current

practices of NLP model developers and the key functions they need

for efficiently developing deep models for text classification.

Designing the questionnaire. The questionnaire was designed and

iteratively refined with five model developers, who have varying

experience (from one year to eight years) in NLP. We conducted a

45-60 minute semi-structured interview with each of them. In the

interview, we first asked the model developers to introduce his/her

current practices and difficulties. Then, we explored the functions

that s/he needed for better understanding and debugging a model.

Their feedback was summarized to create the questionnaire.

Conducting the questionnaire. The questionnaire was distributed

to 1) students in three NLP groups of a top university and 2)

NLP model developers in a major technology company. Out of the

46 returned questionnaires, eight (17.4%) were discarded due to

incomplete responses. Among the participants, 21.1% had less than

1-year experience in NLP, 44.7% had 1-3-year experience, 28.9%

had 3-5-year experience, and 5.3% had 5-10-year experience. The

NLP models they used include Pre-trained Model such as BERT

(81.6%), Transformer (73.7%), RNN (52.6%), and CNN (36.8%).

Current practices and difficulties. A majority of the partici-

pants understood and debugged NLP models by investigating the

training loss (89.5%), logging intermediate results (84.2%), and

observing the changes in model accuracy (76.3%). Only 34.2%

of them leveraged tools that were specifically designed for model

understanding, e.g., Tensorboard or BertViz. They commented that

it was difficult to use current tools for identifying problems in the

training data, e.g., incorrect labels and uneven data distribution

(78.9%). It was also difficult to understand why a model could not

correctly predict the labels for certain samples (50.0%) and why the

model incorrectly understood certain words (28.9%). In addition

to the difficulty in understanding and debugging a single model,

the participants also expressed the needs to effectively compare

different models. On average, they experimented with five models

in the most recent project. Many participants have shown interest

in a tool that can help investigate NLP models in a unified way

and compare the models effectively. We asked them to rate their

interest according to a 1-5 Likert scale, and 84.2% of participants

returned a rating of 4 (interested) or 5 (extremely interested).

Key functions needed. We then summarized the key functions

that help effectively develop NLP models and asked the participants

to rate how important each function is based on a 1-5 Likert scale (1:

unimportant, 5: very important). Fig. 2 shows the rating distribution

of different functions. More than 80% of participants considered

examining the overall performance and model behavior on the

training data (F1) as (very) important. The participants were also

eager to understand how samples and words contribute to the

model performance. Specifically, more than 70% of participants

agreed that it was (very) important to identify key samples (F2) and

words (F4) for understanding and debugging a model. Over 70% of

participants also expressed the need to deeply understand how each

sample (F3) or word (F5) affects the model prediction. Among

the information about model architectures (e.g., layers, neurons,

or recurrent cells), analyzing how a model behaves across layers

(F6) attracted the most attention. 63.2% of participants considered

understanding layer-wise evolution to be (very) important. In

comparison, investigating neurons or model-specific architecture

(F7) (e.g., specific activation function, recurrent cell, convolution

layer) was not frequently cited by the participants.

3.2 Design Requirements

We further conducted interviews with five experts (E1-E5) selected

from the 38 questionnaire participants. The experts are selected

to ensure that they have different levels of expertise and work on

various NLP models. In particular, E1 has 1-year experience in

NLP, E2 and E3 have 3-year experience, E4 has 5-year experience,

and E5 has 10-year experience. All experts are familiar with BERT

and Transformer. E4 and E5 also have experience in training LSTM

and CNN. Based on the questionnaire survey and interviews, we

distilled three-level requirements: corpus, sample, and word.

The corpus-level requirement aims to help users obtain a quick

overview of the model behavior (F1).

R1. Exploring how model prediction scores distributed over the

dataset. According to the questionnaire, most model developers

4

considered understanding the overall model behavior and perfor-

mance an essential step for analyzing NLP models. As the final

output of the model, prediction scores are a major signal of its

behavior [17]. To obtain an overview of the model performance,

E1 to E5 agreed that it was essential to show the distribution of

prediction scores over the dataset. For example, E1 said, “I would

like to see whether the model makes mistakes on a particular set of

similar samples or on diversified samples.”

The sample-level requirements reflect users’ need to identify

the samples of interest (F2) and analyze them (F3) in a unified way.

R2. Identifying samples that are essential for understanding

and debugging the model. A common need expressed by the

questionnaire participants is to find samples that are useful for

model understanding and debugging (F2). Such samples of interest

can be characterized from multiple aspects. For example, checking

the samples for which the model makes a wrong prediction can help

quickly debug the model (E1–E5). Investigating the samples that

are close to the decision boundary can help increase model robust-

ness [32]. Discovering the representative samples that are similar

to many samples may shed light on why the model achieves good or

bad performance. Moreover, the experts required a way to identify

the samples of interest from the word perspective, e.g., finding

samples with a word that the model fails to correctly understand.

R3. Revealing how NLP models learn low- and high-level

features of a sample across layers in a unified way. After identifying

the samples of interest, the experts needed to understand how the

model processes the samples across layers and why it makes a

certain prediction for the samples (F3, F6). This allows them to

figure out the underlying working mechanism of the model, which

is important for model understanding and debugging. Most existing

tools help reveal important words (low-level features) in a sample.

In addition to the low-level features, the experts are also interested

in the high-level features learned, e.g., whether the model can

correctly understand sentence structures (E1-E4). For example, E3

said, “It is interesting to see whether a model judges the sentiment

of a long compound sentence by considering the word relationships

(e.g., phrases) or simply by counting positive and negative words.”

In addition, to facilitate model comparison, the experts noted that

it was necessary to provide consistent results for different models.

The word-level requirements focus on identifying the words of

interest (F4) and analyzing these words (F5) in a unified manner.

R4. Identifying the words that are important for understanding

and debugging the model. As an NLP dataset typically contains

tens of thousands of words, it is very difficult for a user to check

each word manually and decide which word is important for model

understanding and debugging. Accordingly, the experts required

a method to help them quickly identify the words of interest (F4),

e.g., ambiguous words or words that contribute the most to model

prediction (E1-E5).

R5. Revealing how the model understands the meaning of a

word by considering the context. After identifying the important

words, the experts wanted to further investigate how the words

affect the model prediction (F5), so that they can judge whether the

model understands the meaning of the words in a correct way (E2-

E5). Instead of considering each word independently, most NLP

models consider a word by simultaneously modeling its context

(the related words in the same sample). To better understand how a

word impacts a model, the experts are interested in knowing more

about the contextual information of the word. For example, E4 said,

“I would like to see whether the model can correctly distinguish

different meanings of like based on other words in the sentences.”

4 DEEPNLPVIS

4.1 Overview

The large amount of NLP-model-related data, such as samples,

words, and information-based measure data, makes it difficult

for users to identify the most informative information for model

understanding. To tackle this issue, we have developed a multi-

level visualization and combined it with a unified information-based

measure for understanding a deep NLP model from the perspectives

of the corpus, samples, and words.

As shown in Fig. 3, the information-based measure, including

intra-word information and inter-word information, is first extracted.

Then based on the extracted measure, the three-level visualizations

are seamlessly coordinated together and support an iterative

analysis workflow for a unified understanding of model training

behaviors. The corpus-level visualization visually illustrates 1)

the overall model performance of all classes in a confusion matrix

(class view); 2) the training samples of the two selected classes

from the class view and the corresponding important keywords

in a hexagonal heatmap (distribution view). This visualization

enables quick identification of the classes, samples, and words of

interest (R1, R2, R4). Selected samples are displayed in the sample-

level visualization, and their associated words are displayed in

Text Data

NLP Model
Sample List Information Flow

Word Contribution Word ContextDistribution View

Word-Level

Sample-LevelCorpus-Level

Class View

Information-Based

Measure

google

hp

realnetworks

microsoft

greece gov
phelps

news

reuters
oil

monday

housing
york

nasa

investor

Intra-Word Information

Inter-Word Information Predicted Class

G
ro

u
n

d
 T

ru
th

0.954 0.025 0.012 0.008World

0.005 0.995 0.000 0.000Sports

0.009 0.000 0.901 0.089Business

0.000 0.005 0.002 0.993Sci/Tech

World Sports Business Sci/Tech

microsoft
report

investor

housing
microsoft

company

google
reuters

apple
iraq

corp

an

they
ofthe

just
year

home

inc

news
nasa

reuters

an
they the

aug

just

report

monday

iraq
news

reuters
microsoft

housing

mart

year just

Layer 1 Layer 6 Layer 12

news
inc

Layer 1 Layer 6 Layer 12

like

like

like …

like_it

look_like

like

Fig. 3: The analysis workflow supported by three coordinated visualizations at different levels.

5

C
1

Class

Confusion-based selection

C
2

C
k

<C
p
,C

q
>

Normalization

s = s
p
 / (s

p
 + s

q
)

Prediction score s

...

1.00

(k classes)

Assign to C
q
 Assign to C

p

Between-class analysis

Fig. 4: The analysis of multi-class classification is achieved by an

iterative between-class analysis.

faces slip - upIPO Sample

Polarity

1.0

0.4

0.6

Contribution

0

+0.2

PlayboyGoogle

with “Google”

without “Google” Class Business

P
re

d
ic

tio
n
 s

c
o
re

Class Sci/Tech

Learned phrase

Non-adjacent relationship

Contribution to the

prediction

Contributing more to

the selected class Sci/Tech

(a) Inter-word information

(b) Intra-word information

A.

B.

C.

D.

Fig. 5: The visual explanation of intra- and inter-word information.

the word-level visualization for closer examination. For example,

users can identify the samples with wrong predictions and words

with higher contribution values by using the sample list (R2) and

word contribution view (R4). Then for each sample, users can

explore the relationships between words and how they form and

change across layers (e.g., formation of phrases) in the information

flow (R3). They can also analyze the word of interest in the context

of relevant words with the word context view (R5).

4.2 Information-Based Interpretation

We propose an information-based interpretation method for iden-

tifying the key information used by an NLP model for prediction.

Without loss of generality, we introduce how to interpret a multi-

class classifier. When analyzing the performance of a classification

model, the experts usually start with an overall class-level analysis,

and then perform the between-class analysis. Inspired by this

observation, we simplify the analysis of multi-class classification

into an iterative between-class analysis, as illustrated in Fig. 4.

In particular, the users first select two classes (e.g., Cp and Cq),

based on the confusion matrix for k classes in the class view. We

then remove the impact of the unselected classes by computing

a normalized prediction score s = sp/(sp + sq), where sp and

sq are the original prediction scores for Cp and Cq. Normalized

prediction score s helps understand whether the model is confident

or confused with respect to Cp and Cq: a large s above 0.5
indicates a confident prediction of Cp, a small s below 0.5 indicate

a confident prediction of Cq, and a value of s around 0.5 indicates

that the model confuses the two classes in terms of the sample. The

goal of our interpretation method is to understand what information

the model leverages for deciding the prediction s.

The information is divided into two categories: intra-word

and inter-word. Intra-word information helps analyze how each

single word contributes to the sample prediction, and inter-word in-

formation aims to capture the relationships between words (Fig. 5).

Recently, Guan et al. [12] proposed a unified information-based

measure to estimate the contribution of the word to the prediction

(Fig. 5C), which partially addresses the problem of analyzing

intra-word information. Given a sample X = (w1,w2...,wn) and

its prediction score s, the contribution of the i-th word wi at

the ℓ-th layer is measured by the amount of information that is

passed from layer l to the final prediction. It is computed as

mutual information: MI(h(ℓ)(wi);s), where h(ℓ)(wi) is the latent

representation of the i-th word of the sample at the ℓ-th layer.

For models where there exist no 1-to-1 association between the

latent representations and input words (e.g., CNN [2]), h(ℓ)(wi) is

set to the concatenation of all hidden representations affected by

wi. The mutual information can be computed efficiently by using

perturbation-based approximation [12]. The basic idea is to perturb

h(ℓ)(wi) by adding a Gaussian noise εεε i and measure the magnitude

of change in the prediction score s:

∆si = Eεεε i∼N(0,σ∗
i I)

φ(h(ℓ)(wi)+ εεε i)− s

σs

. (1)

Here, φ(·) is the prediction function represented by the layers

after l and satisfies s = φ(h(ℓ)(wi)). The perturbation εεε i is a noise

sampled from the Gaussian distribution N(0,σ∗
i I), where σ∗

i is

the optimal standard deviation computed by using the maximum

likelihood estimation loss [12], I is an identity matrix, and σs is the

standard deviation of s. A larger magnitude change |∆si| indicates

a larger contribution of the word (Fig. 5C).

Although this measure can compute the absolute value of

word contribution, it fails to provide information for understanding

the polarity of the contribution. Moreover, it fails to capture

the relationships between words (inter-word information). Here,

the polarity indicates towards which class the word or word

combination (e.g., phrase) contributes to the prediction, given

two classes selected from the class view (Fig. 5D). The polarity is

important for identifying the root cause for the confusion between

the two classes. For example, the sample in Fig. 5 is misclassified

to “sci/tech” because the model considers “google” as a word

related to “sci/tech” rather than “business”, even though “google”

is mentioned together with “ipo.” In addition to polarity, another

important type of information is inter-word information, which is

useful for detecting high-level features learned by the model, such

as phrases (Fig. 5A) and non-adjacent word relationships (Fig. 5B).

Next, we introduce how we extend the information-based measure

to learn the polarity of the contribution and inter-word information.

The polarity of the word is measured by the sign of change

in the prediction score with the existence of that word (Fig. 5D).

Specifically, ∆si > 0 means that removing the i-th word increases

the prediction score s, which indicates the existence of wi

contributes to assigning a sample to class Cq. Thus, wi is a Cq-

relevant word. ∆si < 0 means that wi is a Cp-relevant word. To

increase the robustness of the method, we further use a margin

ξ > 0 to extract the most relevant words. ∆si > ξ , ∆si < −ξ ,

or −ξ ≤ ∆si ≤ ξ mean that word wi is a Cq-relevant word, Cp-

relevant word, and class-irrelevant word. A good value of ξ should

well differentiate class-relevant and -irrelevant words. For example,

words like “ipo” and “spending” should be considered relevant with

“business,” words like “search” and “gates” should be considered

relevant with “sci/tech,” and words like “time” and “can” should

be class-irrelevant. We experiment with seven datasets and find

that the best value for ξ usually increases with increasing text

length (see supplement for detailed results). We suspect that this is

because for longer text, the information is scattered across more

words, resulting in a larger variance of mutual information and thus

6

the requirement for a larger margin ξ . Since the experts usually

use datasets with short texts, we set the value of ξ in the system

to 0.02, which typically works well for short text whose average

number of characters is smaller than 300. We also allow users to

interactively change the value of ξ for a given dataset.

The inter-word information reveals how an NLP model models

the phrases in a sample and learns the relationships between

non-adjacent words (Fig. 5(a)). Although different types of neu-

ral networks model word relationships in different ways, (e.g.,

Transformer uses self-attention and CNN leverages convolutional

kernels), they all embed the learned relationships into the contextual

word embedding [33]. For word wi, each model identifies its

most relevant words (context) and encodes them into the latent

representation h(ℓ)(wi). Based on this, we probe into the learned

phrases and non-adjacent relationships by analyzing the word

information contained in h(ℓ)(wi). Our method for extracting the

inter-word information consists of three steps:

Step 1. Computing context vector. The context vectors of words

help identify word clusters (phrases) based on the information each

word absorbs. For example, at layer 1, each word only contains

information about itself (Fig. 6(a)). Later, the words (e.g., “good”

and “movie”) absorb information from each other, and their context

vectors become more similar (layers 4 and 7 in Fig. 6(a)). The

context vector c
(ℓ)
i of word wi is created by decomposing the word

information contained in h(ℓ)(wi): c
(ℓ)
i j = MI(w j,h

(ℓ)(wi)). Here,

c
(ℓ)
i j reveals how much information of the j-th input word is used

in the contextual word embedding of the i-th word.

Step 2. Extracting the learned phrases. The learned phrases are

extracted by clustering the context vectors (Fig. 6(b)). We employ

the agglomerative clustering [34] to cluster adjacent context vectors

at each layer. To improve stability, the clustering result of layer

ℓ is utilized to initialize the clusters at layer ℓ+ 1. As shown in

Fig. 6(b), the clustering allows us to find phrases extracted by the

model, e.g., “the original” at layer 4 and “a good movie” at layer 7.

Step 3. Extracting non-adjacent word relationships. In addition to

showing how adjacent words form phrases, we also consider the

interactions between non-adjacent words. Taking the sample in

Fig. 6(c) as an example, “n’t” interacts with “good” even though

they are non-adjacent. This interaction can be quantified by using

mutual information: e
(ℓ)
i j =MI(h(ℓ)(wi);h(ℓ+1)(w j)), where i and

j are the indices of two non-adjacent words at layer ℓ. A large e
(ℓ)
i j

reveals that a great deal of information has been passed from the

i-th word to the j-th word at layer ℓ+1.

4.3 Three-Level Visualization

The three-level visualization enables users to smoothly navigate

from the overall performance at the corpus-level to the detailed

information at the sample- and word-level.

4.3.1 Corpus-Level Visualization

The corpus-level visualization contains two parts: a class view

to reveal the overall model performance on all classes and a

distribution view to explore the prediction distribution over the

selected classes from the class view and identify important samples

and words for further analysis.

A confusion matrix is employed in the class view (Fig. 1(a)),

where each column represents the samples in a predicted class,

each row represents the samples in an actual class, and the

percentage of samples displayed in each cell depicts the confusion

between two classes.

For the distribution view, the Squares visualization [17] is a

straightforward solution to visually convey the desired information.

Although Squares can well show the model performance in the

context of samples, it fails to disclose the similarity relationships

between samples. Understanding such relationships are critical for

identifying important samples, such as representative samples and

outliers in each class, for further investigation.

To tackle this issue, we have developed a hexagonal heatmap

(Fig. 1(b)), which integrates the prediction score (y-axis) with the

one-dimensional t-SNE projection [35]. Since the users require to

examine the similarity relationships between samples, we employ

the t-SNE projection. We choose this technique because of its

effectiveness in preserving the neighborhoods and clusters of

samples [36]. The one-dimensional t-SNE projection projects the

sample embedding in the last hidden layer of the model onto the

x-axis. The sample color encodes the class of the sample. For

example, in Fig. 1, orange and blue encode the “business” and

“sci/tech” news, respectively. In the hexagonal heatmap, a blue

hexagon represents a set of true-positive samples, an orange

hexagon represents a set of true-negative samples, a blue cross

represents a set of false-negative samples, and an orange cross

represents a set of false-positive samples. The darker the sample

color of a hexagon/cross is, the more samples it represents. To

provide a comprehensive overview of how samples distribute over

prediction scores (y-axis), we bin them into 16 consecutive stripes

with an interval of 0.0625. Each stripe contains a pie chart on the

right to illustrate the class distribution over the samples.

A group of representative words is placed on the other side

in a layout close to the samples. Different colors represent words

that are relevant to different classes, and gray represents class-

irrelevant words. The size of each word encodes its importance to

the model prediction. In NLP, the term frequency–inverse document

frequency (TF-IDF) weighting scheme is widely used to measure

how important a word is to a document [37]. This weighting scheme

assigns higher weights to the words whose occurrence is frequent

in a small number of documents, but rare in the other documents

of the corpus. Inspired by TF-IDF, we compute Importance(w),
which measures how important a word is to a model in a corpus

by 1) its term frequency tf(w) in the corpus; and 2) its average

contribution over the associated samples, Contribution(w):

Importance(w) = log(tf(w)+1.0)∗Contribution(w), (2)

where the first term is the term frequency of word w in the document

collection. As the tf values span a large range, a logarithmic

operation is applied to normalize the frequency values. All the tf

values are also increased by 1 in the log normalization to avoid

zero output. The second term measures the contribution of w to the

model prediction. Accordingly, a large importance value is attained

by a high term frequency and a high contribution score. Such a

weighting method tends to filter out common words with little con-

tribution to the final prediction or rare words with low frequency.

To explore the overall model behavior at the corpus level, rich

interactions are designed. For example, when a user finds a stripe

of interest, s/he can click to enlarge the stripe and examine at a

finer scale with more keywords.

4.3.2 Sample-Level Visualization

The sample-level visualization consists of two coordinated compo-

nents: a sample list and an information flow (Fig. 1).

The sample list (Fig. 1(d)) allows users to examine multiple

samples in terms of their text content, class labels, and prediction

7

Layer 1 Layer 4 Layer 7

good movie

n’t

a good movie

the original
2

(4)

Layer 1 Layer 4 Layer 7 Layer 1 Layer 4 Layer 7

the
original

was
n

‘
t

a

good
movie

the
original

was
n

‘
t

a

good
movie

Fig. 6: Illustrating the learned phrases and non-adjacent word relationship of a sample.

scores. Sorting by these attributes makes it possible to identify

the samples of interest from multiple perspectives (R2). The list is

coordinated with other visualizations. For example, the samples in

the list will be updated according to the selected sample hexagons

or words in the corpus- or word-level visualizations. Users can

choose a sample from the list and perform a deeper analysis of the

word relationships and their changes by using the information flow.

The information flow (Fig. 1(e)) facilitates users to analyze

how NLP models process a sample through layers in a unified way

(R3). The design is inspired by storyline visualization [38]. We

introduce the visual encoding and layout algorithm below.

Visual encoding. As shown in Fig. 6(c), in the flow visualization,

each word is represented by a line. The intra-word information

is encoded by the line width and colors. A wider line indicates

that the word contributes more to the final prediction. The color

of the line indicates which class the word contributes to (polarity).

Additionally, we highlight two types of important changes along a

line. First, if a word contributes little to the final prediction after

layer ℓ, we will end the line with . Second, we highlight the

class change on a line by using glyphs and . The inter-

word information includes the learned phrases and non-adjacent

word relationships. For the learned phrases, we use the distances

between lines to represent the distances between word context

vectors. In this way, words that belong to a phrase are naturally

placed close to each other. The clusters are further highlighted by

using a background area (Fig. 6A), the color of which is determined

by the primary color of the lines. The relationships between non-

adjacent words are encoded by the curves that connect different

lines (Fig. 6B). The width of a curve from word i at layer ℓ to

word j at layer ℓ+ 1 is determined by mutual information e
(ℓ)
i j

(Sec. 4.2). A thicker curve indicates a larger contribution from

word i to word j. To avoid visual clutter, we only display the most

important curves. A curve is shown if 1) its weight e
(ℓ)
i j is among

the top 5%, or 2) it is useful for illustrating the color/width change

of a line. For example, the curve displayed in Fig. 6B is helpful

for explaining why the word “good” becomes negative at layer 6,

which is caused by “good” absorbing the information of “n’t.”

Layout algorithm. The layout of the storyline needs to preserve

both stability and readability [38], [39]. To achieve this goal, we

formulate the layout as a constrained optimization problem.

Denote the y-coordinate of word i at layer ℓ as y
(ℓ)
i . Stability

prevents the y-coordinate of a line from changing dramatically

when its context vector does not change much. This ensures that

the wiggles of the line, which easily draw users’ attention, are

meaningful and worth investigating. We consider two types of

stability losses: a continuous loss (y
(ℓ)
i − y

(ℓ−1)
i)2 and a discrete

loss I(y
(ℓ)
i ̸= y

(ℓ−1)
i). I(·) is an indicator function with I(true) = 1

and I(false)= 0. While the continuous loss penalizes large changes,

the discrete loss limits the number of line wiggles. Readability

measures how clear and easy it is to understand the relationships

between words in a sample. In addition to the phrase relationships

between adjacent words, the order of words is also important

for many NLP tasks. For example, isn’t he lovely and he isn’t

lovely have different sentiments. As a result, readability requires

that 1) the distances between lines accurately reveal the distances

between word context vectors; and 2) the order of words in a

sample is preserved. Accordingly, readability is maintained by

minimizing the loss (||y
(ℓ)
i − y

(ℓ)
i−1|| −D

(ℓ)
i)2 and satisfying the

constraint y
(ℓ)
i ≥ y

(ℓ)
i−1, for ∀i, l, where D

(ℓ)
i = ||c

(ℓ)
i − c

(ℓ)
i−1|| is the

distance between word context vectors.

Based on the analysis of stability and readability, we formulate

the storyline layout as a constrained optimization problem:

min
{yℓi |∀i,ℓ}

M

∑
i=1

L

∑
ℓ=1

C(i, ℓ), s.t.,y
(ℓ)
i ≥ y

(ℓ)
i−1, ∀i, ℓ

C(i, l) = α[(y
(ℓ)
i − y

(ℓ−1)
i)2 +β I(y

(ℓ)
i ̸= y

(ℓ−1)
i)]

+(1−α)(||y
(ℓ)
i − y

(ℓ)
i−1||−D

(ℓ)
i)2

(3)

The first two terms of C(i, l) maintain stability, and the third term

maintains readability. M is the number of words in a sample, and

L is the number of layers in the NLP model. α ∈ [0,1], β > 0

are hyperparameters that balance different terms in the loss. In our

implementation, α = 0.4, and β = 5.

The constrained problem defined in Eq. (3) can be solved by

dynamic programming in pseudopolynomial time.

4.3.3 Word-Level Visualization

The word-level visualization consists of a word contribution view

and a word context view.

Word contribution view. The word contribution view helps

identify the words and layers of interest based on the words’

contribution to different layers in the model (R4).

Visual encoding. As shown in Fig. 1(c), the x-axis denotes

layers, and the y-axis corresponds to the word contribution

percentiles. Words are divided into 10 equal-size groups based on

their contribution at each layer. The groups with larger contributions

are placed higher on the y-axis. In this way, the visualization reveals

whether the model leverages the correct words for prediction. For

example, we can debug a news classification model by checking

whether class-relevant words like “antitrust” and “google” are

placed on the top at the last few layers, and other words like “this,”

and “has” are placed at the bottom.

8

Following the corpus-level visualization, the size of a word

encodes its importance. The color of a word is determined by

its dominant polarity in its associated samples. A pie-chart-based

glyph is used to show the distribution of word polarity in all

the associated samples. To reduce visual clutter, we only show pie

charts for the top five most important words at each layer.

Layout. The words are placed based on the sweepline algo-

rithm [40], which places important words close to the centroid of a

given contour. We slightly modify the algorithm by placing each

word w close to its desired position. This is achieved by replacing

the centroid with (x̃
(ℓ)
w , ỹ

(ℓ)
w). Here, ỹ

(ℓ)
w is the contribution percentile

of w. To ensure stability, we try to maintain the relative position

of x̃
(ℓ)
w . If the word usually appears at the left (or right) side of

previous layers, we prefer to place it at the left (or right) side of

the current layer.

Interaction. This view is coordinated with other views to

understand the model from the word perspective. For example,

the words displayed will be updated upon the selection of samples

or words in other views. We can hover over a word to inspect its

polarity distribution over samples with a pie chart and highlight its

appearances across layers. To help identify interesting words, we

enable two types of automatic pattern searching functions based on

the the experts’ suggestions. Trending button (or) in the top

right corner is used to show the words whose contributions keep

decreasing (or increasing) through layers (Fig. 7C or D).

Word context view. The word context view facilitates the

understanding of a word by revealing how the model processes it

based on its context (R5).

The context of word w is depicted by a list of words that are

considered to be the most relevant to it according to the NLP

model. The word context view illustrates the context of w across

different samples and layers. Fig. 7(c) shows an example context

visualization of the word “like.” Each rectangle in the visualization

represents a cluster of samples with similar context words for “like.”

The size of the rectangle encodes the number of samples in the

cluster, and the color encodes the majority polarity of “like” in

these samples. For example, the meaning of “like” in cluster F

at layer 11 is “favor,” and its sentiment is mostly positive (e.g.,

“if you like” and “might like”). Phrases, such as “if you like”

are extracted by identifying words that are both relevant and

adjacent to “like” in the samples, and the font size is used to

encode the importance score. The sample clusters are computed

by performing agglomerative clustering [34] on the word context

vectors (Fig. 6(a)). We initialize the clusters at each layer by using

the clusters extracted in the previous layer to maintain stability.

The cluster positions are determined by using the directed acyclic

graph layout algorithm employed in TextFlow [41]. The width

of the edge encodes the proportion of samples that come from

the previous cluster. To reduce visual clutter, we only show the

results of representative layers, whose similarity with the previously

selected representative layer is smaller than a threshold.

The word context view is coordinated with other views during

the analysis. It is triggered when a user selects a word in the

distribution view or the word contribution view. By selecting a

rectangle in the word context view, the corresponding samples are

highlighted in the distribution view and sample list as well.

5 CASE STUDIES

We conducted case studies involving three tasks with experts E3

and E4. E3 is interested in understanding and diagnosing BERT

models for binary/multi-class classification tasks, and E4 would

like to compare different models using DeepNLPVis.

In conducting the case studies, DeepNLPVis requires the inter-

and intra-word information for each sample in the training set.

The calculation for the whole set is time-consuming and is thus

carried out offline. All the other required data can be obtained

with real-time processing (within one sec), and are thus calculated

online.

5.1 Binary Sentiment Classification

In this case study, E3 carried out the sentiment classification task

on the Stanford Sentiment Treebank (SST-2) [42], which consists

of sentences from movie reviews and human annotations of their

sentiments. The sentiments are of two classes: positive and negative.

The GLUE SST-2 splits [43] were used for the training (67,349

samples), validation (872 samples), and test (1,821 samples) sets.

The BERT model, as the most widely used NLP model, was

applied as the baseline and achieved 93.23% accuracy. Starting

with the BERT model, E3 emphasized on gaining a comprehensive

understanding of the model’s working mechanism, which would in

turn facilitate the subsequent model diagnosis.

5.1.1 Understanding

Understand the overall performance (R1, R4). E3 began the

analysis by examining how the prediction scores were distributed

over the data in the distribution view (R1). He immediately noticed

the long-tailed distributions (Fig. 7(a)), showing that most samples

were predicted with high confidence (vertically away from the

center), while those with low confidence were horizontally closer

to the center. E3 also noticed the keywords extracted from the

positive and negative samples had relevant sentiments. The overall

distribution in the distribution view gave E3 confidence in the

model’s performance. He then turned his attention to the word

contribution view (Fig. 7(b)) to analyze how the model understands

the words at different layers (R4). He noticed that with the layers

going deeper, the model recognized more words with sentiment

tendencies, i.e., more colored words. Moreover, at layers 11

and 12, words with strong positive or negative meanings (e.g.,

“absurd,” “laughs,” “charm”) contributed highly. These sentimental

words replaced those class-irrelevant ones (e.g., “flick,” “screen,”

“filmmaking”) in previous layers.

Analyzing how the contributions of words changed through

the layers (R4) is helpful to understand the model’s working

mechanism. Thus, E3 clicked the trending hint buttons to display

the top two words with the largest contribution changes (decreasing

or increasing). He noticed that the contributions of “movie” and

“film” decreased slowly until layer 10 and then decreased rapidly

(Fig. 7C). While the contributions of “laughs” and “care” increased

rapidly in the last few layers (Fig. 7D). This observation verifies

his hypothesis that the BERT model, as a fine-tuned model, has the

early layers more dedicated to learning transferable representations

of language that are invariant to the prediction task, while the

deeper layers paying more attention to words that are relevant to

the prediction task [44].

The word contribution view gave E3 an overview of how

the model gradually adapted to the tasks through the layers. To

get a deeper understanding of the model, E3 then analyzed how

it understood the meaning of individual words and processed

individual samples.

Understand words in context (R5). Some keywords in the

distribution view aroused E3’s attention. He noticed that the word

9

charm

laughs

absurd

movie

film

just

it

entertaining

characters

funny

and

is

the

story

performances

to

of

as

drama

good

plot

filmmaking

bad

enjoy

humor

in

this

too

visual

cliches

audience

feel

more

that

like

action

director

make
very

thriller

hollywood

workthan

an

flick

be

willhas

about
by

silly

or
his

ca

scary

charmlaughs

absurd

movie

film

comedy
funny

characters

performances

cliches

drama

flick
thriller visual

and

humor

enjoy

plot

story

it

the

director
just

script

acting
action

of

painfully

is

to

comic

bad

silly

cast actors

loveheart good

in

as

that

work
this

seems

for
with an

wit

than one
make

about so
havehis

laughs
charm

absurd

movie
comedy

entertaining

film

flick

funny

performances

thriller

characters

cliches visual

plot

humor drama

script

just

story

silly

care

action

cast

yarn

genre

and

good

it

work
love

tale

suspense

is

bad like
as

ca

feel more than

art

the

to

of

year

that make
one

about be withbyhave

laughs
charm

absurd

movie

comedy

filmmaking

film
entertaining

flick

characters

thriller

care

plot

story

funny

silly

just

drama

director

script

enjoy

yarn

action

bad

heart
work

hard

good seemslove
best

rare

like

ca

spy

old

watch

lazy

year comelife too
little butnoit out notand

youat
the ofbe by

laughs

charm

absurd

movie

comedy
care

flick

film
characters

thriller formula

action
plot

screen

audience cliches

performances

director

boring
silly

drama

interesting

yarn

acting
enjoystory
funny

genre

ca

spy

cast
seems badjust

rare

worklove
feel

time old
like good cometoo

outway about makecan up

mosttohave that in this

laughs
absurd
charm
care

boring

emphasizestreat
flaws

smugly

fails

enjoy

imagine

bump

interesting

seemsbetter
chilling

sure

easily

entertaining

silly
straight

awful
comedy

less hard
movie

sweet
funny

humor

serves

little
justfilmfeelbad

like
but

characters workmorenot
love has

tothathave thismake you

of and the an
fromve

1 2 3 4 5 6 7 8 9 10 11 12 Layer
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.00

0.06

0.13

0.19

0.25

0.31

0.38

0.44

0.50

0.56

0.63

0.69

0.75

0.81

0.88

0.94

1.00

absurd boring
flaws smugly

fails
care

disappointing imagine

bump
seems

impossible

sure

pretensions

filmmaking

relatively
unfortunately desperately

easily

predictable

glum

amateurish straight

less

lazy

sappy

laughsrecommend
charmtreatrefreshing

enjoyinteresting

masterpiece

chilling
funnier

entertaining

uncompromising

sweet

eat

ranks

kicks

yarn

yet
wise

like emphasizessqueeze
better

bangsilly

drips

comedy

movie

oddly

recycled
smarter

slap

edited
brooding

film

feel

but

art

if

A

B
Sample #145

Sample #1733

(a) The distribution view. (b) The word contribution view.

(d) The word context of “care.” (e) The information flow of the sample #145.

C

D

(c) The word context of “like.”

like_a
collapses_like

shot_like

scary_like

kubrick screen
film

strokes

misogyny

septic

puzzling volcano

crypt

dimensional

may
past

snail

amok

feels_like
feeling_like

bad crap
movie seem

looks_like
proficient

stretchless

prison

plays

pop

feel_like

blind

bores_like_antonia
gay

ya

might_likejaunt dude

feels_likebad
proficient

feeling_like

collapses_like

less

such

hard_to_like

tired

stretch

trademark

prison

cliches

antonia

unleashes

blown

brussels

winds

might_like
if_you_likedude

shot_like

that_like_adventure

sensational

refreshing

complain

banquet

stands

workings
jaunt more

clicking

Input 1 2 3 4 5 6 7 8 9 10 11

CLS

if

this

sappy

sappy

script

was

the

best

the

contest

received

,

those

rejected

must

have

been

astronomically

astronomically

bad
.

CLS

if
ifthis thissappy

sappy sappysappy sappy sappyscript

was
wasthe

thebest the
the the

contest
contest contestreceived

those those
rejected rejected

must
have have

been

astronomically

astronomically

astronomically

astronomically
bad

this

wasthe

have
been

astronomically

.

CLS

must

astronomically

bad

rejected
those

the

sappy

contest
received

if

best

script

,

E

makes_us_care
we_care

seems_have_cared

haphazard
lighting aspect

minutestory

care_about
care_less

nobody_cares

who_cares

satisfied

sustenance

sewage

characters

gullets

simulate

shovel

to year

submerged

bump

care_to_count
come

than times

more havingis been

also

makes_us_care
interested_care

surprised

too

care_about
care_less

nobody_cares

impossible_care

recycled

normally

gullets

filmmakers

haphazard

characters

whose

idiots

Layer 8 Layer 11 Layer 8 Layer 11

F

Fig. 7: The analysis of the BERT model on sentiment classification.

“care” (Fig. 7A) contributed more to negative predictions that went

against his intuition. He thus examined its word context view

(Fig. 7(d)). He observed that when the samples went through the

layers, the model tended to embed “care” in a negative context

, such as “care less,” “nobody cares,” “who cares.” Only a small

number were embedded in a positive context. This is due to the

more frequent presence of “care” in the negative samples (191

negative and 100 positive). Considering the SST2 data came from

movie reviews, E3 thought it was reasonable because “care” is

indeed found more often in negative reviews.

E3 further noticed the word “like” that appeared to be

class-irrelevant rather than positive (Fig. 7B). Examining its word

context view (Fig. 7(c)), there were four main clusters formed

at layer 8. Three of them were class-irrelevant, i.e., non-apparent

sentiment tendency at this layer, while one of them was negative.

The negative cluster contained “feels like,” “looks like,” where

“like” was a proposition with no strong sentiment tendency.

However, the negative context in this cluster, such as “crap,”

“blind,” and “criticizing,” associated this cluster with a negative

sentiment. Then through the further exchange of context, the

class-irrelevant clusters split. Parts of them fused into the negative

cluster, while other parts formed a positive cluster at layer 11. In

the positive cluster, “like” appeared more in phrases such as “if

you like,” and “might like” with the meaning of “favor.” From the

word context view, E3 was more confident in the BERT model’s

ability to disambiguate words with multiple meanings.

Understand the prediction of samples (R3). To understand how

the model processes a sample across layers, E3 selected the samples

of interest by coordinating the distribution view and sample list.

He first selected a set of samples with the highest confidence in the

distribution view and then examined their content in the sample list

to find samples with interesting structures. By repeating this step,

he finally selected samples #145 and #1733 (Fig. 7(a)).They are

predicted as negative and positive with turning structures.

Fig. 7(e) shows the information flow for predicting the negative

sample #145 “if this sappy script was the best the contest received,

those reject must be astronomically bad.” This sample is of a

turning structure with the word “if.” At layer 1, the phrase “contest

received” was initially formed with no-apparent sentiment tendency.

Then at layer 6, “was the best the contest received” was formed

together and regarded as positive due to the positive sentiment

of “best.” However, it turned into negative at layer 7 where the

information from “if” was transferred to it, which indicates that

the model correctly interpreted the turning structure. Before layer

6, the information was transferred more locally such as from

‘astronomically bad” to “must,” changing its sentiment into negative.

At layers 6 and 7, the information from “if” was transferred to

the second half of the sentence. So far the model recognized the

overall structure, and then at layers 7 and 10, it transferred the

information from the second half of the sentence to [CLS], which

ultimately determined the final negative prediction of this sample.

From this negative sample, E3 also gained insights into how the

model understands a sentence. At the beginning layers, words and

phrases were formed, such as “contest received,” “was the best,” and

“astronomically bad”. Along with the layers going deeper, more

sentiment information transfers were observed between words

and phrases. It shows that the model was mostly devoted to

understanding the sentence structure at early layers, while shifted its

attention to transferring information relevant to the prediction task.

E3 had similar observations for the positive sample #1733

“though the film is static, its writer-director’s heart is in the right

place, his plea for democracy and civic action laudable.” Again,

this sample has a turning structure with the word “though,” which

was recognized at layer 8. The recognition changed the sentiment

of “the film is static” to positive, which, together with the positive

sentiment of “is in the right place” and “laudable” resulted in the

final positive prediction.

5.1.2 Diagnosis

With a deeper understanding of how the model understands words

and samples, E3 then attempted to identify the deficiencies in the

current model and improve its performance (R2).

10

8 9 10 11

bonus
feature

had
the

and

as

on

9 10 11 12

Layer

superficial
flawed

subconscious
dvdattal strands

kafka

gilliam

lifted

stolid
important

story

bunuel
self

sayles

and

williamsspectacle
old sneers rockterrydare

difficult

if

surroundingoftenbonus
way

ups

smile
sad

werenothing realityinto
say

the

get notmore again
feature

his inan you we
this

flawed
superficial

subconscious
dvd

self

important

strands story

effort
bile

schticky

attallifted
seemplunges
outtakeshopkins

old sneers

if

performers

sad

chris
difficultagainhang

bonus useddare
anthonyinfidelity just
groggy sameoncekafka

stolidhadlikesay
terry are thiscasings

fromhismaking
the through

feature
bunuelmeat

williams
often

A “dvd” to “CLS”

dvd

B

(a) Word-level. (b) Sample-level.

Fig. 8: Diagnosis of misclassified samples.

He selected all the misclassified samples in the distribution

view (the red and green crosses in Fig. 7(a)) and turned to the

word contribution view (Fig. 8(a)) to examine the important

words for predicting them. He first noticed the word “superficial”

(Fig. 8A), which remains strongly negative but turns to positive

in the last layer. Wondering why, he clicked on it to examine

the associated samples in the sample list and found that there

was a conflicting label for “a superficial way” (positive) and “the

superficial way” (negative). As a fine-tuned model, the last few

layers of BERT are more influenced by the training samples. E3

considered the conflicting label confused the model about the

sentiment of “superficial” in the last layer and resulted in some of

the misclassifications. He then corrected the conflicting labels for

the two samples.

Another word that drew his attention was “dvd,” which was

an important word through the layers. However, it was strongly

negative, which went against his intuition. Checking the associated

samples, he found that there were far more negative than positive

samples that included “dvd” (39 negative and 14 positive). E3 thus

considered this was a case of the shortcut issue [45] caused by the

limited diversity of training data. Shortcut refers to the phenomenon

that a model learns spurious correlations between words and labels,

e.g., classifying a word to be positive/negative only based on its

occurrence in according samples rather than understanding its

inter/intra-word relationships. To see the influence to prediction,

E3 then turned to an individual sample to check the information

flow. He selected sample #76, which is a positive sample but

wrongly predicted as negative. The information flow of this sample

(Fig. 8(b)) showed that “dvd” was regarded as a negative word from

the beginning and throughout the layers. Its negativity was passed

to [CLS] at layer 10 and contributed to the final prediction (Fig. 8B).

This confirmed that the spurious correlation between “dvd” and

negative label was indeed an important reason for the wrong

prediction. E3 thus decided to remove “dvd” from all 53 samples,

as class-irrelevant words can be removed in text classification

without sacrificing accuracy [46].

From the analysis of “superficial” and “dvd,” E3 wondered

whether conflicting labels and shortcut issues might be present in

other important words, accounting for most of the wrong predic-

tions. He thus hovered over the words in the word contribution

view and found other words that have the same problems (e.g.,

“attal,” “subconscious”). All together, E3 corrected two conflicting

labels (“superficial,” “attal”) and removed two words (“dvd,”

“subconscious”) with sample bias. After fine-tuning the model,

Layer 1-8 Layer 9-12

Adapter

Classification layer

s
n

e
k

o
T

t
u

p
nI

BERT Model

Fig. 9: Improving the BERT model by adding an adapter module.

0.00

0.06

0.13

0.19

0.25

0.31

0.38

0.44

0.50

0.56

0.63

0.69

0.75

0.81

0.88

0.94

1.00

amateurish
pretends

hypocritical arrogant
videotape irritating

awful
sappy

charmless

low

open

cliches tedious epiphany

lucy

disjointed
waste

unconvincing acting

why

clockstopperscapable

seen
lack

fails

deceptively
cleverest

amusing
valiantly

minimalistliterate

soderbergh

gorgeouspoem

humorprobing

tone

sexy

wry

hip

ode

theto fun
of

love
canadian

it

oftenandthat

an as

end wit

for

than

more

is

on

A

D this

sappy

script
was
the

thecontest
received

thosemust
have been

astronomically

CLS

bad

rejected

if

sappy

best

,

astronomically

only
deceptively terry
watch out

cremaster followingbut
laramie

with

movie
sympathizing yourself

say

about

every

dramatic

weltyin

film

to

for like smart
an

cedar

isoperandi

via

thatpremise his

pain

you
this

B

deceptively_amusing
ofcinematic

deceptively_simple

tone
cleverest

comedies

and

yearpoem
deceptively_slight

the
gorgeous

deceptively_minimalist

C

Fig. 10: The analysis of ELMO+LSTM model.

the eight previously misclassified samples were now predicted with

correct sentiments.

E3 was also interested in other deficiencies in the model besides

the data problem. He noticed that in the last two layers, several

words with strong positive or negative tendencies, such as “love,”

“little,” “bad,” still do not contribute highly, although they have the

majority of the associated samples in the according sentiment class

(Fig. 7E). For example, “love” occurred in 641 positive samples and

147 negative negative samples, and the similar were observed for

“little” and “bad.” This indicated that the model was still coarse-

grained for the specific task. Therefore, E3 adopted the adapter

method to enhance the model performance by inserting an adapter

module into the last four layers (Fig. 9). He followed the adapter

architecture proposed by Houlsby et al. [47] with the hidden layer

size of 64 and the tanh activation function. The parameters of the

original fine-tuned model were frozen, and the new adapter module

was trained. After training, the importance of “love,” “little,” and

“bad” increased, showing that the ability of the new model to process

these class-relevant words was improved. Accordingly, the test

accuracy of the new model was increased from 93.23% to 93.92%.

5.1.3 Model Comparison

E4 was interested in using the unified measure to directly com-

pare how different models work. He carried out the sentiment

classification task on the same SST-2 dataset using two models.

11

One is the 12-layer BERT model. The other is the 4-layer Bi-

LSTM model with input enhanced by a pre-trained ELMo+LSTM

model [48]. It achieved 98.28% accuracy on the training set and

88.53% accuracy on the test set. E4 then imported each of the

models into DeepNLPVis for comparison.

From the distribution views (Fig. 7(a) and Fig. 10A), E4 first

noticed that there were many more misclassified samples using

ELMo+LSTM than using BERT. Further examination showed

that there was an obvious difference in the keywords extracted.

The keywords extracted in BERT are mostly common words

(“laughs,” “recommend,” “boring,” etc.), while those extracted

in ELMo+LSTM included more rare words such as “valiantly,”

“hypocritical,” “amateurish.” These words are of strong sentiments

but have low frequency in the SST-2 dataset. E4 considered

the pretraining from ELMo helped the LSTM model to better

understand the sentiments of these rare terms.

“deceptively” was considered the most important positive

keyword in ELMo+LSTM, which is against E4’s intuition. Further

examination of samples showed that there were far more positive

samples than negative samples containing “deceptively” (35 posi-

tive and 1 negative). E4 thus considered ELMo+LSTM introduced

the shortcut issue, the same as E3 when analyzing “dvd.” To verify

this, E4 checked the word context for “deceptively” (Fig. 10C).

Many positive words, such as “amusing,” “gorgeous,” “cleverest,”

were presented in the context, which falsely supported the positive

sentiment of “deceptively.” E4 considered the presence of shortcuts

in ELMo+LSTM also explained its high accuracy on training data

but a noticeable performance drop on the unseen test data.

E4 then turned to analyze the misclassified samples in

ELMo+LSTM. From the word contribution view (Fig. 10B), he

found that the important words included quite a few names (e.g.,

“laramie,” “terry”), nouns (e.g., “movie,” “yourself”) and, stop

words (e.g., “with,” “in”), which are irrelevant to the prediction

task. E4 commented, “this is consistent with the observation in a

previous study that the recurrent structure in LSTM limits its ability

to filter some noisy words from the sequence [12]. It is undesirable

for sentiment classification.” E4 then compared the information

flow of sample #145 using the two models. He observed that the

information transition in ELMo+LSTM (Fig. 10D) was more local,

showing the limitation of the ELMo+LSTM model in dealing with

the association in non-adjacent words. Unlike BERT, the successful

prediction was largely based on several strong negative words, such

as “reject” and “bad,” rather than recognizing the turning structure

of the sample.

The comparison showed superior performance of BERT over

ELMo+LSTM on the sentiment classification task. E4 thus con-

sidered to improve the ELMo+LSTM model using the knowledge

distilled from the BERT model. He followed the knowledge

distillation method in [49], where the ELMo+LSTM model was

the student model while the BERT was the teacher model. The

idea of knowledge distillation is to refine the student model by

minimizing the difference (measured using KL divergence) between

its output and the teacher model’s output, and thus to improve the

performance of the student model. In this case, after knowledge

distillation, the test accuracy of the new ELMo-LSTM model was

increased from 88.53% to 89.33%.

5.2 Multi-Class Classification

E3 was satisfied with the assistance of DeepNLPVis for analyzing

sentiment classification. To see how this assistance generalizes

to other classification tasks, he performed a further classification

task on news. A subset was randomly selected from the AG News

topic classification dataset [50]. There are four classes: “world”,

“sports”, “business”, “sci/tech”, each containing 30,000 training

samples and 1,900 testing samples. The BERT model achieved

94.79% test accuracy.

To unify the analysis, a confusion matrix (Fig. 1(a)) was

provided to select two classes for further analysis. E3 observed that

the greatest confusion was between the “business” and the “sci/tech”

news. He selected the two classes and then, following a similar

process in the first case, started the analysis with the distribution

view (Fig. 1(b)). He observed that most samples of the two classes

were distributed apart (left and right). However, a small number of

“business” news (orange) were horizontally closer to the “sci/tech”

distribution (blue), indicating these “business” news have some

similarities to “sci/tech” news (Fig. 1A). It seemed consequential

that there were more “business” news misclassified as “sci/tech”

news than the other way around. E3 then selected these “business”

news samples in the middle of the distribution view for further

examination in the word contribution view (Fig. 1(c)). He noticed

that there was a significant number of important words that are

typically related to technology, such as “antitrust,” “google,” “hp,”

etc. Checking in the sample list, he further found many of these

samples were “business” news related to “sci/tech” companies.

Their content is indeed similar to “sci/tech” news.

Among these technology words, “google” was of high impor-

tance throughout the layers and drew the attention of E3. Checking

its associated samples in the sample list, there were quite a few

misclassified samples. Selecting the one with the lowest confidence,

E3 turned to check its information flow (Fig. 1(e)). The selected

sample, “Google IPO faces Playboy slip-up The bidding gets

underway for Google’s public offering, despite last-minute worries

over an interview with its bosses in Playboy magazine,” was a

“business” news. However, “google,” which was regarded as a

“sci/tech” word throughout the layers, played an important role in

the model’s understanding of the sample. The two “googles” had

the “sci/tech” tendency from the beginning of the layers. When the

first “google” transferred its information to “google’s” at layer 2

(Fig. 1B), the tendency was reinforced and then passed to the [CLS]

at layer 10 (Fig. 1C). This contributed to the misclassification.

6 EXPERT FEEDBACK AND DISCUSSION

After the case studies, five semi-structured interviews were con-

ducted with the experts we worked with. In the interview, we first

introduced the visual design and interactions, and then explored the

tool together with the experts through an example case. Each of the

interviews took 50-70 minutes. Overall, the experts gave positive

feedback on the usability of DeepNLPVis. They also pointed out

several limitations that provide opportunities for future research.

6.1 Usability

Informative visualization and deeper understanding. All the

experts agreed that the visualization was informative and helped

them deeply understand the models. They particularly mentioned

that the polarity in the distribution view, the most contributed and

the less contributed words in the word contribution view, and the

phrase formation in the information flow view facilitated their

understanding of the models. E3 commented, “The polarity of

contribution is very useful to detect the shortcut issue that learns

spurious correlations between words and category labels (e.g., “dvd”

12

in the first case). Such spurious correlations help identify which

types of words (e.g., a single word, a word in context, or ordered

pairs) lead to the limited diversity of training data. Knowing the

causes, I can enhance the data accordingly.” Although the experts

took 25.5 minutes on average (STDEV=2.89) to get familiar with

the tool, they believed that the enlightening information and deeper

understanding gained through the exploration deserved the efforts.

Improving analysis efficiency. The experts especially liked the

analysis process driven by a set of interactions. They commented

that existing tools, such as TensorBoard, only allowed them to

examine the samples one by one. Without a comprehensive under-

standing of the training process from different perspectives, diagnos-

ing a performance issue typically relied on a time-consuming trial-

and-error process. After trying DeepNLPVis, the experts praised

its efficient analysis process brought by the integral exploration

at the corpus, sample, and word levels. E1 said, “The analysis

process from the sample distribution to the word contribution and

the information flow inside a sample looks natural to me. The

interactions enable me to find interesting information quickly. For

example, the trending hint button in the word contribution view

helps me identify the changing patterns of the words of interest,

especially those conflicted with my intuition.”

Promoting effective communication in deployment. In the inter-

view, the experts were impressed with the explanation capability

of DeepNLPVis and the provided informative information. They

believed that it could be used for effective communication between

different sectors inside an institution. This is because the employed

intuitive visualization provides a common ground for communi-

cation between different types of practitioners, such as model

developers, consumers, and project managers. For example, E4

commented that the visual explanation provided by the information

flow view could well explain how the model worked at the sample

level. Such explanation is very helpful to illustrate the developed

deep NLP model to the model consumers who are not machine

learning experts, e.g., the developers in a product group. With

a clear understanding of the model, the developers could better

maintain it in the product.

6.2 Limitations and Future Work

Task Generalization. In the prototype, text classification is used

as an example to illustrate how DeepNLPVis supports the unified

understanding of NLP models. Although the prototype supports the

analysis of the classification tasks with a pair of sentences as input,

it cannot distinguish intra-sentence and inter-sentence relations. To

handle this problem, we consider designing proper visual encodings

to distinguish the difference between these two relationships and

enable a better analysis of such tasks. In addition to classification,

the experts also express the need to apply DeepNLPVis to

other tasks such as text summarization, machine translation, and

question answering. These tasks can be regarded as a multi-class

classification task with a relatively larger class number. In these

tasks, the class number equals to the number of words/phrases.

As a result, for these tasks, how to handle a large class number in

visualization is a key challenge faced in the future work.

Visual scalability. The experts mentioned that larger NLP models,

such as GPT-3, usually contained dozens of layers, and a sample

might contain hundreds or even thousands of words. With the

increased number of layers and sample length, the scalability

issue will arise in the word-level and sample-level visualizations.

A possible solution is to utilize the layer clustering technique

and overview + detail visualization. An example is the flow

visualization that is affected by the sample length, as each

line represents a word. This visualization will quickly become

cluttered if hundreds or thousands of words are included in a

sample. The experts indicated that their analysis usually started

from representative samples and representative words in each

sample. Thus, in the future, we are interested in identifying these

representative samples and words to balance the informativeness

and readability of this visualization.

Model refinement. After identifying the performance issues, the

experts prefer a mechanism that tightly integrates interactive

visualization with machine learning to refine the model semi-

automatically rather than to improve the model architecture

manually. For example, in sentiment analysis, if the expert corrects

the sentiment of several words through the visualization, s/he

would expect the model can be automatically refined based on

the corrections. Thus, an interesting direction for future work is

to explore how to transform the provided feedback into a prior

or constraint for the model and progressively refine the model.

Another related interesting direction is how to integrate active

learning into the system to give more hints and reduce the number

of samples to be verified by users.

7 CONCLUSION

We have presented a visual analysis method, DeepNLPVis, to

facilitate a unified understanding of deep NLP models. This method

is built upon an information-based measure to illustrate how a deep

NLP model maintains the information of input words in a sample

with a multi-level visualization. The effectiveness and usefulness

of our method are demonstrated through case studies, in which

the experts utilize DeepNLPVis to understand and analyze the

model behaviors in text classification tasks and explore the root

causes of the successful and unsuccessful cases. The experts are

generally satisfied with the developed method as it provides a

unified understanding of different deep NLP models allow them to

conveniently compare different types of models. Moreover, it helps

identify the underlying reason for low performance and thus makes

informed improvements in the models.

REFERENCES

[1] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and
J. Gao, “Deep learning–based text classification: A comprehensive review,”
ACM Computing Surveys, vol. 54, no. 3, pp. 1–40, 2021.

[2] Y. Kim, “Convolutional neural networks for sentence classification,” in
the Conference on Empirical Methods in Natural Language Processing,
2014, pp. 1746–1751.

[3] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “LSTMVis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24,
no. 1, pp. 667–676, 2018.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in

Neural Information Processing Systems, 2017, pp. 5998–6008.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in the

Conference of the North American Chapter of the Association for

Computational Linguistics, 2019, pp. 4171–4186.

[6] A. Y. Kim and J. Hardin, ““playing the whole game”: A data collection
and analysis exercise with google calendar,” Journal of Statistics and

Data Science Education, vol. 29, no. sup1, pp. S51–S60, 2021.

[7] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of visual
analytics techniques for machine learning,” Computational Visual Media,
vol. 7, no. 1, pp. 3–36, 2021.

13

[8] R. Wang, D. Tang, N. Duan, Z. Wei, X. Huang, G. Cao, D. Jiang, M. Zhou
et al., “K-Adapter: Infusing Knowledge into Pre-Trained Models with
Adapters,” in Findings of the Association for Computational Linguistics:

ACL-IJCNLP, 2021, pp. 1405–1418.

[9] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu,
“Understanding hidden memories of recurrent neural networks,” in IEEE

Conference on Visual Analytics Science and Technology, 2017, pp. 13–24.

[10] J. F. DeRose, J. Wang, and M. Berger, “Attention flows: Analyzing and
comparing attention mechanisms in language models,” IEEE Transactions

on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1160–1170,
2021.

[11] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,
J. Yung, D. Keysers, J. Uszkoreit, M. Lucic et al., “Mlp-mixer: An all-mlp
architecture for vision,” arXiv preprint arXiv:2105.01601, 2021.

[12] C. Guan, X. Wang, Q. Zhang, R. Chen, D. He, and X. Xie, “Towards
a deep and unified understanding of deep neural models in NLP,” in
International Conference on Machine Learning, 2019, pp. 2454–2463.

[13] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial in-
telligence: A survey,” in International Convention on Information and

Communication Technology, Electronics and Microelectronics, 2018, pp.
0210–0215.

[14] Y. Ming, P. Xu, H. Qu, and L. Ren, “Interpretable and steerable sequence
learning via prototypes,” in ACM International Conference on Knowledge

Discovery and Data Mining, 2019, pp. 903–913.

[15] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and
K.-R. Müller, “How to explain individual classification decisions,” Journal

of Machine Learning Research, vol. 11, pp. 1803–1831, 2010.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”
explaining the predictions of any classifier,” in ACM International

Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–
1144.

[17] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams, “Squares:
Supporting interactive performance analysis for multiclass classifiers,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 1, pp. 61–70, 2017.

[18] J. Zhang, Y. Wang, P. Molino, L. Li, and D. S. Ebert, “Manifold: A model-
agnostic framework for interpretation and diagnosis of machine learning
models,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 364–373, 2019.

[19] P. Chawla, S. Hazarika, and H.-W. Shen, “Token-wise sentiment decompo-
sition for convnet: Visualizing a sentiment classifier,” Visual Informatics,
vol. 4, no. 2, pp. 132–141, 2020.

[20] Z. Dong, T. Wu, S. Song, and M. Zhang, “Interactive attention model
explorer for natural language processing tasks with unbalanced data sizes,”
in IEEE Pacific Visualization Symposium, 2020, pp. 46–50.

[21] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu, “Analyzing the training
processes of deep generative models,” IEEE Transactions on Visualization

and Computer Graphics, vol. 24, no. 1, pp. 77–87, 2018.

[22] X. Ji, Y. Tu, W. He, J. Wang, H.-W. Shen, and P.-Y. Yen, “Usevis: Visual
analytics of attention-based neural embedding in information retrieval,”
Visual Informatics, vol. 5, no. 2, pp. 1–12, 2021.

[23] S. Gehrmann, H. Strobelt, R. Krüger, H. Pfister, and A. M. Rush, “Visual
interaction with deep learning models through collaborative semantic
inference,” IEEE Transactions on Visualization and Computer Graphics,
vol. 26, no. 1, pp. 884–894, 2020.

[24] S. Liu, Z. Li, T. Li, V. Srikumar, V. Pascucci, and P.-T. Bremer, “Nlize: A
perturbation-driven visual interrogation tool for analyzing and interpreting
natural language inference models,” IEEE Transactions on Visualization

and Computer Graphics, vol. 25, no. 1, pp. 651–660, 2019.

[25] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding
recurrent networks,” in the Workshop at International Conference on

Learning Representations, 2016.

[26] J. Li, X. Chen, E. Hovy, and D. Jurafsky, “Visualizing and understanding
neural models in NLP,” in the Conference of the North American Chapter

of the Association for Computational Linguistics, 2016, pp. 681–691.

[27] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual analytics
in deep learning: An interrogative survey for the next frontiers,” IEEE

Transactions on Visualization and Computer Graphics, vol. 25, no. 8, pp.
2674–2693, 2019.

[28] D. Cashman, G. Patterson, A. Mosca, N. Watts, S. Robinson, and R. Chang,
“RNNbow: Visualizing learning via backpropagation gradients in rnns,”
IEEE Computer Graphics and Applications, vol. 38, no. 6, pp. 39–50,
2018.

[29] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush, “Seq2Seq-Vis: A visual debugging tool for sequence-to-sequence
models,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 1, pp. 353–363, 2019.

[30] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon,
J. Sun, and J. Choo, “RetainVis: Visual analytics with interpretable and
interactive recurrent neural networks on electronic medical records,” IEEE

Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp.
299–309, 2019.

[31] I. Tenney, J. Wexler, J. Bastings, T. Bolukbasi, A. Coenen, S. Gehrmann,
E. Jiang, M. Pushkarna, C. Radebaugh, E. Reif et al., “The language
interpretability tool: Extensible, interactive visualizations and analysis
for NLP models,” in the Conference on Empirical Methods in Natural

Language Processing, 2020, pp. 107–118.
[32] Y. Yang, R. Khanna, Y. Yu, A. Gholami, K. Keutzer, J. E. Gonzalez,

K. Ramchandran, and M. W. Mahoney, “Boundary thickness and robust-
ness in learning models,” in Advances in Neural Information Processing

Systems, 2020, pp. 6223–6234.
[33] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N. Kim,

B. Van Durme, S. R. Bowman, D. Das et al., “What do you learn
from context? probing for sentence structure in contextualized word
representations,” in International Conference on Learning Representations,
2018.

[34] L. Rokach and O. Maimon, “Clustering methods,” in Data mining and

knowledge discovery handbook. Springer, 2005, pp. 321–352.
[35] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,”

Journal of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245,
2014.

[36] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of

Machine Learning Research, vol. 9, no. 11, pp. 2579–2605, 2008.
[37] I. Yahav, O. Shehory, and D. Schwartz, “Comments mining with tf-idf:

the inherent bias and its removal,” IEEE Transactions on Knowledge and

Data Engineering, vol. 31, no. 3, pp. 437–450, 2018.
[38] Y. Tanahashi and K.-L. Ma, “Design considerations for optimizing story-

line visualizations,” IEEE Transactions on Visualization and Computer

Graphics, vol. 18, no. 12, pp. 2679–2688, 2012.
[39] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu, “Storyflow: Tracking the

evolution of stories,” IEEE Transactions on Visualization and Computer

Graphics, vol. 19, no. 12, pp. 2436–2445, 2013.
[40] L. Shi, F. Wei, S. Liu, L. Tan, X. Lian, and M. X. Zhou, “Understanding

text corpora with multiple facets,” in IEEE Conference on Visual Analytics

Science and Technology, 2010, pp. 99–106.
[41] W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong,

“Textflow: Towards better understanding of evolving topics in text,” IEEE

Transactions on Visualization and Computer Graphics, vol. 17, no. 12, pp.
2412–2421, 2011.

[42] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in the Conference on Empirical Methods in Natural

Language Processing, 2013, pp. 1631–1642.
[43] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,

“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in International Conference on Learning

Representations, 2019.
[44] G. Brunner, Y. Liu, D. Pascual, O. Richter, M. Ciaramita, and R. Watten-

hofer, “On identifiability in transformers,” in International Conference on

Learning Representations, 2020.
[45] T. McCoy, E. Pavlick, and T. Linzen, “Right for the wrong reasons:

Diagnosing syntactic heuristics in natural language inference,” in the

Annual Meeting of the Association for Computational Linguistics, 2019,
pp. 3428–3448.

[46] T. Zhang, M. Huang, and L. Zhao, “Learning structured representation
for text classification via reinforcement learning,” in AAAI Conference on

Artificial Intelligence, 2018.
[47] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe,

A. Gesmundo, M. Attariyan, and S. Gelly, “Parameter-efficient transfer
learning for nlp,” in International Conference on Machine Learning, 2019,
pp. 2790–2799.

[48] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
the Conference of the North American Chapter of the Association for

Computational Linguistics, 2018, pp. 2227–2237.
[49] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” in NIPS Deep Learning and Representation Learning Workshop,
2015.

[50] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Advances in Neural Information Processing

Systems, 2015, pp. 649–657.

14

Zhen Li is a first-year Ph.D. student of Soft-
ware School, Tsinghua University. His research
interest is explainable artificial intelligence. He
received a B.S. degree from Tsinghua University
and a M.Phil. degree from Hong Kong University
of Science and Technology.

Xiting Wang is a senior researcher at Microsoft
Research Asia. Her research interests include
explainable machine learning and visual text
analytics. She has published academic papers on
reputable international conferences and journals
in her research area, such as KDD, TKDE, AAAI,
IJCAI, TVCG and VAST. One of her first author
papers has been chosen as the TVCG spotlight
article for Dec. 2016. She is a senior program
committee member of AAAI and is a program
committee member of many top conferences.

Weikai Yang is a second-year Ph.D. student at
Tsinghua University. His research interests lie
in integrating the Machine Learning into Visual
Analytics, which can facilitate the understanding
of large-scale data and make it easier for the prac-
titioners to use the machine learning techniques.

Jing Wu is a lecturer in computer science and
informatics at Cardiff University, UK. Her research
interests are in computer vision and graphics
including image-based 3D reconstruction, face
recognition, machine learning and visual analyt-
ics. She received BSc and MSc from Nanjing
University, and Ph.D. from the University of York,
UK. She serves as a PC member in CGVC,
BMVC, etc.

Zhengyan Zhang is a second-year Ph.D. student
of the Department of Computer Science and
Technology, Tsinghua University. His research
interests include natural language processing
and social computing. He has published papers in
international conferences and journals, including
ACL, EMNLP, and TKDE.

Zhiyuan Liu is an associate professor at Ts-
inghua University. He got his BEng degreeand
his Ph.D. from Tsinghua University. His research
interests are natural language processing, infor-
mation extraction, knowledge graphs, and social
computation. He has published over 80 papers in
international journals and conferences, including
ACM/IEEE Transactions, AAAI, IJCAI, ACL, and
EMNLP. He has also served as PC/Area Chair of
several international conferences, including ACL,
EMNLP, WWW, CIKM, COLING, etc.

Maosong Sun is a professor at Tsinghua Uni-
versity. He got his BEng degree and MEng de-
gree from Tsinghua University, and got his Ph.D.
degree from City University of Hong Kong. His
research interests include natural language pro-
cessing, Chinese computing, Web intelligence,
and computational social sciences. He serves
as a vice president of the Chinese Information
Processing Society, the council member of China
Computer Federation, and the Editor-in-Chief of
the Journal of Chinese Information Processing.

Hui Zhang is an Associate Professor at School
of Software, Tsinghua University, China. She
received her B.Sc. and Ph.D. in Computer Sci-
ence from Tsinghua University, in 1997 and 2003,
respectively. Her research interests include com-
puter aided design and computer graphics.

Shixia Liu is a professor at Tsinghua University.
Her research interests include explainable artifi-
cial intelligence, visual text analytics, and text min-
ing. She worked as a research staff member at
IBM China Research Lab and a lead researcher
at Microsoft Research Asia. She received a B.S.
and M.S. from Harbin Institute of Technology, a
Ph.D. from Tsinghua University. She is a fellow
of IEEE and an associate editor-in-chief of IEEE
Trans. Vis. Comput. Graph.

	Introduction
	Related Work
	Machine Learning for Understanding NLP Models
	Visualization for Understanding NLP Models

	Requirement Analysis
	Survey on Practices of Building Deep NLP Models
	Design Requirements

	DeepNLPVis
	Overview
	Information-Based Interpretation
	Three-Level Visualization
	Corpus-Level Visualization
	Sample-Level Visualization
	Word-Level Visualization

	Case Studies
	Binary Sentiment Classification
	Understanding
	Diagnosis
	Model Comparison

	Multi-Class Classification

	Expert Feedback and Discussion
	Usability
	Limitations and Future Work

	Conclusion
	References
	Biographies
	Zhen Li
	Xiting Wang
	Weikai Yang
	Jing Wu
	Zhengyan Zhang
	Zhiyuan Liu
	Maosong Sun
	Hui Zhang
	Shixia Liu

