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Abstract：Energy consumption prediction models for large-scale building reveal energy use pattern, 

which play an irreplaceable role in formulating energy policy and developing building industry. The 

existing review papers on energy consumption models for large-scale building mainly focus on 

approaches for building energy consumption prediction, but rarely summarize models used to 

predict energy-saving effect of large-scale buildings retrofit. Therefore, this paper reviews the 

energy consumption models for predicting energy saving potential of building in large-scale. The 

advantages, disadvantages and accuracy of the models have been analyzed, and future research 

direction of these models have been discussed. The results reveals three types of approaches, 

including data-driven, physics-based, and hybrid approaches which can be used for predicting 

energy saving potential in large-scale buildings. Some problems have been solved in the existing 

models, such as building physical parameters not included in data-driven models, lack of geometric 

parameter and time-consuming requirement for input parameters in physical-based model. However, 

there are research gaps in the prediction accuracy and prediction range which requires attention to 

be given to: 1) model verification; 2) model rebound effect; 3) dynamic prediction of energy saving 

potential; 4) residents’ willingness to retrofit in the model. This paper promotes the development of 

models for predicting energy-saving potential for large-scale buildings and help to formulate 

appropriate strategies for the retrofit of existing buildings. 

Keywords: Large-scale building models   Energy-saving effect   Physical-based   Data-

driven   Building retrofit 

 

1 Introduction  

Energy and environmental issues are important obstacles hindering the sustainable development of 

society. As the largest energy consuming sector, buildings consume over 1/3 of the overall energy 

consumption every year, and about the same proportion of associated greenhouse gas emissions.[1]. 

Meanwhile, with the continuous growth of economy, urbanization and population, building energy 

consumption will continue to increase. For example, it is expected to increase by two to three times 

by 2050 in the BRIC countries (Brazil, Russia, India and China) [2]. 

Therefore, building energy efficiency has become the key for achieving energy saving and low-

carbon development globally. Several countries have set up the building energy saving goals. For 

example, the UK has set a target to reduce current carbon emissions levels by up to 66% by 2050 

[3]. The Swiss Energy Strategy 2050 projects 64% reduction in heating energy demand [4]. 



American government has proposed greenhouse gas emissions reduction of 26~28% by 2025 

compared to 2005 emissions level [5]. Chinese government has promised carbon dioxide emissions 

up to peak in approximately 2030 [6]. However, the influence of new buildings on building sector 

energy consumption is restricted due to a large number of existing buildings with high energy 

consumption [7]. For example, in the EU new buildings built after 2009 are consuming 30% to 60% 

less than buildings built before 1990 [8]. Therefore, it is very necessary to retrofit existing buildings 

for improved energy performance, which not only reduces the energy-intensity of the building, but 

also improves the comfort of the occupants. 

Energy retrofit of the building stocks have been considered as one of the main approaches with 

relatively low cost and high rate of return for achieving sustainable development [9]. Many countries 

or regional governments，such as Danish and New York City .etc. [10,11], have begun to promote 

energy retrofit of building in large-scale. The building in large-scale here refers to buildings of 

regional scale, including neighborhood, district and cityetc. Identifying retrofit measures is one 

major phase of retrofit process. In this phase, reliable estimation and quantification energy saving 

potential are essential by using appropriate prediction model [12]. For a single building, developing 

physical model of building and quantifying the energy saving potential of retrofit measures using 

simulation engine, such as EnergyPlus, Design Builder, IESVE etc is common approach. However, 

the number of buildings in large-scale has been upgraded from single buildings to hundreds of 

thousands, or even building stocks at the national level. Therefore, it is complex to develop physical 

models of all the buildings in the study area. This makes prediction of energy saving potential for 

existing large-scale buildings a big challenge.  

Currently, many energy consumption prediction models on large-scale buildings have been 

developed. At the same time, some papers have comprehensively reviewed the existing prediction 

models, as shown in Table 1. These review papers mainly focus on prediction approaches of energy 

consumption for buildings in large-scale, but rarely summarize models used to predict energy-

saving effect of buildings retrofit in large-scale. Some models for predicting energy consumption 

cannot predict the energy-saving effect of building retrofit due to certain building characteristic 

parameters not being included. Therefore, this paper will review the energy consumption models 

for predicting energy saving potential of large-scale building retrofit. The advantages, disadvantages 

and accuracy of the models have been analyzed, and future research direction of these models has 

been discussed. This paper has a role in promoting the development of prediction models for large-

scale building energy retrofit, to boost the retrofit for the existing buildings. Prediction models for 

large-scale buildings retrofit will be introduced in the second section, and in the third section, we 

will discuss characteristics, prediction accuracy of models and the influence of residents' 

willingness to renovate in the model, conclusions are given in the last section. 

Table1 Summary of energy prediction models review 

Publication year Research scale Research content 

2008[13] Residential sector Reviewing modelling techniques  

2010[14] Existing building 

stock 

Comparing several bottom-up models for building stocks with the 

respect to their purpose, strengths and shortcomings 

2011[15] --- Reviewing multiple energy prediction modelling approaches, 

including time series, regression, autoregressive integrated 

moving average, fuzzy logic, genetic algorithm, and neural 

networks. 

2012[16] Building Reviewing recently developed models including physical-based, 

statistical and artificial intelligence methods. 

2013[17] --- A detailed review and discussion of simulation methods including 



physical statistical and hybrid method. 

2015[18] Urban Reviewing the simulation method and workflows of bottom-up 

building energy modeling. 

2017 [5] Urban Reviewing the basic workflow and applications of physics-based 

urban building energy use models. 

2018[19] Building stock Summarizing the characteristics of models for prediction energy-

saving effect using archetype 

2018[20] Urban and rural-

level  

Highlighting large-scale energy demand and data-driven 

prediction models 

2019[21] Building Reviewing data-driven building energy prediction models  

2020 [22] Large-scale Reviewing building energy prediction techniques for large-scale 

buildings 

 

2 Energy-savings prediction for building retrofit in large-scale  

To estimate the energy-saving effect of buildings in large-scale, models need to have the ability to 

estimate the energy consumption at the pre and post retrofit phases. Energy consumption of pre 

retrofit phase can be estimated using multiple approaches, such as multiple linear regression, 

archetypes approaches, whereas estimating post retrofit building energy consumption requires that 

impact of new technologies and retrofit measures on building energy consumption should be 

evaluated. Therefore, not all prediction models of energy consumption can be used to predict 

energy-saving effect. Generally speaking, approaches estimating the energy-saving effect of 

buildings in large-scale can be broadly classified into three categories: data-driven, physics-based, 

and hybrid approaches[23], as shown in Figure 1. 
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Fig.1 Approaches for estimating the energy-saving effect of building in large-scale  

2.1 Data-driven approaches 

Data-driven approaches are also called black-box based approaches[22]. Assuming a mathematical 

relationship exists between inputs (e.g. heat transfer coefficient of envelope) and outputs (e.g. space 

heating energy consumption), the approaches utilize large datasets, such as Building Performance 

Database of the United States or energy performance certificates[24], provided by public authorities 

(utilities and energy companies. etc.) to developed energy models. The models mainly correlate 

energy consumption (outputs) and influencing variables (inputs). To predict energy saving potential 

for large-scale buildings using data-driven approaches, buildings in a region are often divided into 

several types, and the total energy-saving effect for building in large-scale is obtained by 

aggregating the energy saving of all types of buildings in a region. Data-driven models of a type 

building for retrofit analysis based on large datasets can be presented as shown in Figure 2. In upper 



side of Figure 2, process of estimating energy consumption for buildings in large-scale is depicted. 

The approach which are depicted in the bottom side of Figure 2, is used to assess the impact on 

energy consumption due to adopting retrofit measure or renewable/alternative energy technology. 
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Fig.2. The steps involved in developing data-driven model for buildings retrofit 

A common feature of data-driven models is to identify predictors. However, each model contains 

different predictors, as it was developed based on different datasets including different information. 

This means that some variables affecting energy consumption were not considered as predictors in 

the model, because relevant information is not or rarely included in the database, which lead to the 

model prediction inaccuracy. And for this reason, it is meaningless to compare the models developed 

by different studies. Unfortunately, none of the studies has solved how will the prediction results 

change when models ignore some factors affecting energy consumption of buildings. Therefore, 

increasing availability of building data and identifying predictors is the key to developing data-

driven models, which directly determines the accuracy of the model. 

In addition, there is limitation for data-driven models due to models trained and tested using datasets 

from the same sample space. The model can run the risk of being inaccurate when new inputs is out 

of the parameter space of the training and test inputs. This is a general limitation of building energy 

consumption prediction at pre-retrofit phase, whereas there is a grave limitation for post-retrofit 

buildings due to the absence on post-retrofit buildings performance data in the study area. Using 

post-retrofit datasets to train models and learn from representations of pre- and post-retrofit data can 

provide a solution to solve this. However, the lack of scalable measurement techniques limits the 

development of such data [25].  

The most immediate measure for model validation is the actual energy consumption. Energy 

consumption of pre retrofit buildings can be verified using actual energy consumption from dataset, 

whereas the validation mainly focuses on an aggregated level (the average energy use intensity level 

for each type of building), which makes it ignore gap differences between buildings. Validation of 

energy consumption for post retrofit buildings is difficult due to lack of related data.  This is also 

a major challenge for all types of modelling approaches.  

The greatest advantage for data-driven models is that the occupant behavior that has a significant 

impact on building energy consumption can be considered [26]. Its simple application is also 



considered a great advantage, and is highly rated for this reason [27]. 

For application, not all data-driven models can predict energy saving potential of buildings, except 

taking characteristics parameters of buildings as predictors. In other words, data-driven model can 

predict the energy-saving effect of parameters that are considered as predictors. Therefore, 

prediction ability of data-driven models for energy saving potential is limited. With the development 

of large databases in recent years (data on building energy consumption, building systems, physical 

characteristics, equipment systems, personnel behavior, and socio-economic factors are available) 

the availability of building characteristics parameters and energy databases has become more and 

more widespread, which means that data-driven models will be an effective method to estimate the 

energy saving potential for building retrofit. There have been significant effort to develop multiple 

linear regression and artificial neural network models to predict the energy-saving effect for large 

scale buildings [28]. The characteristics and applications of each methods will be described as 

follows. Current research have also shown data-driven approaches have the high potential for the 

analysis building retrofit. In the absence of post-retrofit data and the retrofit measures implemented, 

some studies focused on benchmarks developed based on data-driven approaches using the collected 

data, which provide guidelines for regional energy retrofit policies. By comparing benchmarking 

buildings within the district and nationally,  , it helps to identify suitable candidates for renovation. 

2.1.1 Multiple linear regression 

Multiple linear regression was first introduced by Galton in 1886 [22], which was used to explain 

the linear relationship between multiple independent variables (contribution inputs) and dependent 

variables (output). The model can be expressed as:： 

 1 1 2 2 p py I x x x   = + + + + +   (1) 

Where y represent dependent variable (energy consumption); I represent constant; xi refers to the 

input variables (predictors, i=1,2,3,….p ); βi represent the regression coefficient of the input 

variables; ε represent the random error (to measure the random difference between the y variables 

for all buildings and the corresponding prediction for a specific building) and remaining errors [29].  

The coefficients of predictors for multiple linear regression models reflect the contribution of 

predictors on energy use intensity. However, there are different coefficients for the same predictor 

in different models due to the different predictors included, which makes it meaningless to compare 

the models developed by different studies. In addition, the correlation of the predictors in the model 

will lead to the confusion effects of the model. It reduces prediction accuracy of energy saving 

potential. Another drawback of the multiple linear regression model is overfitting, which leads to 

the prediction inaccuracy of the model. Many shrinkage methods for multiple linear regression have 

been developed to improve the least- squares estimator by adding constraints on the value of 

coefficient. 

The peer group including 926 commercial buildings based on the U.S. Department of Energy 

Building Performance Database (870,000 buildings performance data) was determined to develop 

a multivariate linear regression model [30]. Occupant density, operating hours, year of construction 

and building typology etc. have been identified as predictors. The predicted results are shown in 

Figure 3. Energy saving potential of two retrofit measures have been estimated using this model：

change the window walls to concrete and change the windows from single to double glazing. The 

model provides information for the stakeholders of retrofit to make decisions on retrofit investment. 

However, the authors also point out that energy saving potential of some measures are obviously 



inaccurate, such as from T12 to T8 fluorescent lights, for which negative saving appear. Lack of 

data is the main reason. The U.S. Department of Energy, Building Performance Database only 

represents less than 1% of the building stocks, and only about 5% of building contain building 

equipment information. In the future, with the rapid increase in the availability of building data, it 

is possible to obtain high-quality data to provide reliable and accurate estimation for energy saving 

potential using multiple linear regression model. 

In the reference, the authors tried to explain the reasons for determining the predictors: considering 

physical intuition, variables correlation, and data availability. For example, it is intuitive that climate 

will impact building’s energy use intensity. Operating hours is correlated with energy use intensity. 

Therefore, climate and operating hours have been considered as predictors. In addition, some 

variables, such as the number of air conditioners, temperature setting.  etc. are not identified as 

predictors due to not being included in the database. In addition, the model also solves the problem 

of confounding effects of multiple parameters by increasing the number of predictors. 

Although the authors tries to verify the model with the actual measured building energy intensity, 

the model fits well in the overall average energy use intensity. However, in terms of the individual 

building level, it overestimates the energy consumption of buildings with low energy use intensity 

and underestimates the energy consumption of buildings with high energy use intensity. An 

important improvement that needs to be made to verify the energy saving potential of pre and post 

building retrofit using detailed building information and energy intensity.  

A GIS-based multiple linear regression model developed by Mastrucci et al. was introduced to 

estimate energy saving potential of building stocks at city scale [31]. The energy saving potential of 

retrofit measures, including window replacement, envelope insulation, heating and ventilation 

system upgrade) have been analyzed for Rotterdam. The main advantage of this model is for simple 

and quick energy consumption prediction in large-scale. Compared with physical-based model, lots 

of data input or assumptions are not required. However, the model paid no attention to the change 

of occupants’ behaviour and the state of the building retrofit. 

Streicher et al. have estimated the space heating energy consumption for Swiss dwellings built 

before 2000 by the Swiss residential energy model. Great energy saving potential for envelopes 

retrofit in large-scale has been discussed and been confirmed theoretically, such as heating energy 

consumption reduction up to 84% in theory through building envelope retrofit. However, actual 

energy-saving effect will be lower than expected from the Swiss residential energy model due to 

technical or social constraints [32]. 

Howard et al. [11] estimated the energy intensity of the New York City through a GIS-based multiple 

linear regression model. The building function was selected as variable in the model, ignoring the 

impact of building form and age. The heating, cooling and hot water energy intensity estimated can 

be viewed intuitively on the GIS map. Therefore, it has been identified to be an effective tool 

formulating energy plans for city managers. 



 

Fig.3. Coefficients of regression model [30] 

2.1.2 Artificial neural network 

Artificial neural network ( ANN) is an algorithm mathematical model，which use a structure similar 

to the connection of brain synapses to process information. The processing unit, also called neuron, 

is basic element of artificial neural network. Figure 4 shows a typical artificial neural network 

multilayer feedforward network. It consists of three layers: input layer, hidden layer, and output 

layer [33]. Many processing units are arranged on each layer, and every processing unit represents 

a specific output function, called activation function. The output of the previous layer happens to be 

the input of the next layer. The following Eq. (2) (3) describe function of each process units. 



 

  

Fig.4. Schematic of artificial neural network. (a) A single process unit ;  (b) Artificial neural networks. [33] 
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Where y represents output signal of process unit, wil represents weight coefficient, l is each process 

unit, bl represents a bias, f represents the activation function, xi represents the input signal of process 

unit, it is also used as input to the next layer of the artificial neural network. 

The main advantage for artificial neural network model is that it uses less data to obtain reliable 

data, and it consumes less time to predict energy consumption. Compared with multivariate linear 

regression model, the artificial neural network approach has a greater advantage in predicting 

nonlinear relationships due to scaling and activation functions applied during the modeling process 

[34]. At the same time, it has been considered to successfully predict end-use in large-scale 

considering socioeconomic factors. However, although each processing unit has bias and 

coefficients, which can be seen from Eq.3, these have no physical meaning. Therefore, determining 

the contribution of a variable for the total energy consumption is difficult through artificial neural 

network approach. Several studies have used artificial neural network to predict energy consumption: 

from the first studies involved in the prediction of energy loads in 1990s, until more recent research 

on the energy saving potential of building retrofit [35]。 

Using data from the Building Energy Certification open database（encompassing data about 

buildings energy labelling）provided by Regione Lombardia , F. Re Cecconi classified school 

buildings into seven categories according to the year of construction: before 1930 ,1931-1945,1946-

1960,1961-1976,1977-1992,1993-2006, after 2006, and eight artificial neural network (seven for 

each type of building and one artificial neural network on the whole cleaned Building Energy 

Certification open database) have been trained to estimate the energy saving potential of building  

retrofit [36]. 11 parameters were selected as predictors, including 1. winter degree days; 2. year of 

construction; 3. gross surface area; 4. gross volume; 5. dispersant surface; 6. ratio between glazing 

surface and dispersant surface; 7. ratio between opaque surface and dispersant surface; 8. average 

U-value of walls; 9. average U-value of roof; 10. average U-value of windows; 11. average U-value 

of basement. The three retrofit scenarios are predicted respectively using artificial neural network. 

The conclusions have shown that as the number of buildings renovated increases, the energy saving 

potential decreases due to lowering the thresholds of retrofit parameters (walls, roof and windows 

1
1

( ) xe
f x −+

=



transmittance). 

In the reference, Database encompassing data about buildings energy labelling in Regione 

Lombardia have been used to verify the model. The result shows that the difference is small. 

However, verification can only be done at the overall level. In addition, the influence of the trend 

demographic change have not been considered in the model, which is also the final factor of energy 

consumption. this may lead to the rebound effect. The authors have solved the problem of building 

surface area calculated to support the cost assessment of different retrofit measures. The energy 

saving potential of different retrofit scenarios in the Lombardy region can be visualized in the spatial 

map by the combination of artificial neural network and GIS, as shown in Figure 5, which provides 

visualized energy saving retrofit tool for regional energy policy makers.  

 

Fig.5. Retrofit scenarios visualization [36] 

2.2 Physics-based approach 

Physics-based approaches are called engineering approaches, also called as white-box approaches 

[28], which calculate energy consumption in the entire building or sub-level components based on 

heat transfer or thermal dynamics theories [16]. Figure 6 shows the steps involved in developing 

physics-based model for building retrofit. These approaches can be used to test the energy saving 

potential of any building system or technology retrofit due to energy consumption calculated based 

on physical principles. For example, EnergyPlus has been recently used to compare Phase Change 

Material (PCM) applications for building retrofit [37]. These approaches have the most flexibility 

and ability for modeling retrofit measures and new technologies without historical energy 

consumption data. 
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Figure.6. The steps involved in developing physics-based model for retrofitting buildings 

Developing physical models are a common feature for physics-based approaches. Many energy 

simulation software such as Equest, EnergyPlus, Dest, Doe-2 .etc. can be used to build physical 

model, the regional building simulation software, such as Umi, CityBES, and CitySim [38] can also 

be directly used. Meteorological parameters, building geometric parameters (building form, area, 

and height), non-geometric features parameters (heating systems, air conditioning systems, 

equipment, etc.) and occupants characteristics parameters need to be input when developing 

physical models, which leads to two challenges. First of all, collecting building information is 

difficult. Dozens, hundreds, or even thousands of buildings are included in larger-scale, more 

information need to be collected. Not only does it consume time, field investigation to obtain 

detailed information of all buildings becomes unrealistic [42]. Although GIS and remote sensing 

techniques can provide the possibility to obtain detailed building geometric information and to 

visualize distribution of buildings in large-scale [43], it is still not possible to input occupants 

characteristics parameters.  . Secondly, there is the performance gap of energy saving potential due 

to lots of incomplete information in most cases, such as user behaviour and infiltration in post-

retrofit buildings. Therefore, some default values in the standard or the simulation engine are often 

used. In addition, a timetable approach is often used to define occupant behavior. However，the 

actual schedule for residential behavior, such as opening window, hours of occupation, set-point 

temperatures etc., are often random and uncertain. The factors, such as occupants’ thermal comfort 

demand, climatic, building type, state of occupant, economical parameters, cultural, traditional 

factors et al. affect occupant’s energy usage [26]. These lead to performance gap between actual 

and theoretical energy consumption. [39] identified that occupant behavior is one of important 

factors for thermal demand changes at regional level. The gap was also noted by Morten Brøgger 

[10] and HugoHens [40].etc. 

In additional to occupant behavior, Meteorological parameters is another important reason for gap 

in energy saving potential. Currently, there are many forms of meteorological data used in building 

models, such as Test Reference Year. These databases are obtained by averaging historical 

meteorological data. However, the microclimate environment has greater impact on regional 

building energy consumption [41]. The factors, such as changes of community greening, the 

enhancement of heat island effect and global warmingetc. will cause microclimate changes. 

Therefore, using the same meteorological parameters to predict the energy saving potential of 

buildings for pre and post retrofit will cause the prediction deviation [42], and introducing 

microclimate model into energy models will become an important research direction. 



Three methods exist for estimating the energy-saving potential of buildings in large-scale: building-

by-building, archetypes and sample aggregation approaches.  

2.2.1 Building-by-building aggregation approaches 

Building-by-building aggregation approaches refer to energy saving potential of buildings obtained 

by aggregating the difference of energy consumption between pre and post retrofit of all the single 

building in the study area. A physical model of each building needs to be built and analyzed. The 

major advantage of this approach is that the characteristics of each building are included. Shading 

between buildings can also be considered. The prediction accuracy of energy consumption is 

relatively high. One major drawback is that lots of building-related information need to be provided 

as input, which is time consuming. GIS and remote sensing techniques provides solution for 

obtaining detailed building geometric information [43]. However, GIS datasets are not available to 

public in many countries. 

Chen et al. presented urban building energy model-- the City Building Energy Saver to quantify the 

energy saving potential of buildings in large-scale [38]. Figure 7 show the workflow of this model. 

Using San Francisco as a case, the energy saving potential and cost for five retrofit measures

（upgrade heating, cooling system, replace windows, add air-economizer, replace lighting with 

LED）for 940 offices have been analyzed using this tool. The results show that the combination of 

five retrofit measures could significantly reduce energy consumption of buildings but upgrading the 

air-conditioning system and replacing windows in this area were not economical due to low cooling 

and heating loads in San Francisco. The major contribution for this model is that it can automatically 

generate building physical models based on buildings datasets and GIS of cities. The tool solves the 

problem of inputting a large amount of physical information to build physical models, and saves 

time. However, GIS consolidated a city’s multiple datasets is key barrier when using the method in 

other countries. In addition, the City Building Energy Saver provides visualization by color-coding 

the 3D-view of the buildings based on performance metrics (Fig.8). The authors tried to introduce 

meteorological data closer to the study area through GIS positioning, but the documents introduced 

were still typical meteorological data of American cities. These data are not representative of the 

microclimate of cities or regions. Despite attempts to verify the model with monthly electricity and 

natural gas energy consumption, the model can only be calibrated on a regional level. It is difficult 

to obtain the monthly electricity and water bill data for each individual.  

 

Figure.7. The workflow of the City Building Energy Saver 



 

Fig.8. The 3Dview of the buildings based on selected performance Metrics [38] 

Wang et al. developed named ‘Combined Energy Simulation and Retrofitting’ (CESAR) model [1], 

consist of two models: energy demand model and the retrofit model. The building future energy 

performance and carbon dioxide emissions of three different residential districts under two retrofit 

strategies (“Business as Usual” and the “New Energy Policy” based on the Swiss Energy Strategy 

2050) were analyzed using CESAR model. The energy demand model employed the simulation tool 

EnergyPlus to calculate current building energy demand at all three scales. The retrofit model 

predicted the building future energy consumption according to different retrofit strategies. It was 

concluded that more buildings could reach the desired energy-saving goal under the ‘New Energy 

Policy’ scenario compared to ‘Business as Usual’. Since the shading and occlusion of adjacent 

buildings can be considered in this model. The accuracy of the model is relatively high. 

2.2.2 Archetypes aggregation approach 

Using virtual buildings as archetypes to represent the building group in study area according to the 

building characteristics and performance, archetypes aggregation approach obtains energy saving 

potential of buildings in large-scale by aggregating the difference of energy consumption between 

pre and post retrofit of the archetypes building. This method has been widely used to predict the 

energy saving potential of buildings in large-scale due to fewer building models.  

Defining archetype buildings is necessary for this approach. However, there are different concepts 

for each archetype in the existing studies. In other word, archetype buildings include different 

characteristics in different studies. Building structure (e.g. envelope types, number of floors, floor 

area, and building age etc.), building system performance (e.g., ventilation system, status of 

refurbishment; heating source, energy use intensity, and total energy consumption etc.), spatial 

factor (e.g. geographical location and climate zone etc.) and socio-economic factor (e.g. population 

and household income etc.) are used as a reference to identify archetypes. For example, Mata et al. 

have classified buildings into several archetypes according to building type, construction year, main 

heating system, climate zone for four European countries [44]. Dall’O’ et al. have established 

archetypes based on the building types (detached, semi-detached ,up to 6 apartments and over 6 

apartments) [45]. Pasichnyi et al. established archetypes based on buildings age, types and type 

heating source [24]. Unfortunately, none of the studies really addresses the questions of what makes 

a building representative or why the " archetype " in a given study is representative building in large-



scale. Therefore, it is meaningless to attempt to compare the models in the different studies. Brøgger 

et al. have questioned the lack of support for the process of defining and selecting typical archetype 

buildings [19]. To overcome the shortcomings of the archetypes method, a new “hourglass” model 

has been proposed, which combines the archetype models with the diversification process to achieve 

the diversity of the archetypes [46]. 

Verification of the model is the main challenge of the archetype buildings. Archetype buildings are 

usually virtual. The average value of each type of buildings were often utilized as the main 

characteristic parameters of the archetypes. This makes it difficult to verify the validity of the 

proposed models at single building level. It can only be done at the aggregate level due to lack of 

actual energy consumption data of individual archetype.  

‘Trade-offs’ between speed and accuracy of the models need to be identified using archetypes 

aggregation approaches. The models with more archetypes are accurate but are complex. In contrast, 

models with few archetypes are simple. In addition, the limited data availability makes the archetype 

building unable to represent a larger scale of building stock, which limits the application scope of 

the model. 

Using data from the survey, simulate the software's default data and Data published in ASHRAE 

and CIBSE guidelines, Hui Ben etc. developed five archetypes: active spenders, conscious occupiers, 

average users, conservers and inactive users based on comfort, behavior, energy use and household 

characteristics, to represent the building stocks in Cambridge [47]. The energy saving potential of 

archetypes building for 8 types of retrofit measure were simulated using energy consumption 

simulation software IES-VE. Simultaneously, the 8 retrofit measures were applied to the urban 

building scale of Cambridge, and the results showed the energy saving potential of five archetypes 

is obviously different with the same retrofit measure.  

In develop archetypes, the author took human behavior as the basis to classify archetypes buildings 

for the first time. This solves retrofit shortfalls that building energy model often uses standardized 

assumptions about a set of comfort conditions, such as heating settings remaining the same among 

heterogeneous household. It provides a practical method for tailoring retrofit scheme for specific 

target groups. However, the model only compares the changes in human behavior horizontally, 

without considering the longitudinal comparison. In other words, the energy use behavior of 

different archetypes families is different, but it is assumed no change in a period of time (pro and 

post retrofit). However, there is some change for energy use behavior in pro and post retrofit for the 

same archetype families. For example, after retrofit, the time of turning on heating equipment may 

be shortened due to the improvement of indoor comfort. This leads to gap between predicted and 

actual energy consumption. 

The Canadian Residential Energy End-Use Model (CREEM) proposed by Farahbakhsh et al. is one 

of the most widely known Canadian building stock modeling [48]. In the model, the classification 

of 8,767 houses based on types and age of building, heating source fuels, location resulted in 16 

archetypes to simply determine all building stock energy consumption. Two retrofit schemes, 

including upgrade to R-2000 standards and the National Energy Code for Housing, were compared 

using this model, and the energy-saving effect for the building stocks were discussed. It was found 

that both schemes had obvious energy-saving effects, but the schemes for R-2000 standards had 

more energy-saving than the National Energy Code for Housing. The CREEM has been considered 

to be effective for evaluating the energy-saving and carbon dioxide emissions reduction brought by 

various retrofit measures for the Canadian building stocks. 



Dascalaki et al. treated archetype buildings as a tool to predict energy saving potential for Hellenic 

building stocks [49]. The building stocks were classified into 24 archetypes based on the 

construction year (pre-1980, 1981–2001 and 2002–2010), building type and the four climates (601–

1100 heating degree day (HDD), 1101–1600 HDD, 1601–2200 HDD, and 2201–2620 HDD). The 

Software- TEE-KENAK [50] was employed to develop model for analyzing energy saving potential 

and investment return period of residential buildings retrofit in two different scenarios: a “standard” 

and an “ambitious” scenario. The results showed that both of these scenarios were important in 

improving building performance, and the energy saving potential for “standard” scenario is higher 

than “ambitious”. In addition, it has better energy-saving effect for buildings with poor initial 

performance. Simultaneously, percentage of building retrofit built in different periods were 

formulated to achieve the overall national indicative target of 9% energy-saving by 2016 based on 

the simulation results [49].  

Moghadam et al. proposed the visualization approach evaluating the energy saving potential for the 

building stocks in Settimo Torinese [51]. The archetypes composed of 87 buildings have been 

created for Settimo Torinese. Two tools CitySim and GIS have been coupled to visualize energy 

consumption. The energy simulation software CitySim was employed to develop a 3D retrofit model. 

The ESP for two scenarios, which were determined in the light of the Tabula and the Minergie-P 

label standards, were predicted. Thanks to the 3D model, the microclimatic conditions based on the 

real city urban geometrical could be considered when analyzing the energy saving potential at the 

city scale. Building energy consumption with different retrofit scenarios was visible by color range 

GIS maps. This proposed method offered a user-friendly interface for architects or city manager to 

visualize the impact of the retrofit strategies. 

Several other studies on the energy saving potential of large-scale building have been investigated 

by using archetype buildings based on different building attributes. For example, Dall’O’ et al. have 

analyzed energy saving potential of the building stocks retrofitted for member states using archetype 

buildings, which were identified by the building types (detached, semi-detached ,up to 6 apartments 

and over 6 apartments) [45]. The possible energy demand reductions were investigated in [52]. The 

building stocks in Norwegian were grouped into forty archetypes based on heating carrier share, 

sector and energy classification. 

2.2.3 Sampling approaches  

Using some real buildings as sample to represent the buildings in the study area, the energy 

consumption of each sample building is calculated by physical-based models, and then the 

consumption for large-scale building is aggregated using escalation factors, such as number of 

buildings, floor surfaces, etc. The approaches are called as the sample approach.  

As archetypes aggregation approaches, determining number of sample buildings is a major 

challenge of the sample aggregation approaches. With the increase of the number of samples, the 

models become more complex and accurate. On the contrary, for the simple models the accuracy 

decreases. A trade-off between precision and complexity should be made. In addition, how to select 

the sample buildings is an important challenge for the sample aggregation approaches. Which 

buildings can be used as samples to represent the buildings in the study area and why these buildings 

can represent the buildings in the study area have not been really solved by the study, obviously, for 

the same study area, different samples may result in different results. 

One advantage of this approach is that the model can be validated at the level of a single building. 

Since sample buildings are extracted from the actual building, the model can be verified using actual 



measured energy consumption at the level of a single building. 

The Energy, Carbon and Cost Assessment for Building Stocks (ECCABS) model has been presented 

by Érika Mata [53].This model was developed with the Matlab and Simulink tools according to the 

single-zone hourly heat balance principle. 1400 buildings have been determined as sample buildings  

representing Swedish residential building stock [54]. The energy saving potential of 12 measures 

have been estimated. The result showed energy consumption of the Swedish residential stock will 

be reduced by 53% using all 12 retrofit measures compared with benchmark year. Despite effort to 

verify the model, the authors only used models that have been developed, such as HAM-tools, which 

may have rebound effect on the prediction result. It is not compared with the actual energy 

consumption data of the building stock, and the verification of individual building energy 

consumption is not considered. 

Shimoda et al. have determined 23 household forms and 20 residential forms to represent all 

residential building for Osaka City. The total energy consumption of residential buildings in city-

scale was summed up though multiplying the representative building energy consumption by 

corresponding building numbers [55]. The energy saving potential of wall and air conditioner 

upgrade were evaluated. The way of classifying buildings based on household type and dwelling 

type offered the distinct advantage that the impact of occupant behaviour change on energy 

consumption can be considered. 

2. 3 Hybrid approaches 

Hybrid approaches combined data-driven and physics-based approaches [21].This approaches were 

first proposed by Swan et al. to take full advantage of physical and statistical models [56]. Hybrid 

models have been divided into two categories according to the embedding manner of data-driven 

and physics-based approaches: 1) Physics-based data-driven model (Fig. 9), 2) Data-driven -based 

physical model (Fig. 10). 

To developed physics-based model, meteorological parameters, building geometric parameters, 

non-geometric features and occupants characteristics still need to be input into the hybrid model. 

Therefore, it has flexibility and ability to model energy saving potential of building due to building 

parameters included. However, compared to physics-based approaches, uncertain factors in the 

physical models, such as occupant behavior (turn-on schedule for appliances or lighting etc.) are 

determined through the data-driven models. Therefore, only bounds on physical parameters are 

required, and a limited number of data need to be considered [17]. The prediction accuracy of energy 

consumption for the model is clearly improved.  However, for data-driven -based physical model, 

the prediction accuracy of energy saving potential does not change greatly except for the adoption 

of different residential behavior model pre and post the retrofit. In addition to occupant behavior, 

dynamic meteorological parameter models can also be developed, and used it as input in a building- 

physics based model. However, none of studies have embeded dynamic meteorological models into 

physical models. As integrating the advantages of data-driven and physics-based approaches and 

overcoming a part of their shortcomings, hybrid models has become a research hotspot in predicting 

energy consumption for large scale building in recent years [57].  

2.3.1 Physics-based data-driven model 

Physics-based data-driven models refers to data-driven model, such as multiple linear regression, 

artificial neural networks and support vector machines using the output of the physical model. 

Figure 9 presents the steps involved in developing data-driven -based physical models for retrofit 

analysis. The output results of various scenarios for physics-based models are used as training data. 



The data-driven models are developed based on these training data, and the energy saving potential 

was predicted through the data-driven model. 

The great advantage of this model is that there is no need defining occupant behaviour explicitly. It 

can be accounted for by the data-driven model. It provides a solution for building energy 

consumption datasets lacking by using physical models to generate datasets.  
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Figure. 9. The workflow of physics-based data-driven model for retrofit analysis. 
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Figure. 10. The workflow of Data-driven -based physical model for retrofit analysis. 

Using available 134,065 buildings data from EPC (Danish Energy Performance Certificate) and 

BBR (Danish Building and Dwelling Register) [58], Morten Brøgger developed a regression-based 

hybrid model to predict energy-saving potential for the Danish building stock. Figure 11 depicts 

flowchart of a regression-based hybrid model. The unique physics-based model for each building 

was built using the European standard ISO 13970. The energy consumption calculated based on the 

physical-based model is used as the predictor of the statistical model in the hybrid model as follow.  



 Q reg ,i = β0 + β1 · Q calc ,i + β2 · A floor,i + β3 · Q calc ,i · A floor,i + ψ      (4) 

In the hybrid model, output result of the physics-based model is taken as the input, and the building 

physical parameters can be included in model. This makes it capable of estimating the energy saving 

potential for any building retrofit and upgrade. The distinct advantage for the hybrid model was that 

socio-technical factors had been taken into account by taking heating area as a predictor of the 

statistical model, but not as input parameters. It provides a simple way to correct errors that arise 

from uncertainty in the physics-based parts of the model, which makes it more accurate for 

estimating energy consumption for invisible attributes in building samples. However, this simple 

approach does not allow the identification of the source of the uncertain relationship. Therefore, it 

is impossible to detect which energy-saving measures cause the rebound effect. 

Pasichnyi et al. estimated energy saving potential of seven retrofitting packages using hybrid model 

for 5,532 buildings in Stockholm City [24]. In this model, three virtual archetypes are determined 

to represent all buildings. Energy consumption simulation software DesignBuilder was employed 

to create physical models of virtual archetypes, and the results were calibrated using data-driven 

model based on measured data of 6,732 heating networks. It was concluded that the energy saving 

potential for the combined retrofitting packages is sometimes lower than the same single measure. 

The energy saving potential of building is also closely related to type of archetypes. 

Nouvel et al. predicted energy saving potential for the buildings in Bospolder using a multi-scale 

framework hybrid model, which integrate by GIS-based data-driven and physical-based model [59]. 

In this hybrid model, the statistical model was used to predict energy consumption of building in 

the city-scale at first, and the retrofitting neighborhood areas were selected based on energy 

consumption distribution. The physical models of retrofit building for the neighborhood were 

created based on the 3D city model, and the result is calibrated by data-driven model. The energy 

saving potential of several retrofit measures, including building envelope insulations, energy-

efficient windows replacement and thermal bridges treatment, were analyzed through the physical 

model. The result showed 59% reduction in average heating energy consumption post retrofit.  

Ascione et al. presented a hybrid model combining artificial neural network and physics-based 

approaches to predict energy saving potential for office buildings built during 1920 to 1970 in South 

Italy in different retrofit scenarios [7]. Simulation software EnergyPlus was employed to develop 

energy consumption dataset. The artificial neural network model was trained and tested in Matlab 

using energy dataset. In this research, the proposed artificial neural network replaced standard 

building performance simulation tools to analyze energy saving potential. Therefore, computational 

effort and time were obviously decreased. 

 



 

Figure. 11. The flowchart of a regression-based hybrid model  

3.3.2 Data-driven -based physical model 

Data-driven -based physics model is used tomeasure data to develop data-driven models 

modelling energy use of appliances, such as DHW, and lighting, and used this as input in 

building- physics based model. Figure 10 shows process of data-driven -based physical model.  

Using the Canadian Single-Detached and Double/Row House Database, including thermal envelope, 

equipment, occupancy, and air infiltration data from 16,952 residential buildings, a hybrid energy 

model (the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model [CHREM)) 

integrating the neural network and physics-based approaches for building stock in Canada 

developed by Lukas G. Swan [60]. Figure 12 depicts the composition of the model CHREM. The 

neural network is used for modelling appliance and lighting energy consumption and domestic hot 

water volume draw. And this is used as input in a physical model. Energy saving potential of 

building stocks caused by retrofit and new technology can be evaluated through the right part of 

Figure 12. There is a distinct advantage for this way of combining data-driven and physics -based 

model that occupant behavior need not be assumed. However, several other parameters, such as 

indoor setting temperatures and air change rates. etc. remain uncertain in energy model of building 

stocks. Therefore, models that can account for all uncertain parameters while offering physical 

description of the system for buildings are required. 

 

Fig. 12. The composition of the model CHREM [60] 



3 Discussion 

3.1 Model characteristics 

All of the three approaches (data-driven，physical-based and hybrid approaches) can be used to 

predict the energy saving potential of building upgrade in large-scale. However, compared with the 

physical-based models, both data-driven and hybrid approaches developed late due to restrictions 

on the development of building data, and corresponding application are fewer.  

Physical-based models require a simulation engine to build model, and detailed information such as 

climate parameters, building physical information, occupant behavior, and equipment systems need 

to be inputted during the modelling process. Therefore, energy performance of building retrofit and 

equipment update can be predicted and assessed. It can provide technical support for decision-

makers to make reasonable energy saving retrofit strategy decisions. However, it takes a long time 

to input these detailed information, and professional expertise are required to build up the model, 

which limits the application of the model. Although some efforts have been made to reduce input 

information requirement, such as GIS [61], for automatic data generation city energy model 

(CITEBES)[38]. However, these are only in terms of building geometry information. There are lots 

of information for equipment systems and occupant behaviour parameters that need to be inputed. 

In addition, the simulation process also consumes a lot of time to calculate the potential savings at 

the regional level due to thousands of buildings. Despite archetypes approaches simplifying input 

data requirement, this leads to  problem of accuracy.  

Compared with the physical-based models, data-driven models do not require inputting so much 

information, but the relevant building information and historical energy consumption data need to 

be collected to predict the energy saving potential. It will be a great challenge for some countries. 

Hybrid models combining data-driven and physical-based model consider both the uncertainty of 

the building and relevant building information, which is significant to simulate the improvement of 

the energy saving potential for building retrofit, but also has time-consuming defects in data 

acquisition and information input. The future main research direction can develop fast and accurate 

regional energy consumption models to provide technical support for decision makers by 

establishing the data availability of building energy consumption, automatic models of importing 

building information, and simplified processes of modelling. 

3.2 Model accuracy 

3.2.1 Influence of human behavior 

Occupants’ behavior is one of the main factors influencing building energy consumption. Delzendeh 

et al. summarized the factors affecting occupant’s energy usage, including occupants’ thermal 

comfort demand, climatic, building type, state of occupant, economical parameters, etc [26]. 

Additionally, some cultural, traditional factors and Race/Ethnic factors also affect occupant’s 

energy usage. It was reported that heating energy use intensity was low for the median income, in 

contrast, it was high for poor households and Race/Ethnic Minority Family [62]. The total 

behavioral energy consumption, including district lighting consumption, heating load, cooling, hot 

water supply, is not simply the accumulation of behavioral energy consumption. For example, 

Gilani et al. has proved that the influence of occupant behavior on energy consumption would be 

diminished as the number of offices increases [63]. When changing from one building to several 

buildings, even districts, cities or building stocks, the total energy use of the occupants will have an 

aggregation and smoothing effect, and uncertainties caused by occupants’ behavior would be 

overlapped.  



Resident behaviour is complex and uncertain, which contribute to the gap between prediction and 

actual energy performance. Current energy consumption simulation software handles presence 

(passive effects) and actions (active effects) of occupant in fixed or scheduled manner, which cannot 

reflect real energy consumption [64,65]. Data-driven models and hybrid models can consider human 

behavior, but these regressions are based on historical data. Behavior changes (opening window, 

adjusting the set temperature of HVAC, using solar shading and blinds, etc.) caused by development 

of socio-economic (such as income increase) and climate warming are not involved. In other words, 

these models reflect static energy saving potential, little consider future energy savings prediction 

post retrofit. In order to address the uncertainty for district energy simulations, some scholars have 

begun to study residential behavior models. For example, Baetens et al. developed stochastic 

residential occupant behavior model [66]. The model combines multiple models according to 

activity prerequisites and occupancy. An J et al. proposed a random human behavior models, which 

parameters are determined according to typical human behavior pattern and probability distribution 

based on a large number of questionnaire [67]. This method took into account the differences in 

pattern and random for different households’ behavior in detail. 

3.2.2 Influence of climate change 

Climate is an important factor affecting buildings performance，its change directly affects the 

building energy consumption [68,69]. Due to the long service life of the building, considering 

climate change is necessary when analyzing the energy saving potential for buildings in large scale 

[25]. According to the fourth assessment report of the Intergovernmental Panel on Climate Change 

[69], climate changes induce temperature rise, climate variability and extreme events. These means 

that there will be less heating and more cooling demand due to climate warming in the future. For 

example, a region specific simulation for a residence in Argentina showed that for each 1◦C of 

increment in monthly mean outdoor temperature in summer (January)[70], an increase of cooling 

energy demand of about 2.2 kWh/m2 per month is predicted. Similarly, for each 1◦C of increment 

in monthly mean outdoor temperature in winter (July), a decrease of 3.0 kWh/m2 per month is 

predicted [71]. However, climate change is rarely considered in prediction models for building 

retrofit in large-scale.  

Restricted by the availability of data on building characteristic parameters, data-driven models have 

been developed to predict the energy saving potential for buildings in large-scale in recent years. 

None of the models developed take climate parameters as predictors. Although meteorological 

parameters is input for physical-based model, these databases, such as Test Reference Year, Typical 

Metrological Year weather database, International Weather Files, ASHRAE IWEC2 datasets, 

WATSUN data, and European Test Reference Year weather data [4], are obtained by averaging 

historical meteorological data. The future weather files in the simulation software should consider 

not only typical but also extreme conditions. It should be determined based on dynamic climate 

models. Using different weather data estimates of energy consumption of pre and post building 

retrofit in large-scale to predict energy saving potential. The authors of [71] have shown that global 

climate change will alter the optimal scenario for future portfolios energy saving measure.  

3.2.3 Influence of willingness 

All three categories of models rarely consider people’s willingness to retrofit. Building retrofit is 

characterized by subjectivity and diversity due to the different energy saving consciousness and 

objective conditions of the subjects. A variety of factors, such as age [72], household income and 

education levels[73] etc. affect owners' willingness for building retrofit. The probability of retrofit 



implementation is also different for different owners, which is ambiguous and uncertain. Jia JJ et 

al.[74] investigated household’s willingness to accept six technical and behavioral energy-saving 

measures in Beijing. The results showed that socio-economic variables had stronger influence on 

willingness to accept technical energy-saving measures than behavioral measures. Hrovatin N et 

al.[72] stated that higher age of homeowners was an important barrier for energy-saving renovation 

of the building envelope in Slovenia, and increasing demand for living comfort and thermal comfort 

could drive residents’ willingness for building envelope renovation. However, the previous research 

on the prediction model of building retrofit neglected the influence of willingness, and the prediction 

result will deviate from the actual situation to a certain extent. Therefore, it is necessary to introduce 

the willingness model into the prediction model of building retrofit. 

4. Conclusion 

Large-scale building retrofit models can provide theoretical support for formulating energy saving 

policies and developing strategies for buildings’ retrofit, and it is of great significance for 

sustainable development of social. This paper summarizes models recently developed for large-

scale building retrofit, including physics-based models, data-driven models and hybrid models. The 

modelling processes of these models have been introduced in detail, the advantages and limitations 

have been analyzed, and some examples of model applications have been demonstrated. In summary, 

the limitations and development trends are as followings: 

1). Physics-based models consume a lot of time, and prone to overestimate, and the statistical 

models are simple, but the data acquisition is a challenge. The hybrid models have higher accuracy, 

but consume more time in data acquisition and information input. It is important to research fast and 

accurate regional energy consumption models to provide technical support for decision makers. 

2). Uncertainty is one of main reasons causing the rebound effect of prediction accuracy for energy 

consumption modelling. Studying on how to introduce uncertain factors (climate change, 

microclimate and human behavior changes, etc.) into the model is an important direction to enhance 

the prediction accuracy. 

3) Occupant’s willingness to retrofit was ignored in all three categories of models, which can lead 

to the prediction result deviate from the actual situation in a certain extent. Therefore, it is necessary 

to introduce the willingness model into the energy consumption prediction model for energy retrofit. 
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