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1 SUPPLEMENTARY INFORMATION

1.1 iFEED checklist against recommendations of Challinor et al. (2018)

A score out of 4 is given for each criterion below. A score of 1 indicates no effort being made to address
criterion aims. A score of 2 indicates a limited effort with substantial room for improvement in addressing
the criterion aims. A score of 3 indicates a good effort, with minor improvements possible. A score of 4
indicates an excellent effort that is unlikely to be improved upon given current limitations. These scores are
used to point towards limitations in methods and improvements for further research, as summarised in the
discussion.

1. The crop model used, and the processes simulated, should be of appropriate complexity given the
evidence from available data and the spatial scale of the simulations – (3/4)

iFEED does not rely on integrated assessment models due to a desire to make results as easily interpretable
as possible – relying on qualitative trade analysis rather than equilibrium models.

GLAM was selected as a crop model precisely because it has been developed for use in large scale (several
kilometres squared) simulations – at the spatial scale of the input weather-yield relationship (Challinor
et al., 2003, 2004). Recent developments in crop modelling suggest possible simpler (and potentially more
skilful) methods, relying on fewer empirically-derived parameters that would further enhance the simplicity
and therefore utility of the model (Droutsas et al., 2019).

Gap-filling, as described in the main paper, is used to fill gaps in crops not explicitly simulated. In
the discussion we outline the benefits and negatives of using such an approach. On balance, we feel as
though this is an approach of justifiable complexity, although given more time more crops could have been
included to provide a broader picture of climate impacts – for example, inclusion of representative fruit
and vegetable crops, enabling e.g. cereal, root / tuber, fruit / vegetable crop representations, rather than just
the C3 / C4 distinction, as used in this study and in Müller and Robertson (2014).

Emissions are modelled using a global version of the ECOSSE model, designed for gridded simulations.

A score of 3 is given as the crop model used is of appropriate complexity for the scale simulated, however
the gap-filling but could be improved upon with more time to include a broader range of important crops.

2. Ensembles should be formed from a well-justified set of models and input data (2/4)

Only one crop model was used in this analysis; however, this was reflected in the confidence assessment
stage by downgrading confidence in outcomes where necessary. An ensemble of 18 bias-corrected global
climate models was used as input into iFEED. This ensemble was selected from the data of Famien et al.
(2018). Models with both RCP2.6 and RCP8.5 that had 365 days of daily data were selected from the wider
ensemble of 29 models.

For parts of the iFEED analysis, a further subset of 5 models was selected due to computational and
methodological constraints. This allowed greater speed of analysis, but comes at the expense of including
the full range of climate responses. Careful selection of the subset was undertaken however, using the
methods of Ruane and McDermid (2017) (see Section 1.5).
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A score of 2 is given. An ensemble of climate inputs is used, however only one crop model and soil
input data set is used. Whilst the iFEED approach to summarise results includes confidence statements that
reflect this, improvements could be made in the area of ensemble modelling.

3. Bias correction of climate model data should always be carried out, unless the bias is provably small
(3/4)

Input data were bias-corrected as detailed in Famien et al. (2018), whose evaluation proved this to be
effective at removing bias over West Africa. Evaluation of the bias-correction has not been conducted in
the sub-Saharan Africa region in which iFEED is applied however. A score of 3 is therefore given.

4. Projections should include uncertainty estimates. The method for quantifying uncertainty should permit
assessment of the realism of the resulting ranges (3/4)

Model results are associated with uncertainty associated with climate model inputs – usually displayed
as a range of percentage change in output variables such as yield, production, or emissions relative to the
baseline. However, this underlying uncertainty is associate with climate model inputs rather than other
sources of input data also.

The calibrated statement process allows a more comprehensive assessment of the uncertainty associated
with projections. Rather than simply relying on the uncertainty associated with climate model inputs, each
aspect of the modelling is assessed in terms of its robustness to possible changes in model assumptions or
parameters, as well as assessing agreement with broader literature. This gives a more complete picture of
the realism of results. Hence, a score of 3 is given, as whilst more models and input data could form a more
complete quantification of uncertainty, the calibrated statement process effectively includes all of these
considerations.

5.The model used should be evaluated using historical observed data (3/4)

The crop model underlying iFEED analysis was evaluated using FAOSTAT data. In the absence of more
detailed data on crop phenology and growth in the region, these yield data provide adequate assessment of
how well the model simulates the inter-annual variability of yield. Where relationships between yield and
climate exists, GLAM generally is shown to effectively capture this, as can be seen in the SI. A score of 3
is given for this reason, as further data could help to evaluate GLAM, such as biomass, sowing and harvest
data, although these are hard to come by at national scales.

6. Model projections and methodologies should be critically evaluated and the limitations of the study
made explicit (4/4)

The calibrated statement process details limitations to certainty in conclusions. In addition, this section
explicitly highlights important limitations and strengths. A score of 4 is therefore given.

7. The assumptions underlying the results of the study should be explicit. A common uncertainty reporting
format can be used to achieve this (4/4)

This supplemntary information details any important assumptions behind iFEED modelling. In addition,
as described under heading 4, the calibrated statement process provides a common uncertainty reporting
format that takes into account any key assumptions and reflects these in certainty of conclusions. A score
of 4 is therefore given.

8. Assessments of climate change impacts should include autonomous adaptation; otherwise impacts will
likely be over-estimated (4/4)
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Autonomous adaptation is the default assumption in iFEED crop model projections. Certain scenarios
assume more optimistic adaptation of crop varieties that mitigate against growing season duration reduction
or have improved irrigation.

The effect of any future adaptations is compared directly to historical counterparts, with both periods
using the same method of selecting planting dates and crop varieties. We thus avoid the “adaptation illusion”
highlighted by Lobell (2014), whereby adaptation tends to be over-estimated by the common practice of
comparing a non-adapted historical period with an adapted future period.

A maximum score of 4 is therefore given.

9. The simulations carried out should be documented in sufficient detail to demonstrate the extent to
which the above criteria have been met, and to ensure reproducibility of the work carried out. (4/4)

The methods detailed in this paper and the discussion section detail this, therefore 4 out of 4.

Additional criteria for adaptation studies and risk assessments:

1. Assessments of risk need broad system boundaries (3/4)

The choice of system boundary is the national scale for iFEED, although recognition of the broader
nature of trade is important, and is encompassed by the trade component of the analysis. More explicit
incorporation of the international nature of trade is possible, hence 3 out of 4.

2. Engagement with stakeholders is critical if the research aims to have a practical risk management or
adaptation outcome (4/4)

Stakeholder input is key to every stage of iFEED, from the initial design of scenarios to modelling them
to results orientation and presentation. A score of 4 is given because of these efforts.

1.2 iFEED yield projetions - gapfill and trends

Similarly to Müller and Robertson (2014), crop yield projections were averaged to represent all crops
with growing area in baseline period according to FAO (2019). A total of 92 commodities across the four
countries were included in the analysis. Methods for this process were as follows:

1. Average the relevant crops (e.g. potato, groundnut and soybean as C3 crops. Note that maize used as
gap-filling crop for millet, sugarcane and sorghum - for sugarcane, climate change impacts on maize
biomass are used) for baseline (1990-2010) and future (2040-2060) yields. Note each crop yield is first
normalised to ensure an even crop contribution (in terms of climate change impact) to the average for
gap-filling. Median rather than mean is used to normalise so high-yielding grid cells do not skew the
average, and the same correction is applied to baseline and future to not interfere with climate impacts.

2. Average national FAO yields from 1990-2010 for each commodity.
3. Calculate a national simulated yield for the year 2000 using grid cell area information for the crop in

question (from LUH2/FAO) and the gridded mean C3 yields, averaged for the baseline period (add
up total area nationally, and total production at each grid cell added to give a national total, and then
divide national production by national area).

4. Weight the national simulated mean yields in baseline so they match the mean FAO yield (divide one
by the other) and apply this weighting to all grid-cell level yields.

5. Apply the same weighting to future yields.
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6. Apply trends (calculated as described below) to each grid cell yield value (50% trends also applied for
use in South African scenarios).

7. Check if future trend-applied yields are above the maximum global FAO country-level mean yield for
that crop and cap if so by dividing mean future yields by FAO yield and applying this correction factor
to the future yields.

8. For the simulated crops maize, soybean, groundnut and potato, if the weighted and trend-applied yields
are above potential yields (i.e. YGP = 1 yields), we cap them at the grid cell level to the potential yield
value (this in addition to the FAO yield cap check in step 7).

How applied yield trends are calculated:

1. FAOSTAT data from 1961 to 2010 used for all 92 commodities and the four AFRICAP countries used
to calculate 10-year averages from 1961-1970 and 2001-2010. This requires at least 3 years of data in
each 10 year period, otherwise a country is put to a no data value.

2. Calculate the percentage difference between the start and end 10 year averages for each crop and
country.

3. The maximum percentage difference for each crop from amongst the four countries is used for that
commodity.

4. If there is insufficient data for any crop and country, or if the maximum trend is negative (i.e. yields are
reduced in the region for any commodity), the mean trend across all commodities is used, excluding
any negative trends.

1.3 iFEED land use methods

For the future scenarios where agricultural land use was optimised to maximise crop production, the
method for deciding future agricultural land use (which crops are grown where, and pasture requirements)
is as follows:

1. Prescribe conditions for future land use based on stakeholder recomendations (how much will arable
cropland and pasture for livestock increase/decrease, what changes to crop diversity there will be, will
irrigated area change). Changes to agricultural land are relative to the baseline (i.e. the year 2000),
according to LUH2 and FAO data.

2. Calculate the future agricultural land, livestock area and maize cropping area based on these conditions.
Current protected areas and future urban land are not included as potential future agricultural land.

3. An R function is used to calculate the national scale production associated with the cropping pattern.
This function is then optimised to decide what is grown where in the future. The function is optimised
using the R package Rsolnp (Ghalanos and Theussl, 2015) to return the maximum production given
the prescribed area conditions and yield projections. This package optimises the function for crop
production given various inequality and equality constraints – i.e. given that the overall crop area must
equal x and that the maize area must equal y, and that each grid cell must not contain crop area greater
than the available land specified at that grid cell, optimise the available land (i.e. optimise what is
grown where in the available land) so that the cropping pattern with the most production is returned.

4. For futures with increasing crop diversity, arable area was diversified as much as possible given the
arable area available (unless otherwise specified by stakeholders). This is achieved using a parameter
that sets the maximum fraction of crop area that can be allocated to any one crop, which is reduced as
much as possible (to 4 decimal places) to minimise the area allocated to any one crop, i.e. maximising
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crop diversity in the optimisation function. For example, in the baseline in Zambia, the top 18 crops in
terms of growing area use up more than 99% of arable crop land. In the future following optimisation
with increased crop diversity, 25 crops use up 99% of arable crop area.

5. For futures with crop diversity decreasing, the percentage increase in the number of crops required
to use up 99% of crop area for the crop diverse futures is reciprocated, so an equal decrease in crop
diversity is simulated. For example, instead of the 7 crop increase described above for Zambia (18 to
25 crops), a 7 crop decrease is simulated, going from 18 crops in the baselinet to 11 in the future. This
is achieved by setting the same parameter to the lowest value (at 4 decimal places) that achieves 99%
of crop area for the required number of crops.

6. Lastly decide where the required pasture for livestock is placed in the remaining available land
following crop area placement. Firstly place pasture in grid cells where the most pasture is in future, as
defined in the LUH2 dataset. Then place pasture in any other available land.

For the future scenarios where land use was not optimised (i.e. the land use methods for “low tech”
futures):

• The optimiser is not used for the low tech / low market connectivity / ineffective policy futures, and
is also not used for any South African scenarios (as technology was not clearly associated with any
scenario axis in South Africa).

• For these futures, a simpler approach is taken, where crops are by default kept in the same proportion
as the baseline and simple changes to area in each grid cell are applied. For example, a 10% increase
to all arable crop area in each grid cell if a 10% arable area expansion is required.

• If there are any changes to crop diversity for these futures, area is taken away from maize and evenly
distributed to the other crops for increasing crop diversity, and area is evenly taken away from other
crops and given to maize for the decreasing diversity futures.

Scenario assumptions for iFEED case study countries are as detailed in Table S5.

Land use and yield change assumptions:

• If arable area falls in a grid cell, this is allocated to grassland (checks are made to ensure enough
grassland is available in future).

• All arable land increasing comes from grassland.
• Three grid cells for one crop in South Africa had 0 yield in baseline, resulting in infinite values for

percentage change. For these grid cells the mean percentage change for this crop was used.
• The polygon data mapped by the WDPA team were used rather than reported areas as there were errors

found in the reported statistics in the WDPA - e.g. in Malawi, a protected area was recorded as c.
800,000 ha whereas it should actually be c. 80,000 ha – this correction is made in the mapped data.

1.4 iFEED livestock production

1.4.1 Livestock regressions

• Herrero et al. (2013) have four categories of livestock feed: pasture, residues, grain-based and
occasional. We will calculate changes to these food categories.

• Grains and occasional categories include all feed listed in FAOSTAT commodity balance sheets
(Herrero et al., 2013).
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• There are seven livestock production categories in Herrero et al. (2013) data that are used to train
regressions: bvmeat (bovine meat), bvmilk (bovine milk), sgmeat (sheep and goat meat), sgmilk (sheep
and goat milk), pimeat (pig meat), pomeat (poultry meat) and poeggs (poultry eggs).

• Many of the livestock food variables are correlated to each other, which can lead to multicollinearity
in regressions – e.g. sometimes the sign of the relationship between the independent variables (feed
sources) and the dependent variable (livestock production) changes from positive to negative when
adding all of the independent variables compared to just one or two (in spite of positive correlations
between the predictors and livestock production).

• To avoid multicollinearity in regressions, the livestock feed categories were aggregated by adding
feed source variables together. The grains and occasional categories were combined as one variable
(i.e. all feed from crop production and supplemental feeds such as groundnut hay in one variable) and
the pasture and residues were combined to form a second variable (the pasture and residue variables
across livestock products and countries showed the highest number of significant correlations from all
combinations of two independent variables – i.e. the most collinearity).

• This results in a higher quality livestock feed variable (the crop production / occasional food
supplements variable) and a lower quality feed variable (residues and pasture) and avoids unrealistic
relationships emerging between feed sources and livestock production variables due to collinearity.

• Omit predictor variables from the regressions if the correlation between the predictor and the livestock
production variable is insignificant. This is the case with Malawi sgmilk with both aggregated feed
variables, and Zambia sgmilk for the crop production variable.

• In the case of Malawi sgmilk, as no predictor variables had significant correlations between livestock
production and livestock food variables, we use coefficients calculated using data for all countries for
sgmilk.

• Calculate national level regressions based on the aggregated predictor variables and the production
data at every grid cell.

• If there are still any changes of sign in coefficients due to collinearity in regression variables, aggregate
the feed variables again (resulting in one livestock food predictor variable used). This only happens
with the pasture and residuals variable for the South Africa sgmeat regression, where a marginal
negative coefficient is found when including both variables. In this case, one aggregated feed predictor
variable is used.

1.4.2 Linking regressions to livestock commodities for emissions and production changes

The following percentage changes are applied to both FBS production data and to FAOSTAT emissions
data.

For emissions:

• Apply the relevant percentage change for each livestock category, as listed below
• For sheep and goats, FAOSTAT data do not disaggregate between dairy and non-dairy herds, therefore

calculating a percentage change for total across milk and meat herds by adding up base and future
values for all sheep and goats.

Will not change the following as Herrero data do not cover these livestock categories: Meat, other –
consisting of: Default composition: 1089 Meat, bird nes, 1097 Meat, horse, 1108 Meat, ass, 1111 Meat,
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mule, 1127 Meat, camel, 1141 Meat, rabbit, 1151 Meat, other rodents, 1158 Meat, other camelids, 1163
Meat, game, 1164 Meat, dried nes, 1166 Meat, nes, 1172 Meat, nes, preparations, 1176 Snails, not sea

For the following commodities, apply percentage changes calculated using regressions directly:

1. Pigs: Regression linking grain to pig meat production. FBS commodities changed based on projected
changes to pig meat:

• Pigmeat: Default composition: 1035 Meat, pig, 1038 Meat, pork, 1039 Bacon and ham, 1041 Meat,
pig sausages, 1042 Meat, pig, preparations

2. Poultry: Regressions linking grain to eggs and meat production. FBS Commodities changed based on
projected changes to poultry meat / poultry eggs:

• - Poultry meat: Default composition: 1058 Meat, chicken, 1060 Fat, liver prepared (foie gras), 1061
Meat, chicken, canned, 1069 Meat, duck, 1073 Meat, goose and guinea fowl, 1080 Meat, turkey

• Eggs

3. Sheep and goats: Mutton and goat meat, Default composition: 977 Meat, sheep, 1017 Meat, goat

4. Bovine meat, Default composition: 867 Meat, cattle, 870 Meat, cattle, boneless (beef and veal), 872
Meat, beef, dried, salted, smoked, 873 Meat, extracts, 874 Meat, beef and veal sausages, 875 Meat, beef,
preparations, 876 Meat, beef, canned, 877 Meat, homogenized preparations, 947 Meat, buffalo Note that
there are no buffalo according to FAOSTAT in AFRICAP countries, so bovine category = cattle / beef.
Assuming cream changes in proportion with bovine milk change.

The following are the aggregated FBS livestock commodities:

For the following aggregated livestock production categories in the FBS we add up the relevant mean
grid cell level data that the regressions are based on in the baseline and future and calculate a combined
percentage change for each aggregated category.

1. Aggregate all meat categories (sgmeat, bvmeat, pomeat, pimeat) for Offals, edible and for Fats,
Animals, raw: - Offals, edible, Default composition: 868 Offals, edible, cattle, 878 Liver prep., 948 Offals,
edible, buffaloes, 978 Offals, sheep,edible, 1018 Offals, edible, goats, 1036 Offals, pigs, edible, 1059
Offals, liver chicken, 1074 Offals, liver geese, 1075 Offals, liver duck, 1081 Offals, liver turkeys, 1098
Offals, horses, 1128 Offals, edible, camels, 1159 Offals, other camelids, 1167 Offals, nes

2. Fats, Animals, raw, Default composition: 869 Fat, cattle, 871 Fat, cattle butcher, 949 Fat, buffaloes,
979 Fat, sheep, 994 Grease incl. lanolin wool, 1019 Fat, goats, 1037 Fat, pigs, 1040 Fat, pig butcher, 1043
Lard, 1065 Fat, poultry, 1066 Fat, poultry, rendered, 1129 Fat, camels, 1160 Fat, other camelids, 1168 Oils,
fats of animal nes, 1221 Lard stearine oil, 1222 Degras, 1225 Tallow, 1243 Fat, nes, prepared

3. Aggregate svmilk and bvmilk for Milk, Excluding Butter and for Butter, ghee: - Milk, Excluding Butter,
Default composition: 882 Milk, whole fresh cow, 888 Milk, skimmed cow, 889 Milk, whole condensed,
890 Whey, condensed, 891 Yoghurt, 892 Yoghurt, concentrated or not, 893 Buttermilk, curdled, acidified
milk, 894 Milk, whole evaporated, 895 Milk, skimmed evaporated, 896 Milk, skimmed condensed, 897
Milk, whole dried, 898 Milk, skimmed dried, 899 Milk, dry buttermilk, 900 Whey, dry, 901 Cheese, whole
cow milk, 903 Whey, fresh, 904 Cheese, skimmed cow milk, 905 Whey, cheese, 907 Cheese, processed,
908 Milk, reconstituted, 909 Milk, products of natural constituents nes, 910 Ice cream and edible ice, 917
Casein, 951 Milk, whole fresh buffalo, 954 Milk, skimmed buffalo, 955 Cheese, buffalo milk, 982 Milk,
whole fresh sheep, 984 Cheese, sheep milk, 985 Milk, skimmed sheep, 1020 Milk, whole fresh goat, 1021
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Cheese of goat mlk, 1023 Milk, skimmed goat, 1130 Milk, whole fresh camel - Butter, ghee, Default
composition: 886 Butter, cow milk, 887 Ghee, butteroil of cow milk, 952 Butter, buffalo milk, 953 Ghee,
of buffalo milk, 983 Butter and ghee, sheep milk, 1022 Butter of goat mlk

1.5 iFEED climate model subset used in ECOSSE modelling and trade and nutrition
analysis

A subset of climate models is used for the nutrition and trade analysis and ECOSSE simulations due
to large processing requirements (human and computational requirements are high for the two analyses
respectively) and a lack of sensitivity in modelled outcomes to climate model inputs.

Methods used to select this subset are based on those of Ruane and McDermid (2017). This splits the
models into 5 groups: Hot wet, Hot dry, Cold wet, Cold dry and Middle. It then picks a representative
model from each category by calculating mean precipitation and temperature changes and selecting the
model that is closest to these mean changes.

The subset was based on rainy season rainfall and temperature change, RCP8.5, over a region that
includes all four iFEED countries. Note that the naming for the categories is relative to the ensemble
change - a model classified as Cold wet for Regional, is cold and wet relative to the rest of the ensemble,
but projects a future that is warmer and with a shorter rainy season than the present day.

All 29 models of Famien et al. (2018) are included in the subsetting process to select models that were
representative of the range in the full ensemble, rather than just the 18 models used in the iFEED food
production analysis.

ACCESS1-0 was the representative model for the ’mid’ category, but was replaced with GFDL-CM3
as it is not included in the 18 model iFEED ensemble. The subset was based on RCP8.5 as this RCP is
associated with larger climatic changes and one subset was required across both RCPs. Therefore, the
subset based on rainfall and temperature, over the entire region of interest, using RCP8.5, was as follows:
bcc-csm1-1-m (Cold dry) MRI-CGCM3 (Cold wet) MIROC-ESM-CHEM (Hot dry) IPSL-CM5A-LR (Hot
wet) GFDL-CM3 (Mid; replacing ACCESS1-0)

1.6 iFEED trade and nutrition analysis supplementary methods

The trade and nutrition analysis uses data on food supply (from domestic production, international
trade, and FAO Food Balance Sheet data), nutritional content of foods, and population level nutritional
requirements in order to calculate nutrition security outcomes. This section contains more information on
the data inputted to the analysis.

1.6.1 Food supply

For each country, the analysis brings together three datasets to derive the 2050 food supply:

1. FAO Food Balance Sheets (FBS) for baseline years 1998-2002. These quantify the mass of food
supply per food item, broken down as shown in Table S6. Processing, feed, seed, and other uses are all
assumed to account for the same proportion of the domestic supply quantity as they do in the baseline
period. Avoidable household waste accounts for the same proportion of food as in the baseline period.
Non-food uses are in the same proportions to domestic supply as in baseline year

2. Crop models and derivations covering all the crop related food in the FBS food items, expressing
the percentage change in the mass of domestic food item production between the baseline period 2000
(1990 to 2010) and 2050 (2040 to 2060). 2050 values vary by scenario quadrant. For food items that are
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extracted or otherwise processed from other primary commodities, 2050 production volumes are calculated
based on the modelled production volumes of the primary commodity and country-specific 2013 extraction
rates provided in FAO Supply Utilization Accounts. For the few food items where no 2050 production
or extraction volumes were calculated, production volumes were kept constant at baseline values (e.g.
seafood).

3. Mass quantifications of food items imported and exported in 2050 under four distinct trade vignettes:

a. Self sufficiency: Depicts a situation with no imports or exports, demonstrating the extent to which
domestic production can meet population level nutritional requirements if international trade is eliminated;
which nutrients have the largest production deficiencies given domestic requirements; which, if any, nutrient
surpluses are available for export without impinging on population-level nutrient security.

b. Business as usual: Proportionally, baseline patterns of trade and domestic supply are unchanged, to
illustrate how well current trading relationships may stand up to future needs to achieve nutrition security
at a country level; how much proactive effort is required to increase (domestic/imported) supplies of certain
nutrients.

c. Stakeholder expectations: A taskforce of in-country experts was asked to signal expectations about 2050
import and export dynamics for each scenario quadrant. Their increase/decrease/no-change expectations
were quantified unilaterally by the core iFEED team across all food items relative to business-as-usual
proportions. These are adjustable in aggregate or on a per commodity basis if preferred. e.g. BAU: 20% of
an item produced in-country is exported. 50% increase under stakeholder expectations = 30% of item’s
production is exported.

d. Trade optimisation to achieve population level nutrition security using a linear optimisation approach to
create an example of the food supply needed for nutrition security. This achieves population-level nutrition
requirements (see below) by making the smallest possible changes to current food supplies and by being
culturally sensitive to national dietary patterns, and indicates potential trade dependencies required to
achieve nutrition security based on this food supply given domestic production outcomes.

The linear optimisation does not contain any intrinsic assumptions about trade, neither imports or exports.
Rather, the optimisation is performed with reference to the total food supply; it is agnostic to where this
supply is sourced from and assumes that no extrinsic sourcing constraints exist. Once the supply has been
optimised, 2050 domestic production volumes (from the crop models) are accounted for and import and
export volumes are calculated to balance the overall supply. Thus, for each food item, imports equate to the
shortfall between optimised supply and domestic production and exports equate to the surplus domestic
production volumes over and above the optimised requirements, and which are therefore available to
trade. The specific constraints applied to the linear programming were to achieve nutrition security and to
minimise deviation from the diet (baseline 1998-2000):

• The aggregate food supply was required to equal the population’s average dietary energy requirements.
For all nutrients, the returned per capita supply had to match or exceed the RNI and could not exceed
the maximum thresholds for fats (see below).

• For all food items, the supply could increase to the maximum supply per capita in any country globally
in 2013 (the latest available year in the FAO data at the time of the study rather than baseline years,
since the exercise is forward looking).

• For alcohol, spices, tea, coffee or infant food, no increases were permitted above baseline amounts (to
keep the supply quantities realistic)
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• For offal, no increase was permitted above baseline amounts to keep the amount in the supply realistic
and disproportionate to supply of other meat from livestock.

• For palm kernels, no increases were permitted since they are rarely used for human consumption.
• New food items not supplied to the country in the baseline period could be introduced up to the

maximum supply per capita in any country globally based on 2013 FAO data.
• For milk and dairy products, any increases were limited to 110 grams per capita because the increase

in some countries was viewed by the researchers as unrealistically high to achieve and it would
disproportionately dominate the diet.

• For all food items, the supply could decrease by 50 per cent relative to the supply in the baseline period.
If no solution was found then the supply could be decreased further in 5 per cent steps.

Items excluded from the FBS analysis, or other relevant assumptions/notes:

• Malawi soybean area and production data are not available for the year 2000 but are for 2003. Therefore
area data for 2003 are used. This is the only example of a crop that does not have area and production
data for the year 2000, but has data at another point in the time series.

• Watermelons and melons, other (inc. cantaloupes) are listed as constituent crops for both ”Fruits, other”
and ”Vegetables, other”. These are only including in ”Fruits, other” in production change calculations.

• For four commodities in Malawi, there is production data but no area data in 1990-2010 (and no FBS
production data) so the following commodities are not included in the Malawi analysis: ”Lemons, limes
and products”, ”Apples and products”, ”Oranges, Mandarines”, ”Sweet potatoes”. Also Malawi has no
roots and tuber nes area data, although it has production data that almost matches the FBS production
data. But as there is no area data for any of the constituent crops in ”Roots, other” production changes
for this category are not included. Tung nuts were excluded as they are toxic and so not eaten (and
therefore no Oilcrops, other production projections are provided for Malawi, as tung nuts were the
only constituent crop for this category in Malawi).

• Note that for sweet potato in Malawi, we are assuming that the potato production and area data include
sweet potato (based on the breakdown of numbers in 2013:2014). Therefore, sweet potato nutrients are
accounted for in the analyis, by assuming potato production breaks down into potato and sweet potato
production.

• Malawi pineapple has no data in the FBS but there is growing area according to FAOSTAT. We
therefore include Malawi pineapple production changes in the ”Fruits, other” category.

• There is South Africa FBS production data for ”Sweeteners, other” but not for the only constituent
crop (sugar crops nes) so production changes for ”Sweeteners, other” were not included in the analysis.

• In South Africa, there is ”Rape and Mustardseed” production data in 2002 in FBS but not before. There
is crop production data for rapeseed in the crop section for 1992 onwards however. Production changes
are therefore calculated for this commodity, but there is only one year of data in the baseline period in
the analysis in South Africa.

1.6.2 Nutrient content of foods

The nutrient values were calculated for each of the 96 aggregated food commodity groups in the FBS.
First, these groups were disaggregated into the food items in the groups (as per the FAO FBS handbook).
The food items were then matched to individual foods in food composition tables (FCT) providing the
nutrient values per 100g. Country specific FCT were used for South Africa and Tanzania, and in the
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absence of country specific FCT for Malawi and Zambia, the West African composition tables were used
since these are the closest match. If a food item was not in these FCT then data would be taken from
the US Department of Agriculture (USDA) FCT and then McCance and Widdowson (UK) FCT. This is
a standard methodology. The nutrients included are total fat, saturated fat, protein, carbohydrate, fibre
(AOAC), vitamin A (RAE), vitamin B (thiamine, riboflavin, niacin, B6, folate), vitamin C, calcium, iron
and zinc, as well as energy. Unfortified forms of foods were taken from the FCT, except in the case of flour
and maize in South Africa where legislation determines these are fortified.

• Assumes the same nutrient profiles for imports as domestic production.
• Assumes no change in nutrient densities between baseline (publication dates for the FCT) and 2050

(including no change with increases of atmospheric CO2)
• Wheat flour is assumed to be wholegrain unless food consumption surveys indicate otherwise.
• Assuming white maize is the maize that is fed to people in the FBS.
• The weighting of certain food items within a commodity which vary significantly in a key nutrient (e.g.

the commodities sweet potato, palm oil and offal have varieties varying widely in vitamin A) is based
on consumption data where possible, otherwise data from other sources (e.g. industry data) informed
the calculations. Expert opinion would be taken on types of food eaten, e.g. what offal is consumed,
but in some cases it was not possible to quantify the amount consumed and an unweighted average
would be used.

Before the food items were aggregated back to the food commodity groups in the FBS each food item in
a group was weighted to reflect the consumption of those foods within each country. A weighted average
was then calculated and used in the estimated nutrient profile of the commoditiy groups. This avoided an
over- or underestimate of nutrient content at a group level. At the time of the study the weightings used by
the FAO were not publicly available. Data we used for the weighting came from household food surveys
(Malawi and South Africa) but these do not exist in Zambia or Tanzania, so the household food expenditure
survey and household budget survey were used, respectively.

The calculated supply values (daily per capita) were plotted against those nutrients reported in the FBS
(energy, fat and protein). Any mismatches / outliers for a food item were identified and investigated. If
there was no error in the food composition values, these values were taken to be correct for that country.
The FAO methodology for estimating energy, fat and protein is not published therefore it is unknown how
they calculate these values or FCT they use. However, the AFRICAP calculated values were very closely
matched to the FAO values in the FBS. Example comparisons are shown in Figures S7 to S9.

All the food groups were adjusted for unavoidable waste (e.g. bones, inedible peel) to represent only the
food consumed. Data were taken from the USDA FCT.

The product of the unitary nutrient contents of each food item and the supply of the respective food item
provides the total nutrient supply per food commodity group and across the entire food balance sheet. To
assess the adequacy of the nutrients supplied (after accounting for non-food uses, losses and household
waste) requires insights about the population’s requirements.

1.6.3 Population-level energy and nutrient requirements

On a per capita basis, population-level energy and nutrient requirements vary depending on the sex and age
of individuals, with pregnancy-specific requirements for reproductive-age females. These population-level
per capita nutrient requirements were specific to the population demographics in each of the four AFRICAP
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countries. The reference values were taken from the World Health Organization dietary recommendations
(2004). The nutrients included for this project are total fat, saturated fat, protein, carbohydrate, fibre
(AOAC), vitamin A (RAE), vitamin B (thiamine, riboflavin, niacin, B6, folate), vitamin C, calcium, iron,
zinc.

For the majority of nutrients, adequacy is based on three threshold values: Reference Nutrient Intake
(RNI), Estimated Average Requirement (EAR), and Lower Reference Nutrient Intake (LRNI). The RNI is
the principal target representing a level of nutrient intakes that are adequate for 95 per cent of the population.
The EAR is an intake adequate for half the population, and the LRNI is a lower-bound target representing
an adequate nutrient intake for 2.75 per cent of the population. For saturated fat, total fat, and energy supply,
different thresholds apply. Fat and saturated fat targets are expressed as ranges proportional to the energy
supply quantity. In both cases if the minimum energy supply target is satisfied, this is proportional to actual
supply; if the minimum energy supply target is not satisfied, this is proportional to target supply. Saturated
fat has no minimum requirement; the maximum recommendation is 10 per cent of the total energy supply.
For total fat, the recommended intake is in the range of 15 to 30 per cent of total energy intake. Energy
requirement thresholds are the minimum, average (principal), and maximum dietary energy requirements
(MDER, ADER, XDER) (see Naiken, 2014).

RNI used for zinc and iron assumes low bioavailability values (5% iron and 15% zinc) since the diets in
the iFEED countries are typically high in plant-based foods where bioavailability of these nutrients is low
compared to animal products.

Per capita requirements are scaled-up to aggregate population requirements based on annual demographic
data for each country, stratifying expected population numbers by sex and 5 years age bracket and estimating
age-specific fertility rates (births per 1000 women). These demographic data are obtained from the medium
fertility estimates in the UN DESA Population Division’s World Population Prospects 2019.

With these components, the population-level supply of each nutrient can be assessed relative to the
population’s requirements, as the marker of nutrition security.

1.7 GLAM crop model parameterisation and evaluation

1.7.1 Input data

The EWEMBI data set (Lange, 2019) was used as the climate input data for crop model evaluation in the
historical period. The EWEMBI data set was compiled for bias-correction of climate input data for the
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; Frieler et al., 2017).

The EWEMBI data cover the globe at 0.5 degree spatial and daily temporal resolution from 1979 to 2013.
Data sources of EWEMBI are ERA-Interim reanalysis data (ERAI; Dee et al., 2011), WATCH forcing
data methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014), eartH2Observe
forcing data (E2OBS; Calton, 2016) and NASA/GEWEX Surface Radiation Budget data (SRB; Stackhouse,
2011). SRB data were used to bias-correct E2OBS shortwave and longwave radiation (Lange, 2018).

Grid cells are selected for evaluation simulation if they contain maize growing area, as defined by MIRCA
(Monthly Irrigated and Rainfed Crop Areas – Portmann et al., 2010), representing information from the
years 1998-2002. Irrigation is determined by a majority grid cell approach. If a grid cell contains greater
than 50% of growing area irrigated, supplementary irrigation simulations are used for that grid cell. This
irrigation routine provides as much as 1 cm of irrigation water to the crop if soil water falls below a fraction
of available soil water. Otherwise simulations for the grid cell are rainfed. For the four modelled crops
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of maize, groundnut, potato and soybean, no grid cells in Malawi and Zambia had greater than 50% of
growing area irrigated for any crops, whereas 1 in Tanzania and 13 in South Africa did for maize. South
Africa also had 10 and 12 grid cells irrigated for potato and groundnut respectively, which were mostly a
subset of the same grid cells irrigated for maize. No grid cells were irrigated for soybean.

Simulations were used to assess if there were any significant differences between irrigated simultions
using the majoritiy grid cell approach and a more computationally-intensive weighted mean approach,
where both rainfed and irrigated simulations are conducted and the proportion of irrigated area is represented
by the irrigated simulations, and the proportion of rainfed by rainfed simulations. These results were
virtually identical in South Africa and Zambia where the model was tested with the weighted mean
approach. Therefore the majority grid cell approach was favoured as it requiredsfewer simulations. See
Figures S1 and S2 for outputs using the two methods in South Africa - the country with most irrigation out
of the four AFRICAP countries.

There are differences in the crop data sets available to modellers (Porwollik et al., 2017). However, most
differences occur in crop areas with a smaller amount of growing area, and in Eastern and Southern Africa
in particular available data sets are relatively similar (Anderson et al., 2015). Uncertainty due to growing
area data sets is therefore assumed to be relatively small.

1.7.2 Crop model parameterisation and configuration

Table S1 to S4 in list all crop-specific parameter values (and ranges where applicable) for GLAM used in
this analysis. For maize, parameters are mainly based on those previously used by Asfaw et al. (2018), and
thermal time ranges are from Durand et al. (2017). Parameters are largely based on Osborne et al. (2013)
for soybean, Challinor et al. (2004) for groundnut, and Jennings et al. (2020) for potato.

Parameters were checked to ensure that they simulate realistic potential rainfed yields (according to the
Global Yield Gap Atlas - e.g. see van Bussel et al., 2015) when the yield gap parameter CYG was set to 1
(meaning that yields for the region should be at climatic potential rainfed yields).

Initial model simulations are used to assess model skill in the historical period of 1980 to 2009. For these
simulations, the 15 year time series within this period with the strongest correlation between observed
yields and crop area weighted weather variables was used to evaluate the model, with other available data
used to calibrate the model. This is because some sections of the observed yield time series have extremely
poor correlations with weather variables and therefore there is very little signal for the model to compare
to. The section of the time series with the most significant correlations was chosen for model evaluation;
the other half of the baseline period is used for model calibration and the selection of planting windows
and variety parameters. Planting dates and varieties are selected using the full time series of data for these
initial simulations. CYG is then calibrated on the full time series. Each 15 year time series starting from
1980 to 1995 is then evaluated to assess which has the strongest correlation with weather variables. In
particular, sections of the time series with significant correlations between rain/temperature and yields
are sought. The time series with the most significant correlations is selected for evaluation - preferably,
with both temperature and rainfall correlations being significant at the P-value of 0.05 level; failing that, at
the 0.1 level. If none of these significant correlations are found, the first half of the time series is used for
calibration, and the second half is used for evaluation.

Following selection of years for model calibration and evaluation, calibration years are used to firstly
select the planting dates and crop varieties at each grid cell. Possible planting windows are selected from
FAO crop calendars and in some cases personal communications from project partners. Different crop
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varieties – representative of current short, medium and long-maturing varieties – are also tested. The
combination of variety and planting window that results in the highest simulated yield is selected at each
grid cell, providing emergency planting (i.e. planting at the end of the planting window) does not take
place for a majority of years in the time series and that durations are within realistic bounds (taken to be
less than 200 days for most crops; for potato and groundnut this is less than 180 days as growing seasons
are typically shorter for these crops).

Planting date and variety selection simulations for future climate were carried out on all years from 1990
to 2088 using a 20 year rolling mean approach (coinciding with time slices used for baseline and future in
the analysis, as well as the typical period over which breeding takes place in sub-Saharan Africa - Challinor
et al., 2016), with YGP set to 1 and irrigation assumed the same as the baseline (the irrigation routine
provided as much as 1 cm of irrigation water to the crop if soil water fell below a fraction of available soil
water. For future climate, for areas where irrigation was expanded to those areas not irrigated in the baseline,
we irrigated by a maximum of 1 mm per day if soil water falls below a specified soil moisture threshold.
This amount was agreed in conjunction waith stakeholders). Therefore planting dates and varieties were
selected for each year, from baseline to future, but not for each YGP or irrigation level. This is because
firstly varietal choices and sowing window selection are independent of mean yields (i.e. not varying with
YGP) and secondly that the selection of planting dates is based on current irrigation conditions, rather than
for different possible irrigation levels that could potentially be used in future. Future planting dates used
rainfed limitations applied where applicable, the assumption being that farmers will continue to be water
efficient where possible.

A full range of CYG options from 0.1 and 1 and irrigation levels were also simulated, providing a “look-up
table” of simulations for the four crops modelled and various adaptation options. IRRSUPFRAC of 0.5 and
1 with MAXSUP 1 both lead to potential transpiration being achieved in South Africa and Zambia in the
baseline. Therefore only two IRRSUPFRACs were simulated for look-up table simulations - 0.1 and 1 -
with a variety of MAXSUP levels, to simulate the full extent of possible irrigation levels between potential
yields and rainfed yields.

1.7.2.1 CO2 fertilisation parameterisation

To take into account CO2 fertilisation, GLAM is parameterised to match yield responses as recorded by
Free Air CO2 Enrichment (FACE) (Kimball, 2016). These FACE responses are representative of a 353
ppm concentration in the baseline (c. year 1988) and a 550 ppm concentration of CO2 in the future - the
equivalent of year 2053 for RCP8.5. In elevated CO2 conditions, maize shows yield increases of 21 to 39%
in water stressed conditions according to these data, and -4 to 0% change in ample water conditions. Potato
has yield increases of 22 to 32%, soybean has a yield increase from -9 to 24% and groundnut has a 13 to
19 % increase. Typically transpiration reduces in elevated CO2 conditions.

Simulations are conducted for years 1983 to 1993 (centred on 1988). GLAM parameters concerned with
biomass growth (radiation use efficiency RUE, transpiration efficiency TE and the maximum normalised
transpiration efficiency TENMAX) are increased incrementally, and the physiologically-limited potential
transpiration PTM is decreased, ensuring that reductions in transpiration are driven by physiological
(stomatal closure) and not energetic limitations (Challinor and Wheeler, 2008; Challinor et al., 2005).
The combination of parameters that best matched FACE yield response ratios and achieve a decrease in
transpiration to match FACE data are chosen for each crop (averaging across all grid cells included in the
analysis). This process gives a parameterisation to capture a sensible yield response to elevated CO2. The
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baseline and these altered parameters are then interpolated and extrapolated to capture responses across a
full range of CO2 values.

Grid cells are selected for the CO2 analysis that contain more than median growing area for that crop and
are rainfed, and have durations greater than 100 days and yields greater than 0. From the cells that fulfil
these conditions, simulations are conducted in Zambia (which has relatively high rainfall for the region)
and South Africa (relatively low rainfall) that vary parameters to see which combination of best replicates
the response ratios of Kimball (2016). Tests are focussed on these two countries as they most often display
stronger correlations between observed yields and climate inputs and have resultingly high model skill
in evaluation simualtions. Different rainfall conditions are included because we expect a different CO2
response in wet and dry conditions for C4 crops in particula (in this case, for maize). For Zambia, grid cells
with greater than median rainfall are selected. For South Africa, grid cells with and without water stress
are included (defined when the ratio of transpiration to potential transpiration falls below a crop-specific
critical value, and median rainfall).

Pick the parameter combination that best fulfils mean yield response ratios, disregarding those that see
yield decreases on average. Prioritise yield response first on average, then if possible have parameters so
that wet condition response is lower than dry condition response for c4 crops and any c3 crops that have
evidence of this such as soybean (i.e. zambia is wet, vs wet in safrica, vs dry in safrica). I am using the
below Kimball paper for the response ratios. The Long 2006 paper gives the changing response ratios over
time – if you are looking at a time slice this is of less interest.

For maize, only TE is increased as increasing RUE and TENMAX would result in larger yield increases
in well-watered condtiions. Mean response ratios were best fulfilled for a 14% increase to TE and a 6%
decrease in PTRANSMAX. This combination gave the smallest increase for wet conditions in South Africa
whilst fulfiiling dry condition response ratios. This resulted in an average yield increase of 21% in South
Africa, with response ratios within FACE bounds in dry conditions but slightly high in wet conditions
(although still lower than dry response). Zambia average response was also lower than the South Africa dry
conditions, although the national mean yield increase was slightly high for well-watered conditions at 20%.

For soybean, a 24% increase in TE, RUE and TENMAX and a 20% decrease in PTRANSMAX was the
best parameter combination for fulfilling conditions for both countries. This fulfils mean Zambian and
South African yield response ratios (yields progressively lower for South African wet and Zambian wetter
conditions, and not changing for Zambia wet conditions). The mean yield response ratio is South Africa
was a 21% increase. For Zambia, there was no yield change on average. Transpiration decreases slightly
too much in zambia, but is within the response ratios in South Africa.

For potato, no parameter combination fulfilled all conditions for transpiration and yield. Therefore
choosing from those that did so in Zambia and showed the largest yield in crease in South Africa whilst
showing a reduction in transpiration. This was an increase of 6% and a decrease of 2%. The mean South
African response ratio was a 14% increase, and in Zambia it was a 25% increase.

For groundnut, no parameter combination fulfils all conditions for transpiration and yield. Parameter
comboination of a 10% increase and a 2% decrease was best. This fulfils South African and Zambian mean
yield response ratios (being a 14 and 17% increase respectively).

Interpolation is then used to capture a sensible parameter response to the full range of possible
CO2 concentrations. Firstly, parameters varied to capture the CO2 response (TE, RUE, TENMAX and
PTRANSMAX) are interpolated between ambient and 550ppm values using linear interpolation. The data
from Long et al. (2006) and Kimball (2016) suggest saturation of the CO2 response at approximately 900
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ppm. For C4 crops, approximately half the yield response to elevated CO2 happens post-550 ppm according
to the data of Long et al. (2006), and therefore half the response gradient is assumed for concentrations from
550-900ppm compared to ambient CO2 to 550ppm. For C3 crops, a quarter of the gradient in relationships
post-550ppm is shown according to the data of Long et al. (2006). Linear interpolation is then again used
to ascertain parameter values for CO2 concentrations between 550 and 900ppm.

1.7.3 Model evaluation results

1.7.3.1 Model evaluation - maize

For Malawi, 1983 to 1997 had the strongest correlation between observed yields and rainfall (p-value <

0.05) so was selected for model evaluation (there being no significant correlations with temperature). 1998
to 2009 was used for calibration.

For Zambia, 1980 to 1994 and 1981 to 1995 had the strongest correlations between observed yields and
rainfall (p-value < 0.05). 1980 to 1994 had a slightly stronger correlation with temperature, so was selected
for model evaluation (there being no significant correlations with temperature). 1995 to 2009 was used for
calibration.

For Tanzania, correlations were weak with none significant at the 0.05 p-value level. The strongest
correlations were between rainfall and observed yields for 1980 to 1994 (p-value 0.1) and temperature
and observed yields from 1994 to 2008 (p-value 0.1). Simulations are mainly driven by temperature in
Tanzania during this period as there is typically sufficient rainfall, therefore 1994 to 2008 was chosen for
model evaluation, and 1980 to 1993 for calibration.

For South Africa the strongest correlations were from 1988 to 2002 (both temperature and rainfall
correlation p-values < 0.01) so these years were used for evaluation. 1980 to 1987 were used for calibration.

When calibrating CYG to observed yields, low values of CYG were recorded, with all countries having
0.08 when calibrating on increments of 0.02 (apart from Tanzania which had a calibrated value of 0.06),
meaning that yields are far from climatic potentials for the region. GYGA show water-limited potential
yields for tanzania and zambia to be 5.96 (2-13 depending on climate zone) and 11.33 (6-19 depending
on climate zone) t/ha respectively. When setting CYG to 1 to simulate potential yields, mean values range
from 7.7 to 14.1 t/ha for the four africap countries.

Maize evaluation results in significant correlation coefficients at the p-value level of 0.1 for countries with
some significant correlations between observed yields and weather variables (South Africa, Malawi and
Zambia). South Africa has by far the strongest relationships between observed yields and weather variables,
and also by far the best correlation coefficient between simulated and observed yields. See Figures S3 to
S6 for observed and simulated yields at the national scale in South Africa.

FAO crop calendars show maize planting taking place from (occasionally September) October to
December in the four countries, depending on the rainy season. Evaluation simulations restrict planting
windows to these dates. Harvest takes place in simulations typically around 150 days after sowing, again
in line with FAO information, where growing seasons may last upwards of 180 days in places but more
usually around 150 days.

1.7.3.2 Model evaluation - soybean

Malawi only has soybean yield data starting in the year 2003, and therefore was excluded from the
interanual variability evaluation process. Tanzania had insiginficant relationships between observed
yield and weather variables so was also excluded. The two countries with signifcant weather-observed
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relationships also show significant correlations between observed and simulated yields - South Africa has a
correlation of 0.54 (p-value < 0.05) and Zambia has a correlation of 0.64 (p-value < 0.01).

When calibrating CYG to observed yields, higher values of CYG were recorded which is expected given
the smaller yield gap in the region for soybean (see GYGA). In Malawi CYG is 0.58, in Tanzania it is 0.6,
in South Africa it is 0.72 and in Zambia it is 0.78.

GYGA do not have soybean potential yield values for the AFRICAP countries, although there are values
for Uruguay and Argentina of 3.2 and 3.9 t/ha respecitvaly, which are similar to the simulated mean
potential yield in Malawi of 3.6 t/ha, with the other countries being slightly lower, typically around 2-2.5
t/ha.

Planting dates were similar to those simulated for maize - planting strongly being linked to the rainy
season in the region. Growing season durations are typically slightly shorter for soybean - again in line
with FAO crop calendar information.

1.7.3.3 Model evaluation - potato

Zambia and Tanzania potato yield data from FAOSTAT had virtually 0 interannual variability so
were excluded from the model einteranual variability evaluation process. Malawi also has no signicant
relationship between temperature and observed yields, and rainfall is not a limiting factor in terms of its
relationship with observed yields (it having a negative correlation between rainfall and observed yields -
i.e more rainfall, and therefore less solar raditation, leads to lower yields). Therefore only South Africa
was assessed in terms of interannual variability. GLAM-potato is otherwise extensively evaluated against
global observations in Jennings et al. 2020.

South Africa has insignifcant relationship between observed yields and rainfall, but a significant
correlation with temperature that is well-captured in simulations. GLAM does less well at simulating the
interannual variability of observed yield, with a correlation of 0.35 (p-value 0.2).

When calibrating CYG to observed yields, in Tanzania CYG is 0.05, in Malawi it is 0.08, in Zambia it is
0.1 and in South Africa it is 0.12.

GYGA do not have potato potential yield values for the AFRICAP countries, and only report data for
China with rainfed potential yields of around 43 t/ha. Simulated mean potential yield values range from
about 15 to 18 t/ha in the AFRICAP countries.

Planting ad harvest dates are similar to those of maize, with rainfall largely determining the growing
season.

1.7.3.4 Model evaluation - groundnut

Malawi has a correlation between observed and simulated yields of 0.46 (p-value < 0.1). South Africa
has a correlation of 0.47 (p-value < 0.1). Zambia, with particularly strong observed yield-weather variable
correlations, also simulates inerannual variability of years extremely accurately with a correlation of 0.81
(p-value < 0.001). Tanzania has an insignificant correlation between observed yields and simulated yields,
due to weaker relationships between observed yields and weather variables.

When calibrating CYG to observed yields, in Tanzania CYG is 0.22, in Malawi it is 0.22, in Zambia it is
0.18 and in South Africa it is 0.48.

GYGA have rainfed potential yield data for Tanzania of 2.3 t/ha. Simulated mean potential yield values
range from about 1.6 to 3.6 t/ha in the AFRICAP countries.
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Planting ad harvest dates are similar to those of maize, with rainfall largely determining the growing
season.

1.8 Supplementary Tables and Figures

Table S1: Parameters used in GLAM-maize, with ranges
where applicable.

Parameter Explanation Value (range) Reference

Leaves
DLDTMX Maximum daily

increase in LAI
0.15 Durand et al. (2017)

MASPA Minimum daily
increase in senesced
LAI during leaf
senescence.

0.05 Bergamaschi et al.
(2013)

SWF THRESH Critical value of soil
water stress factor for
leaves

0.7 Bergamaschi et al.
(2013)

NDSLA Specific Leaf Area
control

5 days Challinor and
Wheeler (2008)

SLA INI Specific leaf
area control (see
Challinor and
Wheeler 2008)

350 cm2/g Richner et al. (1996);
Ashraf and Hafeez
(2004)

MAX ISTG SLA Max development
stage for SLA control

2 (until flowering) N/a

Evaporation and transpiration
ALBEDO Albedo 0.2 Challinor et al.

(2004)
CRIT LAI T LAI below which

transpiration is
physiologically
limited

2.7 (0.6 to 2.7) Al-Kaisi et al.
(1989); Bergamaschi
et al. (2013)

P TRANS MAX Max value
of potential
transpiration

0.73 cm/day
(0.2-0.73)

Al-Kaisi et al. (1989)

VPD CTE Used to calculate
vapour pressure
deficit

0.7 (0.42 to 0.98) Tanner and Sinclair
(1983)

VPD REF Used to calculate
Priestly-Taylor
coefficient

1 kPa (0.6-1.4) Steiner et al. (1991)

SHF CTE Used to calculate soil
heat flux

0.4 Choudhury et al.
(1987)
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EXTC Extinction coefficient 0.5 (0.3-0.85) Bergamaschi et al.
(2013)

Soil and roots
ASWS Initial soil water

(fraction of water
holding capacity)

0.7 Watson et al. (2015)

NWBDAYS Number of days
water balance is
run before start of
planting window

30 days N/a

NSL Number of soil layers 25 Challinor et al.
(2004)

ZSMAX Maximum rooting
depth

150 cm Asfaw et al. (2018)

RKCTE Used to calculate
saturated hydraulic
conductivity of the
soil

75 cm/day Suleiman and Ritchie
(2001)

UPDIFC Uptake diffusion
coefficient

0.25 cm2/day (0.19
to 0.3)

Jamieson and Ewert
(1999); Robertson
and Fukai (1994)

EFV Extraction front
velocity

2 cm/day (1.66 to
3.3)

Dardanelli et al.
(1997); Bergamaschi
et al. (2013)

DLDLAI Increase in root
length density at
surface with LAI

1 cm/cm3 Bergamaschi et al.
(2013)

RLVEF Root length density
at the extraction front

0.3 cm/cm (0.1 to
0.6)

Watson et al. (2015)

Biomass and yield
TE Transpiration

efficiency
8 Pa (5.35 and 10.5) Asfaw et al. (2018);

Walker (1986);
Adamtey et al.
(2010)

TENMAX Max. normalised
transpiration
efficiency

11 g/kg Walker (1986);
Adamtey et al.
(2010); Pilbeam et al.
(1995)

RUE Radiation Use
Efficiency

3.5 (2-5) (g/MJ) Kiniry et al. (1989);
Lindquist et al.
(2005)

DHDT Maximum daily
increase in harvest
index

0.0085 (0.002-0.018 Durand et al. (2017)
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MAX HI MAIZE Maximum harvest
index for maize

0.6 Hay and Gilbert
(2001)

Development
FSWSOW Fractional soil

moisture for
intelligent planting
and emergence

0.5 Challinor et al.
(2004)

IEMDAY Number of days
from planting to
emergence

6 Ashagre et al. (2001)

I TTCALC Shape of function
to calculate thermal
time

1 (flat top) Keating et al. (1992)

TBMAI Base temperature for
maize

10C Sanchez et al. (2014)

TOMAI Optimum
temperature for
maize

30C Sanchez et al. (2014)

TMMAI Maximum
temperature for
maize

40C Sanchez et al. (2014)

I PHEN Complex
(I PHEN=0) or
simple (I PHEN=1)
simulation of
phenology

0 N/a

TLIMJUV Thermal time from
planting to the end of
the juvenile phase

(150-500 degree
days)

Durand et al. (2017)

TLIMSIL Thermal time from
tassel initiation to
silking

150-650 degree days Durand et al. (2017);
Asfaw et al. (2018)

TLIMPFL Thermal time from
silking to start of
grain filling.

20-200 degree days Durand et al. (2017)

TLIMGFP Thermal time from
start of grain filling to
maturity

150-700 degree days Durand et al. (2017)

PPSEN Photoperiod
sensitivity

0-0.75 Durand et al. (2017)

Optional processes
TETRS Switch for

temperature
dependence of
TE and RUE

1 (on) N/a

20



Supplementary Material

TETR1 Temperature above
which TE and
RUE begin linear
reduction

35 C Yang et al. (2004);
Carberry et al. (1989)

TETR2 Temperature above
which TE and RUE
are zero

47 C Yang et al. (2004);
Carberry et al. (1989)

TETR3 Temperature below
which TE and RUE
are zero

7 C Yang et al. (2004);
Carberry et al. (1989)

TETR4 Temperature below
which TE and
RUE begin linear
reduction

18 C Yang et al. (2004);
Carberry et al. (1989)

HTS Switch for heat stress
around flowering

2 N/a

TSETCRIT Switch for high
temperature stress
around flowering

35 Gourdji et al. (2013)

TSETZERO Switch for high
temperature stress
around flowering

45 Sanchez et al. (2014)

TDS Switch for terminal
drought stress (TDS)

1 (on) N/a

HIMIN Minimum harvest
index for TDS to
occur

0.25 Challinor et al.
(2009)

SWCFAC Fraction of water
holding capacity
below which TDS
occurs

0.05 Challinor et al.
(2009)

I EMER Switch for intelligent
emergence

1 (on) N/a

TRKILL Switch for lethal
temperature
parameterisation

1 (on) N/a

TRKILL1 Temperature below
which crop fails

-1.8; Sanchez et al. (2014)

TRKILL2 Temperature above
which crop fails

46 Sanchez et al. (2014)

WS Switch for water
stress around
flowering

2 (on) N/a

SWFFTHR SWFAC threshold
for damage to
flowers

0.2 Challinor et al.
(2006)
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TRLAI Switch for
temperature
dependence of
LAI growth

1 (on) N/a

TRLAIB Base temperature
below which leaf
growth does not
occur

7.3 C Sanchez et al. (2014)

TRLAIO Optimum
temperature for
leaf growth

31.1 C Sanchez et al. (2014)

TRLAIM Maximum
temperature for
leaf growth

41.3 C Sanchez et al. (2014)

Table S2: Parameters used in GLAM-potato, with ranges
where applicable.

Parameter Explanation Value (range) Reference

Leaves
DLDTMX Maximum daily

increase in LAI
0.14 Hay and Porter

(2006); Jones and
Allen (1983); Allen
and Scott (1980);

MASPA Minimum daily
increase in senesced
LAI during leaf
senescence.

0.14 Jennings et al. (2020)

SWF THRESH Critical value of soil
water stress factor for
leaves

0.6 Ejieji and Gowing
(2000); Jefferies and
Heilbronn (1991)

NDSLA Specific Leaf Area
control

5 days Challinor and
Wheeler (2008)

SLA INI Specific leaf
area control (see
Challinor and
Wheeler ,2008)

500 cm2/g Vos and Biemond
(1992); Fasan and
Haverkort (1991)

MAX ISTG SLA Max development
stage for SLA control

2 N/a

Evaporation and transpiration
ALBEDO Albedo 0.2 Challinor et al.

(2004)
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CRIT LAI T LAI below which
transpiration is
physiologically
limited

2.8 Tanner and Jury
(1976)

P TRANS MAX Max value
of potential
transpiration

1.25 cm/day Campbell et al.
(1976)

VPD CTE Used to calculate
vapour pressure
deficit

0.7 (0.42 to 0.98) Tanner and Sinclair
(1983)

VPD REF Used to calculate
Priestly-Taylor
coefficient

1 kPa (0.6-1.4) Steiner et al. (1991)

SHF CTE Used to calculate soil
heat flux

0.4 Choudhury et al.
(1987)

EXTC Extinction coefficient 0.55 Haverkort et al.
(1991); Jongschaap
and Booij (2004);
Monteith and
Unsworth (2007)

Soil and roots
ASWS Initial soil water

(fraction of water
holding capacity)

0.7 Watson et al. (2015)

NWBDAYS Number of days
water balance is
run before start of
planting window

30 days N/a

NSL Number of soil layers 25 Challinor et al.
(2004)

ZSMAX Maximum rooting
depth

100 cm Jennings et al. (2020)

RKCTE Used to calculate
saturated hydraulic
conductivity of the
soil

75 cm/day Suleiman and Ritchie
(2001)

UPDIFC Uptake diffusion
coefficient

0.175 cm2/day Lesczynski and
Tanner (1976)

EFV Extraction front
velocity

1.75 cm/day Smit and Groenwold
(2005)

DLDLAI Increase in root
length density at
surface with LAI

3.25 cm/cm3 Iwama et al. (1993)
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RLVEF Root length density
at the extraction front

0.575 cm/cm Lesczynski and
Tanner (1976);
Stalham and Allen
(2001); Parker et al.
(1989)

Biomass and yield
TE Transpiration

efficiency
6.525 Pa (2-11.05) Jefferies (1993);

Kaminski et al.
(2015); Tanner
(1981); Vos and
Groenwold (1989)

TENMAX Max. normalised
transpiration
efficiency (g/kg)

11.31 g/kg Vos and Groenwold
(1989)

RUE Radiation Use
Efficiency

2.7 (1.7-3.7) (g/MJ) Zhou et al. (2016);
Timlin et al.
(2006); Khurana
and McLaren
(1982); Jefferies and
MacKerron (1989)

DHDT Maximum daily
increase in harvest
index

0.012 Moriondo et al.
(2005)

MAX HI SPUD Maximum value of
harvest index

0.8 Moriondo et al.
(2005)

Development
GCPOEMER, GCPOTUBI,
GCPOSENE, GCPOHARV

Thermal time
requirements (◦days;
stages 1, 2, 3, 4)

100-400, 100-300,
200-500, 100-400

Streck et al. (2007);
Paula et al. (2005);
Jefferies and
Mackerron (1987);
Van Keulen and Stol
(1995)

TBPO, TOPO, TMPO Cardinal
temperatures (◦C),
base, optimum,
maximum

4, 18, 29 (0-8, 15-21,
25-33)

Manrique and
Hodges (1989);
Sands et al. (1979)

Critical photoperiod Pcrit

(hours)
10.7-13 Ewing and Wareing

(1978); Streck et al.
(2007)

PPSEN Photoperiod
sensitivity Ps

0.0645 Streck et al. (2007)

CRITPP Critical photoperiod
Pcrit (hours)

10.7-13 Ewing and Wareing
(1978); Streck et al.
(2007)

24



Supplementary Material

FSWSOW Fractional soil
moisture for
intelligent planting
and emergence

0.5 Challinor et al.
(2004)

I TTCALC Shape of function
to calculate thermal
time

0 (triangular) Keating et al. (1992)

Optional processes
TETRS Switch for

temperature
dependence of
TE and RUE

-1 (off) Jennings et al. (2020)

HTS Switch for heat
stress around tuber
initiation

2 Jennings et al. (2020)

TSETCRIT Switch for high
temperature stress
around tuber
initiation

24 Timlin et al. (2006);
Wolf et al. (1990);
Ingram and McCloud
(1984)

TSETZERO Switch for high
temperature stress
around tuber
initiation

33 Timlin et al. (2006);
Wolf et al. (1990);
Ingram and McCloud
(1984)

TDS Switch for terminal
drought stress (TDS)

1 (on) N/a

HIMIN Minimum harvest
index for TDS to
occur

0.25 Challinor et al.
(2009)

SWCFAC Fraction of water
holding capacity
below which TDS
occurs

0.05 Challinor et al.
(2009)

I EMER Switch for intelligent
emergence

-1 (off) N/a

TRKILL Switch for lethal
temperature
parameterisation

1 (on) N/a

TRKILL1 Temperature below
which crop fails

-2; Sanchez et al. (2014)

TRKILL2 Temperature above
which crop fails

46 Sanchez et al. (2014)

WS Switch for water
stress around
flowering

0 (off) Jennings et al. (2020)
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TRLAI Switch for
temperature
dependence of
LAI growth

-1 (off) Jennings et al. (2020)

HTSEN SWITCH Switch for tincreased
senescence with high
temperatures

1 (on) Jennings et al. (2020)

HTS SEN Threshold when
exceeded by TMAX
there is an increase
in leaf senescence
(degrees C)

34 Raymundo et al.
(2017)

Table S3: Parameters used in GLAM-groudnut, with ranges
where applicable.

Parameter Explanation Value (range) Reference

Leaves
DLDTMX Maximum daily

increase in LAI
0.1 Challinor et al.

(2004)
SWF THRESH Critical value of soil

water stress factor for
leaves

0.7 Challinor et al.
(2004)

NDSLA Specific Leaf Area
control

5 days Challinor and
Wheeler (2008)

SLA INI Specific leaf
area control (see
Challinor and
Wheeler 2008)

300 cm2/g Challinor and
Wheeler (2008)

MAX ISTG SLA Max development
stage for SLA control

2 N/a

Evaporation and transpiration
ALBEDO Albedo 0.2 Challinor et al.

(2004)
CRIT LAI T LAI below which

transpiration is
physiologically
limited

0.7 Challinor et al.
(2004)

P TRANS MAX Max value
of potential
transpiration

0.3 cm/day Challinor et al.
(2004)

VPD CTE Used to calculate
vapour pressure
deficit

0.7 Challinor et al.
(2004)
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VPD REF Used to calculate
Priestly-Taylor
coefficient

1 kPa Challinor et al.
(2004)

SHF CTE Used to calculate soil
heat flux

0.4 Choudhury et al.
(1987)

EXTC Extinction coefficient 0.5 Challinor et al.
(2004)

Soil and roots
ASWS Initial soil water

(fraction of water
holding capacity)

0.7 Watson et al. (2015)

NWBDAYS Number of days
water balance is
run before start of
planting window

30 days N/a

NSL Number of soil layers 25 Challinor et al.
(2004)

ZSMAX Maximum rooting
depth

210 cm Challinor et al.
(2004)

RKCTE Used to calculate
saturated hydraulic
conductivity of the
soil

75 cm/day Suleiman and Ritchie
(2001)

UPDIFC Uptake diffusion
coefficient

0.06 cm2/day Challinor et al.
(2004)

EFV Extraction front
velocity

1 cm/day Challinor et al.
(2004)

DLDLAI Increase in root
length density at
surface with LAI

1 cm/cm3 Challinor et al.
(2004)

RLVEF Root length density
at the extraction front

0.3 cm/cm Challinor et al.
(2004)

Biomass and yield
TE Transpiration

efficiency
1.7 Pa Challinor et al.

(2004)
TENMAX Max. normalised

transpiration
efficiency

3 g/kg Challinor et al.
(2004)

RUE Radiation Use
Efficiency

1.7 (g/MJ) Ramirez-Villegas
et al. (2017)

DHDT Maximum daily
increase in harvest
index

0.007 Challinor et al.
(2004)

MAX HI GNUT Maximum harvest
index for groundnut

0.67 Nigam et al. (2001)
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Development
FSWSOW Fractional soil

moisture for
intelligent planting
and emergence

0.5 Challinor et al.
(2004)

IEMDAY Number of days
from planting to
emergence

8 Challinor et al.
(2004)

I TTCALC Shape of function
to calculate thermal
time

0 (triangular) Challinor et al.
(2004)

TBGNUT Base temperature for
maize

10C Challinor et al.
(2004)

TOGNUT Optimum
temperature for
maize

28C Challinor et al.
(2004)

TMGNUT Maximum
temperature for
maize

50C Challinor et al.
(2004)

GCPLFL Thermal time from
planting to flowering

340-425 degree days Challinor et al.
(2004); Nicklin
(2013)

GCFLPF Flowering to
beginning of
grain-filling

255-330 degree days Challinor et al.
(2004); Nicklin
(2013)

GCPFLM Beginning of grain-
filling to maximum
LAI

200-502 degree days Challinor et al.
(2004); Nicklin
(2013)

GCLMHA Maximum LAI
to physiological
maturity

500-750 degree days Challinor et al.
(2004); Nicklin
(2013)

Optional processes
TETRS Switch for

temperature
dependence of
TE and RUE

1 (on) N/a

TETR1 Temperature above
which TE and
RUE begin linear
reduction

35 C Challinor et al.
(2009)

TETR2 Temperature above
which TE and RUE
are zero

47 C Challinor et al.
(2009)

HTS Switch for heat stress
around flowering

2 N/a
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TSETCRIT Switch for high
temperature stress
around flowering

34 Challinor et al.
(2007)

TSETZERO Switch for high
temperature stress
around flowering

44 Challinor et al.
(2007)

TDS Switch for terminal
drought stress (TDS)

1 (on) N/a

HIMIN Minimum harvest
index for TDS to
occur

0.25 Challinor et al.
(2009)

SWCFAC Fraction of water
holding capacity
below which TDS
occurs

0.05 Challinor et al.
(2009)

I EMER Switch for intelligent
emergence

1 (on) N/a

TRKILL Switch for lethal
temperature
parameterisation

1 (on) N/a

TRKILL1 Temperature below
which crop fails

0; N/a

TRKILL2 Temperature above
which crop fails

47 Challinor et al.
(2009)

WS Switch for water
stress around
flowering

2 (on) Challinor et al.
(2006)

SWFFTHR SWFAC threshold
for damage to
flowers

0.2 Challinor et al.
(2006)

TRLAI Switch for
temperature
dependence of
LAI growth

-1 (off) N/a

Table S4: Parameters used in GLAM-soybean, with ranges
where applicable.

Parameter Explanation Value (range) Reference

Leaves
DLDTMX Maximum daily

increase in LAI
0.16 Osborne et al. (2013)

Frontiers 29



Supplementary Material

SWF THRESH Critical value of soil
water stress factor for
leaves

0.7 Osborne et al. (2013)

NDSLA Specific Leaf Area
control

5 days Challinor and
Wheeler (2008)

SLA INI Specific leaf
area control (see
Challinor and
Wheeler 2008)

300 cm2/g Osborne et al. (2013)

MAX ISTG SLA Max development
stage for SLA control

2 (until flowering) N/a

Evaporation and transpiration
ALBEDO Albedo 0.2 Challinor et al.

(2004)
CRIT LAI T LAI below which

transpiration is
physiologically
limited

4.6 Osborne et al. (2013)

P TRANS MAX Max value
of potential
transpiration

0.38 cm/day
(0.2-0.73)

Osborne et al. (2013)

VPD CTE Used to calculate
vapour pressure
deficit

0.7 (0.42 to 0.98) Tanner and Sinclair
(1983)

VPD REF Used to calculate
Priestly-Taylor
coefficient

1 kPa (0.6-1.4) Steiner et al. (1991)

SHF CTE Used to calculate soil
heat flux

0.4 Choudhury et al.
(1987)

EXTC Extinction coefficient 0.5 Osborne et al. (2013)
Soil and roots
ASWS Initial soil water

(fraction of water
holding capacity)

0.7 Watson et al. (2015)

NWBDAYS Number of days
water balance is
run before start of
planting window

30 days N/a

NSL Number of soil layers 25 Challinor et al.
(2004)

ZSMAX Maximum rooting
depth

100 cm Osborne et al. (2013)

RKCTE Used to calculate
saturated hydraulic
conductivity of the
soil

75 cm/day Suleiman and Ritchie
(2001)
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UPDIFC Uptake diffusion
coefficient

0.25 cm2/day (0.19
to 0.3)

Jamieson and Ewert
(1999); Robertson
and Fukai (1994)

EFV Extraction front
velocity

1 cm/day Osborne et al. (2013)

DLDLAI Increase in root
length density at
surface with LAI

1 cm/cm3 Osborne et al. (2013)

RLVEF Root length density
at the extraction front

0.5 cm/cm Osborne et al. (2013)

Biomass and yield
TE Transpiration

efficiency
1.8 Pa Osborne et al. (2013)

TENMAX Max. normalised
transpiration
efficiency

3 g/kg Osborne et al. (2013)

RUE Radiation Use
Efficiency

1.4 (g/MJ) Osborne et al. (2013)

DHDT Maximum daily
increase in harvest
index

0.0077 Osborne et al. (2013)

MAX HI SOYBEAN Maximum harvest
index for soybean

0.6 Spaeth and Sinclair
(1985)

Development
FSWSOW Fractional soil

moisture for
intelligent planting
and emergence

0.5 Challinor et al.
(2004)

IEMDAY Number of days
from planting to
emergence

10 Osborne et al. (2013)

I TTCALC Shape of function
to calculate thermal
time

0 (triangular) Osborne et al. (2013)

TBSOY Base temperature for
soybean

6.5C Osborne et al. (2013);
Hatfield et al. (2011);
Setiyono et al. (2007)

TOSOY Optimum
temperature for
soybean

26C for stage 1; 21.5
for other stages

Osborne et al. (2013);
Hatfield et al. (2011);
Setiyono et al. (2007)

TMSOY Maximum
temperature for
soybean

35C for stage 1; 38.5
for other stages

Osborne et al. (2013);
Hatfield et al. (2011);
Setiyono et al. (2007)

GCSOPLFL Thermal time for
stage 1 (planting to
flowering)

346-477 degree days Osborne et al. (2013)
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GCSOFLPO Thermal time for
stage 2 (flowering
to beginning of
pod-filling)

285-380 degree days Osborne et al. (2013)

GCSOPOML Thermal time for
stage 3 (Beginning
of pod-filling to
maximum LAI)

19-342 degree days Osborne et al. (2013)

GCSOMLMA Thermal time for
stage 4 (Maximum
LAI to physiological
maturity)

413-865 degree days Osborne et al. (2013)

CRITPP Critical photoperiod 11.91-14.48 Osborne et al. (2013)
PPSEN Photoperiod

sensitivity
0.188-0.34 Osborne et al. (2013)

Optional processes
TETRS Switch for

temperature
dependence of
TE and RUE

1 (on) N/a

TETR1 Temperature above
which TE and
RUE begin linear
reduction

31 C Osborne et al. (2013)

TETR2 Temperature above
which TE and RUE
are zero

39 C Luo (2011)

TETR3 Temperature below
which TE and RUE
are zero

0 C Van Heerden et al.
(2003)

TETR4 Temperature below
which TE and
RUE begin linear
reduction

15 C Van Heerden et al.
(2003)

HTS Switch for heat stress
around flowering

2 Osborne et al. (2013)

TSETCRIT Switch for high
temperature stress
around flowering

31 Osborne et al. (2013)

TSETZERO Switch for high
temperature stress
around flowering

36 Osborne et al. (2013)

TDS Switch for terminal
drought stress (TDS)

1 (on) N/a
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HIMIN Minimum harvest
index for TDS to
occur

0.25 Challinor et al.
(2009)

SWCFAC Fraction of water
holding capacity
below which TDS
occurs

0.05 Challinor et al.
(2009)

I EMER Switch for intelligent
emergence

1 (on) N/a

TRKILL Switch for lethal
temperature
parameterisation

-1 (off) N/a

WS Switch for water
stress around
flowering

2 (on) N/a

SWFFTHR SWFAC threshold
for damage to
flowers

0.2 Challinor et al.
(2006)

TRLAI Switch for
temperature
dependence of
LAI growth

-1 (off) N/a
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Table S6. FAO Food Balance Sheets (FBS) quantify the mass of food supply per food item, broken down as follows. *calculated using data from Gustavsson J,
Cederberg C, Sonesson U, van Otterdijk R and Meybeck A. (2011) Global food losses and food waste: extent, causes and prevention. FAO, Rome (data not in
the FBS)

Production
plus Imports
less Exports
plus Stock variation
equals Domestic Supply Quantity
less Processing
less Feed
less Seed
less Losses
less Other uses
equals Food for human consumption
less Avoidable household waste*
equals Food after avoidable household waste*
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1.8.1 Figures
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Figure S1. Observed and simulated yields using the weighted yield mean approach.
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Figure S2. Observed and simulated yields using the supplementary irrigation and majority grid cell
approach.

Frontiers 37



Supplementary Material

0
50

0
10

00
15

00
20

00
25

00
30

00

SouthAfrica

Years

Y
ie

ld
 (

kg
/h

a)

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

1988 1990 1992 1994 1996 1998 2000 2002

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

Figure S3. South Africa observed yields (black line) and simulated detrended yields (red line - dashed red
line is non-detrended simulated yields). Correlation coefficient between detrended observed and simulated
yields is 0.73, p-value 0.002.
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Figure S4. Malawi observed yields (black line) and simulated detrended yields (red line - dashed red line
is non-detrended simulated yields). Correlation coefficient between detrended observed and simulated
yields is 0.444, p-value 0.097.
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Figure S5. Tanzania observed yields (black line) and simulated detrended yields (red line - dashed red
line is non-detrended simulated yields). Correlation coefficient between detrended observed and simulated
yields is 0.55, p-value 0.03.
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Figure S6. Zambia observed yields (black line) and simulated detrended yields (red line - dashed red line
is non-detrended simulated yields). Correlation coefficient between detrended observed and simulated
yields is 0.475, p-value 0.073.
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Figure S7. Comparison of FAO Food Balance Sheet and iFEED-calculated values for energy in South
Africa.
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Figure S8. Comparison of FAO Food Balance Sheet and iFEED-calculated values for fat in South Africa.
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Figure S9. Comparison of FAO Food Balance Sheet and iFEED-calculated values for protein in South
Africa.
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