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Economic viability of dynamic wireless charging
technology for private EVs
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Abstract—Dynamic wireless charging (DWC), which enables
charging while EVs are in motion, is an attractive charging way.
However, additional installed power tracks underneath the lane
bring a significant concern on its economic viability. This paper
proposes a comprehensive framework to evaluate the economic
viability of the DWC lane for private EVs. The investment of local
power support with renewable energy integration and energy
storage is also considered in the DWC system. Charging choices
of private EVs among multiple charging providers are modelled
to estimate the electricity demand of the DWC system. The grid
impact of the DWC system is studied via a multi-bus AC network.
Moreover, an optimization policy is proposed to maximize the
DWC provider’s profit and minimize the grid impact by adjusting
the charging price and electricity procurement at each horizon.
It is found that the payback period of the DWC system with
the proposed optimization policy is shortened by 25% compared
with the fixed charging price strategy. Even with a tight grid
impact limit, the payback period will not be significantly longer
under the proposed optimization policy. When the efficiency of
the DWC lane increases to 90% and the cost reduces to 50%,
the payback period is shortened by 19% and 22%, respectively.

Index Terms—Electric vehicle, dynamic wireless charging,
renewable energy, energy storage, multi-objective optimization

I. INTRODUCTION

DECARBONIZING transportation is crucial to mitigate

climate change. The sale of fuel-powered vehicles will be

banned in many countries from 2040 [1], and the accelerated

introduction of electric vehicles (EVs) by automakers is an

observable trend. The EV adoption rate highly depends on the

large-scale deployment of charging infrastructure and desired

charging speed. The current plug-in charging method has two

main inherent disadvantages: the limited per-charging distance

and the unavailable moving during charging. To increase the

range, EVs are required to either install a larger size of battery

or stop for being charged frequently.

The dynamic wireless charging (DWC), which enables

charging while the EVs are in motion, can become a potential

alternative method without the aforementioned drawbacks

associated with the plug-in charging method. In the DWC
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system, the energy from the power track embedded under

the road’s surface is wirelessly transferred to the receivers

fitted in moving vehicles. A large amount of EVs could be

charged at the same time when they travel over the DWC

road. For constant-route EVs, DWC can be a more cost-

effective approach than increasing battery capacity in terms of

extending range [2]. In comparison with stationary charging,

DWC is found to be more attractive to the EV drivers even

at a 115% charging price [3]. To achieve long air-gap and

high-power transmission, inductive power transfer technology

is used for the DWC [4]. Besides, power track designs,

vehicle position detections, and power transfer enhancements

have been progressing fast in recent years. Two types of

power tracks have been advised: the lumped track [5] and

the stretched track [6]. A lumped track [7] is made of a

string of coils, whose dimension is similar to the receiver

coil. To simplify the construction and increase the tolerance

of lateral displacement, a thin stretched track [8] is designed

to be much longer than the receiver coil. The vehicle position

detection using the principle of inductive magnetic coupling

is proposed to avoid EV misalignment [9] and unnecessary

switched-on power tracks [10]. Therefore, a stable dynamic

wireless power transfer is maintained at the desired power

level and unnecessary power loss is avoided. To improve the

efficiency of dynamic wireless power transfer, compensation

circuits are designed based on LCC circuit [11], which can

also stabilize the power transfer against the coupling variance

during dynamic charging [12].

To propel the feasibility of EV using DWC technology,

many technical efforts have been progressing fast for long

air-gap and high-power transmission, EV misalignment cor-

rection, and high power transfer efficiency. Inductive wireless

power transfer technology has been validated widely for this

long air-gap and high-power transmission. Two types of power

tracks using inductive wireless power transfer technology [4],

which are lumped track [5] and stretched track [6] have been

developed and validated for EVs being charged dynamically at

a practical air-gap such as 15 cm. A lumped track [7] is made

of a string of coils, whose dimension is similar to the receiver

coil. To simplify the construction and increase the tolerance

of lateral displacement, a thin stretched track [8] is designed

to be much longer than the receiver coil. The vehicle position

detection using the principle of inductive magnetic coupling

is proposed to avoid EV misalignment [9] and unnecessary

switched-on power tracks [10]. Therefore, a stable dynamic

wireless power transfer is maintained at the desired power
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Fig. 1. Dynamic wireless charging system with renewable integration and storage system.

level and the unnecessary power loss is saved. To enhance the

efficiency of dynamic wireless power transfer, compensation

circuits are designed based on LCC circuit [11], which can

also stabilize the power transfer against the coupling variance

during dynamic charging [12].

The aforementioned technical advance propels the industrial

development of EVs adopting DWC. Many EVs using DWC

have been demonstrated by labs, projects and companies

[13] [14] [15], including KAIST, ORNL, VICTORIA project,

FABRIC project, Bombardier, INTIS, and Qualcomm. Tesla

also patented [16] its wireless onboard chargers, which enable

its EVs to be charged wirelessly. The details of these DWC

prototypes are summarized in Table I. The validation of

technical feasibility via prototypes has brought a big step for

DWC towards commercialized EV charging.

Besides technical aspects, economic viability is also of

great importance to the commercialization of DWC for EVs.

The initial investment on extensively deployed power tracks

embedded under roads brings concern about its economic

viability. Public-private partnership is explored to promote the

development of this DWC system. It is found that the 15-

year concession period with a 12.5% return rate for private

investors would be an attractive way [17]. To minimize the

infrastructure cost, optimization via a generic method for

the DWC lane between its length reduction and power level

increase is conducted, which reduced the costs by 34% [18].

To compensate the additional cost of DWC tracks, the position

of the DWC lane and EV battery size are optimized via the

particle swarm optimization method or the generic method.

As a result, the size of EV battery has been reduced by

40% [19] [20]. In comparison with conventional stationary

charging, DWC can be more economic with a 20% total

cost reduction by the optimization between the length of

power tracks and total reduction of EV battery size [21].

Furthermore, optimized deployment of multiple DWC routes

has been discussed via the particle swarm optimization method

to minimize the investment cost of DWCs [22].

However, the aforementioned economic analysis methods

simplify the EV charging choice and only consider constant-

route EVs. The attraction for EVs among different charging

stations and different charging technologies are yet to be

considered. Furthermore, power support limitation of the grid

and investment of local renewable energy and storage are not

included in the economic analysis either.

To fill the gap above, this paper proposes a comprehensive

framework to evaluate the economic viability of the DWC

system for private EVs. This DWC lane with tens of kilometer

length works as a charging station with integration of local

renewable energy and storage system. Its profit comes from

the payment of EV charging. Accommodating a large amount

of EVs for charging results in a heavy load on the grid.

Therefore, EV charging management of DWC is considered

to avoid the immoderate impact on the grid. On the other

hand, the impact of grid power support limitation on the

profit of DWC is evaluated. Moreover, the investment of local

renewable energy and storage systems, which help to power

the DWC lane, is included in the economic analysis. The main

technical contributions of this paper are as follows:

• a multi-objective and multi-horizon optimization policy

is proposed to guide the DWC provider to set charging

prices and manage electricity procurement by jointly

maximizing the profit of the DWC providers and min-

imizing the grid impact.

• electricity demand of the DWC is modelled based on EV

choices among different charging providers. To quantify

the EV choice comprehensively, the following factors are

considered: charging speed, charging price, and travel

time to charging providers.

• the guidance of DWC electricity procurement is proposed

to avoid the immoderate grid voltage variance; this grid

impact of the DWC is assessed using power flow analysis

with multiple constraints including power flow and line

losses.

The paper is organised as follows. In section II, the model

for the DWC system is developed, which includes DWC tech-

nology, storage system, renewable energy generation, profit

of the DWC, and grid impact. Section III quantifies the EV

charging choice among different charging methods at different

locations, which helps to derive the charging demand of DWC.

In section IV, an optimization policy is proposed for the

DWC provider to maximize the profit and minimize the grid

impact. Case studies are conducted in Section V to show the

effectiveness of aforementioned DWC system modelling, and

analyze the economic viability of this DWC system. In section
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TABLE I
DEMONSTRATIONS OF DYNAMIC WIRELESS CHARGING [13] [14] [15]

Organization Power (kW) Efficiency (%) Airgap (cm) Converter’s operation frequency (kHz)

KAIST 22 71 20 20

ORNL 2.2 74 10 22

VICTORIA project 50 83 - -

FEBRIC project up to 200 70-80 - 20-85

Bombardier up to 200 - - -

INTS
60 - 15 35

30 - 15 35

Qualcomm Halo 20 80 - 85

Note: ”-” means the value is not reported.

IV, we summarize the models and economic analysis.

II. FORMULATION FOR DYNAMIC WIRELESS CHARGING

SYSTEM

Comparing to the urban area, EVs on the highway, which

have less traffic fluctuation and relatively stable moving speed,

are reported [23] to be more suitable for DWC. DWC system,

which requires power tracks to be installed underneath one

lane of the highway, is considered in our study, as shown in

Fig. 1. Any EVs of this highway can be driven on the DWC

lane for charging. Large-scale EV charging dynamically on

the lane presents a substantial load, which is powered by the

AC grid and renewable integration. For avoiding intermittence

of the renewable sources, their generation is collected in the

storage system first. At the same time, the storage system

also can procure electricity from the AC grid if necessary.

Therefore, the DWC lane is supplied by both the local storage

system and the AC grid. The charging provider makes a profit

from revenue of DWC and investigates the DWC lane, storage,

and renewable energy generator.

Formulation of the DWC system, as shown in Fig. 1, is

carried out in each planning horizon as five parts including the

electricity demand of DWC, Storage, Renewable generation,

profit and grid impact.

A. Dynamic wireless charging technology

For a moving vehicle on the DWC lane, the electricity

is transferred between receiver coils and transmitter coils

wirelessly based on inductive coupling, as shown in Fig. 1. Re-

ceivers are installed on the EV with an onboard inverter, which

conducts AC/DC conversion to charge the onboard battery.

Power tracks made of transmitter coils are laid under the DWC

lane. For efficient inductive coupling, the track is powered by

the current with tens of kHz [14] via road-side converters.

Each road-side converter in Fig. 1 represents a combination

of power electronic converters as an asynchronous interface

between the electricity network and the power track.

A sensor for position detection is installed on the EV to

drive the EV just above the power track, as shown in Fig. 1.

However, EVs in motion cannot retain the strongest inductive

coupling during the EVs move to the next transmitter coil,

which results in the reduction of wireless power transfer

efficiency. Normally, the efficiency of static wireless power

transfer can reach over 95% [24], while the dynamic wireless

power transfer’s efficiency is reduced to 70-80%. During k-th

horizon, electricity demand (ddwc
k ) of the DWC lane is given

below:

ddwc
k =

devk
ηdwc

, (1)

where devk is the charging demand of EVs using DWC, ηdwc

is the power transfer efficiency of the DWC.

For EVs with charging requirements on the highway, DWC

is not their only option. There are many other charging

technologies under different charging speeds available. The

estimation of devk using DWC is complex and will be formu-

lated clearly in Section III.

B. Electricity exchange of storage system

Services of the storage are normally classified in three cat-

egories [25], including energy support, frequency, and voltage

regulation. In our study, the energy support for the DWC

is considered. The storage is charged from the renewable

energy source and electricity procurement with the AC grid.

Therefore, the electricity exchange within the storage are given

below:

Ek+1 = Ek + ηsd
grid
k + ηsg

ren
k −

ddwc
k

η′s
+ εek, (2)

s.t. SOCmin < Ek+1 < SOCmax, (2a)

−Pmax,dis
s < (ηsd

grid
k + ηsg

ren
k −

ddwc
k

η′s
)/T < Pmax,cha

s ,

(2b)

where Ek is the stored electricity at the beginning of k-th hori-

zon; dgridk and grenk are respectively electricity procurement

from the grid and renewable generation, their power transfer

efficiencies are ηs; η′s is the power transfer efficiency from

the storage to the grid; besides, εek is the process noise of

the energy storage, which follows the Gaussian distribution

with zero mean and variance σe; Pmax,cha
s and Pmax,dis

s are

respectively maximum charging and discharging rate of the

storage; T is the period of one horizon.

The state of charge limitation is imposed to avoid the fast

storage cycle degradation [26], which is shown on (2a). The

charging/discharging speed of the storage is another constraint

to limit the power exchange within the storage, which is given

as (2b).

C. Renewable energy generation

The generation profile of renewable energy is developed

to fulfil the demand of DWC along with the electricity

procurement from the grid. Compared to the Monte Carlo

approach or generation prediction based on monitoring real

data, the statistical method using Markov chain [27], which is

based on historical data, is an effective way at the planning

stage to describe the random behaviour of solar generation.

Thus, the renewable energy generation gren
k+1 at next horizon

is estimated by a transition matrix TM of the Markov chain

and the generation at k-th horizon. The transition matrix is

estimated based on the massive historical data. Suppose there

are S possible states of renewable energy generation at each
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horizon, these S generation states are represented by matrix

gren
k . The dimension of the transition matrix is S × S. The

transition matrix at the k-th horizon is given by:

TMk =








Pk,1,1 Pk,1,2 ... Pk,1,S

Pk,2,1 Pk,2,2 ... Pk,2,S

...
...

. . .
...

Pk,S,1 Pk,S,2 ... Pk,S,S







, (3)

where Pk,s,s is the transition probability of renewable energy

between adjacent states at k-th horizon.

The generation states gren
k+1 at (k + 1)-th horizon can be

estimated in the next iteration:

gren
k+1 = TMk × gren

k . (4)

The generation at k-th horizon grenk is calculation based on

the expectation value of generation states, as shown below:

grenk = E(gren
k ). (5)

D. Profit of dynamic wireless charging provider

The profit made by the DWC lane at each horizon is

formulated for economic analysis. Charging prices pdwc
k is

updated at the start of each horizon. After considering the

maintenance cost at each horizon of the dynamic charging

infrastructure, storage and the renewable source, the profit

(Πk) of the k-th horizon is therefore calculated as:

Πk = pdwc
k devk − pgridk dgridk − Cs(Ek + ηsd

grid
k + ηsg

ren
k

−
ddwc
k

η′s
+ εek), (6)

where dgridk is the electricity procurement from the grid, pgridk

is the day-ahead market price of the electricity procurement

from the grid, Cs is the maintenance cost per MWh.

The total capital cost includes initial investment of DWC

tracks, renewable energy infrastructure and storage system,

which is calculated as below:

Ctotal = Cren+(Cp
dwc + Cc

dwc)Ldwc+CstorageEstorage, (7)

where Ctotal is the total capital cost, Cren is the cost of

renewable energy source,Cp
dwc is the cost of DWC power

tracks per kilometer, Cc
dwc is the cost of construction and

maintenance, Ldwc is the length of DWC lane, Cstorage is

the cost of storage per kWh, Estorage is the total capacity of

storage.

The payback period tpd is the time that the cumulated profit

just goes over the initial investment, which is presented below:

Ctotal =

tpb∑

k=1

Πk. (8)

E. Impact on AC grid

For avoiding an unacceptable impact on the grid, the grid

impact is quantified to guide the electricity procurement at

each horizon. In our study, the induced voltage variation

because of the electricity procurement on each bus of AC

TABLE II
PARAMETERS OF BUSES FOR POWER FLOW CALCULATION

Bus types Slack PV PQ

Number 1 NPV NPQ

Known parameters V δ P V P Q
Unknown parameters P Q δ Q V δ

Number of required equations for each bus 0 1 2

grid is considered as the grid impact. Besides, electricity

procurement can be limited by the maximum allowable grid

impact.

The voltage variation (magnitude V and phase δ) on each

bus in the AC grid, that is induced by the power demand of

the DWC, is normally calculated via the power flow analysis.

It is assumed that the total number of buses is 1+NPQ+NPV

including 1 slack bus, NPQ PQ buses, and NPV PV buses.

Unknown V and δ of all buses are summarized into Table II.

Therefore, solving all V and δ requires NPQ + NPV active

power equations (PV and PQ buses) and NPQ reactive power

equations (PQ buses). The active and reactive power equations

on each bus are given below:

Pi =
N∑

j=i

ViVj [Gij cos(δi − δj) +Bij sin(δi − δj)], (9)

Qi =

N∑

j=i

ViVj [Gij sin(δi − δj)−Bij cos(δi − δj)], (10)

where Pi (including P grid
i ) and Qi are respectively the net

active and reactive power injected at bus i; Gij and Bij are

respectively conductance and susceptance of the ij-th element

of admittance matrix.

These 2NPQ + NPV equations are non-linear, as shown

in (9)-(10), which brings a great challenge to solve directly.

Therefore, the Newton-Raphson approximation method is used

to find the voltage variation, as shown below:

[
∆V

∆δ

]

=







∂P

∂δ

∂P

∂V

∂Q

∂δ

∂Q

∂V







︸ ︷︷ ︸

J−1

[
∆P

∆Q

]

, (11)

where ∆V and ∆δ are respectively the voltage vectors of

magnitude variation and phase variation. ∆P and ∆Q are

the increased power demand from the DWC system. J is the

Jacobian matrix based on the power equations (9-10), each

term is a sub-matrix, as shown below (using ∂P/∂δ as an

example):

∂P

∂δ
=














∂P1

∂δ1

∂P1

∂δ2
. . .

∂P1

∂δNPQ+NPV

∂P2

∂δ1

. . .
...

...
. . .

...
∂PNPQ+NPV

∂δ1
. . . . . .

∂PNPQ+NPV

∂δNPQ+NPV














. (12)
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The power flow calculation within the grid based on (11) is

given below:

Pij =
V 2
i cos(φij)− ViVj cos(δi − δj + φij)

Zij

, (13)

Qij =
V 2
i sin(φij)− ViVj sin(δi − δj + φij)

Zij

, (14)

where Pij and Qij are respectively the active and reactive

power flow on line ij between bus i and bus j. Zij∠φij is

the line impedance between bus i and bus j.

The power loss on each line is calculated as:

PL
ij =

cos(φij)(V
2
i + V 2

j )− ViVj cos(δi − δj + φij)

Zij

+
−ViVj cos(δj − δi + φij)

Zij

, (15)

where PL
ij is the power loss on line ij.

We assume that the DWC system connects to the M

buses and the electricity procurement from these M buses is

formulated as below:

dgridk = Tk ×

M∑

i

(P grid
i ), (16)

where P grid
i is the procured power at bus i and this P grid

i

belongs to Pi, which is the net active power at bus i; Tk is

the period of k-th horizon.

Voltage variation at each bus because of this electricity

procurement are calculated based on (11), and their 1-norm

value is used to quantify the grid impact Λk, as shown below:

min
d
grid

k

Λk =

∥
∥
∥
∥

[
∆V

∆δ

]∥
∥
∥
∥

1

=

∥
∥
∥
∥
∥
∥
∥
∥







∂P

∂δ

∂P

∂V

∂Q

∂δ

∂Q

∂V







[

P
grid
i (dgridk )

∆Q

]

∥
∥
∥
∥
∥
∥
∥
∥

1

, (17)

s.t. Λk < Λmax, (17a)

− Pmax
ij < Pij < Pmax

ij , (17b)

−Qmax
ij < Qij < Qmax

ij , (17c)

PL
ij < PL,max

ij . (17d)

The objective function (17) indicates the grid impact caused

by the power procurement from the DWC system. The voltage

and power constraints are imposed to ensure the healthy

operation of the connected grid. Constraint (17a) limits the

voltage variance in an acceptable range. Power constraints

(17b-17d) guarantee the power flow and losses on each line

are within a safe range.

III. CHARGING DEMAND ESTIMATION OF EVS USING

DYNAMIC WIRELESS CHARGING SYSTEM

There are other charging methods, such as conductive

charging, supported by various providers rather than the DWC

provider. And charging providers can be located in different

areas. In this section, the choice model is proposed to estimate

the number of EVs that choose the DWC provider rather than

other charging providers.

We assume that the n-th EV’s charging demand devn is a

random variable uniformly distributed in the range [Dl, Du],
where DL and Du are the lower and upper limit of charging

demand respectively. The EV charging demand of s-th charg-

ing provider at k-th horizon is estimated as:

dev,sk =
∑

n∈N

devn P s
n, (18)

where N is the total number of EVs that require charging; P s
n

is the possibility that n-th EV selects s-th charging provider;

N denotes the total number of EVs.

A. Choice modeling of EV charging providers

For quantifying the choice, the probability of charging on

the DWC lane is estimated by logit model [27], which is

widely used in the analysis and prediction of a consumer’s

choice from a finite set of choice alternatives. The choice may

be influenced by many factors [28] such as charging price,

charging time, EV owner’s income, travel time to charging

stations, convenience for charging, etc. In our study, travel

time, charging price, and charging speed are accounted for

the choice model to estimate the EV charging demand for the

DWC provider. The utility that n-th EV owner obtains from

s-th charging provider is decomposed as:

Us
n = us

n + εsn (19)

where us
n is the known utility and εsn is the unknown utility.

For defining the observable utility, we assume that the

differences among charging providers include travel time,

charging price and charging time. Therefore, the observable

utility is given below:

us
n = βs

0 − β1tt
rs − β2(p

s)2 + α1(1− e−
α2
ts ) (20)

where ttrs represents the travel time from origin point to the

charging provider. ts and ps represent the charging time and

the retail charging price of s-th charging provider respectively;

shorter charging time implies better charging service expe-

rience and higher utility; a higher retail charging price and

longer travel time result in less utility.

The logit model is obtained by assuming that each εsn
is independently, identically distributed extreme value. The

density for each unobserved component of utility is given

below:

f(εsn) = e−εsne−e−εsn
. (21)

The cumulative distribution is:

F (εsn) = e−e−εsn
. (22)

The EV owner will pick the s-th charging provider which

brings the maximum utility. The logit choice probabilities for

picking s-th charging provider is presented as:

P s
n = Prob(Us

n > U j
n, ∀s 6= j),

= Prob(εjn < us
n + εsn − uj

n, ∀s 6= j),
(23)

where j ∈ S and it represents the j-th charging provider.
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According to (22), P s
n is the cumulative distribution for each

εjn evaluated at us
n + εsn − uj

n. Since each εjn is independent,

this cumulative distribution over all s 6= j is the product of

the individual cumulative distributions, which is given below:

P s
n|ε

s
n =

∏

j 6=s

e−e−(us
n+εsn−u

j
n)

. (24)

εsn is unknown, and the choice probability is the integral of

P s
n|ε

s
n over all values of εsn in (21), which is given below:

P s
n =

∫



∏

j 6=s

e−e−(us
n+εsn−u

j
n)



 e−εsne−e−εsn
dεsn

=

∫

exp



−eε
s
n

∑

j

e−(us
n−uj

n)



 e−εsndεsn. (25)

Define x = e−εsn such that dx = −e−εsndεsn, and εsn ∈
(−∞ ∞) results in x ∈ (∞ 0), (25) is written as:

P s
n =

∫ ∞

0

exp



−x
∑

j

e−(us
n−uj

n)



 dx

=
exp(−x

∑

j e
−(us

n−uj
n))

−
∑

j e
−(us

n−u
j
n)

∣
∣
∣
∣

∞

0

. (26)

(26) can be reformulated as a succinct expression:

P s
n =

eu
s
n

∑

j∈S eu
j
n

. (27)

Therefore, the possibility of choosing s-th charging provider

is described by (27).

B. Estimation of travel time to EV charging providers

The travel time accounted in utility function (20) is esti-

mated via the combined distribution and assignment model

[28]. There are many transportation routes for EVs to travel

from their origin nodes to charging providers, the distribution

and the assignment of the EV traffic on these links are

formulated below:

min
f, q≥0

∑

a∈A

∫ ∑
r∈R

∑
s∈S frs

a

0

tta(f)df

+
1

β1

∑

r∈R

∑

s∈S

qrs(ln qrs − 1)

+β2(p
s)2 − βs

0 − α1(1− e−
α2
ts )), (28)

s.t.
∑

a∈A

frs
a = qrs, (28a)

∑

qrs = N, (28b)

where R is a set of EV origins, indexed by r, S is a set of

charging providers (destinations), indexed by s; r − s routes

can be different combination of transportation links A, indexed

by a; qrs represents the total origin-destination flow from r to

s, fa is the traffic flow on link a, tta is the travel time of link

a.

The objective function (28) is constructed to satisfy the

minimum overall travel time on all links and maximum overall

EVs’ utility [29]. Therefore, EV equilibrium and the multino-

mial logit destination choice assumption are guaranteed. EV

equilibrium requires that travel times in all used r−s routes are

equal and less than those that would be experienced by a single

vehicle on any unused route. Multinomial logit destination

choice assumption requires qrs/N = P s
n. (28a) ensures the

EV flow conservation at each node, including the origin and

destination nodes; and (28b) restricts the total trips originated

from node r to be equal to total number of EVs at that location.

IV. OPTIMIZATION POLICY FOR CHARGING PRICE AND

ELECTRICITY PROCUREMENT

At each horizon, charging price and electricity procurement

are decided by the DWC provider in order to pursue generous

profit and low grid impact. Accordingly, we propose this

optimization policy function that incorporates both aims of

maximizing its profit and minimizing the grid impact at each

horizon, which is given below:

Uk = max
Xk

{E(Πk),E(−Λk)}, (29)

s.t.







E(Πk) ≥ 0,
pk ≥ 0,

dgridk ≥ 0,
m ≤ mmax,
Λk ≤ Λmax,

0 ≤ Ek + ηsd
grid
k + ηsg

ren
k −

ddwc
k

ηs′
+ εek ≤ E,

where Xk = [pdwc
k , dgridk ] is the vector of decision variables

(charging price and grid demand), and E(.) represents the

expectation operation, mmax is the maximum number of EVs

on DWC lane; profit, charging price and grid demand are

required to be positive; number of EVs using DWC and the

grid impact are limited within mmax and Λmax respectively;

electricity transfer in the storage are limited within [0 E],
where E is the capacity of storage.

In this policy function, profit Πk and grid impact Λk are

defined in Section II (6) and Section III (17). To explain

clearly our formulated DWC system, the process flow from

charging price and electricity procurement to profit and grid

impact is drawn in Fig. 2(a). Basically, the charging price of

DWC determines its attractiveness to EVs over other charging

providers, and simultaneously affects the charging demand of

the DWC service. This charging demand is fulfilled by the

electricity from the storage, renewable energy generation, and

grid electricity procurement. However, a large amount of elec-

tricity procurement will increase grid impacts. Therefore, we

solve the optimization problem to obtain the policy function

that determines retail DWC price and the appropriate amount

of procured electricity at each horizon, in order to maximize

the profit and minimize the grid impact. Furthermore, global

optimization is also included across multiple horizons.

For global optimization, DWC provider ultimately attempts

to maximize his aggregated utility across multiple horizons
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subject to several constraints (29) through its decision vari-

ables Xk, which is formulated below:

(X∗
1,X∗

2, ...,X∗
k) = argmax

X1,...,Xk

{

K∑

k=1

Uk}. (30)

A multi-objective and multi-horizon optimization, which is

formulated by (29) and (30), is required to be solved. For

maximizing aggregated utility, dynamic programming as a

global optimization algorithm is applied. At each horizon, a

multi-objective problem, that is how to optimize the trade-off

between two competing objectives of profit and grid impact, is

solved by deriving the Pareto frontier of (29). The algorithms

for the multi-objective and multi-horizon optimization are

explained below.

A. Algorithm for multi-objective optimization at each horizon

The approaches for multi-objective optimization are gen-

erally based on two algorithms: scalarizing-based algorithm

and evolutionary algorithm. The scalarizing-based algorithm

converts multiple objectives into a parametric single-objective

function, such as weighted-sum approach and ǫ-constraint ap-

proach [30]. Although the conversion simplifies the optimizing

process, the distortion may appear in its derived Pareto frontier.

Complete Pareto frontier can be explored based on an

efficient and massive search using genetic algorithms, one of

which is named non-dominated sorting genetic algorithm II

(NSGA II) [31] is used in our study. Elitism is adopted in

NSGA II to speed up the convergence process and prevent the

loss of good solutions. A sufficient number of generations are

generally applied as a termination criterion in order to achieve

the full convergence to the Pareto frontier. It is validated that

500 generations [31] [32] are effectively to determine the

complete Pareto frontier.

The optimization process of NSGA II is drawn in Fig. 2,

the objective function is (29). Firstly, 2N population Xk are

generated based on generic algorithm via selection, recombi-

nation and mutation. Accordingly, 2N Uk are calculated from

(29). After non-dominant and crowding distance sorting, N Uk

are selected. The process will be terminated, if N Uk are all

non-dominant and evenly distributed. Therefore, the set of N

Uk is the Pareto frontier of objection function (29), noted as

PFk.

We assume that the DWC provider pursues the maximum

profit within the grid impact limit (allowed maximum grid

impact Λmax) at k-th horizon, which is given below:

U∗
k = max

Xk

{PFk|Λ≤Λmax
}. (31)

Therefore, the selection policy to find the decision variables

from the Pareto frontier PFk is given below:

X∗
k = argmax

Xk

{PFk|Λ≤Λmax
}. (32)

Although it has been validated in Section V-B that this

NSGA II is a suitable method for Pareto frontier exploration,

it should be noticed that many other methods could be ap-

plied for this multi-objective optimization, such as Differential

TABLE III
CHARGING RATINGS AND PRICE OF DIFFERENT CHARGING SYSTEMS

Description Notation Value

Conductive charging [34] [35]

Slow charging (3.7 kW) C1 0.13 kWh/$

Fast charging(7 kW) C2 0.18 kWh/$

Fast three-phase charging(22 kW) C3 0.23 kWh/$

Rapid charging(50 kW) C4 0.31 kWh/$

Ultra-rapid charging(150 kW) C5 0.44 kWh/$

Wireless charging

DWC (80 kW) C6 0.31-0.69 kWh/$

Capital cost [21] [36] [37]

Procurement price from AC grid Cgrid
k 0.131 0.212 $/KWh

Solar panel cost Cren 2250 $/kW

Solar panel capacity Esolar 25 MWh

DWC power track Cp
dwc, Cc

dwc 500, 50 k$/km

Storage cost Cstorage 145 $/kWh

Storage capacity Estorage 100 MWh

Maintenance cost Cs 1.3 $/MWh

Parameters of DWC model

DWC power transfer efficiency ηdwc 0.7

Length of DWC lane Ldwc 50 km

Charging rating of DWC Pdwc 80 kW

EV charging requirement (kWh) DL-Du 0-50 kWh

Coefficient of (20) α1 3

Coefficient of (20) α2 0.3

Coefficient of (20) β0 1

Coefficient of (20) β1 5

Coefficient of (20) β2 10

Power transfer efficiency of storage ηs η′s 0.9

Grid limit < Λmax 0.16

1. Night (0.00am-5:00am) price. 2. Day price

Evolution, Particle Swarm Optimization, and Ant Colony

Optimization.

B. Algorithm for multi-horizon optimization

For multi-horizon optimization, stochastic dynamic pro-

gramming [33] based on tail policy is applied to solve (30).

Based on the stochastic dynamic programming, the recursive

process of (30) is presented as a Bellman equation:

Fk = max
X∗

k

{Uk + Fk+1}. (33)

The multiple horizon optimization is to solve the backward

recursive process of (33) from K-th horizon to 1st horizon.

In each horizon, X∗
k is calculated via the multi-object opti-

mization. Therefore, (30) is solved when the recursive process

reaches to 1st horizon.

The full process of the stochastic dynamic programming is

presented in Fig. 2. In each horizon, the model of DWC lane

with storage and renewable energy is built based on Section II

and III. The decision variables Xk include the charging price

pdwc
k and electricity procurement dgridk . The outputs of the

model are the profit and grid impact in the horizon. Besides

the model of DWC system, the multi-objective optimization is

enabled for finding the desired decision variables X∗
k, which

brings the maximum utility to the charging provider. The

loop from last the horizon K to horizon 1 is carried out to

achieve the multi-horizon optimization. Finally, the optimized

profit and grid impact are carried out in each horizon and all

horizons.
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Fig. 2. Stochastic dynamic programming for formulation of optimization policy.

V. CASES STUDY

A full map of the transportation system and electricity grid

is presented in Fig. 3. We assume that there are another 5

charging providers covering from slow charging to ultra-fast

charging that are available for EVs except for DWC, denoted

as C1-C6. A 50-km DWC lane (C6) is deployed on the

highway. Storage units and solar panels are evenly deployed

at every 12.5 km along with the DWC lane. IEEE 30-bus test

case [38] is used as the AC grid to find out the grid impact

from the DWC lane. Travel time tta(f) on the highway is half

of that on transportation routes at the same link flow.

The charging provider makes a profit from the revenue of

DWC system and investigates the DWC lane, storage, and

renewable energy generator. In a wholesale real-time electric-

ity market, electricity is sold on an hourly basis. Therefore,

our horizon economic analysis is conducted in each hour, and

multi-horizon optimization repeats every K=24 horizons. The

grid impact limit, which is the allowed maximum grid impact,

is set at 0.16. The whole year’s profit of the DWC lane covers

the variance of renewable energy generation and car flow.

The car flow data is collected from Highways England [39],

which is drawn in Fig. 4. We assume that the car flow data

can represent future EV flow data. Solar energy is used to

represent renewable energy and its historical data is collected

from National Grid [40]. We assume that 20% of EVs on

the highway require charging. All the parameters of the DWC

system are summarized in Table III.

The case studies are organised below. Results of DWC sys-

tem model are presented in Section V-A including solar energy

generation estimation and choice distribution among different

charging providers. Section V-B shows the effectiveness of

optimization policy for this DWC system to maximize the

profit. Section V-C presents the economic of this DWC system

via the daily profit performance and overall payback period.

A. Performance of developed DWC system model

1) Solar power generation estimation: We forecast the

capacity factor of solar power, which is the ratio of energy

generated over a horizon divided by the installed capacity, as it

is convenient for comparing power generations among various

Fig. 3. Grid and transportation system with DWC lane

Fig. 4. Car flow of a week on M25 J12-13 highway

installed capacities. Then, capacity factors of solar power are

divided into S states. And we define that every 5% of capacity

factor is a state for the Markov Chain. The transition matrix

TMk is estimated from the historical UK data [40] of solar

power generation based on Section II-C.

By using derived TMk, solar energy generation based
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Fig. 5. Solar generation based on Markov chain modelling

Fig. 6. Choice possibility under various DWC prices

Markov Chain modelling (4) is simulated. An example of one

week’s generation in June is shown in Fig. 5(a). It follows the

trend of expected solar generation of June in Fig. 5(b) and

inherits the random behaviour of historical solar generation

thanks to the Markov Chain modelling. The overall yearly

generation is shown in Fig. 5(b), which uses expectation value

to present the overall trend of solar energy generation. It is

found that solar panel generation reaches over 60% during

11:00-13:00 in May-July; while, the maximum generation

in October-December is less than 30%, which will impose

great pressure to the AC grid due to the massive electricity

procurement from the DWC lane.

2) Charging price impact on the choice among different

charging types: For the EVs on the highway requiring charg-

ing, 5 additional conductive types of charging providers are

available in terms of charging price and charging speed,

as shown in Table III. The choice possibility over these 6

charging technologies including DWC is developed via the

logit model in Section II. How DWC pricing influences the

EV charging choice is studied by changing the price from

0.31 to 0.75 $ and results of choice possibility distribution are

drawn in Fig. 6, where C6 is DWC and more details about

charging types C1-C6 are given in Table III.

Overall, drivers are more willing to pick the chargers C4-C6

with high charging speed. Furthermore, it is found that DWC

is more attractive if the charging price is below 0.57 $/kWh.

Fig. 7. Profit and grid impact Pareto frontier using NSGA2 on Monday
December

As shown in Fig.6, the charging rating of DWC is smaller

than ultra-rapid charging C5, more drivers still choose DWC

even the charging prices are the same at 0.44 $/kWh. DWC

is not affordable at 0.75 $/kWh for most of the drivers, which

leads to less than 10% of drivers selecting DWC. It is found

that DWC pricing has a significant influence on EV drivers’

choices.
The highway integrated with the DWC lane has a large

capacity for car flows. Travel time on this highway is not

significantly delayed by a heavy EV flow. Our study suggests

that further reducing the charging price of DWC attracts up to

60% EVs using DWC lane at 0.31 $/kWh, as shown Fig. 6.

However, price elasticity of the DWC lane in the urban area

is different from that in the above situation. The urban route

has lower car flow capacity and may cause a long travel time

for the massive EV flow. For a DWC lane in the urban area,

reducing its charging price may not effectively attract massive

EVs due to the long travel time on urban routes. Furthermore,

in that real urban traffic, it is needed to consider more factors

such as traffic fluctuations and congestions, when modelling

the travel time and estimating demand of DWC charging in

Section III-B.

B. Performance of the optimization policy for DWC system

1) Multi-objective optimization between profit and grid

impact: For presenting the multi-object optimization at each

horizon, the trade-off between profit and grid impact at 8:00

and 12:00 of Monday December is drawn in Fig. 7. The typical

daily solar generation of December and car flow on Monday, as

shown in Fig. 4 and 5, are used for validating the optimization.

As shown in Fig. 7, the grey area is all possible values of profit

and grid impact calculated from the full range of DWC price

and electricity procurement. Its Pareto frontier is accurately

tracked by the proposed NSGA2 algorithm, as shown in both

Fig. 7(a) and Fig. 7(b) (blue dots). It is found obviously that

the higher profit results in severer grid impacts along their

Pareto frontier.
Based on the proposed policy function (31-32), maximized

profit points on the Pareto frontier are tracked within various

impact grid limits. By comparing Fig. 4 and 5, it is also

found that the grid impact at 8:00 is comparatively larger

than that at 12:00 with the similar maximized profit. As the

solar panel generates insufficient energy for the peak flow in

the morning, the demand for electricity procurement increases,

which imposes a higher burden on the grid.
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Fig. 8. Comparison between multi-horizon optimization using stochastic
dynamic programming and greedy strategy

Fig. 9. Impact of December’s and May’s solar generation on the DWC system

2) Multi-horizon optimization validation: The advance of

multi-horizon optimization strategy is presented by comparing

to the greedy strategy, which maximizes the profit of the

current horizon without considering the future. The multi-

horizon optimization strategy uses a stochastic dynamic pro-

gramming algorithm as explained in Section IV-B Both strate-

gies use the same multi-object optimization and their results

are shown in Fig. 8. It is found that the greedy strategy

earns more profit at an early stage of the day and less profit

after 7:00 am. This is because that the stored electricity is

oversupplied during the EV peak time in the morning by

greedy strategy without considering the remaining hours. The

total daily profit made by multi-horizon optimization strategy

and greedy strategy is, respectively, 30,661 $ and 27781

$. The multi-horizon optimization strategy makes more daily

profit because it exploits the information of the whole day

including generation estimation of renewable energy and EV

demand estimation. Accordingly, the stored electricity is well

distributed to maximize the daily profit.

C. Economic performance of the dynamic wireless charging

system

1) Daily profit performance of the dynamic wireless charg-

ing system with difference solar generation: Solar generation

varies significantly among different months especially between

December and May, as shown in Fig. 5. Their solar generation

impacts on DWC system are compared and the results are

shown in Fig. 9. The insufficient electricity supply from solar
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Fig. 10. Payback period under various factors.

TABLE IV
DETAILED VALUES OF PAYBACK PERIOD UNDER VARIOUS FACTORS

Facor Payback period (Year)

No optimization policy Grid impact limit

0.16 10.1

0.11 11.4

0.07 12.5

With optimization policy

Grid impact limit

0.16 7.9

0.11 8.1

0.07 8.4

DWC power transfer efficiency

70% 7.9

80% 7.0

90% 6.5

DWC power track cost

100% 7.9

75% 7.1

50% 6.3

EV proportion

100% 7.9

75% 9.3

50% 12.1

panels in December, as shown in Fig. 5, makes the DWC

system procuring more electricity from the grid. However, a

large portion of electricity procurement is curtailed to maintain

the grid impact within the proposed limit of 0.16, as shown

in Fig 9 (a). Therefore, the DWC system makes less profit

from 5:00 to 19:00 in December due to its insufficient solar

energy supply and grid impact limit, as shown in Fig. 9 (b).

The total aggregated daily profit in December is much lower

than that of May, which are respectively 30,660 $ and 53,486

$. The same Monday EV flows are applied in December and

May respectively. It is found that more DWC demand of May

is regulated from 5:00 to 19:00 by the DWC optimization

policy to make more profit because of a larger amount of

solar energy generation in May, as shown in Fig. 9 (c). For

attracting more DWC demand in May, its DWC price, which

is regulated by the DWC optimization policy, is lower than

the price of December, as shown in Fig. 9 (d).

2) Sensitive analysis for payback period: Various factors

including grid impact limit, DWC efficiency, DWC power

track cost, and EV proportion are analyzed to identify their

contribution to the payback period of the overall DWC system,

and the results are presented in Fig. 10 or in Table IV. The

payback period is calculated based on the yearly profit of

the DWC system, which covers the variance of weekly EV
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flow (Fig. 4) and monthly solar generation (Fig. 5). If no

optimization policy is applied, the charging price is fixed at

0.5 $/kWh.

When a grid impact limit of 0.16 is applied, the payback

period without optimization policy is 10.1 years, while it is

shortened to 8 years by using optimization policy as shown

in Fig. 10 or Table IV. Moreover, as the grid impact limit is

tightened to 0.07, the payback period without optimization

policy increases by 20%, while the payback period with

optimized strategy only rises by 4%. EVs would be gradually

dominant in the future vehicle market, it is well worth finding

out how the increasing EV proportions affect the economics

of the DWC system. The results of this relevant economic

analysis are shown in Fig. 10 and Table IV. It is found that

when the EV proportion increases from 50% to 100%, the

payback period is shortened from 12.1 years to 7.9 years. In

Fig. 10, we can also see that when the efficiency of DWC

improves to 90%, the payback period is shortened from 7.9 to

6.5 years. Also, as the cost of DWC cuts to 50%, the payback

period is reduced to 6.3 years.

VI. CONCLUSION

A comprehensive framework to evaluate the economic via-

bility for the DWC system, including a DWC lane, renewable

integration, and storage system, has been proposed and vali-

dated in this paper. It is shown via the proposed choice model

that EV drivers prefer the quick charging speed if the charging

price is below 0.56 $/kWh. Within this charging price range,

the DWC is more attractive over conductive charging because

of its capability of non-stop charging. It has been validated

that the proposed multi-objective optimization policy can track

the Pareto frontier of the DWC profit and the grid impact

accurately. Moreover, more solar generation helps to produce

the higher profit of the DWC system. For example, compared

to December, daily profit in May is 180% higher.

With the multi-objective and multi-horizon optimization

policy, the payback period is around 8 years, while it is

10.1 years with a fixed charging price strategy. By using this

optimization policy, the tight grid impact limit does not have

a significant impact on postponing the payback period such

as 4%, while the DWC system with a fixed charging price

strategy requires 20% postponing the payback period. If the

efficiency and the cost of the DWC lane respectively increase

to 90% and reduce to 50%, the payback period is shortened

to 6.5 years and 6.3 years.
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